1
|
Zheng C, Zhou X, Wang H, Ji M, Wang P. A novel ratiometric fluorescent probe for the detection and imaging of cysteine in living cells. Bioorg Chem 2022; 127:106003. [DOI: 10.1016/j.bioorg.2022.106003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/14/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022]
|
2
|
Yao HW, Guo XF, Wang H. Simultaneous Quantitation of Intra- and Extracellular Nitric Oxide in Single Macrophage RAW 264.7 Cells by Capillary Electrophoresis with Laser-Induced Fluorescence Detection. Anal Chem 2020; 92:11904-11911. [DOI: 10.1021/acs.analchem.0c02283] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hui-Wen Yao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xiao-Feng Guo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Hong Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
3
|
Caruso G, Musso N, Grasso M, Costantino A, Lazzarino G, Tascedda F, Gulisano M, Lunte SM, Caraci F. Microfluidics as a Novel Tool for Biological and Toxicological Assays in Drug Discovery Processes: Focus on Microchip Electrophoresis. MICROMACHINES 2020; 11:E593. [PMID: 32549277 PMCID: PMC7344675 DOI: 10.3390/mi11060593] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023]
Abstract
The last decades of biological, toxicological, and pharmacological research have deeply changed the way researchers select the most appropriate 'pre-clinical model'. The absence of relevant animal models for many human diseases, as well as the inaccurate prognosis coming from 'conventional' pre-clinical models, are among the major reasons of the failures observed in clinical trials. This evidence has pushed several research groups to move more often from a classic cellular or animal modeling approach to an alternative and broader vision that includes the involvement of microfluidic-based technologies. The use of microfluidic devices offers several benefits including fast analysis times, high sensitivity and reproducibility, the ability to quantitate multiple chemical species, and the simulation of cellular response mimicking the closest human in vivo milieu. Therefore, they represent a useful way to study drug-organ interactions and related safety and toxicity, and to model organ development and various pathologies 'in a dish'. The present review will address the applicability of microfluidic-based technologies in different systems (2D and 3D). We will focus our attention on applications of microchip electrophoresis (ME) to biological and toxicological studies as well as in drug discovery and development processes. These include high-throughput single-cell gene expression profiling, simultaneous determination of antioxidants and reactive oxygen and nitrogen species, DNA analysis, and sensitive determination of neurotransmitters in biological fluids. We will discuss new data obtained by ME coupled to laser-induced fluorescence (ME-LIF) and electrochemical detection (ME-EC) regarding the production and degradation of nitric oxide, a fundamental signaling molecule regulating virtually every critical cellular function. Finally, the integration of microfluidics with recent innovative technologies-such as organoids, organ-on-chip, and 3D printing-for the design of new in vitro experimental devices will be presented with a specific attention to drug development applications. This 'composite' review highlights the potential impact of 2D and 3D microfluidic systems as a fast, inexpensive, and highly sensitive tool for high-throughput drug screening and preclinical toxicological studies.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Oasi Research Institute—IRCCS, 94018 Troina (EN), Italy; (M.G.); (F.C.)
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (N.M.); (G.L.)
| | - Margherita Grasso
- Oasi Research Institute—IRCCS, 94018 Troina (EN), Italy; (M.G.); (F.C.)
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.)
| | - Angelita Costantino
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.)
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (N.M.); (G.L.)
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Massimo Gulisano
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.)
- Molecular Preclinical and Translational Imaging Research Centre-IMPRonTE, University of Catania, 95125 Catania, Italy
- Interuniversity Consortium for Biotechnology, Area di Ricerca, Padriciano, 34149 Trieste, Italy
| | - Susan M. Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA;
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
- Department of Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
| | - Filippo Caraci
- Oasi Research Institute—IRCCS, 94018 Troina (EN), Italy; (M.G.); (F.C.)
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.)
| |
Collapse
|
4
|
Dervisevic E, Tuck KL, Voelcker NH, Cadarso VJ. Recent Progress in Lab-On-a-Chip Systems for the Monitoring of Metabolites for Mammalian and Microbial Cell Research. SENSORS (BASEL, SWITZERLAND) 2019; 19:E5027. [PMID: 31752167 PMCID: PMC6891382 DOI: 10.3390/s19225027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022]
Abstract
Lab-on-a-chip sensing technologies have changed how cell biology research is conducted. This review summarises the progress in the lab-on-a-chip devices implemented for the detection of cellular metabolites. The review is divided into two subsections according to the methods used for the metabolite detection. Each section includes a table which summarises the relevant literature and also elaborates the advantages of, and the challenges faced with that particular method. The review continues with a section discussing the achievements attained due to using lab-on-a-chip devices within the specific context. Finally, a concluding section summarises what is to be resolved and discusses the future perspectives.
