1
|
Huang G, Cierpicki T, Grembecka J. Unlocking the potential of the thioamide group in drug design and development. Future Med Chem 2025; 17:1-3. [PMID: 39623876 DOI: 10.1080/17568919.2024.2435245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/25/2024] [Indexed: 01/02/2025] Open
Affiliation(s)
- Guang Huang
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
2
|
Lu W, Wen J. Anti-Inflammatory Effects of Hydrogen Sulfide in Axes Between Gut and Other Organs. Antioxid Redox Signal 2024. [DOI: 10.1089/ars.2023.0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Weizhuo Lu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Medical Branch, Hefei Technology College, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Huang G, Cierpicki T, Grembecka J. Thioamides in medicinal chemistry and as small molecule therapeutic agents. Eur J Med Chem 2024; 277:116732. [PMID: 39106658 DOI: 10.1016/j.ejmech.2024.116732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
Thioamides, which are fascinating isosteres of amides, have garnered significant attention in drug discovery and medicinal chemistry programs, spanning peptides and small molecule compounds. This review provides an overview of the various applications of thioamides in small molecule therapeutic agents targeting a range of human diseases, including cancer, microbial infections (e.g., tuberculosis, bacteria, and fungi), viral infections, neurodegenerative conditions, analgesia, and others. Particular focus is given to design strategies of biologically active thioamide-containing compounds and their biological targets, such as kinases and histone methyltransferase ASH1L. Additionally, the review discusses the impact of the thioamide moiety on key properties, including potency, target interactions, physicochemical characteristics, and pharmacokinetics profiles. We hope that this work will offer valuable insights to inspire the future development of novel bioactive thioamide-containing compounds, facilitating their effective use in combating a wide array of human diseases.
Collapse
Affiliation(s)
- Guang Huang
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
4
|
Corvino A, Scognamiglio A, Fiorino F, Perissutti E, Santagada V, Caliendo G, Severino B. Pills of Multi-Target H 2S Donating Molecules for Complex Diseases. Int J Mol Sci 2024; 25:7014. [PMID: 39000122 PMCID: PMC11240940 DOI: 10.3390/ijms25137014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Among the various drug discovery methods, a very promising modern approach consists in designing multi-target-directed ligands (MTDLs) able to modulate multiple targets of interest, including the pathways where hydrogen sulfide (H2S) is involved. By incorporating an H2S donor moiety into a native drug, researchers have been able to simultaneously target multiple therapeutic pathways, resulting in improved treatment outcomes. This review gives the reader some pills of successful multi-target H2S-donating molecules as worthwhile tools to combat the multifactorial nature of complex disorders, such as inflammatory-based diseases and cancer, as well as cardiovascular, metabolic, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Angela Corvino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy; (A.S.); (F.F.); (E.P.); (V.S.); (G.C.); (B.S.)
| | | | | | | | | | | | | |
Collapse
|
5
|
Jo IH, Paik CN, Lee JM, Song DS, Kim YJ. Effect of Trimebutine and Rifaximin on Breath Hydrogen and Methane by Glucose Breath Test in Patients With Functional Bloating: A Randomized Double-blind Clinical Trial. J Neurogastroenterol Motil 2024; 30:220-228. [PMID: 38576371 PMCID: PMC10999843 DOI: 10.5056/jnm23029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/22/2023] [Accepted: 09/12/2023] [Indexed: 04/06/2024] Open
Abstract
Background/Aims Drugs that stabilize intestinal motility may improve the efficacy of nonabsorbable antibiotics, such as rifaximin, against small intestinal bacterial overgrowth (SIBO). We compared the efficacy of rifaximin alone with that of its combination with trimebutine maleate against SIBO. Methods We performed a randomized double-blind placebo-controlled trial (https://cris.nih.go.kr, no. KCT0004836) that included patients with functional bloating, no constipation, and SIBO using the hydrogen (H2)-methane (CH4) glucose breath test (GBT). Patients were randomized into 2 groups in a 1:1 ratio, namely rifaximin (1200 mg/day) + trimebutine maleate (600 mg/day) group and rifaximin + placebo group, for 2 weeks. Patients completed a symptom questionnaire and underwent a GBT at baseline and at 1 month after treatment withdrawal. The primary outcome was SIBO eradication. The secondary outcomes included changes in the concentrations of exhaled gases, symptoms, and presence of adverse events. Results The complete eradication rate of SIBO was 35.9% (14/39) in the rifaximin group, and 34.1% (14/41) in the combined group with no significant differences. In both groups, no significant differences were observed in GBT profiles before and after the treatment, respectively. However total breath H2 and CH4 concentration were conspicuously decreased in the combined group after treatment. The combined group exhibited substantial relief of bloating. The adverse events were similar in the 2 groups. Conclusion While the combination therapy was not superior over rifaximin alone for SIBO eradication, it improves the symptom of bloating with numerically reducing the concentration of breath H2/CH4.
