1
|
Nuyts M, Verstraelen S, Frieske J, Meesen R, Hoornweder SV. Accurate determination of motor evoked potential amplitude in TMS: The impact of personal and experimental factors. Clin Neurophysiol 2024; 170:123-131. [PMID: 39708533 DOI: 10.1016/j.clinph.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/29/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
OBJECTIVE Corticospinal excitability can be quantified using motor-evoked potentials (MEP) following transcranial magnetic stimulation (TMS). However, the inherent variability of MEPs poses significant challenges. We establish a framework using personal and experimental factors to select the optimal number of trials (nopt) required for reliable MEP estimates. METHODS 47 healthy younger underwent single-pulse TMS over the left primary motor cortex (M1). Per participant, 550 MEPs were collected at intensities ranging from 110 % to 150 % of the resting motor threshold (rMT), in 10 % increments. Per intensity, we calculated nopt. We analyzed which personal and experimental factors affected nopt. RESULTS nopt decreased with increasing TMS intensity, lower rMT baseline values, and exclusion of single-trial outliers. Sex had no significant effect. CONCLUSIONS Our study indicates that even when TMS is used as an outcome measure, custom-tailoring its protocol to study-related circumstances is key, as TMS intensity, outliers, baseline rMT, and the desired precision level affect the number of TMS trials needed to obtain a reliable MEP. Thus, we underscore the absence of a universal rule-of-thumb rule, although our predictive equations and online tool provide future TMS experimenters with the means to estimate the required number of TMS trials based on individual characteristics and specific experimental conditions. SIGNIFICANCE Our predictive equations offer a tailored approach for selecting nopt, enhancing the reliability of TMS-derived corticospinal excitability measurements.
Collapse
Affiliation(s)
- Marten Nuyts
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium.
| | - Stefanie Verstraelen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Joana Frieske
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Raf Meesen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Sybren Van Hoornweder
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| |
Collapse
|
2
|
Cabral HV, Oxendale C, Devecchi V, Falla D, Gallina A. The Effect of Experimentally Induced Pain in the Cervical, Shoulder, or Orofacial Regions on Cervical Neuromuscular and Kinematic Features: A Systematic Review and Meta-analysis. THE JOURNAL OF PAIN 2024; 25:104660. [PMID: 39182536 DOI: 10.1016/j.jpain.2024.104660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/22/2024] [Accepted: 08/17/2024] [Indexed: 08/27/2024]
Abstract
In this systematic review, we synthesize the literature investigating the effect of experimentally induced pain in the cervical, shoulder, or orofacial regions on cervical neuromuscular and kinematic features. Databases were searched up to November 1, 2023. A total of 29 studies using hypertonic saline injection (n = 27) or glutamate injection (n = 2) as experimental pain models were included. Meta-analyses revealed reduced upper trapezius activation during shoulder flexion/abduction when pain was induced in the upper trapezius (standardized mean difference: -.90, 95% confidence interval: [-1.29; -.51]), splenius capitis (-1.03 [-1.44; -.63]), and supraspinatus (-.63 [-1.25; -.01]), but not in the subacromial space (.22 [-.16; .60]). Furthermore, experimentally induced pain caused a caudal redistribution of activation within the upper trapezius (.96 [.58; 1.34]) but did not change the mediolateral distribution (.11 [-.22; .42]). None of these adaptations persisted after pain resolution. Low-quality evidence supported the absence of an effect of experimental pain on upper trapezius muscle activation during manual dexterity and cervical flexion/extension tasks, as well as on cervical flexor and extensor muscle activation during cervical and jaw tasks. Inconsistent and limited evidence, attributed to the large heterogeneity of task and outcomes, precluded drawing meaningful conclusions about the effects of experimentally induced pain in the cervical region on cervical kinematics. Overall, cervical muscle activation tended to decrease in response to experimentally induced pain, and the decrease of muscle activation depended on the location of the painful stimulus. These adaptations are only partially representative of muscle activation patterns observed in clinical populations. PERSPECTIVE: This systematic review and meta-analysis revealed a reduced or unchanged muscle activation during experimental pain in the cervical, shoulder, or orofacial regions, depending on the task and location of nociceptive stimulation. There was inconsistent evidence on cervical kinematics. These findings enhance our understanding of neuromuscular adaptations to acute experimental pain.
Collapse
Affiliation(s)
- Hélio V Cabral
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK; Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK; Department of Clinical and Experimental Sciences, Università Degli Studi di Brescia, Brescia, Italy
| | - Chelsea Oxendale
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK; Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK; School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Valter Devecchi
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK; Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Deborah Falla
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK; Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Alessio Gallina
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK; Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
3
|
Betti S, Badioli M, Dalbagno D, Garofalo S, di Pellegrino G, Starita F. Topographically selective motor inhibition under threat of pain. Pain 2024; 165:2851-2862. [PMID: 38916518 PMCID: PMC11562763 DOI: 10.1097/j.pain.0000000000003301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 06/26/2024]
Abstract
ABSTRACT Pain-related motor adaptations may be enacted predictively at the mere threat of pain, before pain occurrence. Yet, in humans, the neurophysiological mechanisms underlying motor adaptations in anticipation of pain remain poorly understood. We tracked the evolution of changes in corticospinal excitability (CSE) as healthy adults learned to anticipate the occurrence of lateralized, muscle-specific pain to the upper limb. Using a Pavlovian threat conditioning task, different visual stimuli predicted pain to the right or left forearm (experiment 1) or hand (experiment 2). During stimuli presentation before pain occurrence, single-pulse transcranial magnetic stimulation was applied over the left primary motor cortex to probe CSE and elicit motor evoked potentials from target right forearm and hand muscles. The correlation between participants' trait anxiety and CSE was also assessed. Results showed that threat of pain triggered corticospinal inhibition specifically in the limb where pain was expected. In addition, corticospinal inhibition was modulated relative to the threatened muscle, with threat of pain to the forearm inhibiting the forearm and hand muscles, whereas threat of pain to the hand inhibited the hand muscle only. Finally, stronger corticospinal inhibition correlated with greater trait anxiety. These results advance the mechanistic understanding of pain processes showing that pain-related motor adaptations are enacted at the mere threat of pain, as sets of anticipatory, topographically organized motor changes that are associated with the expected pain and are shaped by individual anxiety levels. Including such anticipatory motor changes into models of pain may lead to new treatments for pain-related disorders.
Collapse
Affiliation(s)
- Sonia Betti
- Department of Psychology “Renzo Canestrari,” Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, Italy
- Department of General Psychology, University of Padova, Padova, Italy
| | - Marco Badioli
- Department of Psychology “Renzo Canestrari,” Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, Italy
| | - Daniela Dalbagno
- Department of Psychology “Renzo Canestrari,” Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, Italy
| | - Sara Garofalo
- Department of Psychology “Renzo Canestrari,” Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, Italy
| | - Giuseppe di Pellegrino
- Department of Psychology “Renzo Canestrari,” Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, Italy
| | - Francesca Starita
- Department of Psychology “Renzo Canestrari,” Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, Italy
| |
Collapse
|
4
|
Delahunty ET, Bisset LM, Kavanagh JJ. Short-latency afferent inhibition is reduced with cold-water immersion of a limb and remains reduced after removal from the cold stimulus. Exp Physiol 2024; 109:1817-1825. [PMID: 39190835 PMCID: PMC11522815 DOI: 10.1113/ep091896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
The experience of pain that is induced by extremely cold temperatures can exert a modulatory effect on motor cortex circuitry. Although it is known that immersion of a single limb in very cold water can increase corticomotor excitability it is unknown how afferent input to the cortex shapes excitatory and inhibitory processes. Therefore, the purpose of this study was to examine motor-evoked potentials (MEP), short-latency afferent inhibition (SAI) and long-latency afferent inhibition (LAI) in response to immersion of a single hand in cold water. Transcranial magnetic stimulation (TMS) was used to assess MEPs, and peripheral nerve stimulation of the median nerve paired with TMS was used to measure SAI and LAI in motor circuits of the ipsilateral hemisphere. Measurements were obtained from electromyography (EMG) of the first dorsal interosseous (FDI) at baseline, during cold-water immersion, and during recovery from cold-water immersion. The intervention caused unconditioned MEPs to increase during exposure to the cold stimulus (P = 0.008) which then returned to baseline levels once the hand was removed from the cold water. MEP responses were decoupled from SAI responses, where SAI was reduced during exposure to the cold stimulus (P = 0.005) and remained reduced compared to baseline when the hand was removed from the cold water (P = 0.002). The intervention had no effect on LAI. The uncoupling of SAI from MEPs during the recovery period suggests that the mechanisms underlying the modulation of corticospinal excitability by sensory input may be distinct from those affecting intracortical inhibitory circuits. HIGHLIGHTS: What is the central question of this study? Does immersion of a limb in very cold water influence corticospinal excitability and the level of afferent inhibition exerted on motor cortical circuits? What is the main finding and its importance? In additional to perception of temperature, immersion in 6°C water also induced perceptions of pain. Motor evoked potential (MEP) amplitude increased during immersion, and short-latency afferent inhibition (SAI) of the motor cortex was reduced during immersion; however, these responses differed after the limb was removed from the cold stimulus, as MEPs returned to normal levels while SAI remained suppressed.
Collapse
Affiliation(s)
- Eden T. Delahunty
- Menzies Health Institute QueenslandGriffith UniversityQueenslandAustralia
| | - Leanne M. Bisset
- Menzies Health Institute QueenslandGriffith UniversityQueenslandAustralia
| | - Justin J. Kavanagh
- Menzies Health Institute QueenslandGriffith UniversityQueenslandAustralia
| |
Collapse
|
5
|
Toussaint L, Billot M, Cabirol R, Rigoard P, Teillet P, David R, Tisserand R. Impact of chronic low back pain on implicit motor imagery assessed by a new laterality judgment task. THE JOURNAL OF PAIN 2024; 26:104719. [PMID: 39454848 DOI: 10.1016/j.jpain.2024.104719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/05/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
It is clear that implicit motor imagery (IMI) is impaired by chronic pain in peripheral regions (hand, feet), but unclear in axial regions (neck, shoulder, back). Previous IMI tasks displayed small-amplitude movements of axial regions, which limits person-centered IMI processes mobilization. This study aimed to assess the impact of chronic low back pain (CLBP) on IMI processes with a new task displaying large-amplitude whole-body movements mobilizing the lumbar spine. Twenty patients with CLBP and twenty age-matched controls performed a laterality judgment task on four distinct whole-body movements (trunk flexion, trunk rotation, capoeira, kickboxing). Participants viewed images from four different body viewpoints (back, left, right and front), randomly presented. Mixed ANOVAs were used to compare judgment accuracy and response times between groups and conditions. In participants with CLBP, response times were longer than in controls. The response times of participants with CLBP were also associated with DN4 scores, a self-reported questionnaire assessing neuropathic pain. We validated the use of a person-centered IMI because, for all participants, the accuracy decreased and the response times increased for images presented in the front viewpoint, i.e. when a 180° turn in IMI was required, compared to other viewpoints. The laterality judgment task proposed here confirmed that CLBP impacts IMI processes, and that the nature of pain (neuropathic or mechanical) needs to be considered because it seems to modulate IMI processes. PERSPECTIVES: A laterality judgment task with large-amplitude lumbar movements is key to show that CLBP alters processing speed of sensorimotor information originating from the painful region. This task could become an objective tool, transferable in clinical settings, for assessing the impact and the progression of CLBP on motor control processes.