Collapse
Affiliation(s)
- Esma Dervisevic
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia;
| | - Kellie L. Tuck
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia;
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences (MIPS), Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia;
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, VIC 3168, Australia
- The Melbourne Centre for Nanofabrication, Australian National Fabrication Facility-Victorian Node, Clayton, VIC 3800, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Victor J. Cadarso
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia;
- The Melbourne Centre for Nanofabrication, Australian National Fabrication Facility-Victorian Node, Clayton, VIC 3800, Australia
| |
Collapse
|
5
|
Huang J, Hou L, Bian X, Chang K. Analysis of intracellular reactive oxygen species by micellar electrokinetic capillary chromatography with laser-induced-fluorescence detector. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1625369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Jianping Huang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, China
- Henan Engineering Research Center of Water Pollution and Soil Damage Remediation, Zhengzhou, China
- Henan Key Laboratory of Water Environment Simulation and Treatment, Zhengzhou, China
| | - Lijun Hou
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, China
| | - Xiaozheng Bian
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, China
| | - Kai Chang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, China
| |
Collapse
|
6
|
Liu L, Zhang Q, Wang J, Zhao L, Liu L, Lu Y. A specific fluorescent probe for fast detection and cellular imaging of cysteine based on a water-soluble conjugated polymer combined with copper(II). Talanta 2019; 198:128-136. [PMID: 30876540 DOI: 10.1016/j.talanta.2019.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/19/2019] [Accepted: 02/01/2019] [Indexed: 11/19/2022]
Abstract
In pure water system, the specific and rapid detection of cysteine (Cys) is very important and challenging. Herein, a new optical probe was developed for the purpose based on the complex of cupric ion (Cu2+) with a water-soluble conjugated polymer, poly[3-(3-N,N-diacetateaminopropoxy)-4-methyl thiophene disodium salts] (PTCO2). The fluorescence of PTCO2 in 100% aqueous solution can almost completely extinguished by Cu2+ ions due to its intrinsic paramagnetic properties. Among various amino acids, only Cys causes immediately the efficient recovery of the Cu2+-quenched fluorescence of PTCO2 with ~31-folds fluorescence enhancement because of the stronger affinity of Cys to Cu2+ leading to the formation of Cu2+-Cys complex through Cu-S bond and separation of Cu2+ from weak-fluorescent PTCO2-Cu(II) ensemble and thereby restoring the free PTCO2 fluorescence. In tris-HCl buffer solution (2 mM, pH 7.4), the intensity of the restored fluorescence is linear with the concentration of Cys, ranging from 0 to 120 μM and the estimated detection limit of Cys is 3.3 × 10-7 M with the correlation coefficient R = 0.9981. In addition, the PTCO2-Cu(II) ensemble probe exhibits low cytotoxicity and good membrane penetration, and its application in living cell imaging of Cys has also been explored.
Collapse
Affiliation(s)
- Lihua Liu
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
| | - Qiang Zhang
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
| | - Jing Wang
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
| | - Linlin Zhao
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
| | - Lixia Liu
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
| | - Yan Lu
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
7
|
Buchtova Z, Lackova Z, Kudr J, Zitka Z, Skoda J, Zitka O. Capillary Blood GSH Level Monitoring, Using an Electrochemical Method Adapted for Micro Volumes. Molecules 2018; 23:molecules23102504. [PMID: 30274319 PMCID: PMC6222753 DOI: 10.3390/molecules23102504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/19/2018] [Accepted: 09/23/2018] [Indexed: 12/12/2022] Open
Abstract
Glutathione (γ-glutamyl-cysteinyl-glycine; also known as GSH) is an endogenous antioxidant that plays a crucial role in cell defense mechanisms against oxidative stress. It is thus not surprising that this molecule can serve as a biomarker for oxidative stress monitoring. As capillary blood is a highly accessible target for biomarking, it is a valuable bodily fluid for diagnosing human GSH levels. This study focused on the optimization of GSH measurements from micro volumes of capillary blood prior to using electrochemical detection. The optimization of experimental parameters, including the sample volume and its stability, was performed and evaluated. Moreover, we tested the optimized method as part of a short-term study. The study consisted of examining 10 subjects within 96 h of their consumption of high amounts of antioxidants, attained from a daily dose of 2 g/150 mL of green tea. The subjects' capillary blood (5 μL) was taken at 0 h, 48 h, and 96 h for subsequent analysis. The short-term supplementation of diet with green tea showed an increase of GSH pool by approximately 38% (between 0 and 48 h) within all subjects.
Collapse
Affiliation(s)
- Zaneta Buchtova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
| | - Zuzana Lackova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, CZ-612 00 Brno, Czech Republic.
| | - Jiri Kudr
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, CZ-612 00 Brno, Czech Republic.
| | - Zdenek Zitka
- University Sports Centre, Faculty of Sports Studies, Masaryk University, Komenskeho namesti 2, CZ-662 43 Brno, Czech Republic.
| | - Jan Skoda
- University Sports Centre, Faculty of Sports Studies, Masaryk University, Komenskeho namesti 2, CZ-662 43 Brno, Czech Republic.
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, CZ-612 00 Brno, Czech Republic.
| |
Collapse
|
8
|
Yang S, Zeng Q, Guo Q, Chen S, Liu H, Liu M, McMahon MT, Zhou X. Detection and differentiation of Cys, Hcy and GSH mixtures by 19F NMR probe. Talanta 2018; 184:513-519. [DOI: 10.1016/j.talanta.2018.03.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 03/02/2018] [Accepted: 03/14/2018] [Indexed: 01/10/2023]
|
9
|
Shi M, Huang Y, Zhao J, Li S, Liu R, Zhao S. Quantification of glutathione in single cells from rat liver by microchip electrophoresis with chemiluminescence detection. Talanta 2017; 179:466-471. [PMID: 29310261 DOI: 10.1016/j.talanta.2017.11.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/08/2017] [Accepted: 11/16/2017] [Indexed: 01/07/2023]
Abstract
Glutathione (GSH) is a major endogenous antioxidant that has a central role in cellular defense against toxins and free radicals. Rapid and accurate detection of GSH content in single cells is important to the early diagnosis of disease and biomedical research. In this work, a novel method based on microchip electrophoresis chemiluminescence (MCE-CL) detection was developed for the quantification of glutathione (GSH) in single cells from rat liver. The detection of GSH is based on the strong sensitization of mercapto compound to luminol-H2O2CL system. The injection, localization, and membrane dissolution of single cell were simply and rapidly carried out on the microchip by direct electric field force, which did not require any additional membrane dissolution reagent. Under optimized experimental conditions, single cell assay was achieved within 2min. The peak area of the GSH was taken as quantification of GSH, and a good linear relationship of GSH concentration to peak area in the range of 3.0 × 10-6M to 6.0 × 10-4M was obtained. The detection limit for GSH is 9.6 × 10-7M, calculated by S/N = 3. The measured GSH content in single cells from rat liver (n = 10) ranged from 7.8fmol to 13.fmol with a mean value of 10.8fmol.
