1
|
Fan S, Zeng S. Plasma proteomics in pediatric patients with sepsis- hopes and challenges. Clin Proteomics 2025; 22:10. [PMID: 40097982 PMCID: PMC11917080 DOI: 10.1186/s12014-025-09533-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025] Open
Abstract
One of the main causes of morbidity and death in pediatric patients is sepsis. Of the 48.9 million cases of sepsis reported globally, 41.5% involve children under the age of five, with 2.9 million deaths associated with the disease. Clinicians must identify and treat patients at risk of sepsis or septic shock before late-stage organ dysfunction occurs since diagnosing sepsis in young patients is more difficult than in adult patients. As of right now, omics technologies that possess adequate diagnostic sensitivity and specificity can assist in locating biomarkers that indicate how the disease will progress clinically and how the patient will react to treatment. By identifying patients who are at a higher risk of dying or experiencing persistent organ dysfunction, risk stratification based on biomarkers generated from proteomics can enhance prognosis. A potentially helpful method for determining the proteins that serve as biomarkers for sepsis and formulating theories on the pathophysiological mechanisms behind complex sepsis symptoms is plasma proteomics.
Collapse
Affiliation(s)
- Shiyuan Fan
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (Affiliated Hospital of Hunan Academy of Chinese Medicine), Changsha, 410006, China
- Hunan Provincial People's Hospital and The First-affiliated Hospital of Hunan Normal University, 61 Jie-Fang West Road, Fu-Rong District, Changsha, 410005, Hunan, R.P. China
| | - Saizhen Zeng
- Hunan Provincial People's Hospital and The First-affiliated Hospital of Hunan Normal University, 61 Jie-Fang West Road, Fu-Rong District, Changsha, 410005, Hunan, R.P. China.
| |
Collapse
|
2
|
Kaji H. Current issues of tandem mass spectrum (MS2)-based glycoproteomics and efforts to complement them. BBA ADVANCES 2025; 7:100158. [PMID: 40207212 PMCID: PMC11979480 DOI: 10.1016/j.bbadva.2025.100158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/03/2025] [Accepted: 03/14/2025] [Indexed: 04/11/2025] Open
Abstract
With the development of liquid chromatography/mass spectrometers that support proteomics and the associated development of analytical methods and data analysis software, the number of proteins that can be identified and quantified in a single analysis is approaching the level of transcriptomics. However, many problems remain to be solved in protein glycosylation analysis. This mini-review discusses the technical issues of MS2-based glycoprotein identification and efforts to complement them by the Human Glycome Atlas (HGA) Project in Japan.
Collapse
Affiliation(s)
- Hiroyuki Kaji
- Institute for Glyco-core Research (iGCORE), Nagoya University, Japan
| |
Collapse
|
3
|
Xie Y, Chen X, Xu M, Zheng X. Application of the Human Proteome in Disease, Diagnosis, and Translation into Precision Medicine: Current Status and Future Prospects. Biomedicines 2025; 13:681. [PMID: 40149657 PMCID: PMC11940125 DOI: 10.3390/biomedicines13030681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
This review summarizes the existing studies of human proteomics technology in the medical field with a focus on the development mechanism of a disease and its potential in discovering biomarkers. Through a systematic review of the relevant literature, we found the significant advantages and application scenarios of proteomics technology in disease diagnosis, drug development, and personalized treatment. However, the review also identifies the challenges facing proteomics technologies, including sample preparation of low-abundance proteins, massive amounts of data analysis, and how research results can be better used in clinical practice. Finally, this work discusses future research directions, including the development of more effective proteomics technologies, strengthening the integration of multi-source omics technologies, and promoting the application of AI in the human proteome.
Collapse
Affiliation(s)
| | | | - Maokai Xu
- Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou 350001, China; (Y.X.); (X.C.)
| | - Xiaochun Zheng
- Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou 350001, China; (Y.X.); (X.C.)
| |
Collapse
|
4
|
Li P, Han M, Zhang R, Chen F, Li Y, Yuan J, Ma N, Li L, Wu J. Novel Biomarkers for Screening Retinal Detachment Associated with Choroidal Detachment Using DIA-MS-Based Proteomics. Curr Eye Res 2025:1-10. [PMID: 40012137 DOI: 10.1080/02713683.2025.2469228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/16/2024] [Accepted: 02/14/2025] [Indexed: 02/28/2025]
Abstract
PURPOSE Rhegmatogenous retinal detachment associated with choroidal detachment (RRDCD) is known for its rapid progression and poor prognosis, making it a subject of significant clinical interest due to its complex pathogenesis. This study aims to utilize mass spectrometry for proteomic analysis of vitreous humor to identify proteins and biomarkers critical to the pathophysiology of RRDCD. METHODS Data-independent acquisition (DIA) mass spectrometry was employed to analyze vitreous humor samples from RRDCD and Rhegmatogenous retinal detachment (RRD) patients. The analysis focused on identifying differentially expressed proteins (DEPs) and determining their functional roles. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to explore the biological processes and pathways associated with these DEPs. DEPs were validated using ELISA to confirm the reliability of the mass spectrometry results. RESULTS A total of 237 DEPs were identified, including 63 upregulated and 174 downregulated proteins. GO functional analysis showed enrichment in terms related to molecular function regulators, biological adhesion, and the extracellular region. KEGG pathway analysis revealed significant associations with the Extracellular environment (ECM)-receptor interaction, complement and coagulation cascades, and lysosome pathways. Receiver operating characteristic (ROC) analysis further confirmed that Serum amyloid A-4 protein (SAA4), Inter-alpha-trypsin inhibitor heavy chain H1 (ITIH1), and Vitronectin (VTN) exhibit excellent performance in the diagnosis of RRDCD. Both VTN and SAA4 showed positive correlations with BCVA at 6 months post-surgery. CONCLUSION RRDCD activates a variety of cellular pathways, not only complement and inflammation, but also the remodeling of the extracellular matrix and the activation of lysosome-related pathways disrupt normal retinal cell function. SAA4, ITIH1, and VTN in vitreous fluid can serve as effective biomarkers for diagnosing patients with RRDCD. Additionally, both VTN and SAA4 are correlated with post-operative visual outcomes.
Collapse
Affiliation(s)
- Pingping Li
- Department of Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Aier Eye Hospital, Wuhan University, Wuhan, China
| | - Mengyao Han
- Department of Aier Eye Hospital, Wuhan University, Wuhan, China
| | - Rui Zhang
- Department of Aier Eye Hospital, Wuhan University, Wuhan, China
| | - Fangyu Chen
- Department of Aier Eye Hospital, Wuhan University, Wuhan, China
| | - Yanzi Li
- Department of Aier Eye Hospital, Wuhan University, Wuhan, China
| | - Jing Yuan
- Department of Aier Eye Hospital, Wuhan University, Wuhan, China
| | - Ning Ma
- Department of Aier Eye Hospital, Wuhan University, Wuhan, China
| | - Lu Li
- Department of Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianhua Wu
- Department of Aier Eye Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Maimó-Barceló A, Pérez-Romero K, Rodríguez RM, Huergo C, Calvo I, Fernández JA, Barceló-Coblijn G. To image or not to image: Use of imaging mass spectrometry in biomedical lipidomics. Prog Lipid Res 2025; 97:101319. [PMID: 39765282 DOI: 10.1016/j.plipres.2025.101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 11/19/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
Lipid imaging mass spectrometry (LIMS) allows for establishing the bidimensional distribution of lipid species within a tissue section. One of the main advantages is the generation of spatial information on lipid species distribution at a spatial (lateral) resolution bordering on single-cell resolution with no need to isolate cells. Thus, LIMS images demonstrate, with a level of detail never described before, that lipid profiles are highly sensitive to cell type and pathophysiological state. The wealth and relevance of the information conveyed by LIMS makes up for the lack of a separation stage before sample injection into the mass analyzer, which can somehow be circumvented by other means. Hence, the possibility of describing the lipidome at the cellular level while preserving the microenvironment offers an incomparable opportunity to investigate physiological and pathological contexts. However, to fully grasp the biological implications of the lipid profiles, it is essential to contextualize LIMS data within the broader multiscale 'omic' landscape, entailing genomics, epigenomics, and proteomics, each offering a unique window into the regulatory layers of the cell. In this line, the number of techniques that can be combined with LIMS to delve into the molecular mechanisms underlying differential lipid profiles is continuously increasing. Herein, we aim to describe the key features of LIMS analyses, from sample preparation to data interpretation, as well as the current methodologies to enrich and complete the final outcome. While the field is rapidly advancing, we consider there is solid evidence to foresee the incorporation of LIMS into clinical environments.
Collapse
Affiliation(s)
- Albert Maimó-Barceló
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa) - Health Research Institute of the Balearic Islands, Ctra. Valldemossa 79, Section G, Floor -1, E-07120 Palma, Balearic Islands, Spain; Research Unit, University Hospital Son Espases, Ctra Valldemossa 79, E-07120 Palma, Balearic Islands, Spain
| | - Karim Pérez-Romero
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa) - Health Research Institute of the Balearic Islands, Ctra. Valldemossa 79, Section G, Floor -1, E-07120 Palma, Balearic Islands, Spain; Research Unit, University Hospital Son Espases, Ctra Valldemossa 79, E-07120 Palma, Balearic Islands, Spain
| | - Ramón M Rodríguez
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa) - Health Research Institute of the Balearic Islands, Ctra. Valldemossa 79, Section G, Floor -1, E-07120 Palma, Balearic Islands, Spain; Research Unit, University Hospital Son Espases, Ctra Valldemossa 79, E-07120 Palma, Balearic Islands, Spain
| | - Cristina Huergo
- Department of Physical Chemistry, Fac. of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Ibai Calvo
- Department of Physical Chemistry, Fac. of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - José A Fernández
- Department of Physical Chemistry, Fac. of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain.
| | - Gwendolyn Barceló-Coblijn
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa) - Health Research Institute of the Balearic Islands, Ctra. Valldemossa 79, Section G, Floor -1, E-07120 Palma, Balearic Islands, Spain; Research Unit, University Hospital Son Espases, Ctra Valldemossa 79, E-07120 Palma, Balearic Islands, Spain.
| |
Collapse
|
6
|
Ji X, Yang C, Niu C. Proteomic and metabolomic exploration in relapse acute myeloid leukemia bone marrow supernatant combined with genetic characteristics. BMC Cancer 2024; 24:1545. [PMID: 39695514 DOI: 10.1186/s12885-024-13286-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
OBJECT Aim to investigate the multi-omic characteristics of the bone marrow supernatant of relapsed acute myeloid leukemia (AML) and search for proteins and metabolites associated with relapse. METHODS A total of 40 bone marrow supernatant from 7 patients with relapsed AML and 33 patients with non-relapsed AML were collected for proteomics and metabonomics analysis. Unsupervised clustering was used to discover the characteristics of proteins and metabolites. The prognostic significances of proteins were assessed concerning the relapse status(including death) and relapse-free survival. RESULT Totally 996 proteins and 4,831 metabolites were identified in bone marrow supernatant, and two of 7 clusters were revealed through unsupervised clustering and were associated with ASXL1, TP53, and RUNX1 mutations, which were listed as high-risk factors in the 2022 edition of the WHO classification of tumors of the hematopoietic and lymphoid tissues. Among the identified proteins and metabolites, 57 proteins and 190 metabolites were found to be closely related to relapse. CONCLUSION This study has revealed a significant correlation between protein expression in the bone marrow microenvironment of AML and three high-risk mutations: ASXL1, TP53, and RUNX1. Based on this finding, we further identified 227 differential proteins closely associated with these three mutations, as well as 57 proteins directly related to disease recurrence. Additionally, lipid metabolism plays a crucial role in the occurrence and development of AML within its bone marrow microenvironment.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Male
- Female
- Middle Aged
- Proteomics/methods
- Bone Marrow/metabolism
- Bone Marrow/pathology
- Mutation
- Adult
- Metabolomics/methods
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Aged
- Prognosis
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Young Adult
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- Tumor Microenvironment/genetics
Collapse
Affiliation(s)
- Xinyao Ji
- Department of Laboratory Medicine, Chongqing General Hospital, Chongqing University, No.118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, China
- Department of Laboratory Medicine, Chongqing General Hospital, No.118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, China
- Blood Transfusion Department, The People's Hospital of Leshan, Leshan, 614000, China
| | - Cheng Yang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - Changchun Niu
- Department of Laboratory Medicine, Chongqing General Hospital, Chongqing University, No.118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, China.
