1
|
Yalfani A, Asgarpoor A. Comparison of cognitive functional therapy and neurofeedback training on kinetic gait in patients with chronic non-specific low back pain: a randomised controlled trial. Disabil Rehabil 2025:1-10. [PMID: 39840907 DOI: 10.1080/09638288.2025.2451219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/04/2025] [Accepted: 01/05/2025] [Indexed: 01/23/2025]
Abstract
PURPOSE OF THE ARTICLE Walking disorders are a significant issue for patients with low back pain. The aim of clinical trials is to compare the effects of cognitive functional therapy (CFT) and neurofeedback training (NFBT) on gait kinetics in chronic non-specific low back pain (CNSLBP) patients. MATERIALS AND METHODS Sixty females with chronic non-specific low back pain were recruitment for clinical trials. They were randomly divided into experimental and one control groups (Each group 20 patients). The experimental group received the relevant interventions for eight weeks. The primary outcome was pain, kinesiophobia and disability. The secondary outcome was vertical ground reaction force (VGRF) parameters. Two-Way Repeated Measures ANOVA statistical method was used for data analysis. RESULTS Within-group comparisons showed that neurofeedback training and cognitive functional therapy groups experienced significant improvement in pain intensity, disability and kinesiophobia after eight-week (p < 0.05). However, the cognitive functional therapy group improved the vertical ground reaction force parameters better than the neurofeedback training group (p < 0.05). CONCLUSIONS cognitive functional therapy intervention had a greater effect on the vertical ground reaction force parameters. The reason for the greater effect of cognitive functional therapy intervention on vertical ground reaction force parameters can be partially explained due to the multimodal therapy used through cognitive exercises and motor control.
Collapse
Affiliation(s)
- Ali Yalfani
- Department of exercise rehabilitation, Faculty of Sport Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Azadeh Asgarpoor
- Department of exercise rehabilitation, Faculty of Sport Sciences, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
2
|
Berman T, Cushing C, Manuel S, Vachon-Presseau E, Cortese A, Kawato M, Woo CW, Wager TD, Lau H, Roy M, Taschereau-Dumouchel V. Modulating subjective pain perception with decoded Montreal Neurological Institute-space neurofeedback: a proof-of-concept study. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230082. [PMID: 39428876 PMCID: PMC11491845 DOI: 10.1098/rstb.2023.0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/09/2024] [Accepted: 04/03/2024] [Indexed: 10/22/2024] Open
Abstract
Pain is a complex emotional experience that still remains challenging to manage. Previous functional magnetic resonance imaging (fMRI) studies have associated pain with distributed patterns of brain activity (i.e. brain decoders), but it is still unclear whether these observations reflect causal mechanisms. To address this question, we devised a new neurofeedback approach using real-time decoding of fMRI data to test if modulating pain-related multivoxel fMRI patterns could lead to changes in subjective pain experience. We first showed that subjective pain ratings can indeed be accurately predicted using a real-time decoding approach based on the stimulus intensity independent pain signature (SIIPS) and the neurologic pain signature (NPS). Next, we trained participants (n = 16) in a double-blinded decoded fMRI neurofeedback experiment to up- or downregulate the SIIPS. Our results indicate that participants can learn to downregulate the expression of SIIPS independently from NPS expression. Importantly, the success of this neurofeedback training was associated with the perceived intensity of painful stimulation following the intervention. Taken together, these results indicate that closed-loop brain imaging can be efficiently conducted using a priori fMRI decoders of pain, potentially opening up a new range of applications for decoded neurofeedback, both for clinical and basic science purposes. This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.
Collapse
Affiliation(s)
- Taryn Berman
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Cody Cushing
- Department of Psychology, UCLA, Los Angeles, CA90095, USA
| | - Shawn Manuel
- Department of Psychiatry and Addictology, Université de Montréal, Montreal, Quebec, Canada
- Centre de Recherche de l’Institut Universitaire en Santé Mentale de Montréal, Montreal, Quebec, Canada
| | - Etienne Vachon-Presseau
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
- Department of Anesthesia, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
- Alan Edwards Center for Research on Pain, McGill University, Montreal, Quebec, Canada
| | | | - Mitsuo Kawato
- ATR Brain Information Communication Research Laboratory, Kyoto, Japan
- XNef Inc, Kyoto, Japan
| | - Choong-Wan Woo
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
- Life-inspired Neural Network for Prediction and Optimization Research Group, Suwon, South Korea
| | - Tor Dessart Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Hakwan Lau
- RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Mathieu Roy
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Vincent Taschereau-Dumouchel
- Department of Psychiatry and Addictology, Université de Montréal, Montreal, Quebec, Canada
- Centre de Recherche de l’Institut Universitaire en Santé Mentale de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Norman-Nott N, Cashin AG, Gustin SM. Psychological, physical and complementary therapies for the management of neuropathic pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:431-470. [PMID: 39580220 DOI: 10.1016/bs.irn.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
This chapter aims to explain and evaluate the evidence for psychological, physical and complementary therapies as part of a holistic plan for managing neuropathic pain. Psychological therapies refer to interventions targeting mental health, while physical therapies refer to interventions designed to target movement and functional ability, and complementary therapies are those that attempt to target key mechanisms of change to alter brain and body functioning, or thought processes related to the experience of pain. Each therapeutic modality is discussed to narratively report on the evidence and provide implications for clinicians. Where evidence was unavailable for neuropathic pain populations, evidence from chronic pain populations more broadly was considered. Although promising, there is a lack of high-quality evidence investigating the benefits and safety of psychological, physical and complementary therapies for the management of neuropathic pain. The low certainty evidence and lack of evidence across different neuropathic pain conditions impacts the ability to make recommendations for clinical practice. However, there are several potential areas for future research. Psychological therapies that focus on the underlying mechanisms related to emotion regulation may improve mood and pain, while cognitive and behavioural based approaches may improve psychological comorbidities such as anxiety and depression. Physical therapies involving physical activity and exercise, education, and graded motor imagery may improve functioning and reduce pain. Finally, complementary therapies including electroencephalography neurofeedback, acupuncture, virtual reality, hypnosis and transcutaneous electrical nerve stimulation may provide promising reductions in pain. There is a clear need for further high-quality trials to evaluate the benefits and safety of psychological, physical and complementary therapies to guide the management of neuropathic pain.
Collapse
Affiliation(s)
- Nell Norman-Nott
- NeuroRecovery Research Hub, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia; Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia.
| | - Aidan G Cashin
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia; School of Health Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Sylvia M Gustin
- NeuroRecovery Research Hub, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia; Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Rice DA, Ozolins C, Biswas R, Almesfer F, Zeng I, Parikh A, Vile WG, Rashid U, Graham J, Kluger MT. Home-based EEG Neurofeedback for the Treatment of Chronic Pain: A Randomized Controlled Clinical Trial. THE JOURNAL OF PAIN 2024; 25:104651. [PMID: 39154809 DOI: 10.1016/j.jpain.2024.104651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 08/20/2024]
Abstract
This parallel, 2-arm, blinded, randomized controlled superiority trial examined whether, when added to usual care, active-electroencephalography neurofeedback (EEG NFB) was safe and more effective than sham control-EEG NFB for chronic pain. In total, 116 participants with chronic pain were randomly assigned (1:1) to usual care plus ≥32 sessions of active-EEG NFB upregulating relative alpha power over C4 or usual care plus ≥32 sessions of sham control-EEG NFB. Per-protocol analyses revealed no significant between-group differences in the primary outcome, Brief Pain Inventory average pain (mean difference [95% confidence interval]: -.04 [-.39 to .31], P = .90), or any secondary outcomes. However, 44% of participants in the active-EEG NFB group and 45% in the control-EEG NFB group reported at least a moderate (≥30%), clinically important improvement in Brief Pain Inventory average pain. The number of treatment-emergent adverse events were similar in both groups (P = .83), and none were serious. Post hoc analyses revealed similar upregulated relative alpha power in both groups during training, with concordant positive rewards delivered to the active-EEG group 100% of the time and the control-EEG group ∼25% of the time, suggesting a partially active sham intervention. When added to usual care, the active-EEG NFB intervention used in this study was not superior to the sham control-EEG NFB intervention. However, a large proportion of participants in both groups reported a clinically important reduction in pain intensity. A partially active sham intervention may have obscured between-group differences. The intervention was free of important side effects, with no safety concerns identified. PERSPECTIVE: This study is the first attempt at an appropriately blinded, randomized, sham-controlled trial of alpha EEG NFB for the treatment of chronic pain. The findings may interest people living with chronic pain, clinicians involved in chronic pain management, and may inform the design of future EEG NFB trials. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry (ANZCTR): ACTRN12621000667819.
