1
|
Shen YR, Cheng L, Zhang DF. TRPV1: A novel target for the therapy of diabetes and diabetic complications. Eur J Pharmacol 2024; 984:177021. [PMID: 39362389 DOI: 10.1016/j.ejphar.2024.177021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Diabetes mellitus is a chronic metabolic disease characterized by abnormally elevated blood glucose levels. Type II diabetes accounts for approximately 90% of all cases. Several drugs are available for hyperglycemia treatment. However, the current therapies for managing high blood glucose do not prevent or reverse the disease progression, which may result in complications and adverse effects, including diabetic neuropathy, retinopathy, and nephropathy. Hence, developing safer and more effective methods for lowering blood glucose levels is imperative. Transient receptor potential vanilloid-1 (TRPV1) is a significant member of the transient receptor potential family. It is present in numerous body tissues and organs and performs vital physiological functions. PURPOSE This review aimed to develop new targeted TRPV1 hypoglycemic drugs by systematically summarizing the mechanism of action of the TRPV1-based signaling pathway in preventing and treating diabetes and its complications. METHODS Literature searches were performed in the PubMed, Web of Science, Google Scholar, Medline, and Scopus databases for 10 years from 2013 to 2023. The search terms included "diabetes," "TRPV1," "diabetic complications," and "capsaicin." RESULTS TRPV1 is an essential potential target for treating diabetes mellitus and its complications. It reduces hepatic glucose production and food intake and promotes thermogenesis, metabolism, and insulin secretion. Activation of TRPV1 ameliorates diabetic nephropathy, retinopathy, myocardial infarction, vascular endothelial dysfunction, gastroparesis, and bladder dysfunction. Suppression of TRPV1 improves diabetes-related osteoporosis. However, the therapeutic effects of activating or suppressing TRPV1 may vary when treating diabetic neuropathy and periodontitis. CONCLUSION This review demonstrates that TRPV1 is a potential therapeutic target for diabetes and its complications. Additionally, it provides a theoretical basis for developing new hypoglycemic drugs that target TRPV1.
Collapse
Affiliation(s)
- Yu-Rong Shen
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Long Cheng
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Dong-Fang Zhang
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
2
|
Liu Y, Cai X, Shi B, Mo Y, Zhang J, Luo W, Yu B, Li X. Mechanisms and Therapeutic Prospects of Microglia-Astrocyte Interactions in Neuropathic Pain Following Spinal Cord Injury. Mol Neurobiol 2024:10.1007/s12035-024-04562-1. [PMID: 39470872 DOI: 10.1007/s12035-024-04562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/16/2024] [Indexed: 11/01/2024]
Abstract
Neuropathic pain is a prevalent and debilitating condition experienced by the majority of individuals with spinal cord injury (SCI). The complex pathophysiology of neuropathic pain, involving continuous activation of microglia and astrocytes, reactive gliosis, and altered neuronal plasticity, poses significant challenges for effective treatment. This review focuses on the pivotal roles of microglia and astrocytes, the two major glial cell types in the central nervous system, in the development and maintenance of neuropathic pain after SCI. We highlight the extensive bidirectional interactions between these cells, mediated by the release of inflammatory mediators, neurotransmitters, and neurotrophic factors, which contribute to the amplification of pain signaling. Understanding the microglia-astrocyte crosstalk and its impact on neuronal function is crucial for developing novel therapeutic strategies targeting neuropathic pain. In addition, this review discusses the fundamental biology, post-injury pain roles, and therapeutic prospects of microglia and astrocytes in neuropathic pain after SCI and elucidates the specific signaling pathways involved. We also speculated that the extracellular matrix (ECM) can affect the glial cells as well. Furthermore, we also mentioned potential targeted therapies, challenges, and progress in clinical trials, as well as new biomarkers and therapeutic targets. Finally, other relevant cell interactions in neuropathic pain and the role of glial cells in other neuropathic pain conditions have been discussed. This review serves as a comprehensive resource for further investigations into the microglia-astrocyte interaction and the detailed mechanisms of neuropathic pain after SCI, with the aim of improving therapeutic efficacy.
Collapse
Affiliation(s)
- Yinuo Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xintong Cai
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bowen Shi
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yajie Mo
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jianmin Zhang
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Wenting Luo
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bodong Yu
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xi Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
3
|
Horimoto AR, Sun Q, Lash JP, Daviglus ML, Cai J, Haack K, Cole SA, Thornton TA, Browning SR, Franceschini N. Admixture Mapping of Chronic Kidney Disease and Risk Factors in Hispanic/Latino Individuals From Central America Country of Origin. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004314. [PMID: 38950085 PMCID: PMC11394365 DOI: 10.1161/circgen.123.004314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 05/01/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Chronic kidney disease (CKD) is highly prevalent in Central America, and genetic factors may contribute to CKD risk. To understand the influences of genetic admixture on CKD susceptibility, we conducted an admixture mapping screening of CKD traits and risk factors in US Hispanic and Latino individuals from Central America country of origin. METHODS We analyzed 1023 participants of HCHS/SOL (Hispanic Community Health Study/Study of Latinos) who reported 4 grandparents originating from the same Central America country. Ancestry admixture findings were validated on 8191 African Americans from WHI (Women's Health Initiative), 3141 American Indians from SHS (Strong Heart Study), and over 1.1 million European individuals from a multistudy meta-analysis. RESULTS We identified 3 novel genomic regions for albuminuria (chromosome 14q24.2), CKD (chromosome 6q25.3), and type 2 diabetes (chromosome 3q22.2). The 14q24.2 locus driven by a Native American ancestry had a protective effect on albuminuria and consisted of 2 nearby regions spanning the RGS6 gene. Variants at this locus were validated in American Indians. The 6q25.3 African ancestry-derived locus, encompassing the ARID1B gene, was associated with increased risk for CKD and replicated in African Americans through admixture mapping. The European ancestry type 2 diabetes locus at 3q22.2, encompassing the EPHB1 and KY genes, was validated in European individuals through variant association. CONCLUSIONS US Hispanic/Latino populations are culturally and genetically diverse. This study focusing on Central America grandparent country of origin provides new loci discovery and insights into the ancestry-of-origin influences on CKD and risk factors in US Hispanic and Latino individuals.