- Department of Laboratory Medicine, Chongqing General Hospital, No.118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, China.
| |
Collapse
|
7
|
Tsakalof A, Sysoev AA, Vyatkina KV, Eganov AA, Eroshchenko NN, Kiryushin AN, Adamov AY, Danilova EY, Nosyrev AE. Current Role and Potential of Triple Quadrupole Mass Spectrometry in Biomedical Research and Clinical Applications. Molecules 2024; 29:5808. [PMID: 39683965 PMCID: PMC11643727 DOI: 10.3390/molecules29235808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024] Open
Abstract
Mass-spectrometry-based assays nowadays play an essential role in biomedical research and clinical applications. There are different types of commercial mass spectrometers on the market today, and triple quadrupole (QqQ) is one of the time-honored systems. Here, we overview the main areas of QqQ applications in biomedicine and assess the current level, evolution, and trends in the use of QqQ in these areas. Relevant data were extracted from the Scopus database using the specified terms and Boolean operators defined for each field of the QqQ application. We also discuss the recent advances in QqQ and QqQ-based analytical platforms, which promote the clinical application of these systems, and explain the indicated substantial increase in triple quadrupole use in biomedicine. The number of biomedical studies utilizing QqQ increased 2-3 times this decade. Triple quadrupole is most intensively used in the field of endocrine research and testing. On the contrary, the relative rate of immunoassay utilization-a major competitor of chromatography-mass spectrometry-decreased in this area as well as its use within Therapeutic drug monitoring (TDM) and forensic toxicology. Nowadays, the applications of high-resolution accurate mass (HRAM) mass spectrometers in the investigated areas represent only a small fraction of the total amount of research using mass spectrometry; however, their application substantially increased during the last decade in the untargeted search for new biomarkers.
Collapse
Affiliation(s)
- Andreas Tsakalof
- Laboratory of Biochemistry, School of Medicine, University of Thessaly, Biopolis, 41111 Larissa, Greece
| | - Alexey A. Sysoev
- Laboratory of Applied Ion Physics and Mass Spectrometry, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia; (A.A.S.); (A.Y.A.)
| | - Kira V. Vyatkina
- Biomedical Science and Technology Park, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (K.V.V.); (A.A.E.); (N.N.E.); (A.N.K.); (E.Y.D.)
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 St. Petersburg, Russia
- Department of Software Engineering and Computer Applications, Saint Petersburg Electrotechnical University “LETI”, 197376 St. Petersburg, Russia
| | - Alexander A. Eganov
- Biomedical Science and Technology Park, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (K.V.V.); (A.A.E.); (N.N.E.); (A.N.K.); (E.Y.D.)
| | - Nikolay N. Eroshchenko
- Biomedical Science and Technology Park, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (K.V.V.); (A.A.E.); (N.N.E.); (A.N.K.); (E.Y.D.)
| | - Alexey N. Kiryushin
- Biomedical Science and Technology Park, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (K.V.V.); (A.A.E.); (N.N.E.); (A.N.K.); (E.Y.D.)
| | - Alexey Yu. Adamov
- Laboratory of Applied Ion Physics and Mass Spectrometry, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia; (A.A.S.); (A.Y.A.)
| | - Elena Yu. Danilova
- Biomedical Science and Technology Park, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (K.V.V.); (A.A.E.); (N.N.E.); (A.N.K.); (E.Y.D.)
- Department of Analytic Chemistry, Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Alexander E. Nosyrev
- Biomedical Science and Technology Park, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (K.V.V.); (A.A.E.); (N.N.E.); (A.N.K.); (E.Y.D.)
| |
Collapse
|
8
|
Webb RJ, Al-Asmakh M, Banach M, Mazidi M. Application of proteomics for novel drug discovery and risk prediction optimisation in stroke and myocardial infarction: a review of in-human studies. Drug Discov Today 2024; 29:104186. [PMID: 39306234 DOI: 10.1016/j.drudis.2024.104186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
The use of proteomics in human studies investigating stroke and myocardial infarction (MI) has been increasing, prompting a review of the literature. This revealed proteinaceous biomarkers of stroke from thrombi, brain tissue, cells, and particles, some of which cross the blood-brain barrier (BBB). Several proteins were also implicated in coronary artery disease (CAD), which often underlies MI, cholesterol transportation, and inflammation. Furthermore, the platelet proteome revealed itself as a potential therapeutic target, along with differentially expressed proteins associated with MI progression. Moreover, proteomic data enhanced the performance of conventional risk scores and causal protein discovery has improved interventions and drug development for patients with MI and other conditions. These findings suggest that proteomics holds much promise for future stroke and MI research.
Collapse
Affiliation(s)
- Richard J Webb
- School of Health and Sport Sciences, Hope Park Campus, Liverpool Hope University, Taggart Avenue, Liverpool, UK
| | - Maha Al-Asmakh
- Department of Biomedical Sciences, College of Health Sciences, QU-Health, Qatar University, Doha, Qatar; Biomedical Research Center, Qatar University, Doha, Qatar
| | - Maciej Banach
- Faculty of Medicine, the John Paul II Catholic University of Lublin, Lublin, Poland; Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), 93-338 Lodz, Poland
| | - Mohsen Mazidi
- Department of Twin Research, King's College London, London, UK; Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK; Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Singh J, Yadav P, Budhlakoti N, Mishra DC, Bhardwaj NR, Rao M, Sharma P, Gupta NC. Exploration of the Sclerotinia sclerotiorum-Brassica pathosystem: advances and perspectives in omics studies. Mol Biol Rep 2024; 51:1097. [PMID: 39460825 DOI: 10.1007/s11033-024-10043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
The polyphagous phytopathogen Sclerotinia sclerotiorum causing Stem rot disease is a major biotic stress in Brassica, and affects the yield and quality in various crops of agricultural significance. It affects the crop at pre-maturity which causes a reduction in the seed yield and deteriorates the oil quality in rapeseeds and Indian mustard globally. The hemibiotrophic nature and long persistence in the soil as sclerotia have made this pathogen difficult to manage through conventional agronomical practices. Hence, for alternative strategies, it is important to understand the basic aspects of the pathogen and the pathogenesis processes in the host. The current developments in technologies for omics studies including whole-genomes, transcriptomes, proteomes, and metabolomes have deciphered various genes, transcription factors, effectors and their target molecules involved in interaction, disease establishment and pathogen progress in the host tissues. The current review encompasses the studies that were conducted to decipher the Brassica-S. sclerotiorum pathosystem and the molecular factors identified through multi-omics studies for their application in building resistance to Sclerotinia stem rot disease in the susceptible cultivars of oilseed Brassica.
Collapse
Affiliation(s)
- Joshi Singh
- ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, Rajasthan, India
| | - Prashant Yadav
- ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, Rajasthan, India
| | - Neeraj Budhlakoti
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | | | - Mahesh Rao
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Pankaj Sharma
- ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, Rajasthan, India.
- ICAR- National Institute of Biotic Stress Management, Raipur, Chhattisgarh, India.
| | | |
Collapse
|
10
|
Xu T, Lyu L, Zheng J, Li L. Advances in omics-based biomarker discovery for biliary tract malignancy Diagnosis:A narrative review. Mol Cell Probes 2024; 76:101970. [PMID: 38964426 DOI: 10.1016/j.mcp.2024.101970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Biliary tract neoplasms, which originate from the intrahepatic or extrahepatic biliary epithelium, are relatively rare but diagnostically challenging types of tumours, and their morbidity and mortality have increased in recent years. Due to ineffective early diagnostic methods, once detected, patients are in an advanced stage with a poor prognosis and few treatment options. With the development of omics technologies, the associations between microorganisms, bile acid and salts, noncoding RNAs and biliary tract malignancies have been gradually revealed, providing new methods for the discovery of diagnostic biomarkers. Here, we review the research advances in microbiomics, transcriptomics, metabolomics, and proteomics in the discovery of diagnostic biomarkers for biliary tract malignancies.
Collapse
Affiliation(s)
- Tao Xu
- Department of Gastroenterology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 102200, China.
| | - Lingna Lyu
- Department of Hepatology and Gastroenterology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| | - Junfu Zheng
- Department of Gastroenterology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 102200, China.
| | - Lei Li
- Department of Gastroenterology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 102200, China.
| |
Collapse
|
11
|
Ahmad P, Hussain A, Siqueira WL. Mass spectrometry-based proteomic approaches for salivary protein biomarkers discovery and dental caries diagnosis: A critical review. MASS SPECTROMETRY REVIEWS 2024; 43:826-856. [PMID: 36444686 DOI: 10.1002/mas.21822] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dental caries is a multifactorial chronic disease resulting from the intricate interplay among acid-generating bacteria, fermentable carbohydrates, and several host factors such as saliva. Saliva comprises several proteins which could be utilized as biomarkers for caries prevention, diagnosis, and prognosis. Mass spectrometry-based salivary proteomics approaches, owing to their sensitivity, provide the opportunity to investigate and unveil crucial cariogenic pathogen activity and host indicators and may demonstrate clinically relevant biomarkers to improve caries diagnosis and management. The present review outlines the published literature of human clinical proteomics investigations on caries and extensively elucidates frequently reported salivary proteins as biomarkers. This review also discusses important aspects while designing an experimental proteomics workflow. The protein-protein interactions and the clinical relevance of salivary proteins as biomarkers for caries, together with uninvestigated domains of the discipline are also discussed critically.
Collapse
Affiliation(s)
- Paras Ahmad
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ahmed Hussain
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Walter L Siqueira
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
12
|
Coorssen JR, Padula MP. Proteomics-The State of the Field: The Definition and Analysis of Proteomes Should Be Based in Reality, Not Convenience. Proteomes 2024; 12:14. [PMID: 38651373 PMCID: PMC11036260 DOI: 10.3390/proteomes12020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
With growing recognition and acknowledgement of the genuine complexity of proteomes, we are finally entering the post-proteogenomic era. Routine assessment of proteomes as inferred correlates of gene sequences (i.e., canonical 'proteins') cannot provide the necessary critical analysis of systems-level biology that is needed to understand underlying molecular mechanisms and pathways or identify the most selective biomarkers and therapeutic targets. These critical requirements demand the analysis of proteomes at the level of proteoforms/protein species, the actual active molecular players. Currently, only highly refined integrated or integrative top-down proteomics (iTDP) enables the analytical depth necessary to provide routine, comprehensive, and quantitative proteome assessments across the widest range of proteoforms inherent to native systems. Here we provide a broad perspective of the field, taking in historical and current realities, to establish a more balanced understanding of where the field has come from (in particular during the ten years since Proteomes was launched), current issues, and how things likely need to proceed if necessary deep proteome analyses are to succeed. We base this in our firm belief that the best proteomic analyses reflect, as closely as possible, the native sample at the moment of sampling. We also seek to emphasise that this and future analytical approaches are likely best based on the broad recognition and exploitation of the complementarity of currently successful approaches. This also emphasises the need to continuously evaluate and further optimize established approaches, to avoid complacency in thinking and expectations but also to promote the critical and careful development and introduction of new approaches, most notably those that address proteoforms. Above all, we wish to emphasise that a rigorous focus on analytical quality must override current thinking that largely values analytical speed; the latter would certainly be nice, if only proteoforms could thus be effectively, routinely, and quantitatively assessed. Alas, proteomes are composed of proteoforms, not molecular species that can be amplified or that directly mirror genes (i.e., 'canonical'). The problem is hard, and we must accept and address it as such, but the payoff in playing this longer game of rigorous deep proteome analyses is the promise of far more selective biomarkers, drug targets, and truly personalised or even individualised medicine.