Collapse
Affiliation(s)
- David A Rice
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, Auckland, New Zealand; Waitemata Pain Services, Te Whatu Ora - Health New Zealand Waitematā, Auckland, Auckland, New Zealand.
| | | | - Riya Biswas
- Exsurgo Limited, Auckland, Auckland, New Zealand
| | | | - Irene Zeng
- Department of Biostatistics, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, Auckland, New Zealand
| | - Ankit Parikh
- Exsurgo Limited, Auckland, Auckland, New Zealand
| | | | - Usman Rashid
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, Auckland, New Zealand
| | - Jon Graham
- PhysioFunction Ltd., Northampton, Northamptonshire, United Kingdom
| | - Michal T Kluger
- Waitemata Pain Services, Te Whatu Ora - Health New Zealand Waitematā, Auckland, Auckland, New Zealand; Department of Anaesthesiology and Perioperative Medicine, Te Whatu Ora - Health New Zealand Waitematā, Auckland, Auckland, New Zealand; Department of Anaesthesiology, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Hesam-Shariati N, Alexander L, Chen KY, Craig A, Glare PA, Jensen MP, Lin CT, McAuley JH, Middleton JW, Moseley GL, Newton-John T, Restrepo S, Skinner IW, Zahara P, Gustin SM. A home-based self-directed EEG neurofeedback intervention for people with chronic neuropathic pain following spinal cord injury (the StoPain Trial): description of the intervention. Spinal Cord 2024; 62:658-666. [PMID: 39266672 PMCID: PMC11549037 DOI: 10.1038/s41393-024-01031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024]
Abstract
STUDY DESIGN Randomised controlled trial. OBJECTIVES The objective is to describe an electroencephalography (EEG) neurofeedback intervention that will be provided in a randomised controlled trial for people with neuropathic pain following spinal cord injury (SCI): the StoPain Trial. In this trial, participants in the treatment group will implement an EEG neurofeedback system as an analgesic intervention at home, while participants in the control group will continue with the treatments available to them in the community. SETTING University-based study in Sydney, Australia. METHODS/RESULTS This manuscript describes the rationale and components of the EEG neurofeedback intervention designed for individuals with SCI neuropathic pain and intended for home-based implementation. Our report is based on the criteria of the Template for Intervention Description and Replication (TIDieR) checklist, and includes why the efficacy of EEG neurofeedback will be investigated, what will be provided, who will administer it, and how, where, when, and how much the EEG neurofeedback intervention will be administered. CONCLUSIONS This manuscript provides a detailed description of a complex intervention used in a randomised controlled trial. This description will facilitate the subsequent interpretation of the trial results and allow for the replication of the intervention in clinical practice and future trials. SPONSORSHIP Australian Government Medical Research Future Fund (2020 Rare Cancers Rare Diseases and Unmet Needs Scheme: 2006020).
Collapse
Affiliation(s)
- Negin Hesam-Shariati
- NeuroRecovery Research Hub, School of Psychology, University of New South Wales, Sydney, NSW, Australia.
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, NSW, Australia.
| | - Lara Alexander
- NeuroRecovery Research Hub, School of Psychology, University of New South Wales, Sydney, NSW, Australia
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, NSW, Australia
| | - Kevin Yi Chen
- NeuroRecovery Research Hub, School of Psychology, University of New South Wales, Sydney, NSW, Australia
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, NSW, Australia
| | - Ashley Craig
- The Kolling Institute, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Paul A Glare
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Mark P Jensen
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Chin-Teng Lin
- CIBCI Lab, Human-centric Artificial Intelligence Centre, Australian AI Institute, FEIT, University of Technology Sydney, Sydney, NSW, Australia
| | - James H McAuley
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, NSW, Australia
- School of Health Sciences, University of New South Wales, Sydney, NSW, Australia
| | - James W Middleton
- The Kolling Institute, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - G Lorimer Moseley
- IIMPACT in Health, University of South Australia, Kuarna Country, Adelaide, SA, Australia
| | - Toby Newton-John
- Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Sebastian Restrepo
- NeuroRecovery Research Hub, School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Ian W Skinner
- Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
- School of Allied Health Exercise and Sports Sciences, Charles Sturt University, Port Macquarie, NSW, Australia
| | - Pauline Zahara
- NeuroRecovery Research Hub, School of Psychology, University of New South Wales, Sydney, NSW, Australia
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, NSW, Australia
| | - Sylvia M Gustin
- NeuroRecovery Research Hub, School of Psychology, University of New South Wales, Sydney, NSW, Australia
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, NSW, Australia
| |
Collapse
|
6
|
Rudroff T, Rainio O, Klén R. Leveraging Artificial Intelligence to Optimize Transcranial Direct Current Stimulation for Long COVID Management: A Forward-Looking Perspective. Brain Sci 2024; 14:831. [PMID: 39199522 PMCID: PMC11353063 DOI: 10.3390/brainsci14080831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/12/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024] Open
Abstract
Long COVID (Coronavirus disease), affecting millions globally, presents unprecedented challenges to healthcare systems due to its complex, multifaceted nature and the lack of effective treatments. This perspective review explores the potential of artificial intelligence (AI)-guided transcranial direct current stimulation (tDCS) as an innovative approach to address the urgent need for effective Long COVID management. The authors examine how AI could optimize tDCS protocols, enhance clinical trial design, and facilitate personalized treatment for the heterogeneous manifestations of Long COVID. Key areas discussed include AI-driven personalization of tDCS parameters based on individual patient characteristics and real-time symptom fluctuations, the use of machine learning for patient stratification, and the development of more sensitive outcome measures in clinical trials. This perspective addresses ethical considerations surrounding data privacy, algorithmic bias, and equitable access to AI-enhanced treatments. It also explores challenges and opportunities for implementing AI-guided tDCS across diverse healthcare settings globally. Future research directions are outlined, including the need for large-scale validation studies and investigations of long-term efficacy and safety. The authors argue that while AI-guided tDCS shows promise for addressing the complex nature of Long COVID, significant technical, ethical, and practical challenges remain. They emphasize the importance of interdisciplinary collaboration, patient-centered approaches, and a commitment to global health equity in realizing the potential of this technology. This perspective article provides a roadmap for researchers, clinicians, and policymakers involved in developing and implementing AI-guided neuromodulation therapies for Long COVID and potentially other neurological and psychiatric conditions.
Collapse
Affiliation(s)
- Thorsten Rudroff
- Turku PET Centre, University of Turku, Turku University Hospital, 20520 Turku, Finland; (O.R.); (R.K.)
| | | | | |
Collapse
|
7
|
Torres CB, Barona EJG, Molina MG, Sánchez MEGB, Manso JMM. A systematic review of EEG neurofeedback in fibromyalgia to treat psychological variables, chronic pain and general health. Eur Arch Psychiatry Clin Neurosci 2024; 274:981-999. [PMID: 37179502 PMCID: PMC11127810 DOI: 10.1007/s00406-023-01612-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/11/2023] [Indexed: 05/15/2023]
Abstract
This paper is the first up-to-date review of the various EEG-neurofeedback treatments for fibromyalgia patients and their psychological, physiological and general health consequences. Searches were made of the PubMed, PsycNet, Google Scholar and Scopus databases according to PRISMA guidelines for empirical peer-reviewed articles on EEG-neurofeedback treatment of fibromyalgia, yielding a final selection of 17 studies that met the inclusion criteria: (1) published articles and doctoral theses; (2) conducted between 2000 and 2022; (3) reporting empirical and quantitative data. These articles show that there is a wide range of protocols with different designs and procedures to treat fibromyalgia using EEG-neurofeedback techniques. The main symptoms that showed improvement were anxiety, depression, pain, general health and symptom severity, whilst the most commonly used method was traditional EEG neurofeedback based on a sensorimotor rhythm protocol. It may be concluded from the review that the lack of consistency and uniqueness of the protocols makes it very difficult to generalise results, despite the individual improvements identified. This review provides instructions and information that could guide future research and clinical practise, with the data extracted helping to gain a deeper understanding of the state of the art and the needs of the technique for this population group.
Collapse
|
8
|
Schuurman BB, Lousberg RL, Schreiber JU, van Amelsvoort TAMJ, Vossen CJ. A Scoping Review of the Effect of EEG Neurofeedback on Pain Complaints in Adults with Chronic Pain. J Clin Med 2024; 13:2813. [PMID: 38792353 PMCID: PMC11122542 DOI: 10.3390/jcm13102813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Background and Aim: Non-pharmacological treatments such as electroencephalogram (EEG) neurofeedback have become more important in multidisciplinary approaches to treat chronic pain. The aim of this scoping review is to identify the literature on the effects of EEG neurofeedback in reducing pain complaints in adult chronic-pain patients and to elaborate on the neurophysiological rationale for using specific frequency bands as targets for EEG neurofeedback. Methods: A pre-registered scoping review was set up and reported following the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) extension for Scoping Reviews (PRISMA-ScR). The data were collected by searching for studies published between 1985 and January 2023 in PubMed, EMBASE, and PsycINFO. Results: Thirty-two studies on various types of chronic pain were included. The intervention was well-tolerated. Approximately half of the studies used a protocol that reinforced alpha or sensorimotor rhythms and suppressed theta or beta activity. However, the underlying neurophysiological rationale behind these specific frequency bands remains unclear. Conclusions: There are indications that neurofeedback in patients with chronic pain probably has short-term analgesic effects; however, the long-term effects are less clear. In order to draw more stable conclusions on the effectiveness of neurofeedback in chronic pain, additional research on the neurophysiological mechanisms of targeted frequency bands is definitely worthwhile. Several recommendations for setting up and evaluating the effect of neurofeedback protocols are suggested.