Collapse
Affiliation(s)
- Ming Shi
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and pharmacy, Guangxi Normal University, Guilin 541004, China; Guilin Normal College, Guilin 541001, China
| | - Yong Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and pharmacy, Guangxi Normal University, Guilin 541004, China.
| | - Jingjin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and pharmacy, Guangxi Normal University, Guilin 541004, China
| | - Shuting Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and pharmacy, Guangxi Normal University, Guilin 541004, China
| | - Rongjun Liu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and pharmacy, Guangxi Normal University, Guilin 541004, China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and pharmacy, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
10
|
Maheshwaran D, Nagendraraj T, Manimaran P, Ashokkumar B, Kumar M, Mayilmurugan R. A Highly Selective and Efficient Copper(II) - “Turn-On” Fluorescence Imaging Probe forl-Cysteine. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201601229] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Duraiyarasu Maheshwaran
- Bioinorganic Chemistry Laboratory/Physical Chemistry; School of Chemistry; Madurai Kamaraj University; 625021 Madurai Tamil Nadu India
| | - Thavasilingam Nagendraraj
- Bioinorganic Chemistry Laboratory/Physical Chemistry; School of Chemistry; Madurai Kamaraj University; 625021 Madurai Tamil Nadu India
| | - Paramasivam Manimaran
- School of Biotechnology; Madurai Kamaraj University; 625021 Madurai Tamil Nadu India
| | | | - Mukesh Kumar
- Solid State Physics Division; Physics Group; Bhabha Atomic Research Center; Mumbai Maharashtra India
| | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry; School of Chemistry; Madurai Kamaraj University; 625021 Madurai Tamil Nadu India
| |
Collapse
|
11
|
Li Q, Chen P, Fan Y, Wang X, Xu K, Li L, Tang B. Multicolor Fluorescence Detection-Based Microfluidic Device for Single-Cell Metabolomics: Simultaneous Quantitation of Multiple Small Molecules in Primary Liver Cells. Anal Chem 2016; 88:8610-6. [DOI: 10.1021/acs.analchem.6b01775] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Qingling Li
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P.R. China
| | - Peilin Chen
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P.R. China
| | - Yuanyuan Fan
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P.R. China
| | - Xu Wang
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P.R. China
| | - Kehua Xu
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P.R. China
| | - Lu Li
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P.R. China
| | - Bo Tang
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P.R. China
| |
Collapse
|
12
|
Yang S, Jiang W, Ren L, Yuan Y, Zhang B, Luo Q, Guo Q, Bouchard LS, Liu M, Zhou X. Biothiol Xenon MRI Sensor Based on Thiol-Addition Reaction. Anal Chem 2016; 88:5835-40. [DOI: 10.1021/acs.analchem.6b00403] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Shengjun Yang
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Weiping Jiang
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Lili Ren
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yaping Yuan
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Bin Zhang
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Qing Luo
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Qianni Guo
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Louis-S. Bouchard
- Department
of Chemistry and Biochemistry, California NanoSystems Institute, The
Molecular Biology Institute, University of California, Los Angeles, California 90095, United States
| | - Maili Liu
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xin Zhou
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| |
Collapse
|
13
|
Patabadige DEW, Mickleburgh T, Ferris L, Brummer G, Culbertson AH, Culbertson CT. High‐throughput microfluidic device for single cell analysis using multiple integrated soft lithographic pumps. Electrophoresis 2016; 37:1337-44. [DOI: 10.1002/elps.201500557] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 01/07/2023]
Affiliation(s)
| | - Tom Mickleburgh
- Department of Chemistry Kansas State University Manhattan KS USA
| | - Lorin Ferris
- Department of Chemistry Kansas State University Manhattan KS USA
| | - Gage Brummer
- Department of Chemistry Kansas State University Manhattan KS USA
| | | | | |
Collapse
|
14
|
Wu X, Shao A, Zhu S, Guo Z, Zhu W. A novel colorimetric and ratiometric NIR fluorescent sensor for glutathione based on dicyanomethylene-4H-pyran in living cells. Sci China Chem 2015. [DOI: 10.1007/s11426-015-5490-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
15
|
Hao M, Li C, Liu R, Jing M. Detection of glutathione within single erythrocyte of different ages and pathological state using microfluidic chips coupled with laser induced fluorescence. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 149:600-606. [PMID: 25983061 DOI: 10.1016/j.saa.2015.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 04/21/2015] [Accepted: 05/04/2015] [Indexed: 06/04/2023]
Abstract
As a major factor participating in the organism antioxidation and detoxification process, GSH is of vital importance to human beings. Detecting GSH content in single cells is significant to diagnosis and prevention of many diseases. In this work, the amount of GSH within single erythrocytes was detected and analyzed via statistical analysis. All erythrocytes tested were collected from people in different ages and people of different pathological states. The correlation between GSH level, age and pathological state were investigated. Results showed that the GSH level in erythrocytes decreased with the ages of patients increased. There was little difference between the GSH level in erythrocytes from people who had chronic diseases (hyperglycemia, hyperlipidemia and hypertension) and from healthy people. However, the GSH level in erythrocytes from people who had inflammation (myocarditis, nephritis and gastritis) was generally higher than that from the healthy people. This study provides basic data for researches of cell senescence and cytopathic effect and is helpful to diagnosis and prevention of diseases. In addition, it also provides a simple and effective method for rapid GSH detection within single cell.