Collapse
Affiliation(s)
- Jens R. Coorssen
- Department of Biological Sciences, Faculty of Mathematics and Science, Brock University, St. Catharines, ON L2S 3A1, Canada
- Institute for Globally Distributed Open Research and Education (IGDORE), St. Catharines, ON L2N 4X2, Canada
| | - Matthew P. Padula
- School of Life Sciences and Proteomics, Lipidomics and Metabolomics Core Facility, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
13
|
Chen J, Liang H, Wu Y, Li C. Phosphoproteomics changes due to allograft-induced stress responses of Pinctada fucata martensii. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101153. [PMID: 37956605 DOI: 10.1016/j.cbd.2023.101153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023]
Abstract
Protein phosphorylation modifications are post-translational modifications (PTMs) that play important roles in signal transduction and immune regulation. Implanting a spherical nucleus into a recipient shellfish is critical in marine pearl aquaculture. Protein phosphorylation may be important in the immune responses of Pinctada fucata martensii after nucleus implantation, but their involvement in regulation remains unclear. Here, phosphoproteomics of P. f. martensii gill tissues was conducted 12 h after nuclear implantation using label-free data-independent acquisition (DIA) with LC-MS/MS. Among the 4024 phosphorylated peptides with quantitative information, 181 were up-regulated and 148 were down-regulated. Functional enrichment analysis of these differentially expressed phosphorylated proteins (DEPPs) revealed significant enrichment in functions related to membrane trafficking, exosomes, cytoskeleton, and signal transduction mechanisms. Further, 16 conserved motifs were identified among the DEPPs, including the RSphP, SphP, RSphA, RSphE, PTphP, and ATphP motifs that were significantly conserved, and which may be related to specific kinase recognition. Parallel response monitoring (PRM) analysis validated the abundances of 12 DEPPs from the proteomics, indicating that the phosphoproteomics analyses were robust. 12 DEPPs were selected from the proteomics results through Quantitative real-time PCR (qPCR) technology, and verification analysis was conducted at the gene level. The study suggests that kinases such as MAPKs, Akt, and CK2 may regulate the phosphorylation of related proteins following nuclear implantation. Furthermore, the important signaling pathways of Rap 1, IL-17A, and NF-κB, which are influenced by phosphorylated or dephosphorylated proteins, are found to be involved in this response. Overall, this study revealed the protein phosphorylation responses after nucleus implantation in P. f. martensii, helping to elucidate the characteristics and mechanisms of immune regulation responses in P. f. martensii, in addition to promoting a further understanding of protein phosphorylation modification functions in P. f. martensii.
Collapse
Affiliation(s)
- Jie Chen
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Haiying Liang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China.
| | - Yifan Wu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chaojie Li
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
14
|
Qu Y, Chen L, Ren X, Shari A, Yuan Y, Yu M, Xiao H, Li G. Milk proteomic analysis reveals differentially expressed proteins in high-yielding and low-yielding Guanzhong dairy goats at peak lactation. J DAIRY RES 2024; 91:31-37. [PMID: 38415394 DOI: 10.1017/s0022029924000013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The aim of this experiment was to investigate the differential proteomic characteristics of milk from high- and low-yielding Guanzhong dairy goats during the peak lactation period under the same feeding conditions. Nine Guanzhong dairy goats with high yield (H: 3.5 ± 0.17 kg/d) and nine with low yield (L:1.2 ± 0.25 kg/d) were selected for milk proteomic analysis using tandem mass tag technology. A total of 78 differentially expressed proteins were identified. Compared with L, 50 proteins including HK3, HSPB1 and ANXA2 were significantly upregulated in H milk, while 28 proteins including LALBA and XDH were significantly downregulated. Bioinformatics analysis of the differentially expressed proteins showed that galactose metabolism, purine metabolism, glycolysis/gluconeogenesis, MAPK signaling pathway, regulation of actin cytoskeleton and other pathways were closely related to milk yield. HK3, HSPB1, ANXA2, LALBA and XDH were important candidate proteins associated with the milk production characteristics of Guanzhong dairy goats. Our data provide relevant biomarkers and a theoretical basis for improving milk production in Guanzhong dairy goats.
Collapse
Affiliation(s)
- Yingxin Qu
- Technology Innovation Laboratory of Dairy Sheep Industry, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Lu Chen
- Technology Innovation Laboratory of Dairy Sheep Industry, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Xinyang Ren
- Technology Innovation Laboratory of Dairy Sheep Industry, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Akang Shari
- Technology Innovation Laboratory of Dairy Sheep Industry, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yuxin Yuan
- Technology Innovation Laboratory of Dairy Sheep Industry, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Mengqi Yu
- Technology Innovation Laboratory of Dairy Sheep Industry, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Haoqi Xiao
- Technology Innovation Laboratory of Dairy Sheep Industry, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Guang Li
- Technology Innovation Laboratory of Dairy Sheep Industry, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| |
Collapse
|
15
|
Zhang ZT, Wang H, Dong H, Cong B. Comparative hemolymph proteomic analyses of the freezing and resistance-freezing Ostrinia furnacalis (Guenée). Sci Rep 2024; 14:2580. [PMID: 38297109 PMCID: PMC10830562 DOI: 10.1038/s41598-024-52792-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024] Open
Abstract
The Asian corn borer, Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae), is one of the most harmful pests of maize in Asia. It poses a significant threat to maize production, causing economic losses due to its strong ecological adaptation. In this study, we compared and analyzed the hemolymph proteome between freezing and resistance-freezing O. furnacalis strains using two-dimensional gel electrophoresis to gain insights into the mechanisms of cold resistance. The results revealed that 300-400 hemolymph protein spots were common, with 24 spots showing differences between the two strains. Spectrometry analysis revealed 21 protein spots, including 17 upregulated spots and 4 downregulated ones. The expression of upregulation/downregulation proteins plays a crucial role in the metabolism, energy supply, and defense reaction of insects. Proteomics research not only provides a method for investigating protein expression patterns but also identifies numerous attractive candidates for further exploration.
Collapse
Affiliation(s)
- Zhu-Ting Zhang
- Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
- Kaili University, 556011, Kaili, People's Republic of China
| | - Huan Wang
- Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China.
| | - Hui Dong
- Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China.
| | - Bin Cong
- Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
| |
Collapse
|
16
|
Bai W, Huo S, Li J, Yang Y, Zhou G, Shao J. Proteomic analysis of Biliverdin protected cerebral ischemia-reperfusion injury in rats. Sci Rep 2023; 13:20525. [PMID: 37993477 PMCID: PMC10665369 DOI: 10.1038/s41598-023-47119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023] Open
Abstract
Biliverdin, a heme metabolite, has been previously reported to alleviate cerebral ischemic reperfusion injury (CIRI). However, the alterations of brain proteome profiles underlying this treatment remain elusive. The objective of this study is to analyze the differential protein expression profile in cerebral cortex of rats involved in anti-CIRI effects of Biliverdin, providing experimental foundation for searching specific marker proteins. Rat model of MCAO/R was established, HE staining, TTC staining, TUNEL staining, and neurological behavioral examination, corner turning test, adhesive removal test, were performed to validate the effects of Biliverdin, and the results indicated that Biliverdin plays a significant role in alleviating CIRI. Furthermore, proteomic analysis of brain tissues of rats subjected to CIRI following Biliverdin treatment was performed using an integrated TMT-based quantitative proteomic approach coupled with LC-MS/MS technology to clarify the comprehensive mechanisms of Biliverdin in CIRI. First, we conducted strict quality control data for TMT experiments. Finally, a total of 7366 proteins were identified, of which 95 proteins were differentially expressed (DEPs) between the CIRI group and the Sham group and 52 between the CIRI and BV groups. In addition, two overlapping proteins among the 147 DEPs, Atg4c and Camlg, were validated by RT-qPCR and western blotting, and their levels were consistent with the results of TMT analysis. Taken together, the current findings firstly mapped comprehensive proteomic changes after CIRI treated with Biliverdin, providing a foundation for developing potentially therapeutic targets of anti-CIRI of Biliverdin and clinically prognostic biomarkers of stroke.
Collapse
Affiliation(s)
- Wenya Bai
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, Yunnan, People's Republic of China
| | - Siying Huo
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, Yunnan, People's Republic of China
| | - Junjie Li
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, Yunnan, People's Republic of China
| | - Yuan Yang
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, Yunnan, People's Republic of China
| | - Guilin Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, Yunnan, People's Republic of China
| | - Jianlin Shao
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, Yunnan, People's Republic of China.
| |
Collapse
|
17
|
Ning J, Yang M, Liu W, Luo X, Yue X. Proteomics and Peptidomics As a Tool to Compare the Proteins and Endogenous Peptides in Human, Cow, and Donkey Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16435-16451. [PMID: 37882656 DOI: 10.1021/acs.jafc.3c04534] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Cow's milk is the most widely used ingredient in infant formulas. However, its specific protein composition can cause allergic reactions. Finding alternatives to replace cow's milk and fill the nutritional gap with human milk is essential for the health of infants. Proteomic and peptidomic techniques have supported the elucidation of milk's nutritional ingredients. Recently, omics approaches have attracted increasing interest in the investigation of milk because of their high throughput, precision, sensitivity, and reproducibility. This review offers a significant overview of recent developments in proteomics and peptidomics used to study the differences in human, cow, and donkey milk. All three types of milks were identified to have critical biological functions in human health, particularly in infants. Donkey milk proteins were closer in composition to human milk, were less likely to cause allergic reactions, and may be developed as novel raw materials for formula milk powders.
Collapse
Affiliation(s)
- Jianting Ning
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Mei Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Wanting Liu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Xue Luo
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| |
Collapse
|
18
|
Rahim MS, Sharma V, Pragati Yadav, Parveen A, Kumar A, Roy J, Kumar V. Rethinking underutilized cereal crops: pan-omics integration and green system biology. PLANTA 2023; 258:91. [PMID: 37777666 DOI: 10.1007/s00425-023-04242-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/12/2023] [Indexed: 10/02/2023]
Abstract
MAIN CONCLUSION Due to harsh lifestyle changes, in the present era, nutritional security is needed along with food security so it is necessary to include underutilized cereal crops (UCCs) in our daily diet to counteract the rising danger of human metabolic illness. We can attain both the goal of zero hunger and nutritional security by developing improved UCCs using advanced pan-omics (genomics, transcriptomics, proteomics, metabolomics, nutrigenomics, phenomics and ionomics) practices. Plant sciences research progressed profoundly since the last few decades with the introduction of advanced technologies and approaches, addressing issues of food demand of the growing population, nutritional security challenges and climate change. However, throughout the expansion and popularization of commonly consumed major cereal crops such as wheat and rice, other cereal crops such as millet, rye, sorghum, and others were impeded, despite their potential medicinal and nutraceutical qualities. Undoubtedly neglected underutilized cereal crops (UCCs) also have the capability to withstand diverse climate change. To relieve the burden of major crops, it is necessary to introduce the new crops in our diet in the way of UCCs. Introgression of agronomically and nutritionally important traits by pan-omics approaches in UCCs could be a defining moment for the population's well-being on the globe. This review discusses the importance of underutilized cereal crops, as well as the application of contemporary omics techniques and advanced bioinformatics tools that could open up new avenues for future study and be valuable assets in the development and usage of UCCs in the perspective of green system biology. The increased and improved use of UCCs is dependent on number of factors that necessitate a concerted research effort in agricultural sciences. The emergence of functional genomics with molecular genetics might gear toward the reawakening of interest in underutilized cereals crops. The need of this era is to focus on potential UCCs in advanced agriculture and breeding programmes. Hence, targeting the UCCs, might provide a bright future for better health and scientific rationale for its use.