Collapse
Affiliation(s)
- Britt B. Schuurman
- Department of Psychiatry & Neuro-Psychology, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Richel L. Lousberg
- Department of Psychiatry & Neuro-Psychology, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Jan U. Schreiber
- Department of Anaesthesiology and Pain Medicine, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| | - Therese A. M. J. van Amelsvoort
- Department of Psychiatry & Neuro-Psychology, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Catherine J. Vossen
- Department of Anaesthesiology and Pain Medicine, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
- Department of Anaesthesiology, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
9
|
Diotaiuti P, Corrado S, Tosti B, Spica G, Di Libero T, D’Oliveira A, Zanon A, Rodio A, Andrade A, Mancone S. Evaluating the effectiveness of neurofeedback in chronic pain management: a narrative review. Front Psychol 2024; 15:1369487. [PMID: 38770259 PMCID: PMC11104502 DOI: 10.3389/fpsyg.2024.1369487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/28/2024] [Indexed: 05/22/2024] Open
Abstract
The prevalence and impact of chronic pain in individuals worldwide necessitate effective management strategies. This narrative review specifically aims to assess the effectiveness of neurofeedback, an emerging non-pharmacological intervention, on the management of chronic pain. The methodology adopted for this review involves a meticulous search across various scientific databases. The search was designed to capture a broad range of studies related to neurofeedback and chronic pain management. To ensure the quality and relevance of the included studies, strict inclusion and exclusion criteria were applied. These criteria focused on the study design, population, intervention type, and reported outcomes. The review synthesizes the findings from a diverse array of studies, including randomized controlled trials, observational studies, and case reports. Key aspects evaluated include the types of neurofeedback used (such as EEG biofeedback), the various chronic pain conditions addressed (like fibromyalgia, neuropathic pain, and migraines), and the methodologies employed in these studies. The review highlights the underlying mechanisms by which neurofeedback may influence pain perception and management, exploring theories related to neural plasticity, pain modulation, and psychological factors. The results of the review reveal a positive correlation between neurofeedback interventions and improved pain management. Several studies report significant reductions on pain intensity, improved quality of life, and decreased reliance on medication following neurofeedback therapy. The review also notes variations in the effectiveness of different neurofeedback protocols and individual responses to treatment. Despite the promising results, the conclusion of the review emphasizes the need for further research. It calls for larger, well-designed clinical trials to validate the findings, to understand the long-term implications of neurofeedback therapy, and to optimize treatment protocols for individual patients.
Collapse
Affiliation(s)
- Pierluigi Diotaiuti
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, Cassino, Lazio, Italy
| | - Stefano Corrado
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, Cassino, Lazio, Italy
| | - Beatrice Tosti
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, Cassino, Lazio, Italy
| | - Giuseppe Spica
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, Cassino, Lazio, Italy
| | - Tommaso Di Libero
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, Cassino, Lazio, Italy
| | - Anderson D’Oliveira
- Department of Physical Education, CEFID, Santa Catarina State University, Florianopolis, Santa Catarina, Brazil
| | - Alessandra Zanon
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, Cassino, Lazio, Italy
| | - Angelo Rodio
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, Cassino, Lazio, Italy
| | - Alexandro Andrade
- Department of Physical Education, CEFID, Santa Catarina State University, Florianopolis, Santa Catarina, Brazil
| | - Stefania Mancone
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, Cassino, Lazio, Italy
| |
Collapse
|
10
|
Barbosa SP, Junqueira YN, Akamatsu MA, Marques LM, Teixeira A, Lobo M, Mahmoud MH, Omer WE, Pacheco-Barrios K, Fregni F. Resting-state electroencephalography delta and theta bands as compensatory oscillations in chronic neuropathic pain: a secondary data analysis. BRAIN NETWORK AND MODULATION 2024; 3:52-60. [PMID: 39119588 PMCID: PMC11309019 DOI: 10.4103/bnm.bnm_17_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Chronic neuropathic pain (CNP) remains a significant clinical challenge, with complex neurophysiological underpinnings that are not fully understood. Identifying specific neural oscillatory patterns related to pain perception and interference can enhance our understanding and management of CNP. To analyze resting electroencephalography data from individuals with chronic neuropathic pain to explore the possible neural signatures associated with pain intensity, pain interference, and specific neuropathic pain characteristics. We conducted a secondary analysis from a cross-sectional study using electroencephalography data from a previous study, and Brief Pain Inventory from 36 patients with chronic neuropathic pain. For statistical analysis, we modeled a linear or logistic regression by dependent variable for each model. As independent variables, we used electroencephalography data with such brain oscillations: as delta, theta, alpha, and beta, as well as the oscillations low alpha, high alpha, low beta, and high beta, for the central, frontal, and parietal regions. All models tested for confounding factors such as age and medication. There were no significant models for Pain interference in general activity, walking, work, relationships, sleep, and enjoyment of life. However, the model for pain intensity during the past four weeks showed decreased alpha oscillations, and increased delta and theta oscillations were associated with decreased levels of pain, especially in the central area. In terms of pain interference in mood, the model showed high oscillatory Alpha signals in the frontal and central regions correlated with mood impairment due to pain. Our models confirm recent findings proposing that lower oscillatory frequencies, likely related to subcortical pain sources, may be associated with brain compensatory mechanisms and thus may be associated with decreased pain levels. On the other hand, higher frequencies, including alpha oscillations, may disrupt top-down compensatory mechanisms.
Collapse
Affiliation(s)
- Sara Pinto Barbosa
- Instituto de Medicina Física e
Reabilitação, Hospital das Clínicas HCFMUSP, Faculdade de
Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Ygor Nascimento Junqueira
- Principles and Practice of Clinical Research Program,
Harvard T.H. Chan School of Public Health, Boston
| | | | - Lucas Murrins Marques
- Mental Health Department, Santa Casa de São Paulo
School of Medical Sciences, São Paulo, SP, Brazil
| | - Adriano Teixeira
- Federal University of Bahia, Multidisciplinary Health
Institute – IMS, Salvador, BA, Brazil
| | - Matheus Lobo
- Surgical Oncologist at Hospital A. C. Camargo, São
Paulo, SP, Brazil
| | | | | | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research
Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital,
Harvard Medical School, Boston, MD, USA
- Universidad San Ignacio de Loyola, Vicerrectorado de
Investigación, Unidad de Investigación para la Generación y
Síntesis de Evidencias en Salud, Lima, Peru
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research
Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital,
Harvard Medical School, Boston, MD, USA
| |
Collapse
|
11
|
Demarest P, Rustamov N, Swift J, Xie T, Adamek M, Cho H, Wilson E, Han Z, Belsten A, Luczak N, Brunner P, Haroutounian S, Leuthardt EC. A novel theta-controlled vibrotactile brain-computer interface to treat chronic pain: a pilot study. Sci Rep 2024; 14:3433. [PMID: 38341457 PMCID: PMC10858946 DOI: 10.1038/s41598-024-53261-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Limitations in chronic pain therapies necessitate novel interventions that are effective, accessible, and safe. Brain-computer interfaces (BCIs) provide a promising modality for targeting neuropathology underlying chronic pain by converting recorded neural activity into perceivable outputs. Recent evidence suggests that increased frontal theta power (4-7 Hz) reflects pain relief from chronic and acute pain. Further studies have suggested that vibrotactile stimulation decreases pain intensity in experimental and clinical models. This longitudinal, non-randomized, open-label pilot study's objective was to reinforce frontal theta activity in six patients with chronic upper extremity pain using a novel vibrotactile neurofeedback BCI system. Patients increased their BCI performance, reflecting thought-driven control of neurofeedback, and showed a significant decrease in pain severity (1.29 ± 0.25 MAD, p = 0.03, q = 0.05) and pain interference (1.79 ± 1.10 MAD p = 0.03, q = 0.05) scores without any adverse events. Pain relief significantly correlated with frontal theta modulation. These findings highlight the potential of BCI-mediated cortico-sensory coupling of frontal theta with vibrotactile stimulation for alleviating chronic pain.
Collapse
Affiliation(s)
- Phillip Demarest
- Division of Neurotechnology, Department of Neurosurgery, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St Louis, MO, 63130, USA
| | - Nabi Rustamov
- Division of Neurotechnology, Department of Neurosurgery, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
| | - James Swift
- Division of Neurotechnology, Department of Neurosurgery, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
| | - Tao Xie
- Division of Neurotechnology, Department of Neurosurgery, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
| | - Markus Adamek
- Division of Neurotechnology, Department of Neurosurgery, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
| | - Hohyun Cho
- Division of Neurotechnology, Department of Neurosurgery, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
| | - Elizabeth Wilson
- Division of Clinical and Translational Research, Department of Anesthesiology, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
- Washington University Pain Center, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
| | - Zhuangyu Han
- Division of Neurotechnology, Department of Neurosurgery, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St Louis, MO, 63130, USA
| | - Alexander Belsten
- Division of Neurotechnology, Department of Neurosurgery, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
| | - Nicholas Luczak
- Division of Neurotechnology, Department of Neurosurgery, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
| | - Peter Brunner
- Division of Neurotechnology, Department of Neurosurgery, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St Louis, MO, 63130, USA
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
| | - Simon Haroutounian
- Division of Clinical and Translational Research, Department of Anesthesiology, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
- Washington University Pain Center, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
| | - Eric C Leuthardt
- Division of Neurotechnology, Department of Neurosurgery, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA.
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St Louis, MO, 63130, USA.