Collapse
Affiliation(s)
- Lucette Toussaint
- Université de Poitiers, Université François-Rabelais de Tours, CNRS, CeRCA, UMR 7295, F-86000 Poitiers, France.
| | - Maxime Billot
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France
| | - Rémi Cabirol
- Physical and Rehabilitation Medicine Unit, Poitiers University Hospital, University of Poitiers, 86021 Poitiers, France
| | - Philippe Rigoard
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France; Department of Spine Surgery & Neuromodulation, Poitiers University Hospital, 86021 Poitiers, France; Université de Poitiers, Institut Pprime (UPR 3346), ISAE-ENSMA, CNRS, 86073 Poitiers, France
| | - Paul Teillet
- Université de Poitiers, Université François-Rabelais de Tours, CNRS, CeRCA, UMR 7295, F-86000 Poitiers, France
| | - Romain David
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France; Université de Poitiers, Institut Pprime (UPR 3346), ISAE-ENSMA, CNRS, 86073 Poitiers, France
| | - Romain Tisserand
- Université de Poitiers, Université François-Rabelais de Tours, CNRS, CeRCA, UMR 7295, F-86000 Poitiers, France; Université de Poitiers, Institut Pprime (UPR 3346), ISAE-ENSMA, CNRS, 86073 Poitiers, France
| |
Collapse
|
6
|
Eon P, Grosprêtre S, Martin A. Neuromuscular electrical stimulation at submaximal intensity combined with motor imagery increases corticospinal excitability. Eur J Appl Physiol 2024:10.1007/s00421-024-05615-y. [PMID: 39356322 DOI: 10.1007/s00421-024-05615-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/14/2024] [Indexed: 10/03/2024]
Abstract
PURPOSE There is sparse evidence in the literature that the combination of neuromuscular electrical stimulation (NMES) and motor imagery (MI) can increase corticospinal excitability more that the application of one or the other modality alone. However, the NMES intensity usually employed was below or at motor threshold, not allowing a proper activation of the whole neuromuscular system. This questions the effect of combined MI + NMES with higher intensities, closer to those used in clinical settings. The purpose here was to assess corticospinal excitability during either MI, NMES or a combination of both at different evoked forces. METHODS Seventeen healthy participants were enrolled in one session consisting of 6 conditions targeting flexor carpi radialis muscle (FCR): rest, MI, NMES at 5% and 20% of maximal voluntary contraction (MVC) and MI and NMES performed simultaneously (MI + NMES). During each condition, corticospinal excitability was assessed by evoking MEP of FCR by using transcranial magnetic stimulation. Maximal M-wave (Mmax) was measured by using the stimulation of the median nerve. RESULTS MEPs during MI were greater as compared to rest (P = 0.005). MEPs during MI were significantly lower than during MI + NMES at 5% (P = 0.02) and 20% (P = 0.001). Then, MEPs during NMES 5% was significantly lower than during MI + NMES 20% (P < 0.005). CONCLUSION The present study showed that MI + NMES increased corticospinal excitability more than MI alone. However, corticospinal excitability was not higher as the intensity increase during MI + NMES. Therefore, MI + NMES targeting FCR may not significantly increase the corticospinal excitability between different low-submaximal contractions intensities.
Collapse
Affiliation(s)
- Pauline Eon
- Laboratory Culture Sport Health Society (C3S-UR 4660), Sport and Performance Department, University of Franche-Comté, UFR STAPS, 31 Chemin de L'Epitaphe, 25000, Besançon, France.
| | - Sidney Grosprêtre
- Laboratory Culture Sport Health Society (C3S-UR 4660), Sport and Performance Department, University of Franche-Comté, UFR STAPS, 31 Chemin de L'Epitaphe, 25000, Besançon, France
- Institut Universitaire de France (IUF), Paris, France
| | - Alain Martin
- Cognition, Action Sensorimotor Plasticity [CAPS], Unité INSERM 1093, University of Bourgogne-UFR STAPS, BP 27877, 21078, Dijon Cedex, France
| |
Collapse
|
7
|
Badr L, Gagné-Pelletier L, Massé-Alarie H, Mercier C. Effect of Phasic Experimental Pain Applied during Motor Preparation or Execution on Motor Performance and Adaptation in a Reaching Task: A Randomized Trial. Brain Sci 2024; 14:851. [PMID: 39335347 PMCID: PMC11430375 DOI: 10.3390/brainsci14090851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Musculoskeletal conditions often involve pain related to specific movements. However, most studies on the impact of experimental pain on motor performance and learning have used tonic pain models. This study aimed to evaluate the effect of experimental phasic pain during the preparation or execution of a reaching task on the acquisition and retention of sensorimotor adaptation. Participants were divided into three groups: no pain, pain during motor preparation, and pain during motor execution. Pain was induced over the scapula with a laser while participants performed a force field adaptation task over two days. To assess the effect of pain on motor performance, two baseline conditions (with or without pain) involving unperturbed pointing movements were also conducted. The results indicated that the timing of the nociceptive stimulus differently affected baseline movement performance. Pain during motor preparation shortened reaction time, while pain during movement execution decreased task performance. However, when these baseline effects were accounted for, no impact of pain on motor adaptation or retention was observed. All groups showed significant improvements in all motor variables for both adaptation and retention. In conclusion, while acute phasic pain during motor preparation or execution can affect the movement itself, it does not interfere with motor acquisition or retention during a motor adaptation task.
Collapse
Affiliation(s)
- Laïla Badr
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), Centre Intégré Universitaire de Santé et Services Sociaux de la Capitale-Nationale, Quebec City, QC G1M 2S8, Canada
- School of Rehabilitation Sciences, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Léandre Gagné-Pelletier
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), Centre Intégré Universitaire de Santé et Services Sociaux de la Capitale-Nationale, Quebec City, QC G1M 2S8, Canada
- School of Rehabilitation Sciences, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Hugo Massé-Alarie
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), Centre Intégré Universitaire de Santé et Services Sociaux de la Capitale-Nationale, Quebec City, QC G1M 2S8, Canada
- School of Rehabilitation Sciences, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Catherine Mercier
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), Centre Intégré Universitaire de Santé et Services Sociaux de la Capitale-Nationale, Quebec City, QC G1M 2S8, Canada
- School of Rehabilitation Sciences, Laval University, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
8
|
Massé-Alarie H, Shraim M, Hodges PW. Sensorimotor Integration in Chronic Low Back Pain. Neuroscience 2024; 552:29-38. [PMID: 38878816 DOI: 10.1016/j.neuroscience.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/02/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
OBJECTIVE Chronic low back pain (CLBP) impacts on spine movement. Altered sensorimotor integration can be involved. Afferents from the lumbo-pelvic area might be processed differently in CLBP and impact on descending motor control. This study aimed to determine whether afferents influence the corticomotor control of paravertebral muscles in CLBP. Fourteen individuals with CLBP (11 females) and 13 pain-free controls (8 females) were tested with transcranial magnetic stimulation (TMS) to measure the motor-evoked potential [MEP] amplitude of paravertebral muscles. Noxious and non-noxious electrical stimulation, and magnetic stimulation in the lumbo-sacral area were used as afferent stimuli and triggered 20 to 200 ms prior to TMS. EMG modulation elicited by afferent stimulation alone was measured to control net motoneuron excitability. MEP/EMG ratio was used as a measure of corticospinal excitability with control of net motoneuron excitability. MEP/EMG ratio was larger at 60, 80 and 100-ms intervals in CLBP compared to controls, and afferent stimulations alone reduced EMG amplitude greater in CLBP than controls at 100 ms. Our results suggest alteration in sensorimotor integration in CLBP highlighted by a greater facilitation of the descending corticospinal input to paravertebral muscles. Our results can help to optimise interventions by better targeting mechanisms.
Collapse
Affiliation(s)
- Hugo Massé-Alarie
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, Brisbane, QLD, Australia; Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (CIRRIS), Université Laval, Québec, Canada.
| | - Muath Shraim
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, Brisbane, QLD, Australia
| | - Paul W Hodges
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Suhood AY, Summers SJ, Opar DA, Astill T, An WW, Rio E, Cavaleri R. Bilateral Corticomotor Reorganization and Symptom Development in Response to Acute Unilateral Hamstring Pain: A Randomized, Controlled Study. THE JOURNAL OF PAIN 2024; 25:1000-1011. [PMID: 37907112 DOI: 10.1016/j.jpain.2023.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/08/2023] [Accepted: 10/21/2023] [Indexed: 11/02/2023]
Abstract
Accumulating evidence demonstrates that pain induces adaptations in the corticomotor representations of affected muscles. However, previous work has primarily investigated the upper limb, with few studies examining corticomotor reorganization in response to lower limb pain. This is important to consider, given the significant functional, anatomical, and neurophysiological differences between upper and lower limb musculature. Previous work has also focused on unilateral corticomotor changes in response to muscle pain, despite an abundance of literature demonstrating that unilateral pain conditions are commonly associated with bilateral motor dysfunction. For the first time, this study investigated the effect of unilateral acute hamstring pain on bilateral corticomotor organization using transcranial magnetic stimulation (TMS) mapping. Corticomotor outcomes (TMS maps), pain, mechanical sensitivity (pressure pain thresholds), and function (maximal voluntary contractions) were recorded from 28 healthy participants at baseline. An injection of pain-inducing hypertonic (n = 14) or pain-free isotonic (n = 14) saline was then administered to the right hamstring muscle, and pain ratings were collected every 30 seconds until pain resolution. Follow-up measures were taken immediately following pain resolution and at 25, 50, and 75 minutes post-pain resolution. Unilateral acute hamstring pain induced bilateral symptom development and changes in corticomotor reorganization. Two patterns of reorganization were observed-corticomotor facilitation and corticomotor depression. Corticomotor facilitation was associated with increased mechanical sensitivity and decreased function bilaterally (all P < .05). These effects persisted for at least 75 minutes after pain resolution. PERSPECTIVE: These findings suggest that individual patterns of corticomotor reorganization may contribute to ongoing functional deficits of either limb following acute unilateral lower limb pain. Further research is required to assess these adaptations and the possible long-term implications for rehabilitation and reinjury risk in cohorts with acute hamstring injury.