Collapse
Affiliation(s)
- Mohammed Saba Rahim
- Department of Botany, School of Basic Sciences, Central University of Punjab, Punjab, 151401, India
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, Punjab, 140 306, India
| | - Vinita Sharma
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, Punjab, 140 306, India
| | - Pragati Yadav
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, Punjab, 140 306, India
| | - Afsana Parveen
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, Punjab, 140 306, India
| | - Adarsh Kumar
- Department of Botany, School of Basic Sciences, Central University of Punjab, Punjab, 151401, India
| | - Joy Roy
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, Punjab, 140 306, India.
| | - Vinay Kumar
- Department of Botany, School of Basic Sciences, Central University of Punjab, Punjab, 151401, India.
| |
Collapse
|
19
|
Chandel S, Bhattacharya A, Gautam A, Zeng W, Alka O, Sachsenberg T, Gupta GD, Narang RK, Ravichandiran V, Singh R. Investigation of the anti-cancer potential of epoxyazadiradione in neuroblastoma: experimental assays and molecular analysis. J Biomol Struct Dyn 2023; 42:11377-11395. [PMID: 37753734 DOI: 10.1080/07391102.2023.2262593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023]
Abstract
Neuroblastoma, the most common childhood solid tumor, originates from primitive sympathetic nervous system cells. Epoxyazadiradione (EAD) is a limonoid derived from Azadirachta indica, belonging to the family Meliaceae. In this study, we isolated the EAD from Azadirachta indica seed and studied the anti-cancer potential against neuroblastoma. Herein, EAD demonstrated significant efficacy against neuroblastoma by suppressing cell proliferation, enhancing the rate of apoptosis and cycle arrest at the SubG0 and G2/M phases. EAD enhanced the pro-apoptotic Caspase 3 and Caspase 9 and inhibited the NF-kβ translocation in a dose-dependent manner. In order to identify the specific EAD target, a gel-free quantitative proteomics study on SH-SY5Y cells using Liquid Chromatography with tandem mass spectrometry was done in a dose-dependent manner, followed by detailed bioinformatics analysis to identify effects on protein. Proteomics data identified that Enolase1 and HSP90 were up-regulated in neuroblastoma. EAD inhibited the expression of Enolase1 and HSP90, validated by mRNA expression, immunoblotting, Enolase1 and HSP90 kit and flow-cytometry based bioassay. Molecular docking study, Molecular dynamic simulation, and along with molecular mechanics/Poisson-Boltzmann surface area analysis also suggested that EAD binds at the active site of the proteins and were stable throughout the 100 ns Molecular dynamic simulation study. Overall, this study suggested EAD exhibited anti-cancer activity against neuroblastoma by targeting Enolase1 and HSP90 pathways.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shivani Chandel
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| | - Arka Bhattacharya
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Anupam Gautam
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
- International Max Planck Research School "From Molecules to Organisms", Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen, Tübingen, Germany
| | - Wenhuan Zeng
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Oliver Alka
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Timo Sachsenberg
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
- Department of Computer Science, Applied Bioinformatics, University of Tübingen, Tübingen, Germany
| | - G D Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Raj Kumar Narang
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - V Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Rajveer Singh
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
20
|
Wang AJ, Song D, Hong YM, Liu NN. Multi-omics insights into the interplay between gut microbiota and colorectal cancer in the "microworld" age. Mol Omics 2023; 19:283-296. [PMID: 36916422 DOI: 10.1039/d2mo00288d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Colorectal cancer (CRC) is a multifactorial heterogeneous disease largely due to both genetic predisposition and environmental factors including the gut microbiota, a dynamic microbial ecosystem inhabiting the gastrointestinal tract. Elucidation of the molecular mechanisms by which the gut microbiota interacts with the host may contribute to the pathogenesis, diagnosis, and promotion of CRC. However, deciphering the influence of genetic variants and interactions with the gut microbial ecosystem is rather challenging. Despite recent advancements in single omics analysis, the application of multi-omics approaches to integrate multiple layers of information in the microbiome and host to introduce effective prevention, diagnosis, and treatment strategies is still in its infancy. Here, we integrate host- and microbe-based multi-omics studies, respectively, to provide a strategy to explore potential causal relationships between gut microbiota and colorectal cancer. Specifically, we summarize the recent multi-omics studies such as metagenomics combined with metabolomics and metagenomics combined with genomics. Meanwhile, the sample size and sample types commonly used in multi-omics research, as well as the methods of data analysis, were also generalized. We highlight multiple layers of information from multi-omics that need to be verified by different types of models. Together, this review provides new insights into the clinical diagnosis and treatment of colorectal cancer patients.
Collapse
Affiliation(s)
- An-Jun Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China.
| | - Dingka Song
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China.
| | - Yue-Mei Hong
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China.
| | - Ning-Ning Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China.
| |
Collapse
|
21
|
Yu J, Ruaux C, Griebsch C, Boland L, Wong N, Bennett P, Wasinger VC. Serum proteome of dogs with chronic enteropathy. J Vet Intern Med 2023; 37:925-935. [PMID: 37186013 DOI: 10.1111/jvim.16682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/24/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Chronic enteropathy (CE) is common in dogs and can occur with multiple etiologies including food-responsive enteropathy (FRE) and idiopathic inflammatory bowel disease (IBD). HYPOTHESIS/OBJECTIVE To study the protein profile and pathway differences among dogs with FRE, IBD, and healthy controls using serum proteome analysis. ANIMALS Nine CE dogs with signs of gastrointestinal disease and histologically confirmed chronic inflammatory enteropathy and 16 healthy controls. METHODS A cross-sectional study with cases recruited from 2 veterinary hospitals between May 2019 and November 2020 was performed. Serum samples were analyzed using mass spectrometry-based proteomic techniques. RESULTS Proteomic profiles showed marked variation in relative protein abundances. Forty-five proteins were significantly (P ≤ .01) differentially expressed among the dogs with CE and controls with ≥2-fold change in abundance. The fold change of dogs with IBD normalized to controls was more pronounced for the majority of proteins than that seen in the dogs with FRE normalized to control dogs. Proteins involving reactive oxygen species, cytokine activation, acute phase response signaling, and lipid metabolism were altered in dogs with CE. CONCLUSIONS AND CLINICAL IMPORTANCE Cytokine alterations, acute phase response signaling, and lipid metabolism are likely involved in pathogenesis of CE. Although there are insufficient current data to justify the use of proteomic biomarkers for assessment of CE in dogs, our study identifies potential candidates.
Collapse
Affiliation(s)
- Jane Yu
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Craig Ruaux
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Christine Griebsch
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Lara Boland
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Nadia Wong
- McIvor Road Veterinary Centre, Bendigo, Victoria, Australia
| | - Peter Bennett
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Valerie C Wasinger
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
22
|
Dell'Olmo E, Pane K, Schibeci M, Cesaro A, De Luca M, Ismail S, Gaglione R, Arciello A. Host defense peptides identified in human apolipoprotein B as natural food bio‐preservatives: Evaluation of their biosafety and digestibility. Pept Sci (Hoboken) 2023. [DOI: 10.1002/pep2.24308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
23
|
Katsiougiannis S, Stergiopoulos A, Moustaka K, Havaki S, Samiotaki M, Stamatakis G, Tenta R, Skopouli FN. Salivary gland epithelial cell in Sjögren's syndrome: Metabolic shift and altered mitochondrial morphology toward an innate immune cell function. J Autoimmun 2023; 136:103014. [PMID: 36898185 DOI: 10.1016/j.jaut.2023.103014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/19/2023] [Indexed: 03/10/2023]
Abstract
Salivary gland epithelial cells (SGEC) are the main targets of the autoimmune reactivity in Sjögren's syndrome (SS). This study aimed to investigate the core proteomic differences between SS and Control- (Ct) -derived SGEC. Proteome analysis of cultured SGEC from five SS patients and four Ct was performed in a label-free quantitation format (LFQ). Electron microscopy was applied for analysis of the mitochondrial ultrastructure of SGEC in minor salivary gland sections from six SS patients and four Ct. Four hundred seventy-four proteins were identified differentially abundant in SS- compared to Ct-SGEC. After proteomic analysis, two distinct protein expression patterns were revealed. Gene ontology (GO) pathway analysis of each protein block revealed that the cluster with highly abundant proteins in SS-SGEC showed enrichment in pathways associated with membrane trafficking, exosome-mediated transport and exocytosis as well as innate immunity related mainly to neutrophil degranulation. In contrast, the low abundance protein cluster in SS-SGEC was enriched for proteins regulating the translational process of proteins related to metabolic pathways associated to mitochondria. Electron microscopy showed decreased total number of mitochondria in SS-SGEC, which appeared elongated and swollen with less and abnormal cristae compared to Ct-SGEC mitochondria. This study defines, for the first time, the core proteomic differences of SGEC between SS and Ct, substantiates the metamorphosis of SGEC into an innate immune cell and reveals that these cells are translationally shifted towards metabolism rewiring. These metabolic alterations are related mainly to mitochondria and are mirrored in situ with heavy morphological changes.
Collapse
Affiliation(s)
- S Katsiougiannis
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University, Athens, Greece; Laboratory of Autoimmunity, Biomedical Research Foundation of the Academy of Athens, Greece
| | - A Stergiopoulos
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University, Athens, Greece
| | - K Moustaka
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University, Athens, Greece
| | - S Havaki
- Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - M Samiotaki
- Institute for Bio-Innovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - G Stamatakis
- Institute for Bio-Innovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - R Tenta
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University, Athens, Greece
| | - F N Skopouli
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University, Athens, Greece; Euroclinic of Athens, Athens, Greece.
| |
Collapse
|
24
|
Wei L, Wang D, Gupta R, Kim ST, Wang Y. A Proteomics Insight into Advancements in the Rice-Microbe Interaction. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12051079. [PMID: 36903938 PMCID: PMC10005616 DOI: 10.3390/plants12051079] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 05/23/2023]
Abstract
Rice is one of the most-consumed foods worldwide. However, the productivity and quality of rice grains are severely constrained by pathogenic microbes. Over the last few decades, proteomics tools have been applied to investigate the protein level changes during rice-microbe interactions, leading to the identification of several proteins involved in disease resistance. Plants have developed a multi-layered immune system to suppress the invasion and infection of pathogens. Therefore, targeting the proteins and pathways associated with the host's innate immune response is an efficient strategy for developing stress-resistant crops. In this review, we discuss the progress made thus far with respect to rice-microbe interactions from side views of the proteome. Genetic evidence associated with pathogen-resistance-related proteins is also presented, and challenges and future perspectives are highlighted in order to understand the complexity of rice-microbe interactions and to develop disease-resistant crops in the future.
Collapse
Affiliation(s)
- Lirong Wei
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dacheng Wang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul 02707, Republic of Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang 50463, Republic of Korea
| | - Yiming Wang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
25
|
Li C, Xiao J, Wu S, Liu L, Zeng X, Zhao Q, Zhang Z. Clinical application of serum-based proteomics technology in human tumor research. Anal Biochem 2023; 663:115031. [PMID: 36580994 DOI: 10.1016/j.ab.2022.115031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/27/2022]
Abstract
The rapid development of proteomics technology in the past decades has led to further human understanding of tumor research, and in some ways, the technology plays a very important supporting role in the early detection of tumors. Human serum has been shown to contain a variety of proteins closely related to life activities, and the dynamic change in proteins can often reflect the physiological and pathological conditions of the body. Serum has the advantage of easy extraction, so the application of proteomics technology in serum has become a hot spot and frontier area for the study of malignant tumors. However, there are still many difficulties in the standardized use of proteomic technologies, which inevitably limit the clinical application of proteomic technologies due to the heterogeneity of human proteins leading to incomplete whole proteome populations, in addition to most serum protein markers being now not highly specific in aiding the early detection of tumors. Nevertheless, further development of proteomics technologies will greatly increase our understanding of tumor biology and help discover more new tumor biomarkers with specificity that will enable medical technology.