Collapse
Affiliation(s)
| | - Quan Sun
- Dept of Biostatistics, Univ of North Carolina, Chapel Hill, NC
| | - James P. Lash
- Dept of Medicine, Univ of Illinois at Chicago, Chicago, IL
| | - Martha L. Daviglus
- Institute for Minority Health Research, Univ of Illinois at Chicago, Chicago, IL
| | - Jianwen Cai
- Dept of Biostatistics, Univ of North Carolina, Chapel Hill, NC
| | - Karin Haack
- Texas Biomedical Research Institute, San Antonio, TX
| | | | - Timothy A. Thornton
- Dept of Biostatistics, Univ of Washington, Seattle, WA
- Dept of Statistics, Univ of Washington, Seattle, WA
| | | | | |
Collapse
|
4
|
Elsayed HRH, Ali EMT, Rabei MR, El Nashar EM, Alghamdi MA, Al-Zahrani NS, Alshehri SH, Aldahhan RA, Morsy AI. Angiotensin II Type 1 receptor blockade attenuates the neuropathological changes in the spinal cords of diabetic rats with modulation of nuclear factor erythroid 2-related factor 2/ heme oxygenase 1 system. Tissue Cell 2024; 88:102420. [PMID: 38795506 DOI: 10.1016/j.tice.2024.102420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Peripheral and central neuropathies frequently complicate worldwide diabetes. Compared to peripheral neuropathy, central neuropathy didn`t gain a major research interest. Angiotensin II is reported to be involved in diabetic neuropathic pain but its role in the central pathological changes in the spinal cord is not clear. Here, we study the role of Losartan; an Angiotensin II receptor 1 (AT1) antagonist in suppression of the diabetes-induced changes in the spinal cord. Three groups of rats were applied; a negative control group, a streptozotocin (STZ) diabetic group, and a group receiving STZ and Losartan. After two months, the pathological alteration in the spinal cord was investigated, and an immunohistochemical study was performed for neuronal, astrocytic, and microglial markers; nuclear protein (NeuN), Glial fibrillary acidic protein (GFAP), and Ionized calcium-binding adaptor molecule 1 (Iba1), respectively, and for an apoptosis marker; caspase-3, and the inflammatory marker; nuclear factor kappa B (NF-kB) signaling, heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2); physiological antioxidant system. The results showed that Losartan caused recovery of spinal cord changes, by inhibiting the microglial and astrocytic activation, suppressing neuronal apoptosis and NF-kB expression with activation of Nrf2/HO-1 (P<0.0005). It is suggested, herein, that Losartan can suppress diabetes-induced glial activation, inflammation, neuronal apoptosis, and oxidative stress in the spinal cord; the mechanisms that may underlie the role of AT1 antagonism in suppressing diabetic neuropathic pain.
Collapse
Affiliation(s)
- Hassan Reda Hassan Elsayed
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Department of Anatomy and Neurobiology, College of Medicine & Health Sciences, National University of Science and Technology, Sohar, Oman.
| | - Eyad Mohamed Tolba Ali
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Department of Anatomy, Faculty of Medicine, Taibah University, Madinah, Saudi Arabia
| | - Mohammed Rami Rabei
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Department of Basic Medical Sciences, Faculty of Medicine, Ibn Sina University for Medical Sciences, Amman, Jordan
| | | | - Mansour Abdullah Alghamdi
- Department of Anatomy, College Medicine, King Khalid University, Abha, Saudi Arabia; Genomics and Personalized Medicine Unit, The Center for Medical and Health Research, King Khalid University, Abha, Saudi Arabia
| | - Norah Saeed Al-Zahrani
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Shaker Hassan Alshehri
- Department of Orthopedics, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Rashid A Aldahhan
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Amira Ibrahim Morsy
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
5
|
Kaur S, Bali A, Singh N, Jaggi AS. Ephrin B/EphB in neuropathic pain: Role and molecular mechanisms. Fundam Clin Pharmacol 2024; 38:4-12. [PMID: 37401197 DOI: 10.1111/fcp.12937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Ephrins are protein ligands that act through the tyrosine kinase receptor family, Eph receptors. The role of ephrin/Eph in the critical processes involved in the development of the nervous system, including axon guidance and cell migration, has been well documented. Moreover, studies have shown an upregulation of ephrin B1/EphB1 and ephrin B2/EphB2 in neuropathic pain of different etiology. The activation of the ephrin B/EphB system in the dorsal root ganglion and dorsal horn of the spinal cord may be essential in initiating and maintaining neuropathic pain. Accordingly, it can be proposed that the pharmacological inhibitors of EphB receptors may be potentially employed to manage the manifestations of pain. One of the primary mechanisms involved in ephrin B/EphB-mediated synaptic plasticity includes phosphorylation and activation of NMDA receptors, which may be secondary to activation of different kinases, including MAP kinases (MAPK), protein kinase C (PKC), and Src family kinases (SFK). The other molecular mechanisms may include activation of inflammatory cytokines in the spinal cord, caspase-3, calpain-1, phosphoinositide 3-kinase (PI3K), protein kinase A (PKA), and cAMP Response Element-Binding Protein (CREB). The present review discusses the role and molecular mechanisms involved in ephrin B/EphB-mediated neuropathic pain of different etiology.
Collapse
Affiliation(s)
- Sahibpreet Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala, India
| | - Anjana Bali
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala, India
- Prosper Pharmacy, Surrey, British Columbia, Canada
| |
Collapse
|
6
|
Qiu P, Li D, Xiao C, Xu F, Chen X, Chang Y, Liu L, Zhang L, Zhao Q, Chen Y. The Eph/ephrin system symphony of gut inflammation. Pharmacol Res 2023; 197:106976. [PMID: 38032293 DOI: 10.1016/j.phrs.2023.106976] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/15/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
The extent of gut inflammation depends largely on the gut barrier's integrity and enteric neuroimmune interactions. However, the factors and molecular mechanisms that regulate inflammation-related changes in the enteric nervous system (ENS) remain largely unexplored. Eph/ephrin signaling is critical for inflammatory response, neuronal activation, and synaptic plasticity in the brain, but its presence and function in the ENS have been largely unknown to date. This review discusses the critical role of Eph/ephrin in regulating gut homeostasis, inflammation, neuroimmune interactions, and pain pathways. Targeting the Eph/ephrin system offers innovative treatments for gut inflammation disorders, offering hope for enhanced patient prognosis, pain management, and overall quality of life.