Collapse
Affiliation(s)
- Ariane Y Suhood
- Brain Stimulation and Rehabilitation Lab, School of Science and Health, Western Sydney University, Sydney, New South Wales, Australia
| | - Simon J Summers
- Brain Stimulation and Rehabilitation Lab, School of Science and Health, Western Sydney University, Sydney, New South Wales, Australia; School of Biomedical Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - David A Opar
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Faculty of Health Sciences, Australian Catholic University, Fitzroy, Victoria, Australia; School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Fitzroy, Victoria, Australia
| | - Tom Astill
- Brain Stimulation and Rehabilitation Lab, School of Science and Health, Western Sydney University, Sydney, New South Wales, Australia
| | - Winko W An
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Ebonie Rio
- School of Allied Health, La Trobe University Melbourne, Melbourne, Victoria, Australia; The Victorian Institute of Sport, Albert Park, Victoria, Australia
| | - Rocco Cavaleri
- Brain Stimulation and Rehabilitation Lab, School of Science and Health, Western Sydney University, Sydney, New South Wales, Australia; School of Biomedical Science, Queensland University of Technology, Brisbane, Queensland, Australia; Translational Health Research Institute, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
10
|
Ducas J, Memari S, Houle M, Schwendenmann Y, Abboud J, Yiou É, Descarreaux M. Impact of lumbar delayed-onset muscle soreness on postural stability in standing postures. Gait Posture 2024; 109:201-207. [PMID: 38350184 DOI: 10.1016/j.gaitpost.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND Similar impact on proprioception has been observed in participants with lumbar delayed-onset muscle soreness (DOMS) and chronic low back pain (LBP), raising questions about the relevance of lumbar DOMS as a suitable pain model for LBP when assessing back pain-related postural stability changes. RESEARCH QUESTION Does lumbar DOMS impact postural stability? METHODS Twenty healthy adults participated in this experimental study and underwent a posturographic examination before and 24 to 36 h after a protocol designed to induce lumbar DOMS. Posturographic examination was assessed during quiet standing on both feet with eyes opened (EO), with eyes closed (EC), and on one-leg (OL) standing with eyes opened. Postural stability was assessed through center of pressure (COP) parameters (COP area, velocity, root mean square, mean power frequency) which were compared using repeated measure ANOVA. Moreover, pain, soreness and pressure pain threshold (PPT) on specific muscles were assessed. RESULTS There was a significant main effect of the postural condition on all COP variables investigated. More specifically, each COP variable reached a significantly higher value in the OL stance condition than in both EO and EC bipedal conditions (all with p < 0.001). In addition, the COP velocity and the mean power frequency along the anteroposterior direction both reached a significantly higher value in EC than in EO (p < 0.001). In contrast, there was no significant main effect of the DOMS nor significant DOMS X postural condition interaction on any of the COP variables. There was a significant decrease in the PPT value for both the left and right erector spinae muscles, as well as the left biceps femoris. SIGNIFICANCE Lumbar DOMS had no impact on postural stability, which contrasts findings in participants with clinical LBP. Although DOMS induces similar trunk sensorimotor adaptations to clinical LBP, it does not appear to trigger similar postural stability adaptations.
Collapse
Affiliation(s)
- Julien Ducas
- Department of Human Kinetics, Université du Québec à Trois-Rivières, 3351 Bd Des Forges, Trois-Rivières, QC G8Z 4M3, Canada; Groupe de Recherche sur les Affections Neuromusculosquelettiques (GRAN), Université du Québec à Trois-Rivières, 3351 Bd Des Forges, Trois-Rivières, QC G8Z 4M3, Canada
| | - Sahel Memari
- Department of Human Kinetics, Université du Québec à Trois-Rivières, 3351 Bd Des Forges, Trois-Rivières, QC G8Z 4M3, Canada; CIAMS Laboratory, Université Paris-Saclay, Orsay Cedex, France; CIAMS Laboratory, Université d'Orléans, Orléans, France; Research Department, Institut Franco-Européen de Chiropraxie, 94200 Ivry-Sur-Seine, France
| | - Mariève Houle
- Groupe de Recherche sur les Affections Neuromusculosquelettiques (GRAN), Université du Québec à Trois-Rivières, 3351 Bd Des Forges, Trois-Rivières, QC G8Z 4M3, Canada; Department of Anatomy, Université du Québec à Trois-Rivières, 3351 Bd Des Forges, Trois-Rivières, QC G8Z 4M3, Canada
| | - Yves Schwendenmann
- Department of Human Kinetics, Université du Québec à Trois-Rivières, 3351 Bd Des Forges, Trois-Rivières, QC G8Z 4M3, Canada; Groupe de Recherche sur les Affections Neuromusculosquelettiques (GRAN), Université du Québec à Trois-Rivières, 3351 Bd Des Forges, Trois-Rivières, QC G8Z 4M3, Canada
| | - Jacques Abboud
- Department of Human Kinetics, Université du Québec à Trois-Rivières, 3351 Bd Des Forges, Trois-Rivières, QC G8Z 4M3, Canada; Groupe de Recherche sur les Affections Neuromusculosquelettiques (GRAN), Université du Québec à Trois-Rivières, 3351 Bd Des Forges, Trois-Rivières, QC G8Z 4M3, Canada
| | - Éric Yiou
- CIAMS Laboratory, Université Paris-Saclay, Orsay Cedex, France; CIAMS Laboratory, Université d'Orléans, Orléans, France
| | - Martin Descarreaux
- Department of Human Kinetics, Université du Québec à Trois-Rivières, 3351 Bd Des Forges, Trois-Rivières, QC G8Z 4M3, Canada; Groupe de Recherche sur les Affections Neuromusculosquelettiques (GRAN), Université du Québec à Trois-Rivières, 3351 Bd Des Forges, Trois-Rivières, QC G8Z 4M3, Canada.
| |
Collapse
|
11
|
Chowdhury NS, Chiang AKI, Millard SK, Skippen P, Chang WJ, Seminowicz DA, Schabrun SM. Combined transcranial magnetic stimulation and electroencephalography reveals alterations in cortical excitability during pain. eLife 2023; 12:RP88567. [PMID: 37966464 PMCID: PMC10651174 DOI: 10.7554/elife.88567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) has been used to examine inhibitory and facilitatory circuits during experimental pain and in chronic pain populations. However, current applications of TMS to pain have been restricted to measurements of motor evoked potentials (MEPs) from peripheral muscles. Here, TMS was combined with electroencephalography (EEG) to determine whether experimental pain could induce alterations in cortical inhibitory/facilitatory activity observed in TMS-evoked potentials (TEPs). In Experiment 1 (n=29), multiple sustained thermal stimuli were administered to the forearm, with the first, second, and third block of thermal stimuli consisting of warm but non-painful (pre-pain block), painful (pain block) and warm but non-painful (post-pain block) temperatures, respectively. During each stimulus, TMS pulses were delivered while EEG (64 channels) was simultaneously recorded. Verbal pain ratings were collected between TMS pulses. Relative to pre-pain warm stimuli, painful stimuli led to an increase in the amplitude of the frontocentral negative peak ~45 ms post-TMS (N45), with a larger increase associated with higher pain ratings. Experiments 2 and 3 (n=10 in each) showed that the increase in the N45 in response to pain was not due to changes in sensory potentials associated with TMS, or a result of stronger reafferent muscle feedback during pain. This is the first study to use combined TMS-EEG to examine alterations in cortical excitability in response to pain. These results suggest that the N45 TEP peak, which indexes GABAergic neurotransmission, is implicated in pain perception and is a potential marker of individual differences in pain sensitivity.
Collapse
Affiliation(s)
- Nahian Shahmat Chowdhury
- Center for Pain IMPACT, Neuroscience Research AustraliaSydneyAustralia
- University of New South WalesSydneyAustralia
| | - Alan KI Chiang
- Center for Pain IMPACT, Neuroscience Research AustraliaSydneyAustralia
- University of New South WalesSydneyAustralia
| | - Samantha K Millard
- Center for Pain IMPACT, Neuroscience Research AustraliaSydneyAustralia
- University of New South WalesSydneyAustralia
| | - Patrick Skippen
- Center for Pain IMPACT, Neuroscience Research AustraliaSydneyAustralia
| | - Wei-Ju Chang
- Center for Pain IMPACT, Neuroscience Research AustraliaSydneyAustralia
- School of Health Sciences, College of Health, Medicine and Wellbeing, The University of NewcastleCallaghanAustralia
| | - David A Seminowicz
- Center for Pain IMPACT, Neuroscience Research AustraliaSydneyAustralia
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western OntarioLondonCanada
| | - Siobhan M Schabrun
- Center for Pain IMPACT, Neuroscience Research AustraliaSydneyAustralia
- The Gray Centre for Mobility and Activity, University of Western OntarioLondonCanada
| |
Collapse
|
12
|
De Martino E, Casali A, Casarotto S, Hassan G, Rosanova M, Graven-Nielsen T, Ciampi de Andrade D. Acute pain drives different effects on local and global cortical excitability in motor and prefrontal areas: insights into interregional and interpersonal differences in pain processing. Cereb Cortex 2023; 33:9986-9996. [PMID: 37522261 DOI: 10.1093/cercor/bhad259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023] Open
Abstract
Pain-related depression of corticomotor excitability has been explored using transcranial magnetic stimulation-elicited motor-evoked potentials. Transcranial magnetic stimulation-electroencephalography now enables non-motor area cortical excitability assessments, offering novel insights into cortical excitability changes during pain states. Here, pain-related cortical excitability changes were explored in the dorsolateral prefrontal cortex and primary motor cortex (M1). Cortical excitability was recorded in 24 healthy participants before (Baseline), during painful heat (Acute Pain), and non-noxious warm (Warm) stimulation at the right forearm in a randomized sequence, followed by a pain-free stimulation measurement. Local cortical excitability was assessed as the peak-to-peak amplitude of early transcranial magnetic stimulation evoked potential, whereas global-mean field power measured the global excitability. Relative to the Baseline, Acute Pain decreased the peak-to-peak amplitude in M1 and dorsolateral prefrontal cortex compared with Warm (both P < 0.05). A reduced global-mean field power was only found in M1 during Acute Pain compared with Warm (P = 0.003). Participants with the largest reduction in local cortical excitability under Acute Pain showed a negative correlation between dorsolateral prefrontal cortex and M1 local cortical excitability (P = 0.006). Acute experimental pain drove differential pain-related effects on local and global cortical excitability changes in motor and non-motor areas at a group level while also revealing different interindividual patterns of cortical excitability changes, which can be explored when designing personalized treatment plans.