Collapse
Affiliation(s)
- Ik Hyun Jo
- Department of Internal Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon, Gyeonggi-do, Korea
| | - Chang-Nyol Paik
- Department of Internal Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon, Gyeonggi-do, Korea
| | - Ji Min Lee
- Department of Internal Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon, Gyeonggi-do, Korea
| | - Do Seon Song
- Department of Internal Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon, Gyeonggi-do, Korea
| | - Yeon-Ji Kim
- Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Gyeonggi-do, Korea
| |
Collapse
|
6
|
On-demand therapeutic delivery of hydrogen sulfide aided by biomolecules. J Control Release 2022; 352:586-599. [PMID: 36328076 DOI: 10.1016/j.jconrel.2022.10.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Hydrogen sulfide (H2S), known as the third gasotransmitter, exerts various physiological functions including cardiac protection, angiogenesis, anti-inflammatory, and anti-cancer capability. Given its promising therapeutic potential as well as severe perniciousness if improper use, the sustained and tunable H2S delivery systems are highly required for H2S-based gas therapy with enhanced bioactivity and reduced side effects. To this end, a series of stimuli-responsive compounds capable of releasing H2S (termed H2S donors) have been designed over the past two decades to mimic the endogenous generation of H2S and elucidate the biological functions. Further to improve the stability of H2S donors and achieve the targeted delivery, various delivery systems have been constructed. In this review, we focus on the recent advances of an emerging subset, biomolecular-based H2S delivery systems, which combine H2S donors with biomolecular vectors including polysaccharide, peptide, and protein. We demonstrated their basic structures, building strategies, and therapeutic applications respectively to unfold their inherent merits endued by biomolecules including biocompatibility, biodegradability as well as expansibility. The varied development potentials of biomolecular-based H2S delivery systems based on their specific properties are also discussed. At the end, brief future outlooks and upcoming challenges are presented as well.
Collapse
|
7
|
Khattak S, Rauf MA, Khan NH, Zhang QQ, Chen HJ, Muhammad P, Ansari MA, Alomary MN, Jahangir M, Zhang CY, Ji XY, Wu DD. Hydrogen Sulfide Biology and Its Role in Cancer. Molecules 2022; 27:3389. [PMID: 35684331 PMCID: PMC9181954 DOI: 10.3390/molecules27113389] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous biologically active gas produced in mammalian tissues. It plays a very critical role in many pathophysiological processes in the body. It can be endogenously produced through many enzymes analogous to the cysteine family, while the exogenous source may involve inorganic sulfide salts. H2S has recently been well investigated with regard to the onset of various carcinogenic diseases such as lung, breast, ovaries, colon cancer, and neurodegenerative disorders. H2S is considered an oncogenic gas, and a potential therapeutic target for treating and diagnosing cancers, due to its role in mediating the development of tumorigenesis. Here in this review, an in-detail up-to-date explanation of the potential role of H2S in different malignancies has been reported. The study summarizes the synthesis of H2S, its roles, signaling routes, expressions, and H2S release in various malignancies. Considering the critical importance of this active biological molecule, we believe this review in this esteemed journal will highlight the oncogenic role of H2S in the scientific community.
Collapse
Affiliation(s)
- Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Mohd Ahmar Rauf
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Qian-Qian Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Hao-Jie Chen
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Pir Muhammad
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng 475004, China;
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Muhammad Jahangir
- Department of Psychiatric and Mental Health, Central South University, Changsha 410078, China;
| | - Chun-Yang Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Department of General Thoracic Surgery, Hami Central Hospital, Hami 839000, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
- School of Stomatology, Henan University, Kaifeng 475004, China
| |
Collapse
|
8
|
Lucarini E, Micheli L, Pagnotta E, Matteo R, Parisio C, Toti A, Ferrara V, Ciampi C, Martelli A, Testai L, Calderone V, Savino M, Russo M, Pecchioni N, Ghelardini C, Di Cesare Mannelli L. Beneficial Effects of Eruca sativa Defatted Seed Meal on Visceral Pain and Intestinal Damage Resulting from Colitis in Rats. Foods 2022; 11:foods11040580. [PMID: 35206057 PMCID: PMC8870774 DOI: 10.3390/foods11040580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Most therapies used in patients affected by inflammatory bowel diseases are ineffective in preventing the development of chronic visceral hypersensitivity, mainly due to inflammation-induced enteric neuroplasticity. Glucosinolates, secondary metabolites mainly of Brassicaceae with anti-inflammatory and neuroprotective properties, are effective in treating both neuropathic and arthritis pain through H2S release and Kv7 potassium channel activation. The aim of this work was to investigate the protective and anti-hyperalgesic efficacy of a defatted seed meal from Eruca sativa Mill. (Brassicaceae), rich in glucosinolates, in a rat model of colitis induced by 2,4-dinitrobenzene sulfonic acid (DNBS). The mechanisms of action were also investigated. Visceral pain was assessed by measuring the abdominal response to colorectal distension. Fifteen days after colitis induction, the acute administration of E. sativa defatted seed meal (0.1–1 g kg−1 p.o.) dose-dependently relieved pain. This effect was hampered by co-administering an H2S scavenger or a selective Kv7 blocker. Administering E. sativa (1 g kg−1) for 14 days, starting after DNBS injection, contributed to counteracting visceral pain persistence in the post-inflammatory phase of colitis by promoting colon healing from the damage and reducing enteric gliosis. E. sativa defatted seed meal might be employed as a nutraceutical tool for supporting abdominal pain relief in patients.
Collapse
Affiliation(s)
- Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (E.L.); (L.M.); (C.P.); (A.T.); (V.F.); (C.C.); (C.G.)
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (E.L.); (L.M.); (C.P.); (A.T.); (V.F.); (C.C.); (C.G.)
| | - Eleonora Pagnotta
- CREA-Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, 40128 Bologna, Italy; (E.P.); (R.M.)
| | - Roberto Matteo
- CREA-Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, 40128 Bologna, Italy; (E.P.); (R.M.)
| | - Carmen Parisio
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (E.L.); (L.M.); (C.P.); (A.T.); (V.F.); (C.C.); (C.G.)
| | - Alessandra Toti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (E.L.); (L.M.); (C.P.); (A.T.); (V.F.); (C.C.); (C.G.)
| | - Valentina Ferrara
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (E.L.); (L.M.); (C.P.); (A.T.); (V.F.); (C.C.); (C.G.)
| | - Clara Ciampi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (E.L.); (L.M.); (C.P.); (A.T.); (V.F.); (C.C.); (C.G.)