Collapse
Affiliation(s)
- Peishan Qiu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China
| | - Daojiang Li
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Cong Xiao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China
| | - Fei Xu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China
| | - Xiaoyu Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China
| | - Lei Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China.
| | - Yuhua Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China.
| |
Collapse
|
7
|
Paladini A, Vallejo R, Guerrero M, Pasqualucci A, Peppin JF, Pergolizzi J, Varrassi G. Answering Big Questions in Pain Medicine. Cureus 2023; 15:e43561. [PMID: 37719539 PMCID: PMC10502917 DOI: 10.7759/cureus.43561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
The future of pain medicine is marked by many questions. What can other nations around the world learn from the opioid crisis that is still affecting the United States? The American opioid experience was mischaracterized and wrongly described, and its causes were misdiagnosed from the outset, leading to its mismanagement and the abandonment of many chronic pain patients to their suffering. There are a few new drugs in the analgesic armamentarium. What new targets do we have in pain medicine? There are many breakthroughs, discoveries, and potential new targets that could add to our analgesic prescribing choices. These include sigma receptors, d-amino acid oxidase, endoplasmic reticulum stress receptors, histone deacetylase, and others. Neuromodulation had been used with varying degrees of success for years, but with a simplistic approach based on the gate theory of pain. Despite our familiarity with neuromodulation and spinal cord stimulators, neuromodulation research indicates that the activation of glial cells may activate the immune system and enhance analgesia. Neuromodulation studies have concentrated on how electricity affects neuronal activity rather than how electrical activity could reduce pain. There are still more frontiers in our battle against pain and some promising avenues for treatments. This narrative review will try to summarize what can be done from the perspective of recent technological and pharmacological developments.
Collapse
Affiliation(s)
- Antonella Paladini
- Department of Life, Health & Environmental Sciences (MESVA), University of L'Aquila, L'Aquila, ITA
| | - Ricardo Vallejo
- Department of Research, Millennium Pain Center, Bloomington, USA
| | - Marixa Guerrero
- Department of Pain Medicine/ Pain Management, Clínica del Country, Bogota, COL
| | - Alberto Pasqualucci
- Department of Anesthesia and Critical Care, University of Perugia, Perugia, ITA
| | - John F Peppin
- Department of Osteopathic Medicine, Marian University, Indianapolis, USA
| | - Joseph Pergolizzi
- Department of Anesthesiology, Pain Medicine, and Critical Care Medicine, Nema Research, Naples, USA
| | | |
Collapse
|
8
|
Elsayed HRH, Rabei MR, Elshaer MMA, El Nashar EM, Alghamdi MA, Al-Qahtani Z, Nabawy A. Suppression of neuronal apoptosis and glial activation with modulation of Nrf2/HO-1 and NF-kB signaling by curcumin in streptozotocin-induced diabetic spinal cord central neuropathy. Front Neuroanat 2023; 17:1094301. [PMID: 36968023 PMCID: PMC10035597 DOI: 10.3389/fnana.2023.1094301] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/19/2023] [Indexed: 03/12/2023] Open
Abstract
IntroductionDiabetes is a global disease, commonly complicated by neuropathy. The spinal cord reacts to diabetes by neuronal apoptosis, microglial activation, and astrocytosis, with a disturbance in neuronal and glial Nuclear factor erythroid 2-related factor/Heme oxygenase-1 (Nrf2/HO-1) and Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) signaling. Curcumin, a bioactive natural substance, showed neuroprotective role in many diseases. However, its role in the treatment of the diabetic central neuropathy of spinal cord and the underlying mechanisms still need clarification. The present study tried to evaluate the role of curcumin in diabetes-induced central neuropathy of the spinal cord in rats.MethodsTwenty rats were divided into three groups; group 1: a negative control group; group 2: received streptozotocin (STZ) to induce type I diabetes, and group 3: received STZ + Curcumin (150 mg/kg/day) for eight weeks. The spinal cords were examined for histopathological changes, and immunohistochemical staining for Glia fibrillary acidic protein (GFAP); an astrocyte marker, Ionized calcium-binding adaptor molecule 1 (Iba1), a microglial marker, neuronal nuclear protein (NeuN); a neuronal marker, caspase-3; an apoptosis marker, Nrf2/HO-1, NF-kB, and oxidative stress markers were assessed.ResultsCurcumin could improve spinal cord changes, suppress the expression of Iba1, GFAP, caspase-3, and NF-kB, and could increase the expression of NeuN and restore the Nrf2/HO-1 signaling.DiscussionCurcumin could suppress diabetic spinal cord central neuropathy, glial activation, and neuronal apoptosis with the regulation of Nrf2/HO-1 and NF-kB signaling.
Collapse
Affiliation(s)
- Hassan Reda Hassan Elsayed
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Anatomy, Faculty of Medicine, New Mansoura University, New Mansoura City, Egypt
- *Correspondence: Hassan Reda Hassan Elsayed,
| | - Mohammed R. Rabei
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Physiology, Faculty of Medicine, King Salman International University, South Sinai, Egypt
| | - Mohamed Mahmoud Abdelraheem Elshaer
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Clinical Pharmacology, Faculty of Medicine, King Salman International University, South Sinai, Egypt
| | - Eman Mohamad El Nashar
- Department of Anatomy, College Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha, Egypt
- Eman Mohamad El Nashar,
| | - Mansour Abdullah Alghamdi
- Department of Anatomy, College Medicine, King Khalid University, Abha, Saudi Arabia
- Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Zainah Al-Qahtani
- Neurology Section, Internal Medicine Department, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Nabawy
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Anatomy, Faculty of Medicine, New Mansoura University, New Mansoura City, Egypt
| |
Collapse
|
9
|
Abtin S, Ghasemi R, Manaheji H. Progesterone modulates the expression of spinal ephrin-B2 after peripheral nerve injury: New insights into progesterone mechanisms. Steroids 2023; 190:109155. [PMID: 36529276 DOI: 10.1016/j.steroids.2022.109155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
Recent studies have shown that the ephrin/Eph signaling pathway may contribute to the pathology of neuropathic pain. Drugs like progesterone may be used to counteract both thermal hyperalgesia and mechanical allodynia in different models of neuropathic pain. The present study was designed to determine progesterone's modulatory role on neuropathic pain and spinal expression of ephrin-B2 following chronic constriction nerve injury (CCI). Thirty-six adult male Wistar rats were used. The sciatic nerve was chronically constricted. Progesterone (5 mg/kg and 15 mg/kg) was administrated for 10 days (from day 1 up to day10) following sciatic constriction. Behavioral tests were performed before surgery (day 0) and on days 1, 3, 7, and 14 after CCI and before progesterone administration on the same days. Western blotting was performed on days 3, 7, and 14th post-surgery. The findings showed that after CCI, the expression of spinal cord ephrin-B2 increased significantly in parallel with mechanical allodynia and thermal hyperalgesia. Post-injury administration of progesterone (15 mg/kg but not 5) decreased mechanical allodynia, thermal hyperalgesia, and the expression of spinal ephrin-B2. It is concluded that post-injury repeated administration of progesterone could be an effective way of alleviating neuropathic pain by suppressing ephrin-B2 activation and helps to make the better design of steroid-based therapies to inhibit pain after peripheral injury.