Collapse
Affiliation(s)
- Minglu Hao
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong Province, Shandong University, 27# Shanda South Road, Jinan 250100, PR China
| | - Chao Li
- School Hospital of Shandong University, 91# Shanda North Road, Jinan 250100, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong Province, Shandong University, 27# Shanda South Road, Jinan 250100, PR China.
| | - Mingyang Jing
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong Province, Shandong University, 27# Shanda South Road, Jinan 250100, PR China
| |
Collapse
|
16
|
Li H, Li L, Wang X, Li Q, Du M, Tang B. Dual-calibration coefficient: a more accurate protocol for simultaneous determination of superoxide and hydrogen peroxide in human HepG2 cell extracts. Sci China Chem 2015. [DOI: 10.1007/s11426-015-5396-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Hodáková J, Preisler J, Foret F, Kubáň P. Sensitive determination of glutathione in biological samples by capillary electrophoresis with green (515nm) laser-induced fluorescence detection. J Chromatogr A 2015; 1391:102-8. [DOI: 10.1016/j.chroma.2015.02.062] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/02/2015] [Accepted: 02/20/2015] [Indexed: 10/23/2022]
|
18
|
Dual labeling for simultaneous determination of nitric oxide, glutathione and cysteine in macrophage RAW264.7 cells by microchip electrophoresis with fluorescence detection. J Chromatogr A 2014; 1359:309-16. [DOI: 10.1016/j.chroma.2014.07.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/10/2014] [Accepted: 07/11/2014] [Indexed: 11/21/2022]
|
19
|
Su D, Teoh CL, Sahu S, Das RK, Chang YT. Live cells imaging using a turn-on FRET-based BODIPY probe for biothiols. Biomaterials 2014; 35:6078-85. [PMID: 24794926 DOI: 10.1016/j.biomaterials.2014.04.035] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/11/2014] [Indexed: 01/28/2023]
Abstract
We designed a red-emitting turn-on FRET-based molecular probe 1 for selective detection of cysteine and homocysteine. Probe 1 shows significant fluorescence enhancement after cleavage of the 2, 4-dinitrobenzensulfonyl (DNBS) unit from the fluorophore upon thiols treatment. The precursor of probe 1, BNM153, is a moderate quantum yield FRET dye which contributes a minimum emission leakage from its donor part. We synthesized this assembly by connecting a low quantum yield (less than 1%) BODIPY donor to a high quantum yield BODIPY acceptor via a 1, 3-triazine bridge system. It is noteworthy that the majority of the non-radiative energy loss of donor (BDN) was converted to the acceptor (BDM)'s fluorescence output with minimum leaks of donor emission. The fluorescence sensing mechanism of probe 1 was illustrated by fluorescence spectroscopy, kinetic measurements, HPLC-MS analysis and DFT calculations. Probe 1 is pH-independent at the physiological pH range. Finally, live cells imaging demonstrated the utility of probe 1 as a biosensor for thiols.
Collapse
Affiliation(s)
- Dongdong Su
- Department of Chemistry and MedChem Program, Life Sciences Institute, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Chai Lean Teoh
- Department of Chemistry and MedChem Program, Life Sciences Institute, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Srikanta Sahu
- Department of Chemistry and MedChem Program, Life Sciences Institute, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Raj Kumar Das
- Department of Chemistry and MedChem Program, Life Sciences Institute, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Young-Tae Chang
- Department of Chemistry and MedChem Program, Life Sciences Institute, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore; Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium (SBIC), 11 Biopolis Way, #02-02 Helios, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore 138667, Singapore.
| |
Collapse
|
20
|
Deng B, Tian Y, Yu X, Song J, Guo F, Xiao Y, Zhang Z. Laminar flow mediated continuous single-cell analysis on a novel poly(dimethylsiloxane) microfluidic chip. Anal Chim Acta 2014; 820:104-11. [DOI: 10.1016/j.aca.2014.02.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/10/2014] [Accepted: 02/22/2014] [Indexed: 01/06/2023]
|
21
|
Abstract
Electroporation is a simple yet powerful technique for breaching the cell membrane barrier. The applications of electroporation can be generally divided into two categories: the release of intracellular proteins, nucleic acids and other metabolites for analysis and the delivery of exogenous reagents such as genes, drugs and nanoparticles with therapeutic purposes or for cellular manipulation. In this review, we go over the basic physics associated with cell electroporation and highlight recent technological advances on microfluidic platforms for conducting electroporation. Within the context of its working mechanism, we summarize the accumulated knowledge on how the parameters of electroporation affect its performance for various tasks. We discuss various strategies and designs for conducting electroporation at the microscale and then focus on analysis of intracellular contents and delivery of exogenous agents as two major applications of the technique. Finally, an outlook for future applications of microfluidic electroporation in increasingly diverse utilities is presented.
Collapse
Affiliation(s)
- Tao Geng
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA. Fax: +1-540-231-5022; Tel: +1-540-231-8681
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA 24061, USA
| |
Collapse
|
22
|
Hu H, Li Z, Zhang X, Xu C, Guo Y. Rapid determination of catecholamines in urine samples by nonaqueous microchip electrophoresis with LIF detection. J Sep Sci 2013; 36:3419-25. [PMID: 24038935 DOI: 10.1002/jssc.201300342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 07/11/2013] [Accepted: 08/03/2013] [Indexed: 11/06/2022]
Abstract
A method was developed for the rapid separation of catecholamines by nonaqueous microchip electrophoresis (NAMCE) with LIF detection, A homemade pump-free negative pressure sampling device was used for rapid bias-free sampling in NAMCE, the injection time was 0.5 s and the electrophoresis separation conditions were optimized. Under the optimized conditions, the samples were separated completely in <1 min. The average migration times of the epinephrine (E), dopamine (DA), and norepinephrine (NE) were 34.26, 43.81, and 50.07 s, with an RSD of 1.05, 1.26, and 0.89% (n = 7), respectively. The linearity of the method ranged from 0.0125 to 2.0 mg/L for E and 0.025~4.0 mg/L for DA and NE, with correlation coefficients ranging between 0.9978 and 0.9986. The detection limits of E, DA, and NE were 2.5, 5.0, and 5.0 μg/L, respectively. The recoveries of E, DA, and NE in spiked urine samples were between 86 and 103%, with RSDs of 4.5~6.8% (n = 5). The proposed NAMCE with LIF detection combined with a pump-free negative pressure sampling device is a simple, inexpensive, energy efficient, miniaturized system that can be successfully applied for the determination of catecholamines in urine samples.