Collapse
Affiliation(s)
- Enrico De Martino
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg 9220, Denmark
| | - Adenauer Casali
- Institute of Science and Technology, Federal University of São Paulo, São Paulo 04021-001, Brazil
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Milan 50143, Italy
| | - Gabriel Hassan
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg 9220, Denmark
| | - Daniel Ciampi de Andrade
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg 9220, Denmark
| |
Collapse
|
13
|
Zhang J, Abel S, Macphail M, Aboodarda SJ. Persistent Contralateral Pain Compromises Exercise Tolerance but Does not Alter Corticomotor Responses During Repeated, Submaximal Isometric Knee Extensions to Task Failure. Neuroscience 2023; 526:267-276. [PMID: 37442523 DOI: 10.1016/j.neuroscience.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
Muscle pain is an important determinant of exercise tolerance, but its relationship with neurophysiological responses during a submaximal exercise trial is unclear. The purpose of this study was to determine the effect of persistent contralateral pain on neurophysiological function and perceptual responses during ipsilateral isometric knee extensions to task failure. Ten participants performed a single-leg repeated submaximal isometric knee extensions with (PAIN) or without (CTRL) constant pain induced by intermittent blood flow occlusion combined with evoked muscle contraction applied to the contralateral, resting leg. Transcranial magnetic stimulation (TMS) applied over the motor cortex was used to assess corticospinal excitability (quantified as motor evoked potentials), corticospinal inhibition (quantified as silent period duration), and short interval intracortical inhibition. Maximal voluntary contractions (MVCs), coupled with femoral nerve stimulation to the exercising leg, were performed every 12 submaximal contractions to assess neuromuscular function. Perceived leg pain and effort were also assessed throughout the exercise. The experimental pain shortened the time to task failure compared to CTRL (P = 0.019). Although time effects were present, no differences appeared between conditions for MVC force, voluntary activation, or potentiated twitch force across both tasks (all P > 0.05). Additionally, no differences between CTRL and PAIN were demonstrated for any TMS-derived measures assessing corticospinal responses. Exercising leg pain was higher in CTRL (P = 0.018), as was perceived exertion (P = 0.030). Overall, when using a persistent, submaximal experimental pain intervention, it appears that although muscle pain compromises exercise tolerance, this phenomenon occurs independently of potential alterations in corticomotor mechanisms.
Collapse
Affiliation(s)
- Jenny Zhang
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Samuel Abel
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Meghan Macphail
- Faculty of Kinesiology, University of Calgary, Calgary, Canada; Cumming School of Medicine, University of Calgary, Calgary, Canada
| | | |
Collapse
|
14
|
Chowdhury NS, Chiang AKI, Millard SK, Skippen P, Chang WJ, Seminowicz DA, Schabrun SM. Alterations in cortical excitability during pain: A combined TMS-EEG Study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.20.537735. [PMID: 37131586 PMCID: PMC10153239 DOI: 10.1101/2023.04.20.537735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Transcranial magnetic stimulation (TMS) has been used to examine inhibitory and facilitatory circuits during experimental pain and in chronic pain populations. However, current applications of TMS to pain have been restricted to measurements of motor evoked potentials (MEPs) from peripheral muscles. Here, TMS was combined with electroencephalography (EEG) to determine whether experimental pain could induce alterations in cortical inhibitory/facilitatory activity observed in TMS-evoked potentials (TEPs). In Experiment 1 (n = 29), multiple sustained thermal stimuli were administered to the forearm, with the first, second and third block of thermal stimuli consisting of warm but non-painful (pre-pain block), painful (pain block) and warm but non-painful (post-pain block) temperatures respectively. During each stimulus, TMS pulses were delivered while EEG (64 channels) was simultaneously recorded. Verbal pain ratings were collected between TMS pulses. Relative to pre-pain warm stimuli, painful stimuli led to an increase in the amplitude of the frontocentral negative peak ~45ms post-TMS (N45), with a larger increase associated with higher pain ratings. Experiments 2 and 3 (n = 10 in each) showed that the increase in the N45 in response to pain was not due to changes in sensory potentials associated with TMS, or a result of stronger reafferent muscle feedback during pain. This is the first study to use combined TMS-EEG to examine alterations in cortical excitability in response to pain. These results suggest that the N45 TEP peak, which indexes GABAergic neurotransmission, is implicated in pain perception and is a potential marker of individual differences in pain sensitivity.
Collapse
Affiliation(s)
- Nahian S Chowdhury
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Alan KI Chiang
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Samantha K Millard
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Patrick Skippen
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Wei-Ju Chang
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Health Sciences, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales, Australia
| | - David A Seminowicz
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada
| | - Siobhan M Schabrun
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- The Gray Centre for Mobility and Activity, University of Western Ontario, London, Canada
| |
Collapse
|
15
|
Corrigan P, Neogi T, Frey-Law L, Jafarzadeh SR, Segal N, Nevitt MC, Lewis CE, Stefanik JJ. Relation of pain sensitization to self-reported and performance-based measures of physical functioning: the Multicenter Osteoarthritis (MOST) study. Osteoarthritis Cartilage 2023; 31:966-975. [PMID: 37003421 PMCID: PMC10330303 DOI: 10.1016/j.joca.2023.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 04/03/2023]
Abstract
OBJECTIVE It is unclear if alterations in nociceptive signaling contribute to poor physical functioning in persons with knee osteoarthritis (OA). We aimed to characterize the relation of pain sensitization to physical functioning in persons with or at risk for knee OA, and determine if knee pain severity mediates these relationships. MATERIALS AND METHODS We used cross-sectional data from the Multicenter Osteoarthritis Study, a cohort study of persons with or at risk for knee OA. Pressure pain thresholds (PPTs) and temporal summation (TS) were assessed with quantitative sensory testing. Self-reported function was quantified with the Western Ontario and McMaster Universities Arthritis Index function subscale (WOMAC-F). Walking speed was determined during a 20-m walk. Knee extension strength was assessed with dynamometry. Relations of PPTs and TS to functional outcomes were examined with linear regression. The mediating role of knee pain severity was assessed with mediation analyses. RESULTS Among 1560 participants (60.5% female, mean age (SD) 67 (8), body mass index (BMI) 30.2 (5.5) kg/m2), lower PPTs and the presence of TS were associated with worse WOMAC-F scores, slower walking speeds, and weaker knee extension. The extent of mediation by knee pain severity was mixed, with the greatest mediation observed for self-report function and only minimally for performance-based function. CONCLUSIONS Heightened pain sensitivity appears to be meaningfully associated with weaker knee extension in individuals with or at risk for knee OA. Relations to self-reported physical function and walking speed do not seem clinically meaningful. Knee pain severity differentially mediated these relationships.
Collapse
Affiliation(s)
- P Corrigan
- Department of Physical Therapy, Movement and Rehabilitation Sciences, Northeastern University, Boston, MA, USA; Department of Physical Therapy and Athletic Training, Saint Louis University, St. Louis, MO, USA.
| | - T Neogi
- Section of Rheumatology, Boston University School of Medicine, Boston, MA, USA.
| | - L Frey-Law
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA.
| | - S R Jafarzadeh
- Section of Rheumatology, Boston University School of Medicine, Boston, MA, USA.
| | - N Segal
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, KS, USA.
| | - M C Nevitt
- Department of Epidemiology and Biostatistics, University of California - San Francisco, San Francisco, CA, USA.
| | - C E Lewis
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - J J Stefanik
- Department of Physical Therapy, Movement and Rehabilitation Sciences, Northeastern University, Boston, MA, USA.
| |
Collapse
|
16
|
Devecchi V, Falla D, Cabral HV, Gallina A. Neuromuscular adaptations to experimentally induced pain in the lumbar region: systematic review and meta-analysis. Pain 2023; 164:1159-1180. [PMID: 36730706 DOI: 10.1097/j.pain.0000000000002819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/20/2022] [Indexed: 02/04/2023]
Abstract
ABSTRACT Experimental pain models are frequently used to understand the influence of pain on the control of human movement. In this systematic review, we assessed the effects of experimentally induced pain in the lumbar region of healthy individuals on trunk muscle activity and spine kinematics. Databases were searched from inception up to January 31, 2022. In total, 26 studies using either hypertonic saline injection (n = 19), heat thermal stimulation (n = 3), nociceptive electrical stimulation (n = 3), or capsaicin (n = 1) were included. The identified adaptations were task dependent, and their heterogeneity was partially explained by the experimental pain model adopted. Meta-analyses revealed an increase of erector spinae activity (standardized mean difference = 0.71, 95% confidence interval [CI] = 0.22-1.19) during full trunk flexion and delayed onset of transversus abdominis to postural perturbation tasks (mean difference = 25.2 ms, 95% CI = 4.09-46.30) in the presence of pain. Low quality of evidence supported an increase in the activity of the superficial lumbar muscles during locomotion and during voluntary trunk movements during painful conditions. By contrast, activity of erector spinae, deep multifidus, and transversus abdominis was reduced during postural perturbation tasks. Reduced range of motion of the lumbar spine in the presence of pain was supported by low quality of evidence. Given the agreement between our findings and the adaptations observed in clinical populations, the use of experimental pain models may help to better understand the mechanisms underlying motor adaptations to low back pain.
Collapse
Affiliation(s)
- Valter Devecchi
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | | | | |
Collapse
|
17
|
Barbosa LM, Valerio F, da Silva VA, Rodrigues ALDL, Galhardoni R, Yeng LT, Junior JR, Conforto AB, Lucato LT, Teixeira MJ, de Andrade DC. Corticomotor excitability is altered in central neuropathic pain compared with non-neuropathic pain or pain-free patients. Neurophysiol Clin 2023; 53:102845. [PMID: 36822032 DOI: 10.1016/j.neucli.2023.102845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 02/23/2023] Open
Abstract
OBJECTIVES Central neuropathic pain (CNP) is associated with altered corticomotor excitability (CE), which can potentially provide insights into its mechanisms. The objective of this study is to describe the CE changes that are specifically related to CNP. METHODS We evaluated CNP associated with brain injury after stroke or spinal cord injury (SCI) due to neuromyelitis optica through a battery of CE measurements and comprehensive pain, neurological, functional, and quality of life assessments. CNP was compared to two groups of patients with the same disease: i. with non-neuropathic pain and ii. without chronic pain, matched by sex and lesion location. RESULTS We included 163 patients (stroke=93; SCI=70: 74 had CNP, 43 had non-neuropathic pain, and 46 were pain-free). Stroke patients with CNP had lower motor evoked potential (MEP) in both affected and unaffected hemispheres compared to non- neuropathic pain and no-pain patients. Patients with CNP had lower amplitudes of MEPs (366 μV ±464 μV) than non-neuropathic (478 ±489) and no-pain (765 μV ± 880 μV) patients, p < 0.001. Short-interval intracortical inhibition (SICI) was defective (less inhibited) in patients with CNP (2.6±11.6) compared to no-pain (0.8±0.7), p = 0.021. MEPs negatively correlated with mechanical and cold-induced allodynia. Furthermore, classifying patients' results according to normative data revealed that at least 75% of patients had abnormalities in some CE parameters and confirmed MEP findings based on group analyses. DISCUSSION CNP is associated with decreased MEPs and SICI compared to non-neuropathic pain and no-pain patients. Corticomotor excitability changes may be helpful as neurophysiological markers of the development and persistence of pain after CNS injury, as they are likely to provide insights into global CE plasticity changes occurring after CNS lesions associated with CNP.