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (A.M.); (L.T.); (V.C.)
- Interdepartmental Research Centre Nutraceuticals and Food for Health (NUTRAFOOD), University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, 56126 Pisa, Italy
| | - Lara Testai
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (A.M.); (L.T.); (V.C.)
- Interdepartmental Research Centre Nutraceuticals and Food for Health (NUTRAFOOD), University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, 56126 Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (A.M.); (L.T.); (V.C.)
- Interdepartmental Research Centre Nutraceuticals and Food for Health (NUTRAFOOD), University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, 56126 Pisa, Italy
| | - Michele Savino
- CREA-Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, 71122 Foggia, Italy; (M.S.); (M.R.); (N.P.)
| | - Mario Russo
- CREA-Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, 71122 Foggia, Italy; (M.S.); (M.R.); (N.P.)
| | - Nicola Pecchioni
- CREA-Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, 71122 Foggia, Italy; (M.S.); (M.R.); (N.P.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (E.L.); (L.M.); (C.P.); (A.T.); (V.F.); (C.C.); (C.G.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (E.L.); (L.M.); (C.P.); (A.T.); (V.F.); (C.C.); (C.G.)
- Correspondence:
| |
Collapse
|
9
|
Magli E, Perissutti E, Santagada V, Caliendo G, Corvino A, Esposito G, Esposito G, Fiorino F, Migliaccio M, Scognamiglio A, Severino B, Sparaco R, Frecentese F. H 2S Donors and Their Use in Medicinal Chemistry. Biomolecules 2021; 11:1899. [PMID: 34944543 PMCID: PMC8699746 DOI: 10.3390/biom11121899] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/30/2022] Open
Abstract
Hydrogen sulfide (H2S) is a ubiquitous gaseous signaling molecule that has an important role in many physiological and pathological processes in mammalian tissues, with the same importance as two others endogenous gasotransmitters such as NO (nitric oxide) and CO (carbon monoxide). Endogenous H2S is involved in a broad gamut of processes in mammalian tissues including inflammation, vascular tone, hypertension, gastric mucosal integrity, neuromodulation, and defense mechanisms against viral infections as well as SARS-CoV-2 infection. These results suggest that the modulation of H2S levels has a potential therapeutic value. Consequently, synthetic H2S-releasing agents represent not only important research tools, but also potent therapeutic agents. This review has been designed in order to summarize the currently available H2S donors; furthermore, herein we discuss their preparation, the H2S-releasing mechanisms, and their -biological applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Francesco Frecentese
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy; (E.M.); (E.P.); (V.S.); (G.C.); (A.C.); (G.E.); (G.E.); (F.F.); (M.M.); (A.S.); (B.S.); (R.S.)
| |
Collapse
|
10
|
Li H, Fang Y, Yan J, Ren X, Zheng C, Wu B, Wang S, Li Z, Hua H, Wang P, Li D. Small-molecule fluorescent probes for H2S detection: Advances and perspectives. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116117] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Costa SKPF, Muscara MN, Allain T, Dallazen J, Gonzaga L, Buret AG, Vaughan DJ, Fowler CJ, de Nucci G, Wallace JL. Enhanced Analgesic Effects and Gastrointestinal Safety of a Novel, Hydrogen Sulfide-Releasing Anti-Inflammatory Drug (ATB-352): A Role for Endogenous Cannabinoids. Antioxid Redox Signal 2020; 33:1003-1009. [PMID: 32064887 PMCID: PMC7578177 DOI: 10.1089/ars.2019.7884] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aims: The covalent linking of nonsteroidal anti-inflammatory drugs to a hydrogen sulfide (H2S)-releasing moiety has been shown to dramatically reduce gastrointestinal (GI) damage and bleeding, as well as increase anti-inflammatory and analgesic potency. We have tested the hypothesis that an H2S-releasing derivative of ketoprofen (ATB-352) would exhibit enhanced efficacy without significant GI damage in a mouse model of allodynia/hyperalgesia. Results: ATB-352 was significantly more potent and effective as an analgesic than ketoprofen and did not elicit GI damage. Pretreatment with an antagonist of the CB1 cannabinoid receptor (AM251) significantly reduced the analgesic effects of ATB-352. The CB1 antagonist exacerbated GI damage when coadministered with ketoprofen, but GI damage was not induced by the combination of ATB-352 and the CB1 antagonist. In vitro, ATB-352 was substantially more potent than ketoprofen as an inhibitor of fatty acid amide hydrolase, consistent with a contribution of endogenous cannabinoids to the analgesic effects of this drug. Blood anandamide levels were significantly depressed by ketoprofen, but remained unchanged after treatment with ATB-352. Innovation: Ketoprofen is a potent analgesic, but its clinical use, even in the short term, is significantly limited by its propensity to cause significant ulceration and bleeding in the GI tract. Covalently linking an H2S-releasing moiety to ketoprofen profoundly reduces the GI toxicity of the drug, while boosting analgesic effectiveness. Conclusion: This study demonstrates a marked enhancement of the potency and effectiveness of ATB-352, an H2S-releasing derivative of ketoprofen, in part, through the involvement of the endogenous cannabinoid system. This may have significant advantages for the control and management of pain, such as in a postoperative setting.