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA.
| |
Collapse
|
12
|
Gungormus DB, Fernández-Martín M, Ortigosa-Luque ME, Pérez-Mármol JM. Effects of Nature-Based Multisensory Stimulation on Pain Mechanisms in Women with Fibromyalgia Syndrome: A Randomized Double-Blind Placebo-Controlled Trial. Pain Manag Nurs 2024; 25:46-55. [PMID: 37495473 DOI: 10.1016/j.pmn.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND The term "nature-based sensory stimuli" refers to the sensory information produced by biotic and abiotic agents from natural environments. The literature has reported the beneficial effects of these agents on various pain dimensions in non-clinical populations. AIMS To evaluate the potential analgesic effects of nature-based multisensory stimulation in women with fibromyalgia syndrome. METHODS A randomized, double-blind, placebo-controlled, parallel-group trial with a 1:1 allocation ratio was conducted. Forty-two women with fibromyalgia syndrome interacted with either different plant species with flowers, stones, and soil organic matter or their synthetic imitations for 30 minutes. Outcome measurements were performed before and after the intervention, including clinical pain intensity using the Numeric Rating Scale, cold pain thresholds using the Cold Pressor Test, mechanical hyperalgesia and wind-up using a monofilament, and pressure pain thresholds using a pressure algometer. RESULTS Analyses revealed group × time interactions for clinical pain intensity (F = 7.915, p = .008), cold-water immersion time (F = 7.271, p = .010), mechanical hyperalgesia (F = 4.701, p = .036), and pressure pain threshold (p ≤ .017). Between-group differences were found in clinical pain intensity (p = .012), cold pain thresholds (p = .002), and pressure pain thresholds (p < .05). The experimental group exhibited reduced clinical pain intensity (p = .001) and increased pressure pain thresholds (p ≤ .034). CONCLUSIONS Women with fibromyalgia syndrome may benefit from multisensory stimulation using biotic and abiotic agents from natural environments for 30 minutes. Interacting with flowering plants and soil components appears to induce analgesic effects.
Collapse
Affiliation(s)
- Dogukan Baran Gungormus
- Department of Physiotherapy, Faculty of Health Sciences, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
| | - Mónica Fernández-Martín
- Department of Physiotherapy, Faculty of Health Sciences, University of Granada, Granada, Spain.
| | | | - José Manuel Pérez-Mármol
- Department of Physiotherapy, Faculty of Health Sciences, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
| |
Collapse
|
13
|
Mani R, Adhia DB, Awatere S, Gray AR, Mathew J, Wilson LC, Still A, Jackson D, Hudson B, Zeidan F, Fillingim R, De Ridder D. Self-regulation training for people with knee osteoarthritis: a protocol for a feasibility randomised control trial (MiNT trial). FRONTIERS IN PAIN RESEARCH 2024; 4:1271839. [PMID: 38269396 PMCID: PMC10806808 DOI: 10.3389/fpain.2023.1271839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/07/2023] [Indexed: 01/26/2024] Open
Abstract
Introduction Knee osteoarthritis (OA) is a chronic secondary musculoskeletal pain condition resulting in disability, reduced quality of life, and high societal costs. Pain associated with knee OA is linked to increased sensitivity in sensory, cognitive, and emotional areas of the brain. Self-regulation training targeting brain functioning related to pain experience could reduce pain and its associated disability. Self-regulatory treatments such as mindfulness meditation (MM) and electroencephalography neurofeedback (EEG-NF) training improve clinical outcomes in people with knee OA. A feasibility clinical trial can address factors that could inform the design of the full trial investigating the effectiveness of self-regulation training programmes in people with knee OA. This clinical trial will evaluate the feasibility, safety, acceptability, experience and perceptions of the self-regulatory training programmes. Methods The proposed feasibility trial is based on a double-blind (outcome assessor and investigators), three-arm (MM usual care, EEG-NF + usual care and usual care control group) randomised controlled parallel clinical trial. Participants with knee OA will be recruited from the community and healthcare practices. A research assistant (RA) will administer both interventions (20-min sessions, four sessions each week, and 12 sessions over three successive weeks). Feasibility measures (participant recruitment rate, adherence to interventions, retention rate), safety, and acceptability of interventions will be recorded. An RA blinded to the group allocation will record secondary outcomes at baseline, immediately post-intervention (4th week), and 3 months post-intervention. The quantitative outcome measures will be descriptively summarised. The qualitative interviews will evaluate the participants' experiences and perceptions regarding various aspects of the trial, which includes identifying the barriers and facilitators in participating in the trial, evaluating their opinions on the research procedures, such as their preferences for the study site, and determining the level of acceptability of the interventions as potential clinical treatments for managing knee OA. Māori participant perceptions of how assessment and training practices could be acceptable to a Māori worldview will be explored. The interviews will be audio-recorded and analysed thematically. Discussion This trial will provide evidence on the feasibility, safety, and acceptability of the MM and EEG-NF training in people with knee OA, thus informing the design of a full randomised clinical control trial.
Collapse
Affiliation(s)
- Ramakrishnan Mani
- Centre for Health, Activity and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
| | - Divya Bharatkumar Adhia
- Department of Surgical Sciences, Otago Medical School, University of Otago, Dunedin, New Zealand
| | - Sharon Awatere
- Centre for Health, Activity and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
- The Health Boutique, Napier, New Zealand
| | | | - Jerin Mathew
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | | | - Amanda Still
- Centre for Health, Activity and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
| | - David Jackson
- Centre for Health, Activity and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
| | - Ben Hudson
- Department of General Practice, University of Otago, Christchurch, New Zealand
| | - Fadel Zeidan
- Department of Anesthesiology, School of Medicine, University of California, San Diego, CA, United States
| | - Roger Fillingim
- Pain Research and Intervention Center of Excellence, Clinical and Translational Science Institute, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - Dirk De Ridder
- Department of Surgical Sciences, Otago Medical School, University of Otago, Dunedin, New Zealand
| |
Collapse
|
14
|
Mashola MK, Korkie E, Mothabeng DJ. Development of a pain self-management intervention framework for people with spinal cord injury. Afr J Prim Health Care Fam Med 2023; 15:e1-e12. [PMID: 37916727 PMCID: PMC10623601 DOI: 10.4102/phcfm.v15i1.4039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Pain is the most common reason for medical visits to primary health care practitioners. Pain self-management interventions are encouraged and there is no known self-management intervention framework available that clinicians and people with spinal cord injury (PWSCI) can use to guide treatment selection. AIM This study aimed to develop a pain self-management intervention framework for PWSCI. SETTING Online and facilitated in Gauteng, South Africa. METHODS A three-round modified e-Delphi method was used to reach an 80% consensus among a 21-expert panel. Fifty-nine interventions were distributed via REDCap and a final online audio meeting was held to either include or exclude interventions in the final framework. SPSS v27 was used to analyse descriptive data and content analysis was used for qualitative responses. RESULTS The final developed pain self-management framework consists of 56 interventions and includes interventions from multiple health professions to encompass medical, psychological, therapeutic and social interventions. Interventions are also specified for nociceptive and/or neuropathic pain and grouped according to the biopsychosocial model. CONCLUSION The interprofessional framework may be used as a guideline for PWSCI to alleviate pain, as well as assist health professionals in clinical decision-making, by providing them with the freedom to choose acceptable and adequate interventions that may be appropriate to treat the affected individual's pain.Contribution: Pain management is a basic need at the primary healthcare level and PWSCI need access to the broad range of interventions available to manage their pain. The framework highlights the variety of appropriate interventions to guide both health professionals and PWSCI with pain relief options.
Collapse
Affiliation(s)
- Mokgadi K Mashola
- Department of Physiotherapy, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; and Department of Physiotherapy, Faculty of Health Sciences, University of Pretoria, Pretoria.
| | | | | |
Collapse
|
15
|
Kober SE, Buchrieser F, Wood G. Neurofeedback on twitter: Evaluation of the scientific credibility and communication about the technique. Heliyon 2023; 9:e18931. [PMID: 37600360 PMCID: PMC10432958 DOI: 10.1016/j.heliyon.2023.e18931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023] Open
Abstract
Neurofeedback is a popular technique to induce neuroplasticity with a controversial reputation. The public discourse on neurofeedback, as a therapeutic and neuroenhancement technique, encompasses scientific communication, therapeutic expectations and outcomes, as well as complementary and alternative practices. We investigated twitter publications from 2010 to 2022 on the keyword "neurofeedback". A total of over 138 k tweets were obtained, which originated from over 42 k different users. The communication flow in the neurofeedback community is mainly unidirectional and non-interactive. Analysis of hashtags revealed application fields, therapy provider and neuroenhancement to be the most popular contents in neurofeedback communication. A group of 1221 productive users was identified, in which clinicians, entrepreneurs, broadcasters, and scientists contribute. We identified reactions to critical publications in the twitter traffic and an increase in the number of tweets by academic users which suggest an increase in the interest on the scientific credibility of neurofeedback. More intense scientific communication on neurofeedback in twitter may contribute to promote a more realistic view on challenges and advances regarding good scientific practice of neurofeedback.