Collapse
Affiliation(s)
- Luciana Mendonça Barbosa
- Pain Center, Discipline of Neurosurgery HC-FMUSP, LIM-62, University of São Paulo, Brazil; Department of Neurology, University of São Paulo, 05403-900, São Paulo, Brazil
| | - Fernanda Valerio
- Pain Center, Discipline of Neurosurgery HC-FMUSP, LIM-62, University of São Paulo, Brazil
| | | | | | - Ricardo Galhardoni
- Pain Center, Discipline of Neurosurgery HC-FMUSP, LIM-62, University of São Paulo, Brazil
| | - Lin Tchia Yeng
- Pain Center, Discipline of Neurosurgery HC-FMUSP, LIM-62, University of São Paulo, Brazil
| | - Jefferson Rosi Junior
- Pain Center, Discipline of Neurosurgery HC-FMUSP, LIM-62, University of São Paulo, Brazil
| | | | | | - Manoel Jacobsen Teixeira
- Pain Center, Discipline of Neurosurgery HC-FMUSP, LIM-62, University of São Paulo, Brazil; Department of Neurology, University of São Paulo, 05403-900, São Paulo, Brazil
| | - Daniel Ciampi de Andrade
- Department of Neurology, University of São Paulo, 05403-900, São Paulo, Brazil; Center for Neuroplasticity and Pain, Department of Health Sciences and Technology, Faculty of Medicine, Aalborg University, DK-9220, Aalborg, Denmark.
| |
Collapse
|
18
|
Shraim MA, Massé-Alarie H, Salomoni SE, Hodges PW. The effect of skilled motor training on corticomotor control of back muscles in different presentations of low back pain. J Electromyogr Kinesiol 2023; 71:102782. [PMID: 37290203 DOI: 10.1016/j.jelekin.2023.102782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 06/10/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) has revealed differences in the motor cortex (M1) between people with and without low back pain (LBP). There is potential to reverse these changes using motor skill training, but it remains unclear whether changes can be induced in people with LBP or whether this differs between LBP presentations. This study (1) compared TMS measures of M1 (single and paired-pulse) and performance of a motor task (lumbopelvic tilting) between individuals with LBP of predominant nociceptive (n = 9) or nociplastic presentation (n = 9) and pain-free individuals (n = 16); (2) compared these measures pre- and post-training; and (3) explored correlations between TMS measures, motor performance, and clinical features. TMS measures did not differ between groups at baseline. The nociplastic group undershot the target in the motor task. Despite improved motor performance for all groups, only MEP amplitudes increased across the recruitment curve and only for the pain-free and nociplastic groups. TMS measures did not correlate with motor performance or clinical features. Some elements of motor task performance and changes in corticomotor excitability differed between LBP groups. Absence of changes in intra-cortical TMS measures suggests regions other than M1 are likely to be involved in skill learning of back muscles.
Collapse
Affiliation(s)
- Muath A Shraim
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, QLD 4072, Australia
| | - Hugo Massé-Alarie
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, QLD 4072, Australia; Centre interdisciplinaire de recherche en réadaptation et integration sociale (CIRRIS), Université Laval, Québec, QC G1V 0A6, Canada
| | - Sauro E Salomoni
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, QLD 4072, Australia
| | - Paul W Hodges
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, QLD 4072, Australia.
| |
Collapse
|
19
|
Khan MU, Aziz S, Hirachan N, Joseph C, Li J, Fernandez-Rojas R. Experimental Exploration of Multilevel Human Pain Assessment Using Blood Volume Pulse (BVP) Signals. SENSORS (BASEL, SWITZERLAND) 2023; 23:3980. [PMID: 37112321 PMCID: PMC10143826 DOI: 10.3390/s23083980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Critically ill patients often lack cognitive or communicative functions, making it challenging to assess their pain levels using self-reporting mechanisms. There is an urgent need for an accurate system that can assess pain levels without relying on patient-reported information. Blood volume pulse (BVP) is a relatively unexplored physiological measure with the potential to assess pain levels. This study aims to develop an accurate pain intensity classification system based on BVP signals through comprehensive experimental analysis. Twenty-two healthy subjects participated in the study, in which we analyzed the classification performance of BVP signals for various pain intensities using time, frequency, and morphological features through fourteen different machine learning classifiers. Three experiments were conducted using leave-one-subject-out cross-validation to better examine the hidden signatures of BVP signals for pain level classification. The results of the experiments showed that BVP signals combined with machine learning can provide an objective and quantitative evaluation of pain levels in clinical settings. Specifically, no pain and high pain BVP signals were classified with 96.6% accuracy, 100% sensitivity, and 91.6% specificity using a combination of time, frequency, and morphological features with artificial neural networks (ANNs). The classification of no pain and low pain BVP signals yielded 83.3% accuracy using a combination of time and morphological features with the AdaBoost classifier. Finally, the multi-class experiment, which classified no pain, low pain, and high pain, achieved 69% overall accuracy using a combination of time and morphological features with ANN. In conclusion, the experimental results suggest that BVP signals combined with machine learning can offer an objective and reliable assessment of pain levels in clinical settings.
Collapse
|
20
|
Bergevin M, Steele J, Payen de la Garanderie M, Feral-Basin C, Marcora SM, Rainville P, Caron JG, Pageaux B. Pharmacological Blockade of Muscle Afferents and Perception of Effort: A Systematic Review with Meta-analysis. Sports Med 2023; 53:415-435. [PMID: 36318384 DOI: 10.1007/s40279-022-01762-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND The perception of effort provides information on task difficulty and influences physical exercise regulation and human behavior. This perception differs from other-exercise related perceptions such as pain. There is no consensus on the role of group III/IV muscle afferents as a signal processed by the brain to generate the perception of effort. OBJECTIVE The aim of this meta-analysis was to investigate the effect of pharmacologically blocking muscle afferents on the perception of effort. METHODS Six databases were searched to identify studies measuring the ratings of perceived effort during physical exercise, with and without pharmacological blockade of muscle afferents. Articles were coded based on the operational measurement used to distinguish studies in which perception of effort was assessed specifically (effort dissociated) or as a composite experience including other exercise-related perceptions (effort not dissociated). Articles that did not provide enough information for coding were assigned to the unclear group. RESULTS The effort dissociated group (n = 6) demonstrated a slight increase in ratings of perceived effort with reduced muscle afferent feedback (standard mean change raw, 0.39; 95% confidence interval 0.13-0.64). The group effort not dissociated (n = 2) did not reveal conclusive results (standard mean change raw, - 0.29; 95% confidence interval - 2.39 to 1.8). The group unclear (n = 8) revealed a slight ratings of perceived effort decrease with reduced muscle afferent feedback (standard mean change raw, - 0.27; 95% confidence interval - 0.50 to - 0.04). CONCLUSIONS The heterogeneity in results between groups reveals that the inclusion of perceptions other than effort in its rating influences the ratings of perceived effort reported by the participants. The absence of decreased ratings of perceived effort in the effort dissociated group suggests that muscle afferent feedback is not a sensory signal for the perception of effort.
Collapse
Affiliation(s)
- Maxime Bergevin
- École de kinésiologie et des sciences de l'activite physique (EKSAP), Faculté de médecine, Université́ de Montréal, Montreal, QC, Canada.,Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, Canada
| | - James Steele
- School of Sport, Health and Social Sciences, Southampton, UK
| | - Marie Payen de la Garanderie
- École de kinésiologie et des sciences de l'activite physique (EKSAP), Faculté de médecine, Université́ de Montréal, Montreal, QC, Canada.,Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, Canada
| | - Camille Feral-Basin
- École de kinésiologie et des sciences de l'activite physique (EKSAP), Faculté de médecine, Université́ de Montréal, Montreal, QC, Canada.,Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, Canada
| | - Samuele M Marcora
- Department of Biomedical and Neuromotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
| | - Pierre Rainville
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, Canada.,Département de stomatologie, Faculté de médecine dentaire, Université de Montréal, Montreal, QC, Canada
| | - Jeffrey G Caron
- École de kinésiologie et des sciences de l'activite physique (EKSAP), Faculté de médecine, Université́ de Montréal, Montreal, QC, Canada.,Centre de recherche interdisciplinaire en réadaptation du Montréal métropolitain, Montreal, QC, Canada
| | - Benjamin Pageaux
- École de kinésiologie et des sciences de l'activite physique (EKSAP), Faculté de médecine, Université́ de Montréal, Montreal, QC, Canada. .,Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, Canada. .,Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Montreal, QC, Canada.
| |
Collapse
|
21
|
Bertrand-Charette M, Roy JS, Bouyer LJ. Effect of acute ankle experimental pain on lower limb motor control assessed by the modified star excursion balance test. Front Sports Act Living 2023; 5:1082240. [PMID: 36741244 PMCID: PMC9890167 DOI: 10.3389/fspor.2023.1082240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Introduction Following most musculoskeletal injuries, motor control is often altered. Acute pain has been identified as a potential contributing factor. However, there is little evidence of this interaction for acute pain following ankle sprains. As pain is generally present following this type of injury, it would be important to study the impact of acute pain on ankle motor control. To do so, a valid and reliable motor control test frequently used in clinical settings should be used. Therefore, the objective of this study was therefore to assess the effect of acute ankle pain on the modified Star Excursion Balance Test reach distance. Methods Using a cross-sectional design, 48 healthy participants completed the modified Star Excursion Balance Test twice (mSEBT1 and mSEBT2). Following the first assessment, they were randomly assigned to one of three experimental groups: Control (no stimulation), Painless (non-nociceptive stimulation) and Painful (nociceptive stimulation). Electrodes were placed on the right lateral malleolus to deliver an electrical stimulation during the second assessment for the Painful and Painless groups. A generalized estimating equations model was used to compare the reach distance between the groups/conditions and assessments. Results Post-hoc test results: anterior (7.06 ± 1.54%; p < 0.0001) and posteromedial (6.53 ± 1.66%; p < 0.001) directions showed a significant reach distance reduction when compared to baseline values only for the Painful group. Regarding the anterior direction, this reduction was larger than the minimal detectable change (5.87%). Conclusion The presence of acute pain during the modified Star Excursion Balance Test can affect performance and thus might interfere with the participant's lower limb motor control. As none of the participants had actual musculoskeletal injury, this suggests that pain and not only musculoskeletal impairments could contribute to the acute alteration in motor control.