Collapse
Affiliation(s)
- Shima Abtin
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homa Manaheji
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Zhang H, Li N, Li Z, Li Y, Yu Y, Zhang L. The Involvement of Caspases in Neuroinflammation and Neuronal Apoptosis in Chronic Pain and Potential Therapeutic Targets. Front Pharmacol 2022; 13:898574. [PMID: 35592413 PMCID: PMC9110832 DOI: 10.3389/fphar.2022.898574] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/13/2022] [Indexed: 12/26/2022] Open
Abstract
Chronic pain is a common, complex and unpleasant sensation following nerve injury, tissue trauma, inflammatory diseases, infection and cancer. It affects up to 25% of adults and is increasingly recognized as the leading cause of distress, disability and disease burden globally. Chronic pain is often refractory to most current analgesics, thus emphasizing the requirement for improved therapeutic medications. It is of great importance to elucidate the specific pathogenesis of chronic pain with different etiologies. Recent progress has advanced our understanding in the contribution of neuroinflammation and glial cells (microglia and astrocyte) activation in the plasticity of excitatory nociceptive synapses and the development of chronic pain phenotypes. Oxidative stress-associated neuronal apoptosis is also identified to be a pivotal step for central pain sensitization. The family of cysteine aspartate specific proteases (Caspases) has been well known to be key signaling molecules for inflammation and apoptosis in several neurological conditions. Recent studies have highlighted the unconventional and emerging role of caspases in microgliosis, astrocytes morphogenesis, chemokines release, cytokines secretion and neuronal apoptosis in initiating and maintaining synaptogenesis, synaptic strength and signal transduction in persistent pain hypersensitivity, suggesting the possibility of targeting caspases pathway for prevention and treatment of chronic pain. In this review, we will discuss and summarize the advances in the distinctive properties of caspases family in the pathophysiology of chronic pain, especially in neuropathic pain, inflammatory pain, cancer pain and musculoskeletal pain, with the aim to find the promising therapeutic candidates for the resolution of chronic pain to better manage patients undergoing chronic pain in clinics.
Collapse
Affiliation(s)
- Haoyue Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China.,The Graduate School, Tianjin Medical University, Tianjin, China
| | - Nan Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China.,The Graduate School, Tianjin Medical University, Tianjin, China
| | - Ziping Li
- The Graduate School, Tianjin Medical University, Tianjin, China.,Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yize Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Linlin Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
11
|
Zhang P, Qiao Z, Pan S, Yang P, Zha Z, Sun S, Xu Q, Liu X, Xu N, Liu Y. Activation of spinal ephrin-B3/EphBs signaling induces hyperalgesia through a PLP-mediated mechanism. Fundam Clin Pharmacol 2022; 36:262-276. [PMID: 34904278 DOI: 10.1111/fcp.12742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/30/2021] [Accepted: 12/07/2021] [Indexed: 02/05/2023]
Abstract
Ephrin B/EphB signaling pathway is involved in the regulation of pain caused by spinal cord injury. However, the role of ephrin-B3/EphBs signaling in regulation of nociceptive information is poorly understood. In the present study, formalin-induced inflammatory pain, mechanical allodynia and thermal hyperalgesia, was measured using Efnb3 mutant mice (Efnb3-/- ) and wild-type (Efnb3+/+ ) mice. The spinal cord (L4-6) was selected for molecular and cellular identification by western blotting and immunofluorescence. Efnb3 mutant mice showed a significant increased the thermal and mechanical threshold, followed by aberrant thin myelin sheath. Furthermore, expression of proteolipid protein (PLP) was significantly lower in L4-6 spinal cord of Efnb3-/- mice. These morphological and behavioral abnormalities in mutant mice were rescued by conditional knock-in of wild-type ephrin-B3. Intrathecal administration of specific PLP siRNA significantly increased the thermal and mechanical threshold hyperalgesia in wild-type mice. However, overexpressing PLP protein by AAV9-PLP could decrease the sensitivity of mice to thermal and mechanical stimuli in Efnb3-/- mice, compared with scrabble Efnb3-/- mice. Further, Efnb3lacz mice, which have activities to initiate forward signaling, but transduce reverse signals by ephrin-B3, shows normal acute pain behavior, compared with wild type mice. These findings indicate that a key molecule Efnb3 act as a prominent contributor to hyperalgesia and essential roles of ephrin-B3/EphBs in nociception through a myelin-mediated mechanism.
Collapse
Affiliation(s)
- Pei Zhang
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Zhen Qiao
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Shu Pan
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Ping Yang
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Zhengxia Zha
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Suya Sun
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anatomy, Histology and Embryology, Neuroscience Division, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiongming Xu
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xingjun Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Pain and Related Diseases Research Laboratory, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Nanjie Xu
- Department of Anatomy, Histology and Embryology, Neuroscience Division, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanli Liu
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
12
|
Liu X, He J, Gao J, Xiao Z. Fluorocitrate and neurotropin confer analgesic effects on neuropathic pain in diabetic rats via inhibition of astrocyte activation in the periaqueductal gray. Neurosci Lett 2022; 768:136378. [PMID: 34861344 DOI: 10.1016/j.neulet.2021.136378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/11/2021] [Accepted: 11/26/2021] [Indexed: 01/07/2023]
Abstract
Currently, effective treatments for diabetic neuropathic pain (DNP) are still unmet clinical needs. Activation of astrocytes in the ventrolateral region of periaqueductal gray (vlPAG) has a regulating effect on pain responses. The present study was designed to confirm that repeated intra-vlPAG injection of fluorocitrate (FC), a selective inhibitor of astrocyte activation or intraperitoneal (IP) injection of neurotropin, a widely prescribed analgesic drug for chronic pain, inhibited the activation of astrocytes in vlPAG and thus produced an analgesic effect on DNP. An in vivo model was developed to study DNP in rats. The changes in mechanical withdrawal threshold (MWT) and activation levels of astrocytes in the vlPAG were evaluated in all experimental rats. Compared with normal rats, vlPAG-based glial fibrillary acid protein (GFAP) was clearly upregulated, whereas the MWTs of DNP rats were markedly diminished. The intra-vlPAG injections of FC or IP injections of neurotropin attenuated the alterations both in MWTs and expression levels of GFAP in vlPAG in DNP rats. Collectively, these findings suggest the antinociceptive effects of FC and neurotropin in DNP rats, which were associated with suppressing the activation of astrocytes in vlPAG.