Collapse
|
16
|
Edwards KA, Reed DE, Anderson D, Harding K, Turner AP, Soares B, Suri P, Williams RM. Opening the black box of psychological treatments for chronic pain: A clinical perspective for medical providers. PM R 2023; 15:999-1011. [PMID: 36633497 DOI: 10.1002/pmrj.12912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 01/13/2023]
Affiliation(s)
- Karlyn A Edwards
- Department of Anesthesiology, Perioperative & Pain Medicine, Division of Pain Medicine, Stanford University, Stanford, California, USA
| | - David E Reed
- Center of Innovation for Veteran-Centered and Value-Driven Care, Veterans Administration Puget Sound Health Care, Seattle, Washington, USA
- Department of Health Systems and Population Health, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Derek Anderson
- Rehabilitation Care Services, Veterans Administration Puget Sound Health Care System, Seattle, Washington, USA
| | - Kaitlin Harding
- Rehabilitation Care Services, Veterans Administration Puget Sound Health Care System, Seattle, Washington, USA
| | - Aaron P Turner
- Rehabilitation Care Services, Veterans Administration Puget Sound Health Care System, Seattle, Washington, USA
- Department of Rehabilitation Medicine, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Bosco Soares
- Rehabilitation Care Services, Veterans Administration Puget Sound Health Care System, Seattle, Washington, USA
- Department of Rehabilitation Medicine, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Pradeep Suri
- Rehabilitation Care Services, Veterans Administration Puget Sound Health Care System, Seattle, Washington, USA
- Department of Rehabilitation Medicine, School of Medicine, University of Washington, Seattle, Washington, USA
- Clinical Learning, Evidence, and Research (CLEAR) Center, University of Washington, Seattle, Washington, USA
| | - Rhonda M Williams
- Rehabilitation Care Services, Veterans Administration Puget Sound Health Care System, Seattle, Washington, USA
- Department of Rehabilitation Medicine, School of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
17
|
Carmen SG, José LM, Adriana RS, Eugenia GG. A Pilot Randomized Controlled Trial of Effectiveness of a Psychoeducational Intervention on the Management of Musculoskeletal Chronic Noncancer Pain. Pain Manag Nurs 2023; 24:427-435. [PMID: 36944558 DOI: 10.1016/j.pmn.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 01/15/2023] [Accepted: 01/29/2023] [Indexed: 03/23/2023]
Abstract
AIMS To investigate the effectiveness of a psychoeducational intervention on pain intensity management in musculoskeletal chronic noncancer pain and to identify relevant variables and preliminary data to allow the design of a randomized controlled trial. DESIGN Two arms parallel randomized pilot study. SUBJECTS AND SETTING ADULT PATIENTS WITH MUSCULOSKELETAL CHRONIC NONCANCER PAIN WITH MODERATE-SEVERE INTENSITY TREATED AT PRIMARY HEALTH CENTERS. METHODS Participants were randomly assigned to a psychoeducational intervention or a control group without intervention. Pain intensity, quality of life, and opioid use were assessed at baseline and at a 1-month follow-up. RESULTS The sample consisted of 37 adult patients (intervention group: 19; control group: 18). A significant reduction in pain intensity measured by the Verbal Numerical Rating Scale (p = .02, Cohen's d = 0.57) and improvement in quality of life measured by EuroQol-5D questionnaire (p = .04) were observed in the intervention group compared to the control. This improvement on pain intensity was greater in patients without strong opioid treatment (p = .01, Cohen's d = 1.36). Eighty percent of the strong opioids users in the intervention group reduced their consumption, without changes in the control group. CONCLUSIONS These findings provide promising support for the beneficial effects of psychoeducation on the intensity of noncancer chronic musculoskeletal pain. Based on the results, future randomized controlled trials are needed.
Collapse
Affiliation(s)
- Sánchez-Gutiérrez Carmen
- Department of Anesthesiology and Pain Medicine, Virgen del Rocío Universitary Hospital, Seville, Spain; Department of Anesthesiology and Pain Medicine, San Juan de Dios del Aljarafe Hospital, Avda, San Juan de Dios S/N. Seville, Spain.
| | - López-Millán José
- Department of Anesthesiology and Pain Medicine, Virgen Macarena Universitary Hospital, Seville, Spain.
| | | | - Gil-García Eugenia
- Department of Nursing, School of Nursing, Physiotherapy and Podiatry, University of Seville, Seville, Spain.
| |
Collapse
|
18
|
Wandrey JD, Kastelik J, Fritzsche T, Denke C, Schäfer M, Tafelski S. Supplementing transcranial direct current stimulation to local infiltration series for refractory neuropathic craniocephalic pain: A randomized controlled pilot trial. Front Neurol 2023; 14:1069434. [PMID: 36937523 PMCID: PMC10014889 DOI: 10.3389/fneur.2023.1069434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/07/2023] [Indexed: 03/05/2023] Open
Abstract
Background Some patients with neuralgia of cranial nerves with otherwise therapy-refractory pain respond to invasive therapy with local anesthetics. Unfortunately, pain regularly relapses despite multimodal pain management. Transcranial direct current stimulation (tDCS) may prolong pain response due to neuro-modulatory effects. Methods This controlled clinical pilot trial randomized patients to receive anodal, cathodal or sham-tDCS stimulation prior to local anesthetic infiltration. Pain attenuation, quality-of-life and side effects were assessed and compared with historic controls to estimate effects of tDCS stimulation setting. Results Altogether, 17 patients were randomized into three groups with different stimulation protocols. Relative reduction of pain intensity in per protocol treated patients were median 73%, 50% and 69% in anodal, cathodal and sham group, respectively (p = 0.726). Compared with a historic control group, a lower rate of responders with 50% reduction of pain intensity indicates probable placebo effects (OR 3.41 stimulation vs. non-stimulation setting, NNT 3.63). 76.9% (n = 10) of tDCS patients reported mild side-effects. Of all initially included 17 patients, 23.5% (n = 4) withdrew their study participation with highest proportion in the cathodal group (n = 3). A sample size calculation for a confirmatory trial revealed 120 patients using conservative estimations. Discussion This pilot trial does not support series of anodal tDCS as neuro-modulatory treatment to enhance pain alleviation of local anesthetic infiltration series. Notably, results may indicate placebo effects of tDCS settings. Feasibility of studies in this population was limited due to relevant drop-out rates. Anodal tDCS warrants further confirmation as neuro-modulatory pain treatment option.
Collapse
Affiliation(s)
- Jan D. Wandrey
- Department of Anesthesiology and Intensive Care Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Patil AU, Lin C, Lee SH, Huang HW, Wu SC, Madathil D, Huang CM. Review of EEG-based neurofeedback as a therapeutic intervention to treat depression. Psychiatry Res 2023; 329:111591. [PMID: 36682174 PMCID: PMC9837232 DOI: 10.1016/j.pscychresns.2023.111591] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 11/24/2022] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
Depression, or major depressive disorder, is a common mental disorder that affects individuals' behavior, mood, and physical health, and its prevalence has increased during the lockdowns implemented to curb the COVID-19 pandemic. There is an urgent need to update the treatment recommendations for mental disorders during such crises. Conventional interventions to treat depression include long-term pharmacotherapy and cognitive behavioral therapy. Electroencephalogram-neurofeedback (EEG-NF) training has been suggested as a non-invasive option to treat depression with minimal side effects. In this systematic review, we summarize the recent literature on EEG-NF training for treating depression. The 12 studies included in our final sample reported that despite several issues related to EEG-NF practices, patients with depression showed significant cognitive, clinical, and neural improvements following EEG-NF training. Given its low cost and the low risk of side effects due to its non-invasive nature, we suggest that EEG-NF is worth exploring as an augmented tool for patients who already receive standard medications but remain symptomatic, and that EEG-NF training may be an effective intervention tool that can be utilized as a supplementary treatment for depression. We conclude by providing some suggestions related to experimental designs and standards to improve current EEG-NF training practices for treating depression.
Collapse
Affiliation(s)
- Abhishek Uday Patil
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chemin Lin
- Department of Psychiatry, Chang Gung Memorial Hospital, Keelung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Shwu-Hua Lee
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hsu-Wen Huang
- Department of Linguistics and Translation, City University of Hong Kong, Hong Kong
| | - Shun-Chi Wu
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Deepa Madathil
- Jindal Institute of Behavioural Sciences, O.P. Jindal Global University, Haryana, India.
| | - Chih-Mao Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
20
|
Adhia DB, Mani R, Mathew J, O'Leary F, Smith M, Vanneste S, De Ridder D. Exploring electroencephalographic infraslow neurofeedback treatment for chronic low back pain: a double-blinded safety and feasibility randomized placebo-controlled trial. Sci Rep 2023; 13:1177. [PMID: 36670176 PMCID: PMC9860016 DOI: 10.1038/s41598-023-28344-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Chronic low back pain (CLBP) is a disabling condition worldwide. In CLBP, neuroimaging studies demonstrate abnormal activities in cortical areas responsible for pain modulation, emotional, and sensory components of pain experience [i.e., pregenual and dorsal anterior cingulate cortex (pgACC, dACC), and somatosensory cortex (SSC), respectively]. This pilot study, conducted in a university setting, evaluated the feasibility, safety, and acceptability of a novel electroencephalography-based infraslow-neurofeedback (EEG ISF-NF) technique for retraining activities in pgACC, dACC and SSC and explored its effects on pain and disability. Participants with CLBP (n = 60), recruited between July'20 to March'21, received 12 sessions of either: ISF-NF targeting pgACC, dACC + SSC, a ratio of pgACC*2/dACC + SSC, or Placebo-NF. Descriptive statistics demonstrated that ISF-NF training is feasible [recruitment rate (7 participants/month), dropouts (25%; 20-27%), and adherence (80%; 73-88%)], safe (no adverse events reported), and was moderate to highly acceptable [Mean ± SD: 7.8 ± 2.0 (pgACC), 7.5 ± 2.7 (dACC + SCC), 8.2 ± 1.9 (Ratio), and 7.7 ± 1.5 (Placebo)]. ISF-NF targeting pgACC demonstrated the most favourable clinical outcomes, with a higher proportion of participants exhibiting a clinically meaningful reduction in pain severity [53%; MD (95% CI): - 1.9 (- 2.7, - 1.0)], interference [80%; MD (95% CI): - 2.3 (- 3.5, - 1.2)], and disability [73%; MD (95% CI): - 4.5 (- 6.1, - 2.9)] at 1-month follow-up. ISF-NF training is a feasible, safe, and an acceptable treatment approach for CLBP.