Collapse
Affiliation(s)
- Chen Li
- Department of Pathology, The First Affiliated Hospital of University of South China, Hunan, Hengyang, 421001, Hunan Province, China
| | - Juan Xiao
- Department of Otorhinolaryngology, The Second Affiliated Hospital of University of South China, Hunan, Hengyang, 421001, Hunan Province, China
| | - Shihua Wu
- Department of Pathology, The Second Hospital of Shaoyang College, Hunan, Shaoyang, 422000, Hunan Province, China
| | - Lu Liu
- Department of Pathology, The First Affiliated Hospital of University of South China, Hunan, Hengyang, 421001, Hunan Province, China
| | - Xuemei Zeng
- Cancer Research Institute of Hengyang Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan, Hengyang, 421001, China
| | - Qiang Zhao
- Department of Pathology, The First Affiliated Hospital of University of South China, Hunan, Hengyang, 421001, Hunan Province, China.
| | - Zhiwei Zhang
- Department of Pathology, The First Affiliated Hospital of University of South China, Hunan, Hengyang, 421001, Hunan Province, China; Cancer Research Institute of Hengyang Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan, Hengyang, 421001, China.
| |
Collapse
|
26
|
Dowling P, Gargan S, Swandulla D, Ohlendieck K. Fiber-Type Shifting in Sarcopenia of Old Age: Proteomic Profiling of the Contractile Apparatus of Skeletal Muscles. Int J Mol Sci 2023; 24:2415. [PMID: 36768735 PMCID: PMC9916839 DOI: 10.3390/ijms24032415] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The progressive loss of skeletal muscle mass and concomitant reduction in contractile strength plays a central role in frailty syndrome. Age-related neuronal impairments are closely associated with sarcopenia in the elderly, which is characterized by severe muscular atrophy that can considerably lessen the overall quality of life at old age. Mass-spectrometry-based proteomic surveys of senescent human skeletal muscles, as well as animal models of sarcopenia, have decisively improved our understanding of the molecular and cellular consequences of muscular atrophy and associated fiber-type shifting during aging. This review outlines the mass spectrometric identification of proteome-wide changes in atrophying skeletal muscles, with a focus on contractile proteins as potential markers of changes in fiber-type distribution patterns. The observed trend of fast-to-slow transitions in individual human skeletal muscles during the aging process is most likely linked to a preferential susceptibility of fast-twitching muscle fibers to muscular atrophy. Studies with senescent animal models, including mostly aged rodent skeletal muscles, have confirmed fiber-type shifting. The proteomic analysis of fast versus slow isoforms of key contractile proteins, such as myosin heavy chains, myosin light chains, actins, troponins and tropomyosins, suggests them as suitable bioanalytical tools of fiber-type transitions during aging.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
27
|
Steg A, Oczkowicz M, Smołucha G. Omics as a Tool to Help Determine the Effectiveness of Supplements. Nutrients 2022; 14:nu14245305. [PMID: 36558464 PMCID: PMC9784029 DOI: 10.3390/nu14245305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
There has been considerable interest in dietary supplements in the last two decades. Companies are releasing new specifics at an alarming pace, while dietary supplements are one of the less-studied substances released for public consumption. However, access to state-of-the-art and high-throughput techniques, such as the ones used in omics, make it possible to check the impact of a substance on human transcriptome or proteome and provide answers to whether its use is reasonable and beneficial. In this review, the main domains of omics are briefly introduced. The review focuses on the three most widely used omics techniques: NGS, LC-MS, NMR, and their usefulness in studying dietary supplements. Examples of studies are described for some of the most commonly supplemented substances, such as vitamins: D, E, A, and plant extracts: resveratrol, green tea, ginseng, and curcumin extract. Techniques used in omics have proven to be useful in studying dietary supplements. NGS techniques are helpful in identifying pathways that change upon supplementation and determining polymorphisms or conditions that qualify for the necessity of a given supplementation. LC-MS techniques are used to establish the serum content of supplemented a compound and its effects on metabolites. Both LC-MS and NMR help establish the actual composition of a compound, its primary and secondary metabolites, and its potential toxicity. Moreover, NMR techniques determine what conditions affect the effectiveness of supplementation.
Collapse
|
28
|
Lu Y, Dong X, Huang X, Zhao DG, Zhao Y, Peng L. Combined analysis of the transcriptome and proteome of Eucommia ulmoides Oliv. (Duzhong) in response to Fusarium oxysporum. Front Chem 2022; 10:1053227. [PMID: 36311432 PMCID: PMC9606346 DOI: 10.3389/fchem.2022.1053227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/03/2022] [Indexed: 11/21/2022] Open
Abstract
Eucommia ulmoides Oliv. (Duzhong), a valued traditional herbal medicine in China, is rich in antibacterial proteins and is effective against a variety of plant pathogens. Fusarium oxysporum is a pathogenic fungus that infects plant roots, resulting in the death of the plant. In this study, transcriptomic and proteomic analyses were used to explore the molecular mechanism of E. ulmoides counteracts F. oxysporum infection. Transcriptomic analysis at 24, 48, 72, and 96 h after inoculation identified 17, 591, 1,205, and 625 differentially expressed genes (DEGs), while proteomics identified were 66, 138, 148, 234 differentially expressed proteins (DEPs). Meanwhile, GO and KEGG enrichment analyses of the DEGs and DEPs showed that they were mainly associated with endoplasmic reticulum (ER), fructose and mannose metabolism, protein processing in the ER, type II diabetes mellitus, the ribosome, antigen processing and presentation, and the phagosome. In addition, proteome and transcriptome association analysis and RT-qPCR showed that the response of E. ulmoides to F. oxysporum was likely related to the unfolded protein response (UPR) of the ER pathway. In conclusion, our study provided a theoretical basis for the control of F. oxysporum.
Collapse
Affiliation(s)
- Yingxia Lu
- College of Tea Sciences, Guizhou University, Guiyang, China
| | - Xuan Dong
- College of Tea Sciences, Guizhou University, Guiyang, China
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, China
- *Correspondence: Xuan Dong, ; Yichen Zhao,
| | - Xiaozhen Huang
- College of Tea Sciences, Guizhou University, Guiyang, China
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, China
| | - De-gang Zhao
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, China
- Guizhou Academy of Agricultural Science, Guiyang, China
| | - Yichen Zhao
- College of Tea Sciences, Guizhou University, Guiyang, China
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, China
- *Correspondence: Xuan Dong, ; Yichen Zhao,
| | - Lei Peng
- College of Tea Sciences, Guizhou University, Guiyang, China
| |
Collapse
|
29
|
Peng J, Chen Z, Liang H, Yang J. Proteomics analyses of Xiaopi granules in MNNG-induced gastric epithelial dysplasia rat model by LC-MS. Biomed Chromatogr 2022; 36:e5414. [PMID: 35599573 DOI: 10.1002/bmc.5414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Xiaopi granules have been shown to ameliorate gastric epithelial dysplasia in patients. However, the therapeutic mechanism is unclear. Herein, the proteomics method was applied to identify the differentially expressed proteins and related pathways. METHODS Sixty male Sprague-Dawley (SD) rats were randomly divided into four groups: control (C group, n=10), model (M group), Xiaopi granules (X group), and vitacoenzyme (V group). The rat gastric epithelial dysplasia model was established by intragastrically administering N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and ranitidine, and drinking 0.05% ammonia solution. After 12 weeks, the stomach tissue was analyzed by H&E staining and proteomics analyses. Western blot analysis was applied to further validate the proteomics results. RESULTS Compared to the M group, levels of 326 and 350 proteins were altered significantly in the X and V groups (1.5-fold, P<0.05), which were significantly enriched in digestion, metabolism, coagulation, and cell apoptosis. CELA2A, GHRL, NDUFB9, and PGC were significantly upregulated (P<0.0001), while CLCA1, PLG, and DAC2 were downregulated (P<0.001 or P<0.0001) in the M group vs. the C group. The change in the above proteins could be reversed after the treatment of Xiaopi granules or vitacoenzyme tablets. CONCLUSION Xiaopi granules improve ameliorated gastric epithelial dysplasia by intervening in digestion, metabolism, blood coagulation, cell apoptosis, and other related pathways.
Collapse
Affiliation(s)
- Jisheng Peng
- Department of traditional Chinese medicine, Peking University Shougang Hospital, Beijing, China
| | - Zehui Chen
- Beijing University of Chinese Medicine, Beijing, China
| | - Huazheng Liang
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jinxiang Yang
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| |
Collapse
|
30
|
Zhao Z, Sun X, Liu N, Cheng J, Wang C, Guo M. Comparative analysis of caseins in Saanen goat milk from 3 different regions of China using quantitative proteomics. J Dairy Sci 2022; 105:5587-5599. [DOI: 10.3168/jds.2021-21659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/10/2022] [Indexed: 01/05/2023]
|
31
|
Langen B, Vorontsov E, Spetz J, Swanpalmer J, Sihlbom C, Helou K, Forssell-Aronsson E. Age and sex effects across the blood proteome after ionizing radiation exposure can bias biomarker screening and risk assessment. Sci Rep 2022; 12:7000. [PMID: 35487913 PMCID: PMC9055069 DOI: 10.1038/s41598-022-10271-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/01/2022] [Indexed: 11/12/2022] Open
Abstract
Molecular biomarkers of ionizing radiation (IR) exposure are a promising new tool in various disciplines: they can give necessary information for adaptive treatment planning in cancer radiotherapy, enable risk projection for radiation-induced survivorship diseases, or facilitate triage and intervention in radiation hazard events. However, radiation biomarker discovery has not yet resolved the most basic features of personalized medicine: age and sex. To overcome this critical bias in biomarker identification, we quantitated age and sex effects and assessed their relevance in the radiation response across the blood proteome. We used high-throughput mass spectrometry on blood plasma collected 24 h after 0.5 Gy total body irradiation (15 MV nominal photon energy) from male and female C57BL/6 N mice at juvenile (7-weeks-old) or adult (18-weeks-old) age. We also assessed sex and strain effects using juvenile male and female BALB/c nude mice. We showed that age and sex created significant effects in the proteomic response regarding both extent and functional quality of IR-induced responses. Furthermore, we found that age and sex effects appeared non-linear and were often end-point specific. Overall, age contributed more to differences in the proteomic response than sex, most notably in immune responses, oxidative stress, and apoptotic cell death. Interestingly, sex effects were pronounced for DNA damage and repair pathways and associated cellular outcome (pro-survival vs. pro-apoptotic). Only one protein (AHSP) was identified as a potential general biomarker candidate across age and sex, while GMNN, REG3B, and SNCA indicated some response similarity across age. This low yield advocated that unisex or uniage biomarker screening approaches are not feasible. In conclusion, age- and sex-specific screening approaches should be implemented as standard protocol to ensure robustness and diagnostic power of biomarker candidates. Bias-free molecular biomarkers are a necessary progression towards personalized medicine and integral for advanced adaptive cancer radiotherapy and risk assessment.