Collapse
Affiliation(s)
- Xingfeng Liu
- Key Laboratory of Brain Science, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou, 563000, China; Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou 563000, China
| | - Jingxin He
- Graduate School, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou 563000, China
| | - Jie Gao
- Grade 2019, School of Anesthesiology, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou 563000, China
| | - Zhi Xiao
- Key Laboratory of Brain Science, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou, 563000, China; Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou 563000, China.
| |
Collapse
|
13
|
Deng X, Ma P, Wu M, Liao H, Song XJ. Role of Matrix Metalloproteinases in Myelin Abnormalities and Mechanical Allodynia in Rodents with Diabetic Neuropathy. Aging Dis 2021; 12:1808-1820. [PMID: 34631222 PMCID: PMC8460301 DOI: 10.14336/ad.2021.0126] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/26/2021] [Indexed: 12/25/2022] Open
Abstract
The treatment of diabetic neuropathic pain (DNP) is a major clinical challenge. The underlying mechanisms of diabetic neuropathy remain unclear, and treatment approaches are limited. Here, we report that the gelatinases MMP-9 and MMP-2 play a critical role in axonal demyelination and DNP in rodents. MMP-9 may contribute to streptozotocin (STZ)-induced DNP via inducing axonal demyelination and spinal central sensitization, while MMP-2 may serve as a negative regulator. In STZ-induced DNP rats, the activity of MMP-9 was increased, while MMP-2 was decreased in the dorsal root ganglion and spinal cord. Spinal inhibition of MMP-9, but not MMP-2, greatly suppressed the behavioral and neurochemical signs of DNP, while administration of MMP-2 alleviated mechanical allodynia. In mice, STZ treatment resulted in axonal demyelination in the peripheral sciatic nerves and spinal dorsal horn, in addition to mechanical allodynia. These neuropathic alterations were significantly reduced in MMP-9-/- mice. Finally, systematic administration of α-lipoic acid significantly suppressed STZ-induced mechanical allodynia by inhibiting MMP-9 and rescuing MMP-2 activity. These findings support a new mechanism underlying the pathogenesis of diabetic neuropathy and suggest a potential target for DNP treatment. Gelatinases MMP-9 and MMP-2 play a critical role in the pathogenesis of diabetic neuropathy and may serve as a potential treatment target. MMP-9/2 underlies the mechanism of α-lipoic acid in diabetic neuropathy, providing a potential target for the development of novel analgesic and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Xueting Deng
- 1SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen, China.,2Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Pingchuan Ma
- 1SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Mingzheng Wu
- 1SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Huabao Liao
- 1SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen, China.,3Department of Perioperative Medicine, SUSTech Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Xue-Jun Song
- 1SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen, China.,3Department of Perioperative Medicine, SUSTech Hospital, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
14
|
Soliman E, Mills J, Ju J, Kaloss AM, Basso EKG, Groot N, Kelly C, Kowalski EA, Elhassanny M, Chen M, Wang X, Theus MH. Conditional Deletion of EphA4 on Cx3cr1-Expressing Microglia Fails to Influence Histopathological Outcome and Blood Brain Barrier Disruption Following Brain Injury. Front Mol Neurosci 2021; 14:747770. [PMID: 34630039 PMCID: PMC8497746 DOI: 10.3389/fnmol.2021.747770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
Erythropoietin-producing human hepatocellular receptors play a major role in central nervous system injury. Preclinical and clinical studies revealed the upregulation of erythropoietin-producing human hepatocellular A4 (EphA4) receptors in the brain after acute traumatic brain injury. We have previously reported that Cx3cr1-expressing cells in the peri-lesion show high levels of EphA4 after the induction of controlled cortical impact (CCI) injury in mice. Cx3cr1 is a fractalkine receptor expressed on both resident microglia and peripheral-derived macrophages. The current study aimed to determine the role of microglial-specific EphA4 in CCI-induced damage. We used Cx3cr1 CreER/+ knock-in/knock-out mice, which express EYFP in Cx3cr1-positive cells to establish microglia, EphA4-deficient mice following 1-month tamoxifen injection. Consistent with our previous findings, induction of CCI in wild-type (WT) Cx3cr1 CreER/+ EphA4 +/+ mice increased EphA4 expression on EYFP-positive cells in the peri-lesion. To distinguish between peripheral-derived macrophages and resident microglia, we exploited GFP bone marrow-chimeric mice and found that CCI injury increased EphA4 expression in microglia (TMEM119+GFP-) using immunohistochemistry. Using Cx3cr1 CreER/+ EphA4 f/f (KO) mice, we observed that the EphA4 mRNA transcript was undetected in microglia but remained present in whole blood when compared to WT. Finally, we found no difference in lesion volume or blood-brain barrier (BBB) disruption between WT and KO mice at 3 dpi. Our data demonstrate a nonessential role of microglial EphA4 in the acute histopathological outcome in response to CCI.
Collapse
Affiliation(s)
- Eman Soliman
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Jatia Mills
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Jing Ju
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Alexandra M Kaloss
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | | | - Nathalie Groot
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Colin Kelly
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Elizabeth A Kowalski
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Mohamed Elhassanny
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Michael Chen
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Xia Wang
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Michelle H Theus
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States.,School of Neuroscience, Virginia Tech, Blacksburg, VA, United States.,Center for Engineered Health, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
15
|
Jin F, Zhao L, Hu Q, Qi F. Peripheral EphrinB1/EphB1 signalling attenuates muscle hyperalgesia in MPS patients and a rat model of taut band-associated persistent muscle pain. Mol Pain 2021; 16:1744806920984079. [PMID: 33356837 PMCID: PMC7780166 DOI: 10.1177/1744806920984079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Myofascial pain syndrome (MPS) is an important clinical condition that is characterized by chronic muscle pain and a myofascial trigger point (MTrP) located in a taut band (TB). Previous studies showed that EphrinB1 was involved in the regulation of pathological pain via EphB1 signalling, but whether EphrinB1-EphB1 plays a role in MTrP is not clear. Methods The present study analysed the levels of p-EphB1/p-EphB2/p-EphB3 in biopsies of MTrPs in the trapezius muscle of 11 MPS patients and seven healthy controls using a protein microarray kit. EphrinB1-Fc was injected intramuscularly to detect EphrinB1s/EphB1s signalling in peripheral sensitization. We applied a blunt strike to the left gastrocnemius muscles (GM) and eccentric exercise for 8 weeks with 4 weeks of recovery to analyse the function of EphrinB1/EphB1 in the muscle pain model. Results P-EphB1, p-EphB2, and p-EphB3 expression was highly increased in human muscles with MTrPs compared to healthy muscle. EphB1 (r = 0.723, n = 11, P < 0.05), EphB2 (r = 0.610, n = 11, P < 0.05), and EphB3 levels (r = 0.670, n = 11, P < 0.05) in the MPS group were significantly correlated with the numerical rating scale (NRS) in the MTrPs. Intramuscular injection of EphrinB1-Fc produces hyperalgesia, which can be partially prevented by pre-treatment with EphB1-Fc. The p-EphB1 contents in MTrPs of MPS animals were significantly higher than that among control animals (P < 0.01). Intramuscular administration of the EphB1 inhibitor EphB1-Fr significantly suppressed mechanical hyperalgesia. Conclusions The present study showed that the increased expression of p-EphB1/p-EphB2/p-EphB3 was related to MTrPs in patients with MPS. This report is the first study to examine the function of EphrinB1-EphB1 signalling in primary muscle afferent neurons in MPS patients and a rat animal model. This pathway may be one of the most important and promising targets for MPS.