Collapse
Affiliation(s)
- Divya Bharatkumar Adhia
- Department of Surgical Sciences, Otago Medical School, University of Otago, PO BOX 56, Dunedin, 9054, New Zealand. .,Pain@Otago Research Theme, University of Otago, Dunedin, New Zealand. .,Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India.
| | - Ramakrishnan Mani
- Pain@Otago Research Theme, University of Otago, Dunedin, New Zealand.,Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India.,Centre for Health, Activity and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
| | - Jerin Mathew
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India.,Centre for Health, Activity and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
| | - Finella O'Leary
- Department of Surgical Sciences, Otago Medical School, University of Otago, PO BOX 56, Dunedin, 9054, New Zealand
| | - Mark Smith
- Neurofeedback Therapy Services of New York, New York, NY, USA
| | - Sven Vanneste
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Dirk De Ridder
- Department of Surgical Sciences, Otago Medical School, University of Otago, PO BOX 56, Dunedin, 9054, New Zealand.,Pain@Otago Research Theme, University of Otago, Dunedin, New Zealand
| |
Collapse
|
21
|
Birch N, Graham J, Ozolins C, Kumarasinghe K, Almesfer F. Home-Based EEG Neurofeedback Intervention for the Management of Chronic Pain. FRONTIERS IN PAIN RESEARCH 2022; 3:855493. [PMID: 35712448 PMCID: PMC9197102 DOI: 10.3389/fpain.2022.855493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundChronic pain and associated symptoms often cause significant disability and reduced quality of life (QoL). Neurofeedback (NFB) as part of a Brain Computer Interface can help some patients manage chronic pain by normalising maladaptive brain activity measured with electroencephalography (EEG).ObjectivesThis study was designed to assess the efficacy and safety of a novel home-based NFB device for managing chronic pain by modifying specific EEG activity.MethodsA prospective, single-arm, proof-of-concept study was conducted between June 2020 and March 2021 among adults with chronic pain (registered with ClinicalTrials.gov NCT04418362). Axon EEG NFB systems for home use were provided to each, and 32–48 NFB training sessions were completed by the participants over 8-weeks. The primary outcome was self-reported pain. Assessment of central sensitisation, sleep quality, affective symptoms, change in QoL, adverse events during use and EEG correlations with symptoms were secondary outcomes.ResultsSixteen participants were enrolled. Eleven reported pain relief following NFB training, eight reporting clinically significant improvements. Central sensitisation symptoms improved by a third (p < 0.0001), sleep quality by almost 50% (p < 0.001), anxiety reduced by 40% (p = 0.015), and QoL improved at final follow-up for 13 participants. The majority (69%) of participants who upregulated relative alpha reported improved pain, and those who downregulated relative hi-beta reported improved pain, reduced anxiety and depression scores. There were no adverse events during the trial.ConclusionsHome-based NFB training is well-tolerated and may provide relief for sufferers of chronic pain and its associated symptoms.SummaryAxon, a home-based NFB training device, can positively influence pain and associated symptoms in a proportion of people with chronic pain.
Collapse
Affiliation(s)
- Nick Birch
- East Midlands Spine Ltd., Northampton, United Kingdom
- *Correspondence: Nick Birch
| | - Jon Graham
- PhysioFunction Ltd., Northampton, United Kingdom
| | | | | | | |
Collapse
|
22
|
Orendáčová M, Kvašňák E. Possible Mechanisms Underlying Neurological Post-COVID Symptoms and Neurofeedback as a Potential Therapy. Front Hum Neurosci 2022; 16:837972. [PMID: 35431842 PMCID: PMC9010738 DOI: 10.3389/fnhum.2022.837972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
Theoretical considerations related to neurological post-COVID complications have become a serious issue in the COVID pandemic. We propose 3 theoretical hypotheses related to neurological post-COVID complications. First, pathophysiological processes responsible for long-term neurological complications caused by COVID-19 might have 2 phases: (1) Phase of acute Sars-CoV-2 infection linked with the pathogenesis responsible for the onset of COVID-19-related neurological complications and (2) the phase of post-acute Sars-CoV-2 infection linked with the pathogenesis responsible for long-lasting persistence of post-COVID neurological problems and/or exacerbation of another neurological pathologies. Second, post-COVID symptoms can be described and investigated from the perspective of dynamical system theory exploiting its fundamental concepts such as system parameters, attractors and criticality. Thirdly, neurofeedback may represent a promising therapy for neurological post-COVID complications. Based on the current knowledge related to neurofeedback and what is already known about neurological complications linked to acute COVID-19 and post-acute COVID-19 conditions, we propose that neurofeedback modalities, such as functional magnetic resonance-based neurofeedback, quantitative EEG-based neurofeedback, Othmer's method of rewarding individual optimal EEG frequency and heart rate variability-based biofeedback, represent a potential therapy for improvement of post-COVID symptoms.
Collapse
Affiliation(s)
- Mária Orendáčová
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Eugen Kvašňák
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| |
Collapse
|
23
|
Jiang Y, Jessee W, Hoyng S, Borhani S, Liu Z, Zhao X, Price LK, High W, Suhl J, Cerel-Suhl S. Sharpening Working Memory With Real-Time Electrophysiological Brain Signals: Which Neurofeedback Paradigms Work? Front Aging Neurosci 2022; 14:780817. [PMID: 35418848 PMCID: PMC8995767 DOI: 10.3389/fnagi.2022.780817] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/08/2022] [Indexed: 09/19/2023] Open
Abstract
Growing evidence supports the idea that the ultimate biofeedback is to reward sensory pleasure (e.g., enhanced visual clarity) in real-time to neural circuits that are associated with a desired performance, such as excellent memory retrieval. Neurofeedback is biofeedback that uses real-time sensory reward to brain activity associated with a certain performance (e.g., accurate and fast recall). Working memory is a key component of human intelligence. The challenges are in our current limited understanding of neurocognitive dysfunctions as well as in technical difficulties for closed-loop feedback in true real-time. Here we review recent advancements of real time neurofeedback to improve memory training in healthy young and older adults. With new advancements in neuromarkers of specific neurophysiological functions, neurofeedback training should be better targeted beyond a single frequency approach to include frequency interactions and event-related potentials. Our review confirms the positive trend that neurofeedback training mostly works to improve memory and cognition to some extent in most studies. Yet, the training typically takes multiple weeks with 2-3 sessions per week. We review various neurofeedback reward strategies and outcome measures. A well-known issue in such training is that some people simply do not respond to neurofeedback. Thus, we also review the literature of individual differences in psychological factors e.g., placebo effects and so-called "BCI illiteracy" (Brain Computer Interface illiteracy). We recommend the use of Neural modulation sensitivity or BCI insensitivity in the neurofeedback literature. Future directions include much needed research in mild cognitive impairment, in non-Alzheimer's dementia populations, and neurofeedback using EEG features during resting and sleep for memory enhancement and as sensitive outcome measures.
Collapse
Affiliation(s)
- Yang Jiang
- Lexington Veteran Affairs Medical Center, Lexington, KY, United States
- College of Medicine, University of Kentucky, Lexington, KY, United States
| | - William Jessee
- College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Stevie Hoyng
- College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Soheil Borhani
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Ziming Liu
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Xiaopeng Zhao
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Lacey K. Price
- Lexington Veteran Affairs Medical Center, Lexington, KY, United States
| | - Walter High
- New Mexico Veteran Affairs Medical Center, Albuquerque, NM, United States
| | - Jeremiah Suhl
- Lexington Veteran Affairs Medical Center, Lexington, KY, United States
| | - Sylvia Cerel-Suhl
- Lexington Veteran Affairs Medical Center, Lexington, KY, United States
| |
Collapse
|
24
|
Wang M, Yin Y, Yang H, Pei Z, Molassiotis A. Evaluating the safety, feasibility, and efficacy of non-invasive neuromodulation techniques in chemotherapy-induced peripheral neuropathy: A systematic review. Eur J Oncol Nurs 2022; 58:102124. [DOI: 10.1016/j.ejon.2022.102124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/04/2022]
|
25
|
Hamed R, Mizrachi L, Granovsky Y, Issachar G, Yuval-Greenberg S, Bar-Shalita T. Neurofeedback Therapy for Sensory Over-Responsiveness-A Feasibility Study. SENSORS 2022; 22:s22051845. [PMID: 35270991 PMCID: PMC8914621 DOI: 10.3390/s22051845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/22/2022]
Abstract
Background: Difficulty in modulating multisensory input, specifically the sensory over-responsive (SOR) type, is linked to pain hypersensitivity and anxiety, impacting daily function and quality of life in children and adults. Reduced cortical activity recorded under resting state has been reported, suggestive of neuromodulation as a potential therapeutic modality. This feasibility study aimed to explore neurofeedback intervention in SOR. Methods: Healthy women with SOR (n = 10) underwent an experimental feasibility study comprising four measurement time points (T1—baseline; T2—preintervention; T3—postintervention; T4—follow-up). Outcome measures included resting-state EEG recording, in addition to behavioral assessments of life satisfaction, attaining functional goals, pain sensitivity, and anxiety. Intervention targeted the upregulation of alpha oscillatory power over ten sessions. Results: No changes were detected in all measures between T1 and T2. Exploring the changes in brain activity between T2 and T4 revealed power enhancement in delta, theta, beta, and gamma oscillatory bands, detected in the frontal region (p = 0.03−<0.001; Cohen’s d = 0.637−1.126) but not in alpha oscillations. Furthermore, a large effect was found in enhancing life satisfaction and goal attainment (Cohen’s d = 1.18; 1.04, respectively), and reduced pain sensitivity and anxiety trait (Cohen’s d = 0.70). Conclusion: This is the first study demonstrating the feasibility of neurofeedback intervention in SOR.