Collapse
Affiliation(s)
- Britta Langen
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Section of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Egor Vorontsov
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Spetz
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - John Swanpalmer
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Carina Sihlbom
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
32
|
Cao Z, Yu LR. Mass Spectrometry-Based Proteomics for Biomarker Discovery. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2486:3-17. [PMID: 35437715 DOI: 10.1007/978-1-0716-2265-0_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Proteomics plays a pivotal role in systems medicine, in which pharmacoproteomics and toxicoproteomics have been developed to address questions related to efficacy and toxicity of drugs. Mass spectrometry is the core technology for quantitative proteomics, providing the capabilities of identification and quantitation of thousands of proteins. The technology has been applied to biomarker discovery and understanding the mechanisms of drug action. Both stable isotope labeling of proteins or peptides and label-free approaches have been incorporated with multidimensional LC separation and tandem mass spectrometry (LC-MS/MS) to increase the coverage and depth of proteome analysis. A protocol of such an approach exemplified by dimethyl labeling in combination with 2D-LC-MS/MS is described. With further development of novel proteomic tools and increase in sample throughput, the full spectrum of mass spectrometry-based proteomic research will greatly advance systems medicine.
Collapse
Affiliation(s)
- Zhijun Cao
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Li-Rong Yu
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA.
| |
Collapse
|
33
|
Abstract
There are probably no biological samples that did more to spur interest in proteomics than serum and plasma. The belief was that comparing the proteomes of these samples obtained from healthy and disease-affected individuals would lead to biomarkers that could be used to diagnose conditions such as cancer. While the continuing development of mass spectrometers with greater sensitivity and resolution has been invaluable, the invention of strategic strategies to separate circulatory proteins has been just as critical. Novel and creative separation techniques were required because serum and plasma probably have the greatest dynamic range of protein concentration of any biological sample. The concentrations of circulating proteins can range over twelve orders of magnitude, making it a challenge to identify low-abundance proteins where the bulk of the useful biomarkers are believed to exist. The major goals of this article are to (i) provide an historical perspective on the rapid development of serum and plasma proteomics; (ii) describe various separation techniques that have made obtaining an in-depth view of the proteome of these biological samples possible; and (iii) describe applications where serum and plasma proteomics have been employed to discover potential biomarkers for pathological conditions.
Collapse
|
34
|
Sobolev VV, Soboleva AG, Denisova EV, Pechatnikova EA, Dvoryankova E, Korsunskaya IM, Mezentsev A. Proteomic Studies of Psoriasis. Biomedicines 2022; 10:biomedicines10030619. [PMID: 35327421 PMCID: PMC8945259 DOI: 10.3390/biomedicines10030619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
In this review paper, we discuss the contribution of proteomic studies to the discovery of disease-specific biomarkers to monitor the disease and evaluate available treatment options for psoriasis. Psoriasis is one of the most prevalent skin disorders driven by a Th17-specific immune response. Although potential patients have a genetic predisposition to psoriasis, the etiology of the disease remains unknown. During the last two decades, proteomics became deeply integrated with psoriatic research. The data obtained in proteomic studies facilitated the discovery of novel mechanisms and the verification of many experimental hypotheses of the disease pathogenesis. The detailed data analysis revealed multiple differentially expressed proteins and significant changes in proteome associated with the disease and drug efficacy. In this respect, there is a need for proteomic studies to characterize the role of the disease-specific biomarkers in the pathogenesis of psoriasis, develop clinical applications to choose the most efficient treatment options and monitor the therapeutic response.
Collapse
Affiliation(s)
- Vladimir V. Sobolev
- Centre of Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 119334 Moscow, Russia; (A.G.S.); (E.V.D.); (E.D.); (I.M.K.)
- Correspondence: (V.V.S.); (A.M.)
| | - Anna G. Soboleva
- Centre of Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 119334 Moscow, Russia; (A.G.S.); (E.V.D.); (E.D.); (I.M.K.)
- Scientific Research Institute of Human Morphology, 117418 Moscow, Russia
| | - Elena V. Denisova
- Centre of Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 119334 Moscow, Russia; (A.G.S.); (E.V.D.); (E.D.); (I.M.K.)
- Moscow Scientific and Practical Center of Dermatovenereology and Cosmetology, 119071 Moscow, Russia
| | - Eva A. Pechatnikova
- Department of Dermatology and Cosmetology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Eugenia Dvoryankova
- Centre of Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 119334 Moscow, Russia; (A.G.S.); (E.V.D.); (E.D.); (I.M.K.)
| | - Irina M. Korsunskaya
- Centre of Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 119334 Moscow, Russia; (A.G.S.); (E.V.D.); (E.D.); (I.M.K.)
| | - Alexandre Mezentsev
- Centre of Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 119334 Moscow, Russia; (A.G.S.); (E.V.D.); (E.D.); (I.M.K.)
- Correspondence: (V.V.S.); (A.M.)
| |
Collapse
|
35
|
Lv J, Zheng T, Song Z, Pervaiz T, Dong T, Zhang Y, Jia H, Fang J. Strawberry Proteome Responses to Controlled Hot and Cold Stress Partly Mimic Post-harvest Storage Temperature Effects on Fruit Quality. Front Nutr 2022; 8:812666. [PMID: 35242791 PMCID: PMC8887963 DOI: 10.3389/fnut.2021.812666] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/30/2021] [Indexed: 12/22/2022] Open
Abstract
To determine the effect of different temperature on strawberry after harvest, physiological indicator analysis and proteomics analysis were conducted on ripened strawberry (“Sweet Charlie”) fruit stored at 4, 23, and 37°C for 10 or 20 days. Results showed that 4°C maintained a better visual quality of strawberry, and the weight loss and firmness remained stable within 3 days. Low temperature negatively affected anthocyanin but positively affected soluble sugars. Though anthocyanin content was higher with increasing temperature, anthocyanin synthesis related proteins were downregulated. Higher indole-acetic acid (IAA) content in seeds and lower abscisic acid (ABA) content were found in berry at 4°C. Antioxidant related proteins were upregulated during storage, showing a significant up-regulation of peroxidase (POD) at 4°C, and ascorbate-glutathione (AsA-GSH) cycle related proteins and heat shock proteins (HSPs) at 37°C. In addition, overexpressed sugar phosphate/phosphate translocator, 1-aminocyclopropane-1-carboxylate oxidase, and aquaporin PIP2-2 had a positive effect in response to low temperature stress for containing higher protopectin content and POD activity.
Collapse
Affiliation(s)
- Jinhua Lv
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ting Zheng
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zenglu Song
- College of Electrical Engineering, Nanjing Vocational University of Industry Technology, Nanjing, China
| | - Tariq Pervaiz
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Tianyu Dong
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yanyi Zhang
- Agricultural College, Liaocheng University, Liaocheng, China
| | - Haifeng Jia
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Haifeng Jia
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
36
|
Molecular Mechanisms Underlying the Relationship between Obesity and Male Infertility. Metabolites 2021; 11:metabo11120840. [PMID: 34940598 PMCID: PMC8706114 DOI: 10.3390/metabo11120840] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 01/29/2023] Open
Abstract
In recent decades, the worldwide prevalence of obesity has risen dramatically and is currently estimated to be around 20%. Obesity is linked to an increased risk of comorbidities and premature mortality. Several studies have shown that obesity negatively impacts male fertility through various mechanisms. This review aims to investigate the molecular mechanisms through which obesity impairs male reproduction, including obesity-associated hypogonadism and its effects on spermatogenesis, chronic inflammation, and oxidative stress. Obesity negatively impacts both conventional and biofunctional sperm parameters, and it also induces epigenetic changes that can be transferred to offspring. Moreover, obesity-related diseases are linked to a dysregulation of adipocyte function and micro-environmental inflammatory processes. The dysregulated adipokines significantly influence insulin signaling, and they may also have a detrimental effect on testicular function. Sirtuins can also play an important role in inflammatory and metabolic responses in obese patients. Understanding the molecular mechanisms that are involved in obesity-induced male infertility could increase our ability to identify novel targets for the prevention and treatment of obesity and its related consequences.
Collapse
|
37
|
Technique development of high-throughput and high-sensitivity sample preparation and separation for proteomics. Bioanalysis 2021; 14:101-111. [PMID: 34854341 DOI: 10.4155/bio-2021-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sample preparation and separation methods determine the sensitivity and the quantification accuracy of the proteomics analysis. This article covers a comprehensive review of the recent technique development of high-throughput and high-sensitivity sample preparation and separation methods in proteomics research.
Collapse
|
38
|
Hao D, Bai J, Du J, Wu X, Thomsen B, Gao H, Su G, Wang X. Overview of Metabolomic Analysis and the Integration with Multi-Omics for Economic Traits in Cattle. Metabolites 2021; 11:metabo11110753. [PMID: 34822411 PMCID: PMC8621036 DOI: 10.3390/metabo11110753] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/23/2022] Open
Abstract
Metabolomics has been applied to measure the dynamic metabolic responses, to understand the systematic biological networks, to reveal the potential genetic architecture, etc., for human diseases and livestock traits. For example, the current published results include the detected relevant candidate metabolites, identified metabolic pathways, potential systematic networks, etc., for different cattle traits that can be applied for further metabolomic and integrated omics studies. Therefore, summarizing the applications of metabolomics for economic traits is required in cattle. We here provide a comprehensive review about metabolomic analysis and its integration with other omics in five aspects: (1) characterization of the metabolomic profile of cattle; (2) metabolomic applications in cattle; (3) integrated metabolomic analysis with other omics; (4) methods and tools in metabolomic analysis; and (5) further potentialities. The review aims to investigate the existing metabolomic studies by highlighting the results in cattle, integrated with other omics studies, to understand the metabolic mechanisms underlying the economic traits and to provide useful information for further research and practical breeding programs in cattle.
Collapse
Affiliation(s)
- Dan Hao
- Beijing Zhongnongtongchuang (ZNTC) Biotechnology Co., Ltd., Beijing 100193, China; (D.H.); (J.B.); (J.D.); (X.W.)
- Shijiazhuang Zhongnongtongchuang (ZNTC) Biotechnology Co., Ltd., Shijiazhuang 052463, China
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark;
| | - Jiangsong Bai
- Beijing Zhongnongtongchuang (ZNTC) Biotechnology Co., Ltd., Beijing 100193, China; (D.H.); (J.B.); (J.D.); (X.W.)
- Shijiazhuang Zhongnongtongchuang (ZNTC) Biotechnology Co., Ltd., Shijiazhuang 052463, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jianyong Du
- Beijing Zhongnongtongchuang (ZNTC) Biotechnology Co., Ltd., Beijing 100193, China; (D.H.); (J.B.); (J.D.); (X.W.)
- Shijiazhuang Zhongnongtongchuang (ZNTC) Biotechnology Co., Ltd., Shijiazhuang 052463, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoping Wu
- Beijing Zhongnongtongchuang (ZNTC) Biotechnology Co., Ltd., Beijing 100193, China; (D.H.); (J.B.); (J.D.); (X.W.)
- Shijiazhuang Zhongnongtongchuang (ZNTC) Biotechnology Co., Ltd., Shijiazhuang 052463, China
| | - Bo Thomsen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark;
| | - Hongding Gao
- Center for Quantitative Genetics and Genomics, Aarhus University, 8830 Tjele, Denmark; (H.G.); (G.S.)
| | - Guosheng Su
- Center for Quantitative Genetics and Genomics, Aarhus University, 8830 Tjele, Denmark; (H.G.); (G.S.)
| | - Xiao Wang
- Konge Larsen ApS, 2800 Kongens Lyngby, Denmark
- Correspondence:
| |
Collapse
|
39
|
Zhong L, Zhu L, Cai ZW. Mass Spectrometry-based Proteomics and Glycoproteomics in COVID-19 Biomarkers Identification: A Mini-review. JOURNAL OF ANALYSIS AND TESTING 2021; 5:298-313. [PMID: 34513131 PMCID: PMC8423835 DOI: 10.1007/s41664-021-00197-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/27/2021] [Indexed: 12/11/2022]
Abstract
The first corona-pandemic, coronavirus disease 2019 (COVID-19) caused a huge health crisis and incalculable damage worldwide. Knowledge of how to cure the disease is urgently needed. Emerging immune escaping mutants of the virus suggested that it may be potentially persistent in human society as a regular health threat as the flu virus. Therefore, it is imperative to identify appropriate biomarkers to indicate pathological and physiological states, and more importantly, clinic outcomes. Proteins are the performers of life functions, and their abundance and modification status can directly reflect the immune status. Protein glycosylation serves a great impact in modulating protein function. The use of both unmodified and glycosylated proteins as biomarkers has also been proved feasible in the studies of SARS, Zika virus, influenza, etc. In recent years, mass spectrometry-based glycoproteomics, as well as proteomics approaches, advanced significantly due to the evolution of mass spectrometry. We focus on the current development of the mass spectrometry-based strategy for COVID-19 biomarkers' investigation. Potential application of glycoproteomics approaches and challenges in biomarkers identification are also discussed.