Collapse
Affiliation(s)
- Soraia K P F Costa
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Marcelo N Muscara
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Thibault Allain
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | - Jorge Dallazen
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Larissa Gonzaga
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Andre G Buret
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | - Christopher J Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Gilberto de Nucci
- Department of Pharmacology, University of Campinas, Campinas, Brazil
| | - John L Wallace
- Antibe Therapeutics, Inc., Toronto, Canada.,Department of Pharmacology, University of Campinas, Campinas, Brazil.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
| |
Collapse
|
12
|
Abstract
A limited number of peripheral targets generate pain. Inflammatory mediators can sensitize these. The review addresses targets acting exclusively or predominantly on sensory neurons, mediators involved in inflammation targeting sensory neurons, and mediators involved in a more general inflammatory process, of which an analgesic effect secondary to an anti-inflammatory effect can be expected. Different approaches to address these systems are discussed, including scavenging proinflammatory mediators, applying anti-inflammatory mediators, and inhibiting proinflammatory or facilitating anti-inflammatory receptors. New approaches are contrasted to established ones; the current stage of progress is mentioned, in particular considering whether there is data from a molecular and cellular level, from animals, or from human trials, including an early stage after a market release. An overview of publication activity is presented, considering a IuPhar/BPS-curated list of targets with restriction to pain-related publications, which was also used to identify topics.
Collapse
Affiliation(s)
- Cosmin I Ciotu
- Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Michael J M Fischer
- Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria.
| |
Collapse
|
13
|
Li H, Xu F, Gao G, Gao X, Wu B, Zheng C, Wang P, Li Z, Hua H, Li D. Hydrogen sulfide and its donors: Novel antitumor and antimetastatic therapies for triple-negative breast cancer. Redox Biol 2020; 34:101564. [PMID: 32403079 PMCID: PMC7218030 DOI: 10.1016/j.redox.2020.101564] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/20/2022] Open
Abstract
Hydrogen sulfide (H2S) is considered as a novel second-messenger molecule associated with the modulation of various physiological and pathological processes. In the field of antitumor research, endogenous H2S induces angiogenesis, accelerates the cell cycle and inhibits apoptosis, which results in promoting oncogenesis eventually. Interestingly, high concentrations of exogenous H2S liberated from donors suppress the growth of various tumors via inducing cellular acidification and modulating several signaling pathways involved in cell cycle regulation, proliferation, apoptosis and metastasis. The selective release of certain concentrations of H2S from H2S donors in the target has been considered as an alternative tumor therapy strategy. Triple-negative breast cancer (TNBC), an aggressive subtype with less than one year median survival time, is known to account for approximately 15–20% of all breast cancers. Due to the lack of approved targeted therapy, the clinical treatment of TNBC is still hindered by metastasis as well as recurrence. Significant efforts have been spent on developing novel treatments of TNBC, and remarkable progress in the control of TNBC by H2S donors and their derivatives have been made in recent years. This review summarizes various pathways involved in antitumor and anti-metastasis effects of H2S donors and their derivatives on TNBC, which provides novel insights for TNBC treatment.
Collapse
Affiliation(s)
- Haonan Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Fanxing Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Gang Gao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Xiang Gao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Bo Wu
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Building 75, Charlestown, MA, 02129, United States
| | - Chao Zheng
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, United States
| | - Peng Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Zhanlin Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China.
| |
Collapse
|
14
|
Osadchuk MA, Svistunov AA, Kireeva NV, Osadchuk MM. [Functional diseases of the gastrointestinal tract in the context with overlapping functional disorders: current status of the problem]. TERAPEVT ARKH 2020; 92:111-118. [PMID: 32598728 DOI: 10.26442/00403660.2020.02.000458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Indexed: 12/12/2022]
Abstract
Functional diseases of the gastrointestinal tract cause significant damage to the health care system. Their frequent combination in the same patient with the migration of clinical symptoms throughout the digestive tube is accompanied by continuous exacerbations, refractory to the therapy and severe psychosocial disorders. This review provides data on the main etiopathogenetic factors, clinical manifestations, course features and management tactics for patients with overlapping for the most common functional diseases of the gastrointestinal tract.
Collapse
Affiliation(s)
- M A Osadchuk
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University (Sechenov University), Department of Polyclinic Therapy
| | - A A Svistunov
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University (Sechenov University), Department of Polyclinic Therapy
| | - N V Kireeva
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University (Sechenov University), Department of Polyclinic Therapy
| | - M M Osadchuk
- State Budgetary Healthcare Institution of Moscow «City Polyclinic №52», of the Moscow City Healthcare Department
| |
Collapse
|
15
|
Wallace JL, Nagy P, Feener TD, Allain T, Ditrói T, Vaughan DJ, Muscara MN, de Nucci G, Buret AG. A proof-of-concept, Phase 2 clinical trial of the gastrointestinal safety of a hydrogen sulfide-releasing anti-inflammatory drug. Br J Pharmacol 2020; 177:769-777. [PMID: 30834513 PMCID: PMC7024706 DOI: 10.1111/bph.14641] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/07/2019] [Accepted: 02/16/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE ATB-346 is a hydrogen sulfide (H2 S)-releasing anti-inflammatory and analgesic drug. Animal studies demonstrated negligible gastrointestinal (GI) damage despite marked inhibition of COX activity and significant analgesic and anti-inflammatory effects. In humans, ATB-346 (250 mg once daily) was found to inhibit COX to the same extent as naproxen (550 mg twice daily). EXPERIMENTAL APPROACH Two hundred forty-four healthy volunteers completed a 2-week, double-blind study, taking either ATB-346 (250 mg once daily) or naproxen (550 mg twice daily), with upper GI ulceration being examined endoscopically. KEY RESULTS Forty-two per cent of the subjects taking naproxen developed at least one ulcer (≥3-mm diameter), while only 3% of the subjects taking ATB-346 developed at least one ulcer. The two drugs produced comparable and substantial (>94%) suppression of COX activity. Subjects in the naproxen group developed more ulcers per subject than ATB-346-treated subjects and a greater incidence of larger ulcers (≥5-mm diameter). The incidence of dyspepsia, abdominal pain, gastro-oesophageal reflux, and nausea was lower with ATB-346 than with naproxen. Subjects treated with ATB-346 had significantly higher plasma levels of H2 S than those treated with naproxen. CONCLUSIONS AND IMPLICATIONS This Phase 2B study provides unequivocal evidence for a marked reduction of GI toxicity of the H2 S-releasing analgesic/anti-inflammatory drug, ATB-346, as compared to the conventional dose of naproxen that produced equivalent suppression of COX. LINKED ARTICLES This article is part of a themed section on Hydrogen Sulfide in Biology & Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.4/issuetoc.