Collapse
Affiliation(s)
- Feihong Jin
- Department of Anesthesiology and Pain Clinic, Qilu Hospital of Shandong University, Ji'nan, China
| | - Lianying Zhao
- Department of Anesthesiology and Pain Clinic, Qilu Hospital of Shandong University, Ji'nan, China
| | - Qiya Hu
- Department of Anesthesiology and Pain Clinic, Qilu Hospital of Shandong University, Ji'nan, China
| | - Feng Qi
- Department of Anesthesiology and Pain Clinic, Qilu Hospital of Shandong University, Ji'nan, China
| |
Collapse
|
16
|
Blockade of Erythropoietin-Producing Human Hepatocellular Carcinoma Receptor B1 in Spinal Dorsal Horn Alleviates Visceral Pain in Rats. Pain Res Manag 2021; 2021:7582494. [PMID: 33880135 PMCID: PMC8046573 DOI: 10.1155/2021/7582494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 02/19/2021] [Accepted: 03/10/2021] [Indexed: 11/24/2022]
Abstract
Objective This experiment was designed to determine whether erythropoietin-producing human hepatocellular carcinoma (Eph) receptors were involved in the development of visceral pain. Methods Adult male Sprague-Dawley rats were randomly divided into three groups receiving different treatments (n = 16 per group): intracolonic vehicle (control group), intracolonic 2, 4, 6-trinitrobenzene sulfonic acid (TNBS) (TNBS group), and intracolonic TNBS and intrathecal EphB1 receptor blocking reagent (TNBS + EphB2-Fc group). Visceral hyperalgesia was evaluated with quantification of visceral pain threshold induced by colorectal distention. The spinal expressions of EphB1 and ephrinB2 and levels of their phosphorylated forms (p-EphB1 and p-ephrinB2) were assessed by Western blotting and immunohistochemistry. Results The TNBS-treated rats developed significant visceral hyperalgesia. The spinal expressions of EphB1, p-EphB1, ephrinB2, and p-ephrinB2 were significantly increased in the TNBS group compared with the control group, but visceral hyperalgesia and elevation of spinal EphB1 and p-EphB1 expressions were evidently alleviated by intrathecal administration of EphB2-Fc in the TNBS + EphB2-Fc group. The number of EphB1- and p-EphB1-immunopositive cells, the average optical (AO) value of EphB1, and its phosphorylated form in the spinal dorsal horn were significantly increased in the TNBS group than in the control group, but they were obviously reduced by intrathecal administration of EphB2-Fc. There were no significant differences in the number of ephrinB2- and p-ephrinB2-immunopositive cells and the AO value of ephrinB2 and its phosphorylated form between the TNBS and TNBS + EphB2-Fc groups. Conclusion EphB1 receptors in the spinal dorsal horn play a pivotal role in the development of visceral pain and may be considered as a potential target for the treatment of visceral pain.
Collapse
|
17
|
Ravi K, Paidas MJ, Saad A, Jayakumar AR. Astrocytes in rare neurological conditions: Morphological and functional considerations. J Comp Neurol 2021; 529:2676-2705. [PMID: 33496339 DOI: 10.1002/cne.25118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 01/06/2023]
Abstract
Astrocytes are a population of central nervous system (CNS) cells with distinctive morphological and functional characteristics that differ within specific areas of the brain and are widely distributed throughout the CNS. There are mainly two types of astrocytes, protoplasmic and fibrous, which differ in morphologic appearance and location. Astrocytes are important cells of the CNS that not only provide structural support, but also modulate synaptic activity, regulate neuroinflammatory responses, maintain the blood-brain barrier, and supply energy to neurons. As a result, astrocytic disruption can lead to widespread detrimental effects and can contribute to the pathophysiology of several neurological conditions. The characteristics of astrocytes in more common neuropathologies such as Alzheimer's and Parkinson's disease have significantly been described and continue to be widely studied. However, there still exist numerous rare neurological conditions in which astrocytic involvement is unknown and needs to be explored. Accordingly, this review will summarize functional and morphological changes of astrocytes in various rare neurological conditions based on current knowledge thus far and highlight remaining neuropathologies where astrocytic involvement has yet to be investigated.
Collapse
Affiliation(s)
- Karthik Ravi
- University of Michigan, Ann Arbor, Michigan, USA
| | - Michael J Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami, Florida, USA
| | - Ali Saad
- Pathology and Laboratory Medicine, University of Miami School of Medicine, Miami, Florida, USA
| | - Arumugam R Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami, Florida, USA.,South Florida VA Foundation for Research and Education Inc, Miami, Florida, USA.,General Medical Research Neuropathology Section, R&D Service, Veterans Affairs Medical Centre, Miami, Florida, USA
| |
Collapse
|
18
|
Theofanous SA, Florens MV, Appeltans I, Denadai Souza A, Wood JN, Wouters MM, Boeckxstaens GE. Ephrin-B2 signaling in the spinal cord as a player in post-inflammatory and stress-induced visceral hypersensitivity. Neurogastroenterol Motil 2020; 32:e13782. [PMID: 32004400 DOI: 10.1111/nmo.13782] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/07/2019] [Accepted: 11/27/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Ephrin-B2/EphB receptor signaling contributes to persistent pain states such as postinflammatory and neuropathic pain. Visceral hypersensitivity (VHS) is a major mechanism underlying abdominal pain in patients with irritable bowel syndrome (IBS) and inflammatory bowel diseases (IBD) in remission, but the underlying pathophysiology remains unclear. Here, we evaluated the spinal ephrin-B2/EphB pathway in VHS in 2 murine models of VHS, that is, postinflammatory TNBS colitis and maternal separation (MS). METHODS Wild-type (WT) mice and mice lacking ephrin-B2 in Nav 1.8 nociceptive neurons (cKO) were studied. VHS was induced by: 1. intracolonic instillation of TNBS or 2. water avoidance stress (WAS) in mice that underwent maternal separation (MS). VHS was assessed by quantifying the visceromotor response (VMRs) during colorectal distention. Colonic tissue and spinal cord were collected for histology, gene, and protein expression evaluation. KEY RESULTS In WT mice, but not cKO mice, TNBS induced VHS at day 14 after instillation, which returned to baseline perception from day 28 onwards. In MS WT mice, WAS induced VHS for up to 4 weeks. In cKO however, visceral pain perception returned to basal level by week 4. The development of VHS in WT mice was associated with significant upregulation of spinal ephrin-B2 and EphB1 mRNA expression or protein levels in the TNBS model and upregulation of spinal ephrin-B2 protein in the MS model. No changes were observed in cKO mice. VHS was not associated with persistent intestinal inflammation. CONCLUSIONS AND INFERENCES Overall, our data indicate that the ephrin-B2/EphB1 spinal signaling pathway is involved in VHS and may represent a novel therapeutic target.