Collapse
Affiliation(s)
- Michaël Bertrand-Charette
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, QC, Canada,Department of Rehabilitation, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Jean-Sébastien Roy
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, QC, Canada,Department of Rehabilitation, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Laurent J. Bouyer
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, QC, Canada,Department of Rehabilitation, Faculty of Medicine, Université Laval, Québec, QC, Canada,Correspondence: Laurent J. Bouyer
| |
Collapse
|
22
|
O'Farrell A, Sauvé W, Bergevin M, Cimadoro G, Arvisais D, Rainville P, Pageaux B. Pain Perception in Contact Sport Athletes: A Scoping Review. Sports Med 2022; 52:2593-2604. [PMID: 35867332 DOI: 10.1007/s40279-022-01721-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2022] [Indexed: 02/01/2023]
Abstract
Contact sports athletes are regularly facing acute physical pain in part of their sport; however, the literature investigating pain perception in these athletes remains scarce. This scoping review aimed to explore the literature surrounding pain perception in contact sport athletes and to compile and understand how it is studied. The search strategy consisted of using index terms and keywords in the MEDLINE, EMBASE, SPORTDiscus, Web of Science, PsycINFO, CINAHL and ProQuest Dissertations & Theses Global search engines. Results from 11 studies revealed that a mix of team contact sports and combat sports are studied and are included under the umbrella of contact sports. These athletes are being compared with non-athletes as well as athletes from non-contact sports. The cold pressor test and the pain pressure test are the two predominant methods used to investigate physical pain. This review highlights the need to clearly define sports based on contact levels expected in play to better define the types of pain athletes are facing in their practice. Athletes' level of play as well as years of experience should also be more rigorously reported. While contact sport athletes seem to have a higher level of pain tolerance than both active controls and non-contact athletes, the methods of pain testing are not always justified and appropriate in relation to the pain induced during contact sports. Future experimental studies should use pain testing methods relevant to the pain experienced during contact sports and to better justify the rationale for the choice of these methods.
Collapse
Affiliation(s)
- Amanda O'Farrell
- École de Kinésiologie et des Sciences de l'Activité Physique (EKSAP), Faculté de Médecine, Université́ de Montréal, Montréal, QC, Canada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada
| | - William Sauvé
- École de Kinésiologie et des Sciences de l'Activité Physique (EKSAP), Faculté de Médecine, Université́ de Montréal, Montréal, QC, Canada
| | - Maxime Bergevin
- École de Kinésiologie et des Sciences de l'Activité Physique (EKSAP), Faculté de Médecine, Université́ de Montréal, Montréal, QC, Canada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada
| | - Giuseppe Cimadoro
- Faculty of Sport, Applied Health and Performance Sciences (SAHPS), St Mary's University, Twickenham, UK
| | - Denis Arvisais
- Bibliothèques des Sciences de la Santé, Université de Montréal, Montréal, QC, Canada
| | - Pierre Rainville
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada
- Département de Stomatologie, Faculté de Médecine Dentaire, Université de Montréal, Montréal, QC, Canada
| | - Benjamin Pageaux
- École de Kinésiologie et des Sciences de l'Activité Physique (EKSAP), Faculté de Médecine, Université́ de Montréal, Montréal, QC, Canada.
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada.
- Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage (CIRCA), Montréal, QC, Canada.
| |
Collapse
|
23
|
Duport A, Pelletier R, Martel M, Léonard G. The influence of kinesiophobia and pain catastrophizing on pain-induced corticomotor modulation in healthy participants: A cross sectional study. Neurophysiol Clin 2022; 52:375-383. [DOI: 10.1016/j.neucli.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 11/06/2022] Open
|
24
|
Chowdhury NS, Chang WJ, Millard SK, Skippen P, Bilska K, Seminowicz DA, Schabrun SM. The Effect of Acute and Sustained Pain on Corticomotor Excitability: A Systematic Review and Meta-Analysis of Group and Individual Level Data. THE JOURNAL OF PAIN 2022; 23:1680-1696. [PMID: 35605763 DOI: 10.1016/j.jpain.2022.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Pain alters motor function. This is supported by studies showing reduced corticomotor excitability in response to experimental pain lasting <90 minutes. Whether similar reductions in corticomotor excitability are present with pain of longer durations or whether alterations in corticomotor excitability are associated with pain severity is unknown. Here we evaluated the evidence for altered corticomotor excitability in response to experimental pain of differing durations in healthy individuals. Databases were systematically searched for eligible studies. Measures of corticomotor excitability and pain were extracted. Meta-analyses were performed to examine: (1) group-level effect of pain on corticomotor excitability, and (2) individual-level associations between corticomotor excitability and pain severity. 49 studies were included. Corticomotor excitability was reduced when pain lasted milliseconds-seconds (hedges g's = -1.26 to -1.55) and minutes-hours (g's = -0.55 to -0.9). When pain lasted minutes-hours, a greater reduction in corticomotor excitability was associated with lower pain severity (g = -0.24). For pain lasting days-weeks, there were no group level effects (g = -0.18 to 0.27). However, a greater reduction in corticomotor excitability was associated with higher pain severity (g = 0.229). In otherwise healthy individuals, suppression of corticomotor excitability may be a beneficial short-term strategy with long-term consequences. PERSPECTIVE: This systematic review synthesised the evidence for altered corticomotor excitability in response to experimentally induced pain. Reduced corticomotor excitability was associated with lower acute pain severity but higher sustained pain severity, suggesting suppression of corticomotor excitability may be a beneficial short-term adaptation with long-term consequences.
Collapse
Affiliation(s)
- Nahian S Chowdhury
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia; University of New South Wales, Sydney, New South Wales, Australia
| | - Wei-Ju Chang
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Samantha K Millard
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia; University of New South Wales, Sydney, New South Wales, Australia
| | - Patrick Skippen
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Katarzyna Bilska
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia; University of New South Wales, Sydney, New South Wales, Australia
| | - David A Seminowicz
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, Maryland; Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, Maryland
| | - Siobhan M Schabrun
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia.
| |
Collapse
|
25
|
Viseux FJF, Simoneau M, Billot M. A Comprehensive Review of Pain Interference on Postural Control: From Experimental to Chronic Pain. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58060812. [PMID: 35744075 PMCID: PMC9230450 DOI: 10.3390/medicina58060812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022]
Abstract
Motor control, movement impairment, and postural control recovery targeted in rehabilitation could be affected by pain. The main objective of this comprehensive review is to provide a synthesis of the effect of experimental and chronic pain on postural control throughout the available literature. After presenting the neurophysiological pathways of pain, we demonstrated that pain, preferentially localized in the lower back or in the leg induced postural control alteration. Although proprioceptive and cortical excitability seem modified with pain, spinal modulation assessment might provide a new understanding of the pain phenomenon related to postural control. The literature highlights that the motor control of trunk muscles in patient presenting with lower back pain could be dichotomized in two populations, where the first over-activates the trunk muscles, and the second under-activates the trunk muscles; both generate an increase in tissue loading. Taking all these findings into account will help clinician to provide adapted treatment for managing both pain and postural control.
Collapse
Affiliation(s)
- Frédéric J. F. Viseux
- Centre d’Evaluation et de Traitement de la Douleur (CETD), Hôpital Jean Bernard, Centre Hospitalier de Valenciennes, F-59322 Valenciennes, France
- Département Sciences de l’Homme et du Vivant (SHV), Université Polytechnique Hauts-de-France (UPHF), LAMIH, CNRS, UMR 8201, F-59313 Valenciennes, France
- Correspondence:
| | - Martin Simoneau
- Département de Kinésiologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada;
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (CIRRIS) du CIUSSS de la Capitale Nationale, Québec, QC G1M 2S8, Canada
| | - Maxime Billot
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, F-86000 Poitiers, France;
| |
Collapse
|
26
|
Rohel A, Desmons M, Leonard G, Desgagnés A, da Silva R, Simoneau M, Mercier C, Massé-Alarie H. The influence of experimental low back pain on neural networks involved in the control of lumbar erector spinae muscles. J Neurophysiol 2022; 127:1593-1605. [PMID: 35608262 DOI: 10.1152/jn.00030.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Low back pain (LBP) often modifies spine motor control, but the neural origin of these motor control changes remains largely unexplored. This study aimed to determine the impact of experimental low back pain on the excitability of cortical, subcortical, and spinal networks involved in the control of back muscles. METHOD Thirty healthy subjects were recruited and allocated to Pain (capsaicin and heat) or Control (heat) groups. Corticospinal excitability (motor-evoked potential-MEP) and intracortical networks were assessed by single- and paired-pulse transcranial magnetic stimulation, respectively. Electrical vestibular stimulation was applied to assess vestibulospinal excitability (vestibular MEP-VMEP), and the stretch reflex for excitability of the spinal or supraspinal loop (R1 and R2, respectively). Evoked back motor responses were measured before, during and after pain induction. Nonparametric rank-based ANOVA determined if pain modulated motor neural networks. RESULTS A decrease of R1 amplitude was present after the pain disappearance (p=0.01) whereas an increase was observed in the control group (p=0.03) compared to the R1 amplitude measured at pre-pain and pre-heat period, respectively (Group x Time interaction - p<0.001). No difference in MEP and VMEP amplitude was present during and after pain (p>0.05). CONCLUSION During experimental LBP, no change in cortical, subcortical, or spinal networks was observed. After pain disappearance, the reduction of the R1 amplitude without modification of MEP and VMEP amplitude suggest a reduction in spinal excitability potentially combined with an increase in descending drives. The absence of effect during pain needs to be further explored.
Collapse
Affiliation(s)
- Antoine Rohel
- Cirris research centre, Centre intégré universitaire de santé et services sociaux (CIUSSS) de la Capitale-Nationale, Quebec City, Canada.,Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Mikaël Desmons
- Cirris research centre, Centre intégré universitaire de santé et services sociaux (CIUSSS) de la Capitale-Nationale, Quebec City, Canada.,Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Guillaume Leonard
- Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, Canada
| | - Amélie Desgagnés
- Cirris research centre, Centre intégré universitaire de santé et services sociaux (CIUSSS) de la Capitale-Nationale, Quebec City, Canada.,Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Rubens da Silva
- BioNR Research Lab, Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada
| | - Martin Simoneau
- Cirris research centre, Centre intégré universitaire de santé et services sociaux (CIUSSS) de la Capitale-Nationale, Quebec City, Canada.,Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Catherine Mercier
- Cirris research centre, Centre intégré universitaire de santé et services sociaux (CIUSSS) de la Capitale-Nationale, Quebec City, Canada.,Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Hugo Massé-Alarie
- Cirris research centre, Centre intégré universitaire de santé et services sociaux (CIUSSS) de la Capitale-Nationale, Quebec City, Canada.,Faculty of Medicine, Université Laval, Quebec City, Canada
| |
Collapse
|
27
|
Chung YC, Chen CY, Chang CM, Lin YL, Liao KK, Lin HC, Chen WY, Yang YR, Shih YF. Altered corticospinal excitability of scapular muscles in individuals with shoulder impingement syndrome. PLoS One 2022; 17:e0268533. [PMID: 35576229 PMCID: PMC9109916 DOI: 10.1371/journal.pone.0268533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/02/2022] [Indexed: 11/19/2022] Open
Abstract
The purpose of this study is to assess and compare corticospinal excitability in the upper and lower trapezius and serratus anterior muscles in participants with and without shoulder impingement syndrome (SIS). Fourteen participants with SIS, and 14 without SIS were recruited through convenient sampling in this study. Transcranial magnetic stimulation assessment of the scapular muscles was performed while the participants were holding their arm at 90 degrees scaption. The motor-evoked potential (MEP), active motor threshold (AMT), latency of MEP, cortical silent period (CSP), activated area and center of gravity (COG) of cortical mapping were compared between groups using the Mann-Whitney U tests. The SIS group demonstrated following significances, higher AMTs of the lower trapezius (SIS: 0.60 ± 0.06; Comparison: 0.54 ± 0.07, p = 0.028) and the serratus anterior (SIS: 0.59 ± 0.04; Comparison: 0.54 ± 0.06, p = 0.022), longer CSP of the lower trapezius (SIS: 62.23 ± 22.87 ms; Comparison: 45.22 ± 14.64 ms, p = 0.019), and posteriorly shifted COG in the upper trapezius (SIS: 1.88 ± 1.06; Comparison: 2.76 ± 1.55, p = 0.048) and the serratus anterior (SIS: 2.13 ± 1.02; Comparison: 3.12 ± 1.88, p = 0.043), than the control group. In conclusion, participants with SIS demonstrated different organization of the corticospinal system, including decreased excitability, increased inhibition, and shift in motor representation of the scapular muscles.