Collapse
Affiliation(s)
- John L. Wallace
- Department of Physiology and PharmacologyUniversity of CalgaryCalgaryABCanada
- Antibe Therapeutics Inc.TorontoONCanada
| | - Peter Nagy
- National Institute of OncologyBudapestHungary
- Department of Medicine, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Troy D. Feener
- Department of Biological SciencesUniversity of CalgaryCalgaryABCanada
| | - Thibault Allain
- Department of Biological SciencesUniversity of CalgaryCalgaryABCanada
| | | | | | | | | | - Andre G. Buret
- National Institute of OncologyBudapestHungary
- Department of Medicine, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| |
Collapse
|
16
|
Chen M, Pritchard C, Fortune D, Kodi P, Grados M. Hydrogen sulfide: a target to modulate oxidative stress and neuroplasticity for the treatment of pathological anxiety. Expert Rev Neurother 2019; 20:109-121. [DOI: 10.1080/14737175.2019.1668270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mary Chen
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Diandra Fortune
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Priyadurga Kodi
- Department of Internal Medicine, Greater Baltimore Medical Center, Baltimore, MD, USA
| | - Marco Grados
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
17
|
Abstract
Trimebutine maleate has been used extensively, since the late 1960's, for the treatment of functional gastrointestinal disorders, including irritable bowel syndrome (IBS). It is usually linked to the antispasmodic class of agents, but its properties make trimebutine an unmatched and multi-tasking compound. The efficacy on relieving abdominal pain has been demonstrated in various clinical studies with different protocols of treatment. The main effect was first believed to be merely due to its antispastic activity, but further evidences expanded the acknowledgement of a broader impact on the gastrointestinal tract. The actions of trimebutine are mediated via an agonist effect on peripheral mu, kappa and delta opiate receptors and a modulation of gastrointestinal peptides release. The final motor effects on the gut are summarized in an acceleration of the gastric emptying, an induction of premature phase III of the migrating motor complex in the small intestine and a modulation of the contractile activity of the colon. Moreover, it has been shown to have a role in regulating the visceral sensitivity. It has been observed that this drug is also a multiple-ion channel modulator in the gut. Its function at various levels, from motility to pain control, makes this drug unique and its spectrum of action can be exploited for the treatment of both hypermotility and hypomotility disorders including irritable bowel syndrome and other functional gastrointestinal diseases. This article provides an overview of the current knowledge on the pharmacological mechanisms of trimebutine and its clinical applications in gastrointestinal disorders. Its biochemical properties and the complex mechanisms of action, along with a well-studied pharmacological safety, make this compound still actual and valuable.
Collapse
Affiliation(s)
- Beatrice Salvioli
- University of Bologna, Bologna, Italy -
- Humanitas Research Hospital, Rozzano, Milan, Italy -
| |
Collapse
|
18
|
Powell CR, Kaur K, Dillon KM, Zhou M, Alaboalirat M, Matson JB. Functional N-Substituted N-Thiocarboxyanhydrides as Modular Tools for Constructing H 2S Donor Conjugates. ACS Chem Biol 2019; 14:1129-1134. [PMID: 31180636 DOI: 10.1021/acschembio.9b00248] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a synthetic route toward a family of functional COS/H2S-releasing N-substituted N-thiocarboxyanhydrides (NTAs) with functionalities to accommodate popular conjugation reactions, including olefin cross metathesis, thiol-ene, and copper-catalyzed azide-alkyne cycloaddition. The N-substituted NTAs were attached to small molecules, polymers, and a protein to synthesize novel H2S donors convergently. All conjugates showed sustained H2S release kinetics.