Collapse
Affiliation(s)
- Ruba Hamed
- Department of Occupational Therapy, Faculty of Medicine, School of Health Professions, Tel Aviv University, Tel Aviv 6997801, Israel; (R.H.); (L.M.)
| | - Limor Mizrachi
- Department of Occupational Therapy, Faculty of Medicine, School of Health Professions, Tel Aviv University, Tel Aviv 6997801, Israel; (R.H.); (L.M.)
| | - Yelena Granovsky
- Laboratory of Clinical Neurophysiology, Department of Neurology, Faculty of Medicine, Rambam Health Care Campus, Technion, Haifa 3109601, Israel;
| | - Gil Issachar
- Biomedical Engineering Department, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Shlomit Yuval-Greenberg
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 6997801, Israel;
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tami Bar-Shalita
- Department of Occupational Therapy, Faculty of Medicine, School of Health Professions, Tel Aviv University, Tel Aviv 6997801, Israel; (R.H.); (L.M.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence: ; Tel.: +972-525437631
| |
Collapse
|
26
|
Hesam-Shariati N, Chang WJ, Wewege MA, McAuley JH, Booth A, Trost Z, Lin CT, Newton-John T, Gustin SM. The analgesic effect of electroencephalographic neurofeedback for people with chronic pain: A systematic review and meta-analysis. Eur J Neurol 2021; 29:921-936. [PMID: 34813662 DOI: 10.1111/ene.15189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/02/2021] [Accepted: 11/13/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Electroencephalographic (EEG) neurofeedback has been utilized to regulate abnormal brain activity associated with chronic pain. METHODS In this systematic review, we synthesized the evidence from randomized controlled trials (RCTs) to evaluate the effect of EEG neurofeedback on chronic pain using random effects meta-analyses. Additionally, we performed a narrative review to explore the results of non-randomized studies. The quality of included studies was assessed using Cochrane risk of bias tools, and the GRADE system was used to rate the certainty of evidence. RESULTS Ten RCTs and 13 non-randomized studies were included. The primary meta-analysis on nine eligible RCTs indicated that although there is low confidence, EEG neurofeedback may have a clinically meaningful effect on pain intensity in short-term. Removing the studies with high risk of bias from the primary meta-analysis resulted in moderate confidence that there remained a clinically meaningful effect on pain intensity. We could not draw any conclusion from the findings of non-randomized studies, as they were mostly non-comparative trials or explorative case series. However, the extracted data indicated that the neurofeedback protocols in both RCTs and non-randomized studies mainly involved the conventional EEG neurofeedback approach, which targeted reinforcing either alpha or sensorimotor rhythms and suppressing theta and/or beta bands on one brain region at a time. A posthoc analysis of RCTs utilizing the conventional approach resulted in a clinically meaningful effect estimate for pain intensity. CONCLUSION Although there is promising evidence on the analgesic effect of EEG neurofeedback, further studies with larger sample sizes and higher quality of evidence are required.
Collapse
Affiliation(s)
- Negin Hesam-Shariati
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia.,School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| | - Wei-Ju Chang
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Michael A Wewege
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, School of Health Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - James H McAuley
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, School of Health Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew Booth
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Zina Trost
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Chin-Teng Lin
- Faculty of Engineering and Information Technology, Australian Artificial Intelligence Institute, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Toby Newton-John
- Graduate School of Health, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Sylvia M Gustin
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia.,School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
27
|
Mercer Lindsay N, Chen C, Gilam G, Mackey S, Scherrer G. Brain circuits for pain and its treatment. Sci Transl Med 2021; 13:eabj7360. [PMID: 34757810 DOI: 10.1126/scitranslmed.abj7360] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Nicole Mercer Lindsay
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Biology, CNC Program, Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Chong Chen
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gadi Gilam
- Division of Pain Medicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Sean Mackey
- Division of Pain Medicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,New York Stem Cell Foundation-Robertson Investigator, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
28
|
Kandić M, Moliadze V, Andoh J, Flor H, Nees F. Brain Circuits Involved in the Development of Chronic Musculoskeletal Pain: Evidence From Non-invasive Brain Stimulation. Front Neurol 2021; 12:732034. [PMID: 34531819 PMCID: PMC8438114 DOI: 10.3389/fneur.2021.732034] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/06/2021] [Indexed: 12/03/2022] Open
Abstract
It has been well-documented that the brain changes in states of chronic pain. Less is known about changes in the brain that predict the transition from acute to chronic pain. Evidence from neuroimaging studies suggests a shift from brain regions involved in nociceptive processing to corticostriatal brain regions that are instrumental in the processing of reward and emotional learning in the transition to the chronic state. In addition, dysfunction in descending pain modulatory circuits encompassing the periaqueductal gray and the rostral anterior cingulate cortex may also be a key risk factor for pain chronicity. Although longitudinal imaging studies have revealed potential predictors of pain chronicity, their causal role has not yet been determined. Here we review evidence from studies that involve non-invasive brain stimulation to elucidate to what extent they may help to elucidate the brain circuits involved in pain chronicity. Especially, we focus on studies using non-invasive brain stimulation techniques [e.g., transcranial magnetic stimulation (TMS), particularly its repetitive form (rTMS), transcranial alternating current stimulation (tACS), and transcranial direct current stimulation (tDCS)] in the context of musculoskeletal pain chronicity. We focus on the role of the motor cortex because of its known contribution to sensory components of pain via thalamic inhibition, and the role of the dorsolateral prefrontal cortex because of its role on cognitive and affective processing of pain. We will also discuss findings from studies using experimentally induced prolonged pain and studies implicating the DLPFC, which may shed light on the earliest transition phase to chronicity. We propose that combined brain stimulation and imaging studies might further advance mechanistic models of the chronicity process and involved brain circuits. Implications and challenges for translating the research on mechanistic models of the development of chronic pain to clinical practice will also be addressed.
Collapse
Affiliation(s)
- Mina Kandić
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Vera Moliadze
- Institute of Medical Psychology and Medical Sociology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Jamila Andoh
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frauke Nees
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany
| |
Collapse
|
29
|
Morone G, Ghanbari Ghooshchy S, Palomba A, Baricich A, Santamato A, Ciritella C, Ciancarelli I, Molteni F, Gimigliano F, Iolascon G, Zoccolotti P, Paolucci S, Iosa M. Differentiation among bio- and augmented- feedback in technologically assisted rehabilitation. Expert Rev Med Devices 2021; 18:513-522. [PMID: 33960257 DOI: 10.1080/17434440.2021.1927704] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: In rehabilitation practice, the term 'feedback' is often improperly used, with augmented feedback and biofeedback frequently confused, especially when referring to the human-machine interaction during technologically assisted training. The absence of a clear differentiation between these categories represents an unmet need for rehabilitation, emphasized by the advent of new technologies making extensive use of video feedback, exergame, and virtual reality.Area covered: In this review we tried to present scientific knowledge about feedback, biofeedback, augmented feedback and neurofeedback, and related differences in rehabilitation settings, for a more proper use of this terminology. Despite the continuous expansion of the field, few researches clarify the differences among these terms. This scoping review was conducted through the searching of current literature up to May 2020, using following databases: PUBMED, EMBASE and Web of Science. After literature search a classification system, distinguishing feedback, augmented feedback, and biofeedback, was applied.Expert opinion: There is a need for clear definitions of feedback, biofeedback, augmented feedback, and neurofeedback in rehabilitation, especially in the technologically assisted one based on human-machine interaction. In fact, the fast development of new technologies requires to be based on solid concepts and on a common terminology shared among bioengineers and clinicians.
Collapse
Affiliation(s)
| | - Sheida Ghanbari Ghooshchy
- Fondazione Santa Lucia IRCCS, Rome, Italy.,Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Angela Palomba
- Department of Medical and Surgical Specialties and Dentistry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessio Baricich
- Department of Health Sciences, Università Del Piemonte Orientale, Novara, Italy; Physical Medicine and Rehabilitation, University Hospital "Maggiore Della Carità", Novara, Italy
| | - Andrea Santamato
- Unit of Physical Medicine and Rehabilitation, University of Foggia, Foggia, Italy
| | - Chiara Ciritella
- Unit of Physical Medicine and Rehabilitation, University of Foggia, Foggia, Italy
| | - Irene Ciancarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Franco Molteni
- Villa Beretta Rehabilitation Center, Valduce Hospital, Lecco, Italy
| | - Francesca Gimigliano
- Department of Mental and Physical Health and Preventive Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Giovanni Iolascon
- Department of Medical and Surgical Specialties and Dentistry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Pierluigi Zoccolotti
- Fondazione Santa Lucia IRCCS, Rome, Italy.,Department of Psychology, Sapienza University of Rome, Rome, Italy
| | | | - Marco Iosa
- Fondazione Santa Lucia IRCCS, Rome, Italy.,Department of Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
30
|
Patel K, Henshaw J, Sutherland H, Taylor JR, Casson AJ, Lopez-Diaz K, Brown CA, Jones AKP, Sivan M, Trujillo-Barreto NJ. Using EEG Alpha States to Understand Learning During Alpha Neurofeedback Training for Chronic Pain. Front Neurosci 2021; 14:620666. [PMID: 33732101 PMCID: PMC7958977 DOI: 10.3389/fnins.2020.620666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/22/2020] [Indexed: 11/29/2022] Open
Abstract
Objective Alpha-neurofeedback (α-NFB) is a novel therapy which trains individuals to volitionally increase their alpha power to improve pain. Learning during NFB is commonly measured using static parameters such as mean alpha power. Considering the biphasic nature of alpha rhythm (high and low alpha), dynamic parameters describing the time spent by individuals in high alpha state and the pattern of transitioning between states might be more useful. Here, we quantify the changes during α-NFB for chronic pain in terms of dynamic changes in alpha states. Methods Four chronic pain and four healthy participants received five NFB sessions designed to increase frontal alpha power. Changes in pain resilience were measured using visual analogue scale (VAS) during repeated cold-pressor tests (CPT). Changes in alpha state static and dynamic parameters such as fractional occupancy (time in high alpha state), dwell time (length of high alpha state) and transition probability (probability of moving from low to high alpha state) were analyzed using Friedman’s Test and correlated with changes in pain scores using Pearson’s correlation. Results There was no significant change in mean frontal alpha power during NFB. There was a trend of an increase in fractional occupancy, mean dwell duration and transition probability of high alpha state over the five sessions in chronic pain patients only. Significant correlations were observed between change in pain scores and fractional occupancy (r = −0.45, p = 0.03), mean dwell time (r = -0.48, p = 0.04) and transition probability from a low to high state (r = -0.47, p = 0.03) in chronic pain patients but not in healthy participants. Conclusion There is a differential effect between patients and healthy participants in terms of correlation between change in pain scores and alpha state parameters. Parameters providing a more precise description of the alpha power dynamics than the mean may help understand the therapeutic effect of neurofeedback on chronic pain.