Collapse
Affiliation(s)
- Hongmei Hu
- Key Lab of Mariculture and Enhancement of Zhejiang Province, Marine Fishery Institute of Zhejiang Province, Zhoushan, China
| | | | | | | | | |
Collapse
|
23
|
Cho W, Maeng JH, Ahn Y, Hwang SY. Disposable on-chip microfluidic system for buccal cell lysis, DNA purification, and polymerase chain reaction. Electrophoresis 2013; 34:2531-7. [DOI: 10.1002/elps.201300230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/27/2013] [Accepted: 05/28/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Woong Cho
- Graduate School; Hanyang University; Seoul Korea
| | - Joon-Ho Maeng
- Department of Biochemistry; Hanyang University; Ansan, Gyeonggi-do Korea
| | - Yoomin Ahn
- Department of Mechanical Engineering; Hanyang University; Ansan, Gyeonggi-do Korea
| | - Seung Yong Hwang
- Division of Molecular and Life Science; Hanyang University; Ansan, Gyeonggi-do Korea
- GenoCheck Co. Ltd., Hanyang University; Ansan, Gyeonggi-do Korea
| |
Collapse
|
24
|
Donoghue MA, Xu X, Bernlohr DA, Arriaga EA. Capillary electrophoretic analysis of hydroxyl radicals produced by respiring mitochondria. Anal Bioanal Chem 2013; 405:6053-60. [PMID: 23665638 DOI: 10.1007/s00216-013-7022-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 04/20/2013] [Accepted: 04/25/2013] [Indexed: 12/20/2022]
Abstract
Here, we report the use of a capillary electrophoretic method with laser-induced fluorescence detection to evaluate hydroxyl radicals produced by respiring mitochondria. The probe, hydroxyphenylfluorescein (HPF), is separated from the product, fluorescein, in under 5 min with zeptomole and attomole limits of detection for fluorescein and HPF, respectively. Purification of the probe with a C-18 SPE column is necessary to reduce the fluorescein impurity in the probe stock solution from 0.4% to less than 0.001%. HPF was responsive to hydroxyl radicals produced by isolated mitochondria from L6 cells, and this signal was blunted when DMSO was added to scavenge hydroxyl radicals and when carbonyl cyanide m-chlorophenylhydrazone was added to depolarize the mitochondria. The method was used to compare hydroxyl radical levels in mitochondria isolated from brown adipose tissue of lean and obese mice. Mitochondria from obese mice produced significantly more hydroxyl radicals than those from lean mice.
Collapse
Affiliation(s)
- Margaret A Donoghue
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
25
|
Xu C, Cai L. Analysis of intracellular reducing levels in human hepatocytes on three-dimensional focusing microchip. LUMINESCENCE 2013; 29:36-41. [PMID: 23297173 DOI: 10.1002/bio.2472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/22/2012] [Accepted: 11/22/2012] [Indexed: 11/05/2022]
Abstract
A novel three-dimensional hydrodynamic focusing microfluidic device integrated with high-throughput cell sampling and detection of intracellular contents is presented. It has a pivotal role in maintaining the reducing environment in cells. Intracellular reducing species such as vitamin C and glutathione in normal and tumor cells were labeled by a newly synthesized 2,2,6,6-tetramethyl-piperidine-1-oxyl-based fluorescent probe. Hepatocytes are adherent cells, which are prone to attaching to the channel surface. To avoid the attachment of cells on the channel surface, a single channel microchip with three sheath-flow channels located on both sides of and below the sampling channel was developed. Hydrostatic pressure generated by emptying the sample waste reservoir was used as driving force of fluid on the microchip. Owing to the difference between the liquid levels of the reservoirs, the labeled cells were three-dimensional hydrodynamically focused and transported from the sample reservoir to the sample waste reservoir. Hydrostatic pressure takes advantage of its ease of generation on a microfluidic chip without any external pressure pump, which drives three sheath-flow streams to constrain a sample flow stream into a narrow stream to avoid blockage of the sampling channel by adhered cells. The intracellular reducing levels of HepG2 cells and L02 cells were detected by home-built laser-induced fluorescence detector. The analysis throughput achieved in this microfluidic system was about 59-68 cells/min.
Collapse
Affiliation(s)
- Chunxiu Xu
- Department of Chemistry, Hanshan Normal University, 521041, Chaozhou, People's Republic of China
| | | |
Collapse
|
26
|
Li J, Zhang CF, Ming ZZ, Yang WC, Yang GF. Novel coumarin-based sensitive and selective fluorescent probes for biothiols in aqueous solution and in living cells. RSC Adv 2013. [DOI: 10.1039/c3ra45002c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
27
|
Wei M, Yin P, Shen Y, Zhang L, Deng J, Xue S, Li H, Guo B, Zhang Y, Yao S. A new turn-on fluorescent probe for selective detection of glutathione and cysteine in living cells. Chem Commun (Camb) 2013; 49:4640-2. [DOI: 10.1039/c3cc39045d] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Chen Z, Li Q, Sun Q, Chen H, Wang X, Li N, Yin M, Xie Y, Li H, Tang B. Simultaneous Determination of Reactive Oxygen and Nitrogen Species in Mitochondrial Compartments of Apoptotic HepG2 Cells and PC12 Cells Based On Microchip Electrophoresis–Laser-Induced Fluorescence. Anal Chem 2012; 84:4687-94. [DOI: 10.1021/ac300255n] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Quantification of amino acids in a single cell by microchip electrophoresis with chemiluminescence detection. Methods Mol Biol 2012; 828:351-8. [PMID: 22125158 DOI: 10.1007/978-1-61779-445-2_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Analyzing individual cells allows detecting a minor group of abnormal cells present in a large population of normal cells. This ability can be essential to understanding diseases, such as cancer and diabetes. Microchip electrophoresis (MCE) is the technique of choice for single-cell analysis. However, since the channels in microfluidic devices are very small, achieving the desired assay sensitivity on a microfluidic platform remains a challenge. Here, we describe an MCE method with highly sensitive chemiluminescence detection for simultaneous determination of multiple amino acids present in single cells.