Collapse
Affiliation(s)
- Chadwick R. Powell
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Kuljeet Kaur
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Kearsley M. Dillon
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Mingjun Zhou
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Mohammed Alaboalirat
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - John B. Matson
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
19
|
Bautzova T, Hockley JRF, Perez-Berezo T, Pujo J, Tranter MM, Desormeaux C, Barbaro MR, Basso L, Le Faouder P, Rolland C, Malapert P, Moqrich A, Eutamene H, Denadai-Souza A, Vergnolle N, Smith ESJ, Hughes DI, Barbara G, Dietrich G, Bulmer DC, Cenac N. 5-oxoETE triggers nociception in constipation-predominant irritable bowel syndrome through MAS-related G protein-coupled receptor D. Sci Signal 2018; 11:eaal2171. [PMID: 30563864 PMCID: PMC6411128 DOI: 10.1126/scisignal.aal2171] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Irritable bowel syndrome (IBS) is a common gastrointestinal disorder that is characterized by chronic abdominal pain concurrent with altered bowel habit. Polyunsaturated fatty acid (PUFA) metabolites are increased in abundance in IBS and are implicated in the alteration of sensation to mechanical stimuli, which is defined as visceral hypersensitivity. We sought to quantify PUFA metabolites in patients with IBS and evaluate their role in pain. Quantification of PUFA metabolites by mass spectrometry in colonic biopsies showed an increased abundance of 5-oxoeicosatetraenoic acid (5-oxoETE) only in biopsies taken from patients with IBS with predominant constipation (IBS-C). Local administration of 5-oxoETE to mice induced somatic and visceral hypersensitivity to mechanical stimuli without causing tissue inflammation. We found that 5-oxoETE directly acted on both human and mouse sensory neurons as shown by lumbar splanchnic nerve recordings and Ca2+ imaging of dorsal root ganglion (DRG) neurons. We showed that 5-oxoETE selectively stimulated nonpeptidergic, isolectin B4 (IB4)-positive DRG neurons through a phospholipase C (PLC)- and pertussis toxin-dependent mechanism, suggesting that the effect was mediated by a G protein-coupled receptor (GPCR). The MAS-related GPCR D (Mrgprd) was found in mouse colonic DRG afferents and was identified as being implicated in the noxious effects of 5-oxoETE. Together, these data suggest that 5-oxoETE, a potential biomarker of IBS-C, induces somatic and visceral hyperalgesia without inflammation in an Mrgprd-dependent manner. Thus, 5-oxoETE may play a pivotal role in the abdominal pain associated with IBS-C.
Collapse
Affiliation(s)
- Tereza Bautzova
- INSERM, UMR1220, IRSD, Université de Toulouse, INRA, ENVT, UPS, Toulouse, France
| | - James R F Hockley
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB1 2PD, UK
- National Centre for Bowel Research and Surgical Innovation, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AJ, UK
| | - Teresa Perez-Berezo
- INSERM, UMR1220, IRSD, Université de Toulouse, INRA, ENVT, UPS, Toulouse, France
| | - Julien Pujo
- INSERM, UMR1220, IRSD, Université de Toulouse, INRA, ENVT, UPS, Toulouse, France
| | - Michael M Tranter
- National Centre for Bowel Research and Surgical Innovation, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AJ, UK
| | - Cleo Desormeaux
- INSERM, UMR1220, IRSD, Université de Toulouse, INRA, ENVT, UPS, Toulouse, France
| | | | - Lilian Basso
- INSERM, UMR1220, IRSD, Université de Toulouse, INRA, ENVT, UPS, Toulouse, France
| | - Pauline Le Faouder
- INSERM UMR1048, Lipidomic Core Facility, Metatoul Platform, Université de Toulouse, Toulouse, France
| | - Corinne Rolland
- INSERM, UMR1220, IRSD, Université de Toulouse, INRA, ENVT, UPS, Toulouse, France
| | - Pascale Malapert
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Marseille, France
| | - Aziz Moqrich
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Marseille, France
| | - Helene Eutamene
- Neuro-Gastroenterology and Nutrition Team, UMR 1331, INRA Toxalim, INP-EI-Purpan, Université de Toulouse, Toulouse, France
| | | | - Nathalie Vergnolle
- INSERM, UMR1220, IRSD, Université de Toulouse, INRA, ENVT, UPS, Toulouse, France
- Departments of Physiology & Pharmacology, and Medicine, University of Calgary Cumming School of Medicine, 3330 Hospital Drive Northwest, Calgary, Alberta T2N 4N1, Canada
| | - Ewan St John Smith
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB1 2PD, UK
| | - David I Hughes
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Giovanni Barbara
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Gilles Dietrich
- INSERM, UMR1220, IRSD, Université de Toulouse, INRA, ENVT, UPS, Toulouse, France
| | - David C Bulmer
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB1 2PD, UK
- National Centre for Bowel Research and Surgical Innovation, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AJ, UK
| | - Nicolas Cenac
- INSERM, UMR1220, IRSD, Université de Toulouse, INRA, ENVT, UPS, Toulouse, France.
| |
Collapse
|
20
|
Wallace JL. Nitric oxide in the gastrointestinal tract: opportunities for drug development. Br J Pharmacol 2018; 176:147-154. [PMID: 30357812 DOI: 10.1111/bph.14527] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 12/12/2022] Open
Abstract
Nitric oxide (NO) plays important roles in gastrointestinal mucosal defence, as well as in the pathogenesis of several gastrointestinal diseases (e.g. irritable bowel syndrome and inflammatory bowel disease). The potent cytoprotective effects of NO have been demonstrated in a range of animal models. However, in some disease states, inhibition of NO synthesis is beneficial. Several attempts have been made to develop drugs for ulcerative and/or inflammatory disorders of the gastrointestinal tract, with varying degrees of success. Covalently linking a NO-releasing group to non-steroidal anti-inflammatory drugs or to drugs used in the treatment of inflammatory bowel disease and irritable bowel syndrome has shown some benefit, although no drug of this type has yet been fully developed. LINKED ARTICLES: This article is part of a themed section on Nitric Oxide 20 Years from the 1998 Nobel Prize. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.2/issuetoc.