Collapse
Affiliation(s)
- Ya-Chu Chung
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chao-Ying Chen
- School of Physical Therapy, Chang Gung University, Tao-Yuan City, Taiwan
| | - Chia-Ming Chang
- Department of Physical Therapy, China Medical University, Taichung, Taiwan
| | - Yin-Liang Lin
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kwong-Kum Liao
- Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsiu-Chen Lin
- Department of Physical Therapy, China Medical University, Taichung, Taiwan
| | - Wen-Yin Chen
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yea-Ru Yang
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Fen Shih
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
28
|
Massé-Alarie H, Shraim MA, Taylor JL, Hodges PW. Effects of different modalities of afferent stimuli of the lumbo-sacral area on control of lumbar paravertebral muscles. Eur J Neurosci 2022; 56:3687-3704. [PMID: 35478204 DOI: 10.1111/ejn.15677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/23/2022] [Accepted: 04/07/2022] [Indexed: 11/30/2022]
Abstract
Somatosensory feedback to the central nervous system is essential to plan, perform and refine spine motor control. However, the influence of somatosensory afferent input from the trunk on the motor output to trunk muscles has received little attention. The objective was to compare the effects of distinct modalities of afferent stimulation on the net motoneuron and corticomotor excitability of paravertebral muscles. Fourteen individuals were recruited. Modulation of corticospinal excitability (motor-evoked potential [MEP]) of paravertebral muscles was measured when afferent stimuli (cutaneous noxious and non-noxious, muscle contraction) were delivered to the trunk at 10 intervals prior to transcranial magnetic stimulation. Each peripheral stimulation was applied alone, and subsequent EMG modulation was measured to control for net motoneuron excitability. MEP modulation and MEP/EMG ratio were used as measures of corticospinal excitability with and without control of net motoneuron excitability, respectively. MEP and EMG modulation were smaller after evoked muscle contraction than after cutaneous noxious and non-noxious stimuli. MEP/EMG ratio was not different between stimulation types. Both MEP and EMG amplitudes were reduced after evoked muscle contraction, but not when expressed as MEP/EMG ratio. Noxious and non-noxious stimulation had limited impact on all variables. Distinct modalities of peripheral afferent stimulation of the lumbo-sacral area differently modulated responses of paravertebral muscles, but without an influence on corticospinal excitability with control of net motoneuron excitability. Muscle stimulation reduced paravertebral activity and was best explained by spinal mechanisms. The impact of afferent stimulation on back muscles differs from the effects reported for limb muscles.
Collapse
Affiliation(s)
- Hugo Massé-Alarie
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, Brisbane, Qld, Australia.,Centre interdisciplinaire de recherche en réadaptation et intégration sociale (CIRRIS), Université Laval, Québec, Canada
| | - Muath A Shraim
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, Brisbane, Qld, Australia
| | - Janet L Taylor
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia.,Neuroscience Research Australia, Randwick, NSW, Australia
| | - Paul W Hodges
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, Brisbane, Qld, Australia
| |
Collapse
|
29
|
Di Antonio S, Arendt-Nielsen L, Ponzano M, Bovis F, Torelli P, Finocchi C, Castaldo M. Cervical musculoskeletal impairments in the 4 phases of the migraine cycle in episodic migraine patients. Cephalalgia 2022; 42:827-845. [PMID: 35332826 DOI: 10.1177/03331024221082506] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To assess cervical musculoskeletal impairments during the 4 phases of a migraine cycle in episodic migraine patients, controlling for the presence of concomitant neck pain. METHODS Differences in cervical musculoskeletal impairments were assessed during the 4 migraine phases in episodic migraine patients and compared with healthy controls controlling for concomitant neck pain. Cervical musculoskeletal impairments were assessed as follow: cervical active range of motion; flexion rotation test; craniocervical flexion test and calculation of activation pressure score; the total number of myofascial trigger points in head/neck muscles; the number of positivevertebral segments (headache's reproduction) during passive accessory intervertebral movement; pressure pain thresholds over C1, C2, C4, C6 vertebral segments bilaterally, trigeminal area, hand, and leg. Signs of pain sensitization were assessed by evaluating mechanical pain threshold over trigeminal area and hand, pressure pain thresholds, and the wind-up ratio. The Bonferroni-corrected p-value (05/4 = 0.013) was adopted to assess the difference between groups, while a p-value of 0.05 was considered significant for the correlation analysis. RESULTS A total of 159 patients and 52 controls were included. Flexion rotation test and craniocervical flexion test were reduced in all 4 phases of the migraine cycle versus healthy controls (p < 0.001). The number of myofascial trigger points and positive vertebral segments was increased in all 4 phases of the migraine cycle versus healthy controls (p < 0.001). Flexion, extension, and total cervical active range of motion and cervical pressure pain thresholds were reduced in episodic migraine in the ictal phase versus controls (p < 0.007) with no other significant differences. Outside the ictal phase, the total cervical active range of motion was positively correlated with trigeminal and leg pressure pain threshold (p < 0.026), the number of active myofascial trigger points and positive positive vertebral segments were positively correlated with higher headache frequency (p=0.045), longer headache duration (p < 0.008), and with headache-related disability (p = 0.031). Cervical pressure pain thresholds were positively correlated with trigeminal, hand, and leg pressure pain threshold (p < 0.001), and trigeminal and leg mechanical pain thresholds (p < 0.005), and negatively correlated with the wind-up ratio (p < 0.004). CONCLUSION In all phases of the migraine cycle, independent of the presence of concomitant neck pain, episodic migraine patients showed reduced flexion rotation test and craniocervical flexion test and an increased number of myofascial trigger points and passive accessory vertebral segments. These impairments are correlated with enhanced headache duration, headache-related disability, and signs of widespread pain sensitization. Reduction in active cervical movement and increased mechanical hyperalgesia of the cervical was consistent in ictal episodic migraine patients and the subgroups of episodic migraine patients with more pronounced widespread sensitization.
Collapse
Affiliation(s)
- Stefano Di Antonio
- Department of Health Science and Technology, Center for Pain and Neuroplasticity (CNAP), School of Medicine, Aalborg University, Denmark.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, Genoa, Italy
| | - Lars Arendt-Nielsen
- Department of Health Science and Technology, Center for Pain and Neuroplasticity (CNAP), School of Medicine, Aalborg University, Denmark.,Department of Medical Gastroenterology, Mech-Sense, Aalborg University Hospital, Aalborg, Denmark
| | - Marta Ponzano
- Department of Health Sciences (DISSAL), Section of Biostatistics, University of Genoa, Italy
| | - Francesca Bovis
- Department of Health Sciences (DISSAL), Section of Biostatistics, University of Genoa, Italy
| | - Paola Torelli
- Headache Centre, Department of Medicine and Surgery, University of Parma, Italy
| | - Cinzia Finocchi
- Headache Centre, IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Castaldo
- Department of Health Science and Technology, Center for Pain and Neuroplasticity (CNAP), School of Medicine, Aalborg University, Denmark
| |
Collapse
|
30
|
Izadi M, Franklin S, Bellafiore M, Franklin DW. Motor Learning in Response to Different Experimental Pain Models Among Healthy Individuals: A Systematic Review. Front Hum Neurosci 2022; 16:863741. [PMID: 35399361 PMCID: PMC8987932 DOI: 10.3389/fnhum.2022.863741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/28/2022] [Indexed: 12/30/2022] Open
Abstract
Learning new movement patterns is a normal part of daily life, but of critical importance in both sport and rehabilitation. A major question is how different sensory signals are integrated together to give rise to motor adaptation and learning. More specifically, there is growing evidence that pain can give rise to alterations in the learning process. Despite a number of studies investigating the role of pain on the learning process, there is still no systematic review to summarize and critically assess investigations regarding this topic in the literature. Here in this systematic review, we summarize and critically evaluate studies that examined the influence of experimental pain on motor learning. Seventeen studies that exclusively assessed the effect of experimental pain models on motor learning among healthy human individuals were included for this systematic review, carried out based on the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement. The results of the review revealed there is no consensus regarding the effect of pain on the skill learning acquisition and retention. However, several studies demonstrated that participants who experienced pain continued to express a changed motor strategy to perform a motor task even 1 week after training under the pain condition. The results highlight a need for further studies in this area of research, and specifically to investigate whether pain has different effects on motor learning depending on the type of motor task.
Collapse
Affiliation(s)
- Mohammad Izadi
- Sport and Exercise Research Unit, Department of Psychology, Educational Sciences and Human Movement, University of Palermo, Palermo, Italy
| | - Sae Franklin
- Institute for Cognitive Systems, Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany
| | - Marianna Bellafiore
- Sport and Exercise Research Unit, Department of Psychology, Educational Sciences and Human Movement, University of Palermo, Palermo, Italy
| | - David W. Franklin
- Neuromuscular Diagnostics, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
- Munich School of Robotics and Machine Intelligence, Technical University of Munich, Munich, Germany
- Munich Data Science Institute, Technical University of Munich, Munich, Germany
| |
Collapse
|
31
|
Movement observation activates motor cortex in fibromyalgia patients: a fNIRS study. Sci Rep 2022; 12:4707. [PMID: 35304530 PMCID: PMC8933439 DOI: 10.1038/s41598-022-08578-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/03/2022] [Indexed: 11/29/2022] Open
Abstract
Scientific evidence points to a shared neural representation between performing and observing an action. The action observation notoriously determines a modulation of the observer’s sensorimotor system, a phenomenon called Motor Resonance (MR). Fibromyalgia (FM) patients suffer from a condition characterized by generalized musculoskeletal pain in which even simple movement can exacerbate their symptoms. Maladaptive functioning of the primary motor cortex is a common finding in patients with chronic pain. Activation of the motor cortex is known to induce an analgesic effect in patients with chronic pain. In this exploratory study, we intend to verify if the mere observation of a movement could elicit activation of the motor cortical areas in patients with FM. Therefore, the purpose of this study was to examine the presence of MR in patients affected by fibromyalgia. We adopted a behavioral paradigm known for detecting the presence of MR and a neurophysiological experiment. Participants watched videos showing gripping movements towards a graspable or an ungraspable object, respectively, and were asked to press a button the instant the agent touched the object (Time-to-contact detection session). In a different experimental session, participants were only requested to observe and pay attention to the videos (Observation-only session). During each experimental session, the participants’ cerebral hemodynamic activity was recorded using the functional Near-Infrared Spectroscopy method. The behavioral task analysis revealed the presence of MR in both FM patients and healthy controls. Moreover, neurophysiological findings suggested that the observation of movement during the Observation-only session provoked activation and modulation of the cortical motor networks of FM patients. These results could represent evidence of the possible beneficial effects of movement observation in restarting motor activation, notoriously reduced, in FM patients.