Collapse
Affiliation(s)
- Li Zhong
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong SAR, China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong SAR, China
| | - Zong-Wei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong SAR, China
| |
Collapse
|
40
|
Chan KKY, Kong HK, Tse SPK, Chan Z, Lo PY, Kwok KWH, Lo SCL. Finding Species-Specific Extracellular Surface-Facing Proteomes in Toxic Dinoflagellates. Toxins (Basel) 2021; 13:624. [PMID: 34564629 PMCID: PMC8473415 DOI: 10.3390/toxins13090624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/27/2022] Open
Abstract
As a sequel to our previous report of the existence of species-specific protein/peptide expression profiles (PEPs) acquired by mass spectrometry in some dinoflagellates, we established, with the help of a plasma-membrane-impermeable labeling agent, a surface amphiesmal protein extraction method (SAPE) to label and capture species-specific surface proteins (SSSPs) as well as saxitoxins-producing-species-specific surface proteins (Stx-SSPs) that face the extracellular space (i.e., SSSPsEf and Stx-SSPsEf). Five selected toxic dinoflagellates, Alexandrium minutum, A. lusitanicum, A. tamarense, Gymnodinium catenatum, and Karenia mikimotoi, were used in this study. Transcriptomic databases of these five species were also constructed. With the aid of liquid chromatography linked-tandem mass spectrometry (LC-MS/MS) and the transcriptomic databases of these species, extracellularly facing membrane proteomes of the five different species were identified. Within these proteomes, 16 extracellular-facing and functionally significant transport proteins were found. Furthermore, 10 SSSPs and 6 Stx-SSPs were identified as amphiesmal proteins but not facing outward to the extracellular environment. We also found SSSPsEf and Stx-SSPsEf in the proteomes. The potential functional correlation of these proteins towards the production of saxitoxins in dinoflagellates and the degree of species specificity were discussed accordingly.
Collapse
Affiliation(s)
- Kenrick Kai-yuen Chan
- Department of Applied Biology and Chemical Technology, Faculty of Applied Science and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong; (K.K.-y.C.); (H.-k.K.); (S.P.-k.T.); (Z.C.); (P.-y.L.); (K.W.H.K.)
| | - Hang-kin Kong
- Department of Applied Biology and Chemical Technology, Faculty of Applied Science and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong; (K.K.-y.C.); (H.-k.K.); (S.P.-k.T.); (Z.C.); (P.-y.L.); (K.W.H.K.)
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Sirius Pui-kam Tse
- Department of Applied Biology and Chemical Technology, Faculty of Applied Science and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong; (K.K.-y.C.); (H.-k.K.); (S.P.-k.T.); (Z.C.); (P.-y.L.); (K.W.H.K.)
| | - Zoe Chan
- Department of Applied Biology and Chemical Technology, Faculty of Applied Science and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong; (K.K.-y.C.); (H.-k.K.); (S.P.-k.T.); (Z.C.); (P.-y.L.); (K.W.H.K.)
| | - Pak-yeung Lo
- Department of Applied Biology and Chemical Technology, Faculty of Applied Science and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong; (K.K.-y.C.); (H.-k.K.); (S.P.-k.T.); (Z.C.); (P.-y.L.); (K.W.H.K.)
| | - Kevin W. H. Kwok
- Department of Applied Biology and Chemical Technology, Faculty of Applied Science and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong; (K.K.-y.C.); (H.-k.K.); (S.P.-k.T.); (Z.C.); (P.-y.L.); (K.W.H.K.)
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Samuel Chun-lap Lo
- Department of Applied Biology and Chemical Technology, Faculty of Applied Science and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong; (K.K.-y.C.); (H.-k.K.); (S.P.-k.T.); (Z.C.); (P.-y.L.); (K.W.H.K.)
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| |
Collapse
|
41
|
Du B, Zhang Q, Cao Q, Xing Y, Qin L, Fang K. Morphological observation and protein expression of fertile and abortive ovules in Castanea mollissima. PeerJ 2021; 9:e11756. [PMID: 34327054 PMCID: PMC8308611 DOI: 10.7717/peerj.11756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/21/2021] [Indexed: 01/15/2023] Open
Abstract
Chinese chestnuts (Castanea mollissima Blume.) contain 12-18 ovules in one ovary, but only one ovule develops into a seed, indicating a high ovule abortion rate. In this study, the Chinese chestnut 'Huaihuang' was used to explore the possible mechanisms of ovule abortion with respect to morphology and proteomics. The morphology and microstructure of abortive ovules were found to be considerably different from those of fertile ovules at 20 days after anthesis (20 DAA). The fertile ovules had completely formed tissues, such as the embryo sac, embryo and endosperm. By contrast, in the abortive ovules, there were no embryo sacs, and wide spaces between the integuments were observed, with few nucelli. Fluorescence labelling of the nuclei and transmission electron microscopy (TEM) observations showed that cells of abortive ovules were abnormally shaped and had thickened cell walls, folded cell membranes, condensed cytoplasm, ruptured nuclear membranes, degraded nucleoli and reduced mitochondria. The iTRAQ (isobaric tag for relative and absolute quantitation) results showed that in the abortive ovules, low levels of soluble protein with small molecular weights were found, and most of differently expressed proteins (DEPs) were related to protein synthesis, accumulation of active oxygen free radical, energy synthesis and so on. These DEPs might be associated with abnormal ovules formation.
Collapse
Affiliation(s)
- Bingshuai Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Qing Zhang
- Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Qingqin Cao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yu Xing
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Ling Qin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Kefeng Fang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
- Key Laboratory of Urban Agriculture (North China, Ministry of Agriculture P. R. China), Beijing University of Agriculture, Beijing, China
| |
Collapse
|
42
|
Li N, Wang L, Shi F, Yang P, Sun K, Zhang J, Yang X, Li X, Shen F, Liu H, Jin Y, Yao S. Silica nanoparticle induces pulmonary fibroblast transdifferentiation via macrophage route: Potential mechanism revealed by proteomic analysis. Toxicol In Vitro 2021; 76:105220. [PMID: 34271082 DOI: 10.1016/j.tiv.2021.105220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/26/2021] [Accepted: 07/08/2021] [Indexed: 01/30/2023]
Abstract
Recently, more and more attention has been focused on silica nanoparticles (SiNPs) as they are increasingly used in various fields. Yet, their biological effects, especially on human beings, largely remain unknown. This study was implanted to assess the biological responses in vitro elicited by human macrophages exposed to the SiNPs and to explore its toxicity and fibrosis biomarker. We found that SiNPs suppressed the viability of THP-1 cells in a dose-dependent manner while they triggered apoptosis and promoted the secretion of inflammatory factors. Next, SiNPs-induced macrophage supernatant was used to act on fibroblast (MRC-5), indicating that the expression of hydroxyproline (Hyp), α-SMA, and collagonIin MRC-5 increased after SiNPs treatment. To further explore the biomarker of fibrosis, Liquid-mass spectrometry facilitated quantitative proteomics, identified 3247 proteins, of which 791 proteins were expressed differentially in human embryonic lung fibroblasts after treated with SiNPs. In conclusion, our observations suggest that SiNPs induced THP-1-derived macrophage damage and apoptosis. Moreover, SiNPs induced macrophages to secrete cytokines that promote fibroblasts' proliferation and differentiation and changed protein expression in MRC-5 cells, regulating biological processes such as apoptosis, protein synthesis, and cell growth. Among these results, our findings could provide a basis for determining fibrosis biomarkers of silica nanoparticle exposure.
Collapse
Affiliation(s)
- Ning Li
- School of Public Health, North China University of Science of Technology, Tangshan 063210, Hebei, China
| | - Luyao Wang
- Changzhou Health Inspection Institute, Changzhou, Jiangsu 213000, China
| | - Fan Shi
- School of Public Health, North China University of Science of Technology, Tangshan 063210, Hebei, China
| | - Pan Yang
- School of Public Health, North China University of Science of Technology, Tangshan 063210, Hebei, China
| | - Kun Sun
- School of Public Health, North China University of Science of Technology, Tangshan 063210, Hebei, China
| | - Jing Zhang
- School of Public Health, North China University of Science of Technology, Tangshan 063210, Hebei, China
| | - Xiaojing Yang
- School of Public Health, North China University of Science of Technology, Tangshan 063210, Hebei, China
| | - Xiaoming Li
- School of Public Health, North China University of Science of Technology, Tangshan 063210, Hebei, China
| | - Fuhai Shen
- School of Public Health, North China University of Science of Technology, Tangshan 063210, Hebei, China
| | - Heliang Liu
- School of Public Health, North China University of Science of Technology, Tangshan 063210, Hebei, China
| | - Yulan Jin
- School of Public Health, North China University of Science of Technology, Tangshan 063210, Hebei, China.
| | - Sanqiao Yao
- School of Public Health, North China University of Science of Technology, Tangshan 063210, Hebei, China.
| |
Collapse
|
43
|
McArdle AJ, Menikou S. What is proteomics? Arch Dis Child Educ Pract Ed 2021; 106:178-181. [PMID: 32241812 DOI: 10.1136/archdischild-2019-317434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/20/2020] [Accepted: 03/19/2020] [Indexed: 11/03/2022]
Abstract
Proteomics is the study of a large number of proteins in biological systems. We aim to introduce the complex field to paediatricians and present some recent examples of applications to paediatric problems. Various approaches have been used to study proteomes. The current mainstay is tandem mass spectrometry of enzymatically digested proteins ('bottom-up proteomics'), and we describe the experimental and computational approach further. Proteomics can offer advantages over transcriptomics by giving direct information about proteins rather than RNA; however, typically data are obtained at lower depth and the confident identification of mass spectra can be challenging. Proteomics frequently complements transcriptomics and other -omics. Used effectively, proteomics offers promise to help answer important clinical and biological questions.
Collapse
Affiliation(s)
| | - Stephanie Menikou
- Department of Infectious Disease, Imperial College London, London, UK
| |
Collapse
|
44
|
Su M, Zhang Z, Zhou L, Han C, Huang C, Nice EC. Proteomics, Personalized Medicine and Cancer. Cancers (Basel) 2021; 13:2512. [PMID: 34063807 PMCID: PMC8196570 DOI: 10.3390/cancers13112512] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 02/05/2023] Open
Abstract
As of 2020 the human genome and proteome are both at >90% completion based on high stringency analyses. This has been largely achieved by major technological advances over the last 20 years and has enlarged our understanding of human health and disease, including cancer, and is supporting the current trend towards personalized/precision medicine. This is due to improved screening, novel therapeutic approaches and an increased understanding of underlying cancer biology. However, cancer is a complex, heterogeneous disease modulated by genetic, molecular, cellular, tissue, population, environmental and socioeconomic factors, which evolve with time. In spite of recent advances in treatment that have resulted in improved patient outcomes, prognosis is still poor for many patients with certain cancers (e.g., mesothelioma, pancreatic and brain cancer) with a high death rate associated with late diagnosis. In this review we overview key hallmarks of cancer (e.g., autophagy, the role of redox signaling), current unmet clinical needs, the requirement for sensitive and specific biomarkers for early detection, surveillance, prognosis and drug monitoring, the role of the microbiome and the goals of personalized/precision medicine, discussing how emerging omics technologies can further inform on these areas. Exemplars from recent onco-proteogenomic-related publications will be given. Finally, we will address future perspectives, not only from the standpoint of perceived advances in treatment, but also from the hurdles that have to be overcome.