Collapse
Affiliation(s)
- John L Wallace
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
21
|
Hussain Z, Jung DH, Lee YJ, Park H. The Effect of Trimebutine on the Overlap Syndrome Model of Guinea Pigs. J Neurogastroenterol Motil 2018; 24:669-675. [PMID: 30114898 PMCID: PMC6175557 DOI: 10.5056/jnm18049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/11/2018] [Accepted: 06/12/2018] [Indexed: 12/21/2022] Open
Abstract
Background/Aims Functional dyspepsia (FD) and irritable bowel syndrome (IBS) are common gastrointestinal (GI) disorders and these patients frequently overlap. Trimebutine has been known to be effective in controlling FD co-existing diarrhea-dominant IBS, however its effect on overlap syndrome (OS) patients has not been reported. Therefore, we investigated the effect of trimebutine on the model of OS in guinea pigs. Methods Male guinea pigs were used to evaluate the effects of trimebutine in corticotropin-releasing factor (CRF) induced OS model. Different doses (3, 10, and 30 mg/kg) of trimebutine were administered orally and incubated for 1 hour. The next treatment of 10 μg/kg of CRF was intraperitoneally injected and stabilized for 30 minutes. Subsequently, intragastric 3 mL charcoal mix was administered, incubated for 10 minutes and the upper GI transit analyzed. Colonic transits were assessed after the same order and concentrations of trimebutine and CRF treatment by fecal pellet output assay. Results Different concentrations (1, 3, and 10 μg/kg) of rat/human CRF peptides was tested to establish the OS model in guinea pigs. CRF 10 μg/kg was the most effective dose in the experimental OS model of guinea pigs. Trimebutine (3, 10, and 30 mg/kg) treatment significantly reversed the upper and lower GI transit of CRF induced OS model. Trimebutine significantly increased upper GI transit while it reduced fecal pellet output in the CRF induced OS model. Conclusions Trimebutine has been demonstrated to be effective on both upper and lower GI motor function in peripheral CRF induced OS model. Therefore, trimebutine might be an effective drug for the treatment of OS between FD and IBS patients.
Collapse
Affiliation(s)
- Zahid Hussain
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Da Hyun Jung
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young Ju Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyojin Park
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Abstract
This paper is the thirty-ninth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2016 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and CUNY Neuroscience Collaborative, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
23
|
Powell CR, Dillon KM, Matson JB. A review of hydrogen sulfide (H 2S) donors: Chemistry and potential therapeutic applications. Biochem Pharmacol 2018; 149:110-123. [PMID: 29175421 PMCID: PMC5866188 DOI: 10.1016/j.bcp.2017.11.014] [Citation(s) in RCA: 375] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/21/2017] [Indexed: 12/11/2022]
Abstract
Hydrogen sulfide (H2S) is a ubiquitous small gaseous signaling molecule, playing an important role in many physiological processes and joining nitric oxide and carbon monoxide in the group of signaling agents termed gasotransmitters. Endogenous concentrations of H2S are generally low, making it difficult to discern precise biological functions. As such, probing the physiological roles of H2S is aided by exogenous delivery of the gas in cell and animal studies. This need for an exogenous source of H2S provides a unique challenge for chemists to develop chemical tools that facilitate the study of H2S under biological conditions. Compounds that degrade in response to a specific trigger to release H2S, termed H2S donors, include a wide variety of functional groups and delivery systems, some of which mimic the tightly controlled endogenous production in response to specific, biologically relevant conditions. This review examines a variety of H2S donor systems classified by their H2S-releasing trigger as well as their H2S release profiles, byproducts, and potential therapeutic applications.
Collapse
Affiliation(s)
- Chadwick R Powell
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Kearsley M Dillon
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - John B Matson
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|
24
|
Wallace JL, Motta JP, Buret AG. Hydrogen sulfide: an agent of stability at the microbiome-mucosa interface. Am J Physiol Gastrointest Liver Physiol 2018; 314:G143-G149. [PMID: 29025733 PMCID: PMC5866422 DOI: 10.1152/ajpgi.00249.2017] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/19/2017] [Accepted: 10/04/2017] [Indexed: 01/31/2023]
Abstract
A diverse range of effects of the intestinal microbiota on mucosal defense and injury has become increasingly clear over the past decade. Hydrogen sulfide (H2S) has emerged as an important mediator of many physiological functions, including gastrointestinal mucosal defense and repair. Hydrogen sulfide is produced by gastrointestinal tract tissues and by bacteria residing within the gut and can influence the function of a wide range of cells. The microbiota also appears to be an important target of hydrogen sulfide. H2S donors can modify the gut microbiota, and the gastrointestinal epithelium is a major site of oxidation of microbial-derived H2S. When administered together with nonsteroidal anti-inflammatory drugs, H2S can prevent some of the dysbiosis those drugs induce, possibly contributing to the observed prevention of gastrointestinal damage. Exogenous H2S can also markedly reduce the severity of experimental colitis and plays important roles in modulating epithelial cell-mucus-bacterial interactions in the intestine, contributing to its ability to promote resolution of inflammation and repair of tissue injury. In this paper we review recent studies examining the roles of H2S in mucosal defense, the possibility that H2S can damage the gastrointestinal epithelium, and effects of H2S on the gut microbiota and on mucus and biofilm interactions in the context of intestinal inflammation.