Collapse
|
30
|
Harfield JC, Batchelor-McAuley C, Compton RG. Electrochemical determination of glutathione: a review. Analyst 2012; 137:2285-96. [DOI: 10.1039/c2an35090d] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
31
|
Shang F, Guihen E, Glennon JD. Recent advances in miniaturisation - The role of microchip electrophoresis in clinical analysis. Electrophoresis 2011; 33:105-16. [DOI: 10.1002/elps.201100454] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/12/2011] [Accepted: 10/13/2011] [Indexed: 01/27/2023]
|
32
|
Teng Y, Liu R, Li C, Zhang H. Effect of 4-aminoantipyrine on oxidative stress induced by glutathione depletion in single human erythrocytes using a microfluidic device together with fluorescence imaging. JOURNAL OF HAZARDOUS MATERIALS 2011; 192:1766-1771. [PMID: 21784575 DOI: 10.1016/j.jhazmat.2011.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Revised: 06/28/2011] [Accepted: 07/03/2011] [Indexed: 05/31/2023]
Abstract
The effects of 4-aminoantipyrine (AAP) on oxidative stress induced by glutathione (GSH) depletion in single human erythrocytes were investigated using microfluidic technique and fluorescence imaging. Most cell-based toxicity evaluations on GSH are performed with bulk experiments based on analysis of cell populations. This work established a single-cell toxicity evaluation method to statistically analyze the GSH amount in single erythrocytes incubated with AAP in different concentrations. The experimental conditions of cell flow rate and cell concentration were optimized. The GSH contents in erythrocytes decreased with increasing dose of AAP. At low concentration, AAP had a little effect on GSH; while at high concentration, AAP led to GSH depletion reaching a maximum of 14.53%. The depletion of GSH leads to a significant shift to a more oxidizing intracellular environment. This study provides basic data for presenting the effect of AAP on GSH in erythrocytes and is helpful for understanding its toxicity during the blood transportation process. In addition, it will also complement studies on the environmental risk assessment of AAP pollution.
Collapse
Affiliation(s)
- Yue Teng
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 27# Shanda South Road, Jinan 250100, PR China
| | | | | | | |
Collapse
|
33
|
AL-Othman ZA, Ali I. NANO CAPILLARY ELECTROPHORESIS IN MICROCHIPS: A NEED OF THE PRESENT CENTURY. J LIQ CHROMATOGR R T 2011. [DOI: 10.1080/10826076.2011.566031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Zeid A. AL-Othman
- a Department of Chemistry, College of Science , King Saud University , Riyadh, Kingdom of Saudi Arabia
| | - Imran Ali
- b Department of Chemistry , Jamia Millia Islamia, (Central University) , New Delhi, India
| |
Collapse
|
34
|
Xu CX, Yin XF. Continuous cell introduction and rapid dynamic lysis for high-throughput single-cell analysis on microfludic chips with hydrodynamic focusing. J Chromatogr A 2011; 1218:726-32. [DOI: 10.1016/j.chroma.2010.11.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 11/18/2010] [Accepted: 11/22/2010] [Indexed: 10/18/2022]
|
35
|
Xu C, Wang M, Yin X. Three-dimensional (3D) hydrodynamic focusing for continuous sampling and analysis of adherent cells. Analyst 2011; 136:3877-83. [DOI: 10.1039/c1an15019g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Li H, Li Q, Wang X, Xu K, Chen Z, Gong X, Liu X, Tong L, Tang B. Simultaneous determination of superoxide and hydrogen peroxide in macrophage RAW 264.7 cell extracts by microchip electrophoresis with laser-induced fluorescence detection. Anal Chem 2010; 81:2193-8. [PMID: 19206207 DOI: 10.1021/ac801777c] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A method for the first time to simultaneously determine superoxide and hydrogen peroxide in macrophage RAW 264.7 cell extracts by microchip electrophoresis with laser-induced fluorescence detection (MCE-LIF) was developed. 2-Chloro-1,3-dibenzothiazolinecyclohexene (DBZTC) and bis(p-methylbenzenesulfonyl) dichlorofluorescein (FS), two probes that can be specifically derivatized by superoxide and hydrogen peroxide, respectively, were synthesized and used. Parameters influencing the derivatization and on-chip separation were optimized. With the use of a HEPES (20 mM, pH 7.4) running buffer, a 50 mm long separation channel, and a separation voltage of 1800 V, baseline separation was achieved within 48 s for the two derivatization products, DBZTC-oxide (DBO) and 2,7-dichlorofluorescein (DCF). The linearity ranges of the method were 0.08-5.0 and 0.02-5.0 microM with detection limits (signal-to-noise ratio = 3) of 10 nM (1.36 amol) and 5.6 nM (0.76 amol) for superoxide and hydrogen peroxide, respectively. The relative standard deviations (RSDs) of migration time and peak area were less than 2.0% and 5.0%, respectively. The recoveries of the cell extract samples spiked with 1.0 microM standard solutions were 96.1% and 93.0% for superoxide and hydrogen peroxide, respectively. With the use of this method, superoxide and hydrogen peroxide in phorbol myristate acetate (PMA)-stimulated macrophage RAW 264.7 cell extracts were found to be 0.78 and 1.14 microM, respectively. The method has paved a way for simultaneously determining two or more reactive oxygen species (ROS) in a biological system with high resolution.