Collapse
Affiliation(s)
- Miao Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (M.S.); (Z.Z.); (L.Z.); (C.H.)
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (M.S.); (Z.Z.); (L.Z.); (C.H.)
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (M.S.); (Z.Z.); (L.Z.); (C.H.)
| | - Chao Han
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (M.S.); (Z.Z.); (L.Z.); (C.H.)
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (M.S.); (Z.Z.); (L.Z.); (C.H.)
| | - Edouard C. Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
45
|
Dong Z, Coates D. Bioactive Molecular Discovery Using Deer Antlers as a Model of Mammalian Regeneration. J Proteome Res 2021; 20:2167-2181. [PMID: 33769828 DOI: 10.1021/acs.jproteome.1c00003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The ability to activate and regulate stem cells during wound healing and tissue regeneration is a promising field that is resulting in innovative approaches in the field of regenerative medicine. The regenerative capacity of invertebrates has been well documented; however, in mammals, stem cells that drive organ regeneration are rare. Deer antlers are the only known mammalian structure that can annually regenerate to produce a tissue containing dermis, blood vessels, nerves, cartilage, and bone. The neural crest derived stem cells that drive this process result in antlers growing at up to 2 cm/day. Deer antlers thus provide superior attributes compared to lower-order animal models, when investigating the regulation of stem cell-based regeneration. Antler stem cells can therefore be used as a model to investigate the bioactive molecules, biological processes, and pathways involved in the maintenance of a stem cell niche, and their activation and differentiation during organ formation. This review examines stem cell-based regeneration with a focus on deer antlers, a neural crest stem cell-based mammalian regenerative structure. It then discusses the omics technical platforms highlighting the proteomics approaches used for investigating the molecular mechanisms underlying stem cell regulation in antler tissues.
Collapse
Affiliation(s)
- Zhen Dong
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Dawn Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
46
|
He J, Jia Y. Application of omics technologies in dermatological research and skin management. J Cosmet Dermatol 2021; 21:451-460. [PMID: 33759323 DOI: 10.1111/jocd.14100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/19/2021] [Accepted: 03/10/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND "Omics" are usually based on the use of high-throughput analysis methods for global analysis of biological samples and the discovery of biomarkers, and may provide new insights into biological phenomena. Over the last few years, the development of omics technologies has considerably accelerated the pace of dermatological research. AIMS The purpose of this article was to review the development of omics in recent decades and their application in dermatological research. METHODS An extensive literature search was conducted on omics technologies since the first research on omics. RESULTS This article summarizes the history and main research methods of the six omics technologies, including genomics, transcriptomics, proteomics, metabolomics, lipidomics, and microbiomics. Their application in certain skin diseases and cosmetics research and development are also summarized. CONCLUSIONS This information will help to understand the mechanism of some skin diseases and the discovery of potential biomarkers, and provide new insights for skin health management and cosmetics research and development.
Collapse
Affiliation(s)
- Jianbiao He
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Cosmetic of China National Light Industry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China.,Institute of cosmetic regulatory science, Beijing Technology and Business University, Beijing, China
| | - Yan Jia
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Cosmetic of China National Light Industry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China.,Institute of cosmetic regulatory science, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
47
|
Weke K, Singh A, Uwugiaren N, Alfaro JA, Wang T, Hupp TR, O'Neill JR, Vojtesek B, Goodlett DR, Williams SM, Zhou M, Kelly RT, Zhu Y, Dapic I. MicroPOTS Analysis of Barrett's Esophageal Cell Line Models Identifies Proteomic Changes after Physiologic and Radiation Stress. J Proteome Res 2021; 20:2195-2205. [PMID: 33491460 PMCID: PMC8155554 DOI: 10.1021/acs.jproteome.0c00629] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Moving from macroscale
preparative systems in proteomics to micro-
and nanotechnologies offers researchers the ability to deeply profile
smaller numbers of cells that are more likely to be encountered in
clinical settings. Herein a recently developed microscale proteomic
method, microdroplet processing in one pot for trace samples (microPOTS),
was employed to identify proteomic changes in ∼200 Barrett’s
esophageal cells following physiologic and radiation stress exposure.
From this small population of cells, microPOTS confidently identified
>1500 protein groups, and achieved a high reproducibility with
a Pearson’s
correlation coefficient value of R > 0.9 and over
50% protein overlap from replicates. A Barrett’s cell line
model treated with either lithocholic acid (LCA) or X-ray had 21 (e.g.,
ASNS, RALY, FAM120A, UBE2M, IDH1, ESD) and 32 (e.g., GLUL, CALU, SH3BGRL3,
S100A9, FKBP3, AGR2) overexpressed proteins, respectively, compared
to the untreated set. These results demonstrate the ability of microPOTS
to routinely identify and quantify differentially expressed proteins
from limited numbers of cells.
Collapse
Affiliation(s)
- Kenneth Weke
- University of Gdansk, International Centre for Cancer Vaccine Science, ul. Kładki 24, 80-822 Gdansk, Poland
| | - Ashita Singh
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH4 2XR, U.K.,Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Naomi Uwugiaren
- University of Gdansk, International Centre for Cancer Vaccine Science, ul. Kładki 24, 80-822 Gdansk, Poland
| | - Javier A Alfaro
- University of Gdansk, International Centre for Cancer Vaccine Science, ul. Kładki 24, 80-822 Gdansk, Poland.,Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH4 2XR, U.K
| | - Tongjie Wang
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH4 2XR, U.K
| | - Ted R Hupp
- University of Gdansk, International Centre for Cancer Vaccine Science, ul. Kładki 24, 80-822 Gdansk, Poland.,Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH4 2XR, U.K
| | - J Robert O'Neill
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH4 2XR, U.K.,Cambridge Oesophagogastric Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, U.K
| | - Borek Vojtesek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - David R Goodlett
- University of Gdansk, International Centre for Cancer Vaccine Science, ul. Kładki 24, 80-822 Gdansk, Poland.,University of Victoria - Genome British Columbia Proteomics Centre, Victoria, BC V8Z 7X8, Canada.,Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Sarah M Williams
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ryan T Kelly
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ying Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Irena Dapic
- University of Gdansk, International Centre for Cancer Vaccine Science, ul. Kładki 24, 80-822 Gdansk, Poland
| |
Collapse
|
48
|
Lin W, Xu X, Lv R, Huang W, Ul Haq H, Gao Y, Ren H, Lan C, Tian B. Differential proteomics reveals main determinants for the improved pectinase activity in UV-mutagenized Aspergillus niger strain. Biotechnol Lett 2021; 43:909-918. [PMID: 33449253 DOI: 10.1007/s10529-020-03075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/26/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To reveal the potential mechanism and key determinants that contributed to the improved pectinase activity in Aspergillus niger mutant EIMU2, which was previously obtained by UV-mutagenesis from the wild-type A. niger EIM-6. RESULTS Proteomic analysis for Aspergillus niger EIMU2 by two-dimensional electrophoresis demonstrated that mutant EIMU2 harbored a multiple enzyme system for the degradation of pectin, mainly constituting by main-chain-cleaving enzymes polygalacturonase, pectate lyase, pectinesterase, and some accessory enzymes rhamnogalacturonan lyase and arabinofuranosidase. Further quantitatively differential proteomic analysis revealed that the quantities of four proteins, pectinesterase, rhamnogalacturonan lyase A, DNA-directed RNA polymerase A, and a hypothetical protein in strain EIMU2 were much higher than those in EIM-6. PCR amplification, sequencing and alignment analysis of genes for the two main members of pectin-degrading enzymes, pectate lyase and polygalacturonase showed that their sequences were completely consistent in A. niger EIM-6 and mutant EIMU2. CONCLUSIONS The result demonstrated that the improved pectinase activity by UV-mutagenesis in A. niger EIMU2 was probably contributed to the up-regulated expression of rhamnogalacturonan lyase, or pectinesterase, which resulted in the optimization of synergy amongst different components of pectin-degrading enzymes.
Collapse
Affiliation(s)
- Weiling Lin
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, No.8, Shangsan Road, Cangshan District, Fuzhou, 350108, Fujian, China.,Fujian Health College, Fuzhou, 350101, Fujian, China
| | - Xiaohong Xu
- Library, Fujian Normal University, Fuzhou, 350108, Fujian, China
| | - Ruirui Lv
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, No.8, Shangsan Road, Cangshan District, Fuzhou, 350108, Fujian, China
| | - Wei Huang
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, No.8, Shangsan Road, Cangshan District, Fuzhou, 350108, Fujian, China.,Institute of Agricultural Quality Standards and Testing Technology Research, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, Fujian, China
| | - Hafeez Ul Haq
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, No.8, Shangsan Road, Cangshan District, Fuzhou, 350108, Fujian, China
| | - Yuanyuan Gao
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, No.8, Shangsan Road, Cangshan District, Fuzhou, 350108, Fujian, China
| | - Hongli Ren
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, No.8, Shangsan Road, Cangshan District, Fuzhou, 350108, Fujian, China
| | - Canhua Lan
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, No.8, Shangsan Road, Cangshan District, Fuzhou, 350108, Fujian, China
| | - Baoyu Tian
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, No.8, Shangsan Road, Cangshan District, Fuzhou, 350108, Fujian, China.
| |
Collapse
|
49
|
Leung LL, Riaz MK, Qu X, Chan J, Meehan K. Profiling of extracellular vesicles in oral cancer, from transcriptomics to proteomics. Semin Cancer Biol 2021; 74:3-23. [PMID: 33460766 DOI: 10.1016/j.semcancer.2021.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
Oral cancers occurring in different subsites can have distinct etiologies' and are a significant problem worldwide. In general, the incidence of oral cancers has declined over the last decade due to improvements in modifiable risk factors (tobacco and alcohol consumption). However, recent data suggest that the incidence of squamous cell carcinomas in the oral tongue and oropharynx are increasing. Human papilloma virus (HPV) is an important risk factor for oropharyngeal cancer and is associated with better treatment responses when compared with HPV-unrelated oropharyngeal cancer. Regardless of the subsite, there are no clinically available biomarkers for the early detection of these cancers and many are detected at an advanced stage and are associated with poor 5-year survival rates. Tumor tissue and serial needle biopsies are used to diagnose and prognosticate oral cancers but have important limitations. Besides being invasive and physically painful, these types of biopsies offer a limited view of a complex tumor due to inter- and intra-tumoral heterogeneity and a dynamic tumor microenvironment. Liquid biopsies offer a promising and alternative way to measure disease in real-time. Extracellular vesicles (EVs) are small particles that are secreted by all cells types and can be readily isolated from a wide range of biofluids. EVs are structurally stable and can horizontally transfer bioactive molecules to distant sites throughout the body in concentrated forms that exceed what can be delivered in a soluble format. As EVs represent their cell of origin, biofluid derived EVs are heterogeneous and are comprised of a complex repertoire of host- and cancer-derived particles. This review article has focused on studies that have used transcriptomics and proteomics to explore the function and clinical significance of EVs in oral cavity and oropharyngeal cancers.
Collapse
Affiliation(s)
- Leanne L Leung
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Muhammad Kashif Riaz
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xinyu Qu
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jason Chan
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Katie Meehan
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
50
|
Role of Bioinformatics in Biological Sciences. Adv Bioinformatics 2021. [DOI: 10.1007/978-981-33-6191-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|