Collapse
Affiliation(s)
| | - Morgane V Florens
- Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Iris Appeltans
- Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | | | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research (WIBR), University College London (UCL), London, UK
| | - Mira M Wouters
- Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Guy E Boeckxstaens
- Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Systematic Administration of B Vitamins Alleviates Diabetic Pain and Inhibits Associated Expression of P2X3 and TRPV1 in Dorsal Root Ganglion Neurons and Proinflammatory Cytokines in Spinal Cord in Rats. Pain Res Manag 2020; 2020:3740162. [PMID: 32104520 PMCID: PMC7035549 DOI: 10.1155/2020/3740162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/06/2020] [Indexed: 01/23/2023]
Abstract
Background Treatment of diabetic neuropathic pain (DNP) continues to be a major challenge, and underlying mechanisms of DNP remain elusive. We investigated treatment effects of B vitamins on DPN- and DNP-associated alterations of neurochemical signaling in the nociceptive dorsal root ganglion (DRG) neurons and the spinal cord in rats. Methods DNP was produced in male, adult, Sprague Dawley rats by single i.p. streptozotocin (STZ). Western blot analysis and immunohistochemistry were used to analyze protein expressions in DRG and ELISA to measure the proinflammatory cytokines in the spinal cord. Behaviorally expressed DNP was determined by measuring the sensitivity of hindpaw skin to mechanical and thermal stimulation. Results There were 87.5% (77/88) rats which developed high blood glucose within 1-2 weeks following STZ injection. Of which, 70.13% (n = 54/77) animals exhibited DNP manifested as mechanical allodynia and/or thermal hyperalgesia. Intraperitoneal administration of vitamins B1/B6/B12 (100/100/2 mg/kg, one or multiple doses) significantly attenuated DNP without affecting the blood glucose. Expressions of P2X3 and TRPV1 in CGRP-positive and IB4-positive DRG neurons as well as the interleukin-1β, tumor necrosis factor-α, and nerve growth factor in the lumbar spinal cord were greatly increased in DNP rats. Such DNP-associated neurochemical alterations were also greatly suppressed by the B-vitamin treatment. Conclusions B-vitamin treatment can greatly suppress chronic DNP and DNP-associated increased activities of P2X3 and TRPV1 in DRG and the spinal proinflammatory cytokines, which may contribute to the pathogenesis of DNP. Systematic administration of B vitamins can be a strategy for DNP management in clinic.
Collapse
|
20
|
Activation of EphB receptors contributes to primary sensory neuron excitability by facilitating Ca2+ influx directly or through Src kinase-mediated N-methyl-D-aspartate receptor phosphorylation. Pain 2020; 161:1584-1596. [DOI: 10.1097/j.pain.0000000000001855] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Jia GL, Huang Q, Cao YN, Xie CS, Shen YJ, Chen JL, Lu JH, Zhang MB, Li J, Tao YX, Cao H. Cav-1 participates in the development of diabetic neuropathy pain through the TLR4 signaling pathway. J Cell Physiol 2019; 235:2060-2070. [PMID: 31318049 DOI: 10.1002/jcp.29106] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022]
Abstract
This study aims to determine whether caveolin-1 (Cav-1) participates in the process of diabetic neuropathic pain by directly regulating the expression of toll-like receptor 4 (TLR4) and the subsequent phosphorylation of N-methyl-D-aspartate receptor 2B subunit (NR2B) in the spinal cord. Male Sprague-Dawley rats (120-150 g) were continuously fed with high-fat and high-sugar diet for 8 weeks, and received a single low-dose of intraperitoneal streptozocin injection in preparation for the type-II diabetes model. Then, these rats were divided into five groups according to the level of blood glucose, and the mechanical withdrawal threshold and thermal withdrawal latency values. The pain thresholds were measured at 3, 7, and 14 days after animal grouping. Then, eight rats were randomly chosen from each group and killed. Lumbar segments 4-6 of the spinal cord were removed for western blot analysis and immunofluorescence assay. Cav-1 was persistently upregulated in the spinal cord after diabetic neuropathic pain in rats. The downregulation of Cav-1 through the subcutaneous injection of Cav-1 inhibitor daidzein ameliorated the pain hypersensitivity and TLR4 expression in the spinal cord in diabetic neuropathic pain (DNP) rats. Furthermore, it was found that Cav-1 directly bound with TLR4, and the subsequent phosphorylation of NR2B in the spinal cord contributed to the modulation of DNP. These findings suggest that Cav-1 plays a vital role in DNP processing at least in part by directly regulating the expression of TLR4, and through the subsequent phosphorylation of NR2B in the spinal cord.