Collapse
|
32
|
Elgueta-Cancino E, Sheeran L, Salomoni S, Hall L, Hodges PW. Characterisation of motor cortex organisation in patients with different presentations of persistent low back pain. Eur J Neurosci 2021; 54:7989-8005. [PMID: 34719827 PMCID: PMC10138737 DOI: 10.1111/ejn.15511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/14/2021] [Accepted: 10/24/2021] [Indexed: 02/06/2023]
Abstract
Persistence of low back pain is thought to be associated with different underlying pain mechanisms, including ongoing nociceptive input and central sensitisation. We hypothesised that primary motor cortex (M1) representations of back muscles (a measure of motor system adaptation) would differ between pain mechanisms, with more consistent observations in individuals presumed to have an ongoing contribution of nociceptive input consistently related to movement/posture. We tested 28 participants with low back pain sub-grouped by the presumed underlying pain mechanisms: nociceptive pain, nociplastic pain and a mixed group with features consistent with both. Transcranial magnetic stimulation was used to study M1 organisation of back muscles. M1 maps of multifidus (deep and superficial) and longissimus erector spinae were recorded with fine-wire electromyography and thoracic erector spinae with surface electromyography. The nociplastic pain group had greater variability in M1 map location (centre of gravity) than other groups (p < .01), which may suggest less consistency, and perhaps relevance, of motor cortex adaptation for that group. The mixed group had greater overlap of M1 representations between deep/superficial muscles than nociceptive pain (deep multifidus/longissimus: p = .001, deep multifidus/thoracic erector spinae: p = .008) and nociplastic pain (deep multifidus/longissimus: p = .02, deep multifidus/thoracic erector spinae: p = .02) groups. This study provides preliminary evidence of differences in M1 organisation in subgroups of low back pain classified by likely underlying pain mechanisms. Despite the sample size, differences in cortical re-organisation between subgroups were detected. Differences in M1 organisation in subgroups of low back pain supports tailoring of treatment based on pain mechanism and motor adaptation.
Collapse
Affiliation(s)
- Edith Elgueta-Cancino
- Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia.,School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Liba Sheeran
- Biomechanics and Bioengineering Research Centre Versus Arthritis, Cardiff University, Cardiff, UK.,School of Healthcare Sciences, Cardiff University, Cardiff, UK
| | - Sauro Salomoni
- Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Leanne Hall
- Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Paul W Hodges
- Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
33
|
Dumain M, Jaglin P, Wood C, Rainville P, Pageaux B, Perrochon A, Lavallière M, Vendeuvre T, Romain D, Langlois P, Cardinaud N, Tchalla A, Rigoard P, Billot M. Long-Term Efficacy of a Home-Care Hypnosis Program in Elderly Persons Suffering From Chronic Pain: A 12-Month Follow-Up. Pain Manag Nurs 2021; 23:330-337. [PMID: 34344593 DOI: 10.1016/j.pmn.2021.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/04/2021] [Accepted: 06/16/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Pain is a major public health concern in the aging population. However, medication brings about negative effects that compel healthcare professionals to seek alternative management techniques to alleviate pain. Hypnosis has been recognized as an effective technique to manage pain, but its long-term efficacy has yet to be examined in older adults. AIMS The aim was to assess the effectiveness, over a 12-month period, of home-care hypnosis in elderly participants suffering from chronic pain. DESIGN Real-life retrospective one-arm study with a 12-month follow-up. SETTINGS Elderly Persons Suffering From Chronic Pain enrolled in a clinical health care program that offered home medical follow-up. PARTICIPANTS/SUBJECTS Fourteen elderly women (mean age 81 years) with chronic pain participated in the home-care hypnosis program. All participants presented chronic pain (≥6 months) with average pain score >4/10. METHODS Participants took part in seven 15-minute hypnosis sessions within 12 months. The Brief Pain Inventory questionnaire was used to evaluate pain perception and pain interference at baseline and at 3-, 6-, and 12-month follow-up period. RESULTS Hypnosis home-care program significantly decreased pain perception and pain interference compared to baseline after 3 months (-29% and -40%, p < .001), and remained lower at 6 (-31% and -54%, p < .001) and 12 (-31% and -47%, p < .001) months. CONCLUSIONS Seven sessions of 15 minutes allocated throughout a 12-month period produced clinically significant decreases in pain perception and pain interference. Hypnosis could be considered as an optimal additional way for health practitioners to manage chronic pain in an elderly population with long-term efficacy. This study offers a new long-term option to improve chronic pain management at home in elderly populations through a low-cost nonpharmacological intervention.
Collapse
Affiliation(s)
- Marion Dumain
- From the PRISMATICS Lab (Predictive Research In Spine/Neurostimulation Management And Thoracic Innovation in Cardiac Surgery), Poitiers University Hospital, Poitiers, France
| | - Pauline Jaglin
- Rehabilitation Centre André Lalande - Fondation Partage et Vie, Noth, France
| | - Chantal Wood
- From the PRISMATICS Lab (Predictive Research In Spine/Neurostimulation Management And Thoracic Innovation in Cardiac Surgery), Poitiers University Hospital, Poitiers, France
| | - Pierre Rainville
- Department of Stomatology, University of Montreal, Montreal, Quebec, Canada; Centre de recherche de l'institut universitaire de gériatrie de Montréal, Montréal, Québec, Canada
| | - Benjamin Pageaux
- Centre de recherche de l'institut universitaire de gériatrie de Montréal, Montréal, Québec, Canada; École de kinésiologie et des sciences de l'activité physique (EKSAP), Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Anaick Perrochon
- HAVAE EA 6310 Laboratory, University of Limoges, Limoges, France
| | - Martin Lavallière
- Laboratoire de Recherche Biomécanique & Neurophysiologique en Réadaptation Neuro-Musculo-Squelettique-Lab BioNR, Department of Health Sciences, Centre Intersectoriel en Santé Durable (CISD), Module de Kinésiologie, Université du Québec à Chicoutimi, Saguenay, QC, Canada
| | - Tanguy Vendeuvre
- From the PRISMATICS Lab (Predictive Research In Spine/Neurostimulation Management And Thoracic Innovation in Cardiac Surgery), Poitiers University Hospital, Poitiers, France; Department of Spine Surgery and Neuromodulation, Poitiers University Hospital, Poitiers, France; Pprime Institute UPR 3346, CNRS - University of Poitiers - ISAE-ENSMA, Poitiers, France; Department of Orthopaedic Surgery and Traumatology, Poitiers University Hospital, Poitiers, France
| | - David Romain
- From the PRISMATICS Lab (Predictive Research In Spine/Neurostimulation Management And Thoracic Innovation in Cardiac Surgery), Poitiers University Hospital, Poitiers, France; Physical and Rehabilitation Medicine Unit, Poitiers University Hospital, University of Poitiers, Poitiers, France
| | - Pascaline Langlois
- From the PRISMATICS Lab (Predictive Research In Spine/Neurostimulation Management And Thoracic Innovation in Cardiac Surgery), Poitiers University Hospital, Poitiers, France
| | - Noelle Cardinaud
- Department of Clinical Geriatric, University Hospital Center, Limoges, France; UPSAV, Department of Clinical Geriatric, University Hospital Center, Limoges, France
| | - Achille Tchalla
- Department of Clinical Geriatric, University Hospital Center, Limoges, France
| | - Philippe Rigoard
- From the PRISMATICS Lab (Predictive Research In Spine/Neurostimulation Management And Thoracic Innovation in Cardiac Surgery), Poitiers University Hospital, Poitiers, France; Pprime Institute UPR 3346, CNRS - University of Poitiers - ISAE-ENSMA, Poitiers, France; Department of Orthopaedic Surgery and Traumatology, Poitiers University Hospital, Poitiers, France
| | - Maxime Billot
- From the PRISMATICS Lab (Predictive Research In Spine/Neurostimulation Management And Thoracic Innovation in Cardiac Surgery), Poitiers University Hospital, Poitiers, France.
| |
Collapse
|
34
|
Neige C, Lebon F, Mercier C, Gaveau J, Papaxanthis C, Ruffino C. Pain, No Gain: Acute Pain Interrupts Motor Imagery Processes and Affects Mental Training-Induced Plasticity. Cereb Cortex 2021; 32:640-651. [PMID: 34313709 DOI: 10.1093/cercor/bhab246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/21/2022] Open
Abstract
Pain influences both motor behavior and neuroplastic adaptations induced by physical training. Motor imagery (MI) is a promising method to recover motor functions, for instance in clinical populations with limited endurance or concomitant pain. However, the influence of pain on the MI processes is not well established. This study investigated whether acute experimental pain could modulate corticospinal excitability assessed at rest and during MI (Exp. 1) and limit the use-dependent plasticity induced by MI practice (Exp. 2). Participants imagined thumb movements without pain or with painful electrical stimulations applied either on digit V or over the knee. We used transcranial magnetic stimulation to measure corticospinal excitability at rest and during MI (Exp. 1) and to evoke involuntary thumb movements before and after MI practice (Exp. 2). Regardless of its location, pain prevented the increase of corticospinal excitability that is classically observed during MI. In addition, pain blocked use-dependent plasticity following MI practice, as testified by a lack of significant posttraining deviations. These findings suggest that pain interferes with MI processes, preventing the corticospinal excitability facilitation needed to induce use-dependent plasticity. Pain should be carefully considered for rehabilitation programs using MI to restore motor function.
Collapse
Affiliation(s)
- Cécilia Neige
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21078 Dijon, France
| | - Florent Lebon
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21078 Dijon, France
| | - Catherine Mercier
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Department of Rehabilitation, Laval University, Québec, QC G1M 2S8, Canada
| | - Jérémie Gaveau
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21078 Dijon, France
| | - Charalambos Papaxanthis
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21078 Dijon, France
| | - Célia Ruffino
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21078 Dijon, France
| |
Collapse
|