Collapse
Affiliation(s)
- Hongmin Li
- College of Chemistry, Chemical Engineering and Materials Science, Engineering Research Center of Pesticide and Medicine Intermediate Clean Production, Ministry of Education, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wu J, Ferrance JP, Landers JP, Weber SG. Integration of a precolumn fluorogenic reaction, separation, and detection of reduced glutathione. Anal Chem 2010; 82:7267-73. [PMID: 20698502 PMCID: PMC2932763 DOI: 10.1021/ac101182r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Reduced glutathione (GSH) has been determined by fluorescence detection after derivatization together with a variety of separations. The reactions between GSH and fluorescent reagents usually are carried out during the sample pretreatment and require minutes to hours for complete reactions. For continuous monitoring of GSH, it would be very convenient to have an integrated microdevice that could perform online precolumn derivatization, separation, and detection. Heretofore, thiol-specific fluorogenic reagents require fairly long reaction times, preventing effective online precolumn derivatization. We demonstrate here that the fluorogenic, thiol-specific reagent, ThioGlo-1, reacts rapidly enough for efficient precolumn derivatization. The second order rate constant for the reaction of GSH and reagent (pH 7.5, room temperature) is 2.1 x 10(4) M(-1)s(-1). The microchip integrates this precolumn derivatization, continuous flow gated sampling, separation, and detection on a single device. We have validated this device for monitoring GSH concentration continuously by studying the kinetics of glutathione reductase (EC 1.8.1.7), an enzyme that catalyzes the reduction of oxidized glutathione (GSSG) to GSH in the presence of beta-NADPH (beta-nicotinamide adenine dinucleotide phosphate, reduced form) as a reducing cofactor. During the experiment, GSH being generated in the enzymatic reaction was labeled with ThioGlo-1 as it passed through a mixing channel on the microfluidic chip. Derivatization reaction products were introduced into the analysis channel every 10 s using flow gated injections of 0.1 s. Baseline separation of the internal standard, ThioGlo-1, and the fluorescently labeled GSH was successfully achieved within 4.5 s in a 9 mm separation channel. Relative standard deviations of the peak area, peak height, and full width at half-maximum (fwhm) for the internal standard were 2.5%, 2.0%, and 1.0%, respectively, with migration time reproducibility for the internal standard of less than 0.1% RSD in any experiment. The GSH concentration and mass detection limit were 4.2 nM and approximately 10(-18) mol, respectively. The Michaelis constants (K(m)) for GSSG and beta-NADPH were found to be 40 +/- 11 and 4.4 +/- 0.6 muM, respectively, comparable with those obtained from UV/vis spectrophotometric measurements. These results show that this system is capable of integrating derivatization, injection, separation, and detection for continuous GSH determinations.
Collapse
Affiliation(s)
- Juanfang Wu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Jerome P. Ferrance
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - James P. Landers
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - Stephen G. Weber
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
38
|
Zhao S, Huang Y, Ye F, Shi M, Liu YM. Determination of intracellular sulphydryl compounds by microchip electrophoresis with selective chemiluminescence detection. J Chromatogr A 2010; 1217:5732-6. [DOI: 10.1016/j.chroma.2010.07.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Revised: 07/01/2010] [Accepted: 07/07/2010] [Indexed: 01/09/2023]
|
39
|
Uehara N, Ookubo K, Shimizu T. Colorimetric assay of glutathione based on the spontaneous disassembly of aggregated gold nanocomposites conjugated with water-soluble polymer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:6818-6825. [PMID: 20373784 DOI: 10.1021/la100460w] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This article describes the glutathione-triggered disassembly of gold nanocomposites composed of gold cores and water-soluble copolymers [poly(N-n-isopropylacrylamide-co-acryloyldiethyletriamine)] attached to the surfaces of gold cores. The gold nanocomposites exhibit a bluish purple color because of the assembled gold cores that are conjugated with the diethylenetriamine groups incorporated into the copolymers. Glutathione added to the gold nanocomposite solution adsorbs onto the surface of the gold cores to liberate diethylenetriamine groups, resulting in spontaneous disassembly that changes the color of the solution to a reddish shade. Increasing the glutathione concentration facilitates the spontaneous disassembly of the gold nanocomposites. For the determination of glutathione, the colorimetric change of the gold nanoparticles is quantified with the a* value of the L*a*b* color coordinates defined by the CIE (Commission Internationale de l'Eclairage) chromaticity diagram. A linear relationship between the a* value and the glutathione concentration of up to 6 x 10(-6) mol/L is obtained 15 min after the addition of glutathione that has a detection limit (defined as 3sigma) of 2.9 x 10(-8) mol/L. The colorimetric assay is successfully applied to the determination of glutathione in eye drops and health supplements.
Collapse
Affiliation(s)
- Nobuo Uehara
- Graduate School of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan.
| | | | | |
Collapse
|
40
|
Ye F, Huang Y, Xu Q, Shi M, Zhao S. Quantification of taurine and amino acids in mice single fibrosarcoma cell by microchip electrophoresis coupled with chemiluminescence detection. Electrophoresis 2010; 31:1630-6. [DOI: 10.1002/elps.200900665] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
41
|
Chen Z, Li Q, Wang X, Wang Z, Zhang R, Yin M, Yin L, Xu K, Tang B. Potent Method for the Simultaneous Determination of Glutathione and Hydrogen Peroxide in Mitochondrial Compartments of Apoptotic Cells with Microchip Electrophoresis-Laser Induced Fluorescence. Anal Chem 2010; 82:2006-12. [DOI: 10.1021/ac902741r] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhenzhen Chen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Engineering Research Center of Pesticide and Medicine Intermediate Clean Production, Ministry of Education, Shandong Normal University, and College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Qingling Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Engineering Research Center of Pesticide and Medicine Intermediate Clean Production, Ministry of Education, Shandong Normal University, and College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xu Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Engineering Research Center of Pesticide and Medicine Intermediate Clean Production, Ministry of Education, Shandong Normal University, and College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Zhiyuan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Engineering Research Center of Pesticide and Medicine Intermediate Clean Production, Ministry of Education, Shandong Normal University, and College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Ruirui Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Engineering Research Center of Pesticide and Medicine Intermediate Clean Production, Ministry of Education, Shandong Normal University, and College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Miao Yin