Collapse
Affiliation(s)
- John L Wallace
- Department of Physiology and Pharmacology, University of Calgary , Calgary, Alberta , Canada
- Faculty of Medicine, Universidade Camilo Castelo Branco, Fernandópolis, Brazil
| | - Jean-Paul Motta
- Institut de Recherche en Santé Digestive, Université de Toulouse , Toulouse , France
- Institut National de la Santé et de la Recherche Médicale, Institut National de la Recherche Agronomique, Ecole Nationale Vétérinaire de Toulouse, Université Paul Sabatier , Toulouse , France
- Department of Biological Sciences, University of Calgary , Calgary, Alberta , Canada
| | - Andre G Buret
- Department of Biological Sciences, University of Calgary , Calgary, Alberta , Canada
| |
Collapse
|
25
|
Szabo C, Papapetropoulos A. International Union of Basic and Clinical Pharmacology. CII: Pharmacological Modulation of H 2S Levels: H 2S Donors and H 2S Biosynthesis Inhibitors. Pharmacol Rev 2017; 69:497-564. [PMID: 28978633 PMCID: PMC5629631 DOI: 10.1124/pr.117.014050] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Over the last decade, hydrogen sulfide (H2S) has emerged as an important endogenous gasotransmitter in mammalian cells and tissues. Similar to the previously characterized gasotransmitters nitric oxide and carbon monoxide, H2S is produced by various enzymatic reactions and regulates a host of physiologic and pathophysiological processes in various cells and tissues. H2S levels are decreased in a number of conditions (e.g., diabetes mellitus, ischemia, and aging) and are increased in other states (e.g., inflammation, critical illness, and cancer). Over the last decades, multiple approaches have been identified for the therapeutic exploitation of H2S, either based on H2S donation or inhibition of H2S biosynthesis. H2S donation can be achieved through the inhalation of H2S gas and/or the parenteral or enteral administration of so-called fast-releasing H2S donors (salts of H2S such as NaHS and Na2S) or slow-releasing H2S donors (GYY4137 being the prototypical compound used in hundreds of studies in vitro and in vivo). Recent work also identifies various donors with regulated H2S release profiles, including oxidant-triggered donors, pH-dependent donors, esterase-activated donors, and organelle-targeted (e.g., mitochondrial) compounds. There are also approaches where existing, clinically approved drugs of various classes (e.g., nonsteroidal anti-inflammatories) are coupled with H2S-donating groups (the most advanced compound in clinical trials is ATB-346, an H2S-donating derivative of the non-steroidal anti-inflammatory compound naproxen). For pharmacological inhibition of H2S synthesis, there are now several small molecule compounds targeting each of the three H2S-producing enzymes cystathionine-β-synthase (CBS), cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase. Although many of these compounds have their limitations (potency, selectivity), these molecules, especially in combination with genetic approaches, can be instrumental for the delineation of the biologic processes involving endogenous H2S production. Moreover, some of these compounds (e.g., cell-permeable prodrugs of the CBS inhibitor aminooxyacetate, or benserazide, a potentially repurposable CBS inhibitor) may serve as starting points for future clinical translation. The present article overviews the currently known H2S donors and H2S biosynthesis inhibitors, delineates their mode of action, and offers examples for their biologic effects and potential therapeutic utility.
Collapse
Affiliation(s)
- Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas (C.S.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece (A.P.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Andreas Papapetropoulos
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas (C.S.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece (A.P.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| |
Collapse
|
26
|
Sestito S, Nesi G, Pi R, Macchia M, Rapposelli S. Hydrogen Sulfide: A Worthwhile Tool in the Design of New Multitarget Drugs. Front Chem 2017; 5:72. [PMID: 29021980 PMCID: PMC5623673 DOI: 10.3389/fchem.2017.00072] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 09/15/2017] [Indexed: 12/26/2022] Open
Abstract
H2S is a gaseous molecule able to trigger a plethora of central physiological and pharmacological effects as antioxidant, pro- and anti-inflammatory, pro- and anti-nociceptive, neuromodulator, and cytoprotective. The polypharmacology of H2S depends on the wide variety of targets implicated, but, despite the efforts, the mechanisms of action that should clarify its activity are still not completely unrevealed. Nevertheless, many attempts to exploit the multifaceted profile of this molecule have already been accomplished and many chemical entities containing an H2S-releasing pharmacophore have been synthetized. Here we discuss recent investigations on multitarget molecules able to release H2S, with a particular focus on the combinations of "native drug" with moieties structurally able to release H2S and their applications as therapeutic tools in bone disease, gastrointestinal system and neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Giulia Nesi
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Rongbiao Pi
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.,International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | |
Collapse
|
27
|
Zheng Y, Yu B, De La Cruz LK, Roy Choudhury M, Anifowose A, Wang B. Toward Hydrogen Sulfide Based Therapeutics: Critical Drug Delivery and Developability Issues. Med Res Rev 2017; 38:57-100. [PMID: 28240384 DOI: 10.1002/med.21433] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/10/2016] [Accepted: 11/29/2016] [Indexed: 12/16/2022]
Abstract
Hydrogen sulfide (H2 S), together with nitric oxide (NO) and carbon monoxide (CO), belongs to the gasotransmitter family and plays important roles in mammals as a signaling molecule. Many studies have also shown the various therapeutic effects of H2 S, which include protection against myocardial ischemia injury, cytoprotection against oxidative stress, mediation of neurotransmission, inhibition of insulin signaling, regulation of inflammation, inhibition of the hypoxia-inducible pathway, and dilation of blood vessels. One major challenge in the development of H2 S-based therapeutics is its delivery. In this manuscript, we assess the various drug delivery strategies in the context of being used research tools and eventual developability as therapeutic agents.
Collapse
Affiliation(s)
- Yueqin Zheng
- Department of Chemistry, Georgia State University, Atlanta, Georgia
| | - Bingchen Yu
- Department of Chemistry, Georgia State University, Atlanta, Georgia
| | | | | | | | - Binghe Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia
| |
Collapse
|