Collapse
Affiliation(s)
- Gai-Li Jia
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Pain Medicine Institute of Wenzhou Medical University, Zhejiang, China
| | - Qi Huang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Pain Medicine Institute of Wenzhou Medical University, Zhejiang, China
| | - Yan-Nan Cao
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Pain Medicine Institute of Wenzhou Medical University, Zhejiang, China
| | - Ci-Shan Xie
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Pain Medicine Institute of Wenzhou Medical University, Zhejiang, China
| | - Yu-Jing Shen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Pain Medicine Institute of Wenzhou Medical University, Zhejiang, China
| | - Jia-Li Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Pain Medicine Institute of Wenzhou Medical University, Zhejiang, China
| | - Jia-Hui Lu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Pain Medicine Institute of Wenzhou Medical University, Zhejiang, China
| | - Mao-Biao Zhang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Pain Medicine Institute of Wenzhou Medical University, Zhejiang, China
| | - Jun Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Pain Medicine Institute of Wenzhou Medical University, Zhejiang, China
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Hong Cao
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Pain Medicine Institute of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
22
|
Morioka N, Kodama K, Tomori M, Yoshikawa K, Saeki M, Nakamura Y, Zhang FF, Hisaoka-Nakashima K, Nakata Y. Stimulation of nuclear receptor REV-ERBs suppresses production of pronociceptive molecules in cultured spinal astrocytes and ameliorates mechanical hypersensitivity of inflammatory and neuropathic pain of mice. Brain Behav Immun 2019; 78:116-130. [PMID: 30682503 DOI: 10.1016/j.bbi.2019.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/15/2019] [Accepted: 01/19/2019] [Indexed: 11/15/2022] Open
Abstract
The orphan nuclear receptors REV-ERBα and REV-ERBβ (REV-ERBs) are crucial in the regulation of inflammatory-related gene transcription in astroglioma cells, but their role in nociceptive transduction has yet to be elaborated. Spinal dorsal horn astrocytes contribute to the maintenance of chronic pain. Treatment of cultured spinal astrocytes with specific REV-ERBs agonists SR9009 or GSK4112 significantly prevented lipopolysaccharide (LPS)-induced mRNA upregulation of pronociceptive molecules interleukin-1β (IL-1β) mRNA, interleukin-6 (IL-6) mRNA and matrix metalloprotease-9 (MMP-9) mRNA, but not CCL2 mRNA expression. Treatment with SR9009 also blocked tumor necrosis factor-induced IL-1β mRNA, IL-6 mRNA and MMP-9 mRNA. In addition, treatment with SR9009 significantly blocked LPS-induced upregulation of IL-1β protein, IL-6 protein and MMP-9 activity. The inhibitory effects of SR9009 on LPS-induced expression of pronociceptive molecules were blocked by knockdown of REV-ERBs expression with short interference RNA, confirming that SR9009 exerts its effect through REV-ERBs. Intrathecal LPS treatment in male mice induces hind paw mechanical hypersensitivity, and upregulation of IL-1β mRNA, IL-6 mRNA and glial fibrillary acidic protein (GFAP) expression in spinal dorsal horn. Intrathecal pretreatment of SR9009 prevented the onset of LPS-induced mechanical hypersensitivity, cytokine expression and GFAP expression. Intrathecal injection of SR9009 also ameliorated mechanical hypersensitivity during the maintenance phase of complete Freund's adjuvant-induced inflammatory pain and partial sciatic nerve ligation-, paclitaxel-, and streptozotocin-induced neuropathy in mice. The current findings suggest that spinal astrocytic REV-ERBs could be critical in the regulation of nociceptive transduction through downregulation of pronociceptive molecule expression. Thus, spinal REV-ERBs could be an effective therapeutic target in the treatment of chronic pain.
Collapse
Affiliation(s)
- Norimitsu Morioka
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | - Keitaro Kodama
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Mizuki Tomori
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Kanade Yoshikawa
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Munenori Saeki
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; Cellular Pathobiology Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse IRP, Triad Suite 3305, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Fang Fang Zhang
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; Institute of Pharmacology, Taishan Medical University, 619 Changcheng Road, Taian, Shandong 271016, China
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yoshihiro Nakata
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
23
|
Giorgio C, Incerti M, Pala D, Russo S, Chiodelli P, Rusnati M, Cantoni A, Di Lecce R, Barocelli E, Bertoni S, Ravassard P, Manenti F, Piemonti L, Ferlenghi F, Lodola A, Tognolini M. Inhibition of Eph/ephrin interaction with the small molecule UniPR500 improves glucose tolerance in healthy and insulin-resistant mice. Pharmacol Res 2019; 141:319-330. [DOI: 10.1016/j.phrs.2019.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/05/2018] [Accepted: 01/04/2019] [Indexed: 01/22/2023]
|
24
|
Zhou R, Xu T, Liu X, Chen Y, Kong D, Tian H, Yue M, Huang D, Zeng J. Activation of spinal dorsal horn P2Y 13 receptors can promote the expression of IL-1β and IL-6 in rats with diabetic neuropathic pain. J Pain Res 2018; 11:615-628. [PMID: 29628771 PMCID: PMC5877493 DOI: 10.2147/jpr.s154437] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Objective The dorsal horn P2Y13 receptor is involved in the development of pain behavior induced by peripheral nerve injury. It is unclear whether the expression of proinflammatory cytokines interleukin (IL)-1β and IL-6 at the spinal dorsal horn are influenced after the activation of P2Y13 receptor in rats with diabetic neuropathic pain (DNP). Methods A rat model of type 1 DNP was induced by intraperitoneal injection of streptozotocin (STZ). We examined the expression of P2Y13 receptor, Iba-1, IL-1β, IL-6, JAK2, STAT3, pTyr1336, and pTyr1472 NR2B in rat spinal dorsal horn. Results Compared with normal rats, STZ-diabetic rats displayed obvious mechanical allodynia and the increased expression of P2Y13 receptor, Iba-1, IL-1β, and IL-6 in the dorsal spinal cord that was continued for 6 weeks in DNP rats. The data obtained indicated that, in DNP rats, administration of MRS2211 significantly attenuated mechanical allodynia. Compared with DNP rats, after MRS2211 treatment, expression of the P2Y13 receptor, Iba-1, IL-1β, and IL-6 were reduced 4 weeks after the STZ injection. However, MRS2211 treatment did not attenuate the expression of the P2Y13 receptor, Iba-1, IL-1β, and IL-6 at 6 weeks after the STZ injection. MRS2211 suppressed JAK2 and STAT3 expression in the early stage, but not in the later stage. Moreover, pTyr1336 NR2B was significantly decreased, whereas pTyr1472 NR2B was unaffected in the dorsal spinal cord of MRS2211-treated DNP rats. Conclusion Intrathecal MRS2211 produces an anti-nociceptive effect in early-stage DNP. A possible mechanism involved in MRS2211-induced analgesia is that blocking the P2Y13 receptor downregulates levels of IL-1β and IL-6, which subsequently inhibit the activation of the JAK2/STAT3 signaling pathway. Furthermore, blocking the activation of the P2Y13 receptor can decrease NR2B-containing NMDAR phosphorylation in dorsal spinal cord neurons, thereby attenuating central sensitization in STZ-induced DNP rats.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - Tao Xu
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - XiaoHong Liu
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - YuanShou Chen
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - DeYing Kong
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - Hong Tian
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - Mingxia Yue
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - Dujuan Huang
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - Junwei Zeng
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| |
Collapse
|
25
|
Papanas N, Ziegler D. Emerging drugs for diabetic peripheral neuropathy and neuropathic pain. Expert Opin Emerg Drugs 2016; 21:393-407. [DOI: 10.1080/14728214.2016.1257605] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|