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Engineering Research Center of Pesticide and Medicine Intermediate Clean Production, Ministry of Education, Shandong Normal University, and College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Lingling Yin
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Engineering Research Center of Pesticide and Medicine Intermediate Clean Production, Ministry of Education, Shandong Normal University, and College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Kehua Xu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Engineering Research Center of Pesticide and Medicine Intermediate Clean Production, Ministry of Education, Shandong Normal University, and College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Engineering Research Center of Pesticide and Medicine Intermediate Clean Production, Ministry of Education, Shandong Normal University, and College of Life Sciences, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
42
|
Hu H, Yin X, Qi L, Liu J. Pump-free and low-cost negative pressure sampling device for rapid sample loading in MCE. Electrophoresis 2009; 30:4213-8. [DOI: 10.1002/elps.200900378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Determination of glutathione and glutathione disulfide in biological samples: An in-depth review. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:3331-46. [DOI: 10.1016/j.jchromb.2009.06.016] [Citation(s) in RCA: 197] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 06/02/2009] [Accepted: 06/10/2009] [Indexed: 12/13/2022]
|
44
|
Zhao S, Huang Y, Liu YM. Microchip electrophoresis with chemiluminescence detection for assaying ascorbic acid and amino acids in single cells. J Chromatogr A 2009; 1216:6746-51. [PMID: 19691964 PMCID: PMC2758624 DOI: 10.1016/j.chroma.2009.08.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Revised: 08/03/2009] [Accepted: 08/05/2009] [Indexed: 02/07/2023]
Abstract
A method based on microchip electrophoresis (MCE) with chemiluminescence (CL) detection was developed for the determination of ascorbic acid (AA) and amino acids including tryptophan (Trp), glycine (Gly) and alanine (Ala) present in single cells. Cell injection, loading, lysing, electrophoretic separation and CL detection were integrated onto a simple cross microfluidic chip. A single cell was loaded in the cross intersection by electrophoretic means through applying a set of potentials at the reservoirs. The docked cell was lysed rapidly under a direct electric field. The intracellular contents were MCE separated within 130 s. CL detection was based on the enhancing effects of AA and amino acids on the CL reaction of luminol with K(3)[Fe(CN)(6)]. Rat hepatocytes were prepared and analyzed as the test cellular model. The average intracellular contents of AA, Trp, Gly and Ala in single rat hepatocytes were found to be 38.3, 5.15, 3.78 and 3.84 fmol (n=12), respectively.
Collapse
Affiliation(s)
- Shulin Zhao
- College of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 51004, China
| | | | | |
Collapse
|
45
|
Microfluidic chip: Next-generation platform for systems biology. Anal Chim Acta 2009; 650:83-97. [DOI: 10.1016/j.aca.2009.04.051] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 04/16/2009] [Accepted: 04/27/2009] [Indexed: 12/30/2022]
|
46
|
Gong X, Li Q, Xu K, Liu X, Li H, Chen Z, Tong L, Tang B, Zhong H. A new route for simple and rapid determination of hydrogen peroxide in RAW264.7 macrophages by microchip electrophoresis. Electrophoresis 2009; 30:1983-90. [DOI: 10.1002/elps.200800635] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
47
|
Zhao S, Li X, Liu YM. Integrated microfluidic system with chemiluminescence detection for single cell analysis after intracellular labeling. Anal Chem 2009; 81:3873-8. [PMID: 19382810 PMCID: PMC2718560 DOI: 10.1021/ac900391u] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work describes the first application of microchip electrophoresis with chemiluminescence detection (MCE-CL) in single cell analysis. Human red blood cells were assayed to determine intracellular content of glutathione (GSH). Intracellular GSH was first labeled by incubating cells with diazo-luminol, and then individual cells were injected, in-line lysed, and MCE separated. CL detection was based on the oxidation reaction of luminol-labeled GSH with NaBrO. The MCE-CL assay had a linear calibration curve over a range from 0.2-90 amol GSH injected with a correlation coefficient of 0.9991 and a detection limit of 50 zmol or 3.6 x 10(-9) M (S/N = 3). The average content of GSH in individual human red blood cells was found 64.9 amol (n = 17). Compared with the MCE methods with laser induced fluorescence detection (LIF) reported so far for single cell analysis, the present MCE-CL assay of GSH is simple and about 100 times more sensitive.
Collapse
Affiliation(s)
- Shulin Zhao
- College of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin, 541004, China
| | | | | |
Collapse
|
48
|
Qi LY, Yin XF, Liu JH. Rapid and efficient isotachophoretic preconcentration in free solution coupled with gel electrophoresis separation on a microchip using a negative pressure sampling technique. J Chromatogr A 2009; 1216:4510-6. [DOI: 10.1016/j.chroma.2009.03.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 03/11/2009] [Accepted: 03/13/2009] [Indexed: 11/30/2022]
|
49
|
Liu X, Li Q, Gong X, Li H, Chen Z, Tong L, Tang B. Rapid determination of superoxide free radical in hepatocellular carcinoma cells by MCE with LIF. Electrophoresis 2009; 30:1077-83. [DOI: 10.1002/elps.200800421] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
Chao TC, Ros A. Microfluidic single-cell analysis of intracellular compounds. J R Soc Interface 2008; 5 Suppl 2:S139-50. [PMID: 18682362 DOI: 10.1098/rsif.2008.0233.focus] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Biological analyses traditionally probe cell ensembles in the range of 103-106 cells, thereby completely averaging over relevant individual cell responses, such as differences in cell proliferation, responses to external stimuli or disease onset. In past years, this fact has been realized and increasing interest has evolved for single-cell analytical methods, which could give exciting new insights into genomics, proteomics, transcriptomics and systems biology. Microfluidic or lab-on-a-chip devices are the method of choice for single-cell analytical tools as they allow the integration of a variety of necessary process steps involved in single-cell analysis, such as selection, navigation, positioning or lysis of single cells as well as separation and detection of cellular analytes. Along with this advantageous integration, microfluidic devices confine single cells in compartments near their intrinsic volume, thus minimizing dilution effects and increasing detection sensitivity. This review overviews the developments and achievements of microfluidic single-cell analysis of intracellular compounds in the past few years, from proof-of-principle devices to applications demonstrating a high biological relevance.
Collapse
Affiliation(s)
- Tzu-Chiao Chao
- Department of Chemistry and Biochemistry, Arizona State University, Box 871604, Tempe, AZ 85287-1604, USA
| | | |
Collapse
|