Collapse
Affiliation(s)
- Kajal Patel
- School of Medicine, University of Manchester, Manchester, United Kingdom.,Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
| | - James Henshaw
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
| | - Heather Sutherland
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
| | - Jason R Taylor
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
| | - Alexander J Casson
- Department of Electrical and Electronic Engineering, University of Manchester, Manchester, United Kingdom
| | - Karen Lopez-Diaz
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
| | - Christopher A Brown
- Department of Psychological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Anthony K P Jones
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
| | - Manoj Sivan
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom.,Academic Department of Rehabilitation Medicine, University of Leeds, Leeds, United Kingdom
| | - Nelson J Trujillo-Barreto
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
31
|
Wu YL, Fang SC, Chen SC, Tai CJ, Tsai PS. Effects of Neurofeedback on Fibromyalgia: A Randomized Controlled Trial. Pain Manag Nurs 2021; 22:755-763. [PMID: 33579615 DOI: 10.1016/j.pmn.2021.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/02/2020] [Accepted: 01/08/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Fibromyalgia is a chronic widespread pain condition that is associated with sleep disturbances and cognitive impairments. Neurofeedback has been demonstrated to improve pain, sleep quality, and fatigue. However, few studies have examined the effect of neurofeedback for patients with fibromyalgia. AIM To determine the effects of neurofeedback on pain intensity, symptom severity, sleep quality, and cognitive function in patients with fibromyalgia. DESIGN This study was a randomized controlled trial. METHOD Eighty participants were randomized to a neurofeedback group (N = 60), receiving sensorimotor and alpha rhythm feedback for 8 weeks, or a telephone support group (N = 20). RESULTS Results from the generalized estimating equation modelling revealed significant group-by-time interactions for Brief Pain Inventory pain severity (B = -1.35, SE = 0.46, p = .003) and pain interference (B = -1.75, SE = 0.41, p < .001), Revised Fibromyalgia Impact Questionnaire total scores (B = -16.41, SE = 3.76, p < .001), sleep onset latency (B = -25.33, SE = 9.02, p = .005), and Psychomotor Vigilance Test error (B = -1.38, SE = 0.55, p = .013) after adjustments for age, sex, duration of illness, and group differences at baseline. CONCLUSIONS An 8-week neurofeedback training regimen of sensorimotor rhythm and alpha brain waves significantly improved pain severity and interference, fibromyalgia symptom severity, sleep latency, and sustained attention in patients with fibromyalgia.
Collapse
Affiliation(s)
- Yu-Lin Wu
- St. Mary's Medicine, Nursing and Management College, Yilan, Taiwan; School of Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan
| | - Su-Chen Fang
- Department of Nursing, Mackay Medical College, New Taipei City, Taiwan
| | - Shih-Ching Chen
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chen-Jei Tai
- Department of Traditional Chinese Medicine, Taipei Medical University Hospital, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pei-Shan Tsai
- School of Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan; Center for Nursing and Healthcare Research in Clinical Practice Application, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Sleep Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
32
|
Meeuwsen KD, Groeneveld KM, Walker LA, Mennenga AM, Tittle RK, White EK. Z-score neurofeedback, heart rate variability biofeedback, and brain coaching for older adults with memory concerns. Restor Neurol Neurosci 2021; 39:9-37. [PMID: 33386829 PMCID: PMC7990441 DOI: 10.3233/rnn-201053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND The three-month, multi-domain Memory Boot Camp program incorporates z-score neurofeedback (NFB), heart rate variability (HRV) biofeedback, and one-on-one coaching to teach memory skills and encourage behavior change in diet, sleep, physical fitness, and stress reduction. OBJECTIVE This prospective trial evaluates the Memory Boot Camp program for adults ages 55 to 85 with symptoms of Mild Cognitive Impairment (MCI) and subjective memory complaints. METHODS Participants were evaluated via the Montreal Cognitive Assessment (MoCA), NeuroTrax Global Cognitive Score, measures of anxiety, depression, sleep, quality of life, quantitative electroencephalography (QEEG), and HRV parameters at four timepoints: baseline, pre-program, post-program, and follow-up. The trial included a three-month waiting period between baseline and pre-program, such that each participant acted as their own control, and follow-up took place six months after completion of the program. RESULTS Participants' MoCA scores and self-reported measures of anxiety, depression, sleep quality, and quality of life improved after treatment, and these changes were maintained at follow-up. Physiological changes in HRV parameters after treatment were not significant, however, breathing rate and QEEG parameters were improved at post-program and maintained at follow-up. Finally, participants' improvement in MoCA score over the treatment period was correlated with their improvement in two brain oscillation parameters targeted by the z-score NFB protocol: relative power of delta and relative power of theta. CONCLUSIONS Trial results suggest that the Memory Boot Camp program is a promising treatment strategy for older adults with symptoms of MCI and subjective memory complaints.
Collapse
|
33
|
Hesam-Shariati N, Chang WJ, McAuley JH, Booth A, Trost Z, Lin CT, Newton-John T, Gustin SM. The Analgesic Effect of Electroencephalographic Neurofeedback for People With Chronic Pain: Protocol for a Systematic Review and Meta-analysis. JMIR Res Protoc 2020; 9:e22821. [PMID: 33030439 PMCID: PMC7582146 DOI: 10.2196/22821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 01/13/2023] Open
Abstract
Background Chronic pain is a global health problem, affecting around 1 in 5 individuals in the general population. The understanding of the key role of functional brain alterations in the generation of chronic pain has led researchers to focus on pain treatments that target brain activity. Electroencephalographic neurofeedback attempts to modulate the power of maladaptive electroencephalography frequency powers to decrease chronic pain. Although several studies have provided promising evidence, the effect of electroencephalographic neurofeedback on chronic pain is uncertain. Objective This systematic review aims to synthesize the evidence from randomized controlled trials to evaluate the analgesic effect of electroencephalographic neurofeedback. In addition, we will synthesize the findings of nonrandomized studies in a narrative review. Methods We will apply the search strategy in 5 electronic databases (Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, PsycInfo, and CINAHL) for published studies and in clinical trial registries for completed unpublished studies. We will include studies that used electroencephalographic neurofeedback as an intervention for people with chronic pain. Risk-of-bias tools will be used to assess methodological quality of the included studies. We will include randomized controlled trials if they have compared electroencephalographic neurofeedback with any other intervention or placebo control. The data from randomized controlled trials will be aggregated to perform a meta-analysis for quantitative synthesis. The primary outcome measure is pain intensity assessed by self-report scales. Secondary outcome measures include depressive symptoms, anxiety symptoms, and sleep quality measured by self-reported questionnaires. We will investigate the studies for additional outcomes addressing adverse effects and resting-state electroencephalography analysis. Additionally, all types of nonrandomized studies will be included for a narrative synthesis. The intended and unintended effects of nonrandomized studies will be extracted and summarized in a descriptive table. Results Ethics approval is not required for a systematic review, as there will be no patient involvement. The search for this systematic review commenced in July 2020, and we expect to publish the findings in early 2021. Conclusions This systematic review will provide recommendations for researchers and health professionals, as well as people with chronic pain, about the evidence for the analgesic effect of electroencephalographic neurofeedback. Trial Registration International Prospective Register of Systematic Reviews (PROSPERO) CRD42020177608; https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=177608 International Registered Report Identifier (IRRID) PRR1-10.2196/22821
Collapse
Affiliation(s)
- Negin Hesam-Shariati
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, Australia.,School of Psychology, University of New South Wales, Sydney, Australia
| | - Wei-Ju Chang
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, Australia
| | - James H McAuley
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, Australia.,School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Andrew Booth
- School of Health and Related Research, University of Sheffield, Sheffield, United Kingdom
| | - Zina Trost
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, United States
| | - Chin-Teng Lin
- Australian Artificial Intelligence Institute, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, Australia
| | - Toby Newton-John
- Graduate School of Health, University of Technology Sydney, Sydney, Australia
| | - Sylvia M Gustin
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, Australia.,School of Psychology, University of New South Wales, Sydney, Australia
| |
Collapse
|
34
|
Ahmed H, Jones A, Sivan M. The brain alpha rhythm in the perception and modulation of pain. ADVANCES IN CLINICAL NEUROSCIENCE & REHABILITATION 2020. [DOI: 10.47795/gbpd9851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|