1
|
Kaddour H, Kopcho S, Lyu Y, Shouman N, Paromov V, Pratap S, Dash C, Kim EY, Martinson J, McKay H, Epeldegui M, Margolick JB, Stapleton JT, Okeoma CM. HIV-infection and cocaine use regulate semen extracellular vesicles proteome and miRNAome in a manner that mediates strategic monocyte haptotaxis governed by miR-128 network. Cell Mol Life Sci 2021; 79:5. [PMID: 34936021 PMCID: PMC9134786 DOI: 10.1007/s00018-021-04068-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Extracellular vesicles (EVs) are regulators of cell-cell interactions and mediators of horizontal transfer of bioactive molecules between cells. EV-mediated cell-cell interactions play roles in physiological and pathophysiological processes, which maybe modulated by exposure to pathogens and cocaine use. However, the effect of pathogens and cocaine use on EV composition and function are not fully understood. RESULTS Here, we used systems biology and multi-omics analysis to show that HIV infection (HIV +) and cocaine (COC) use (COC +) promote the release of semen-derived EVs (SEV) with dysregulated extracellular proteome (exProtein), miRNAome (exmiR), and exmiR networks. Integrating SEV proteome and miRNAome revealed a significant decrease in the enrichment of disease-associated, brain-enriched, and HIV-associated miR-128-3p (miR-128) in HIV + COC + SEV with a concomitant increase in miR-128 targets-PEAK1 and RND3/RhoE. Using two-dimensional-substrate single cell haptotaxis, we observed that in the presence of HIV + COC + SEV, contact guidance provided by the extracellular matrix (ECM, collagen type 1) network facilitated far-ranging haptotactic cues that guided monocytes over longer distances. Functionalizing SEV with a miR-128 mimic revealed that the strategic changes in monocyte haptotaxis are in large part the result of SEV-associated miR-128. CONCLUSIONS We propose that compositionally and functionally distinct HIV + COC + and HIV-COC- SEVs and their exmiR networks may provide cells relevant but divergent haptotactic guidance in the absence of chemotactic cues, under both physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Hussein Kaddour
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794-8651, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | - Steven Kopcho
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794-8651, USA
| | - Yuan Lyu
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794-8651, USA
| | - Nadia Shouman
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794-8651, USA
| | - Victor Paromov
- CRISALIS, School of Graduate Studies and Research, Proteomics Core, Meharry Medical College, Nashville, TN, 37208, USA
| | - Siddharth Pratap
- CRISALIS, School of Graduate Studies and Research, Bioinformatics Core, Meharry Medical College, Nashville, TN, 37208, USA
| | - Chandravanu Dash
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Eun-Young Kim
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jeremy Martinson
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Heather McKay
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Marta Epeldegui
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, UCLA AIDS Institute and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, USA
- David Geffen School of Medicine at UCLA, UCLA AIDS Institute, Los Angeles, USA
- UCLA Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Joseph B Margolick
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21207, USA
| | - Jack T Stapleton
- Departments of Internal Medicine, Microbiology and Immunology, University of Iowa and Iowa City Veterans Administration Healthcare, Iowa City, IA, 52242-1081, USA
| | - Chioma M Okeoma
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794-8651, USA.
| |
Collapse
|
2
|
Sze SK, JebaMercy G, Ngan SC. Profiling the 'deamidome' of complex biosamples using mixed-mode chromatography-coupled tandem mass spectrometry. Methods 2020; 200:31-41. [PMID: 32418626 DOI: 10.1016/j.ymeth.2020.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 04/26/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
Deamidation is a spontaneous degenerative protein modification (DPM) that disrupts the structure and function of both endogenous proteins and various therapeutic agents. While deamidation has long been recognized as a critical event in human aging and multiple degenerative diseases, research progress in this field has been restricted by the technical challenges associated with studying this DPM in complex biological samples. Asparagine (Asn) deamidation generates L-aspartic acid (L-Asp), D-aspartic acid (D-Asp), L-isoaspartic acid (L-isoAsp) or D-isoaspartic acid (D-isoAsp) residues at the same position of Asn in the affected protein, but each of these amino acids displays similar hydrophobicity and cannot be effectively separated by reverse phase liquid chromatography. The Asp and isoAsp isoforms are also difficult to resolve using mass spectrometry since they have the same mass and fragmentation pattern in MS/MS. Moreover, the 13C peaks of the amidated peptide are often misassigned as monoisotopic peaks of the corresponding deamidated peptides in protein database searches. Furthermore, typical protein isolation and proteomic sample preparation methods induce artificial deamidation that cannot be distinguished from the physiological forms. To better understand the role of deamidation in biological aging and degenerative pathologies, new technologies are now being developed to address these analytical challenges, including mixed mode electrostatic-interaction modified hydrophilic interaction liquid chromatography (emHILIC). When coupled to high resolution, high accuracy tandem mass spectrometry this technology enables unprecedented, proteome-wide study of the 'deamidome' of complex samples. The current article therefore reviews recent advances in sample preparation methods, emHILIC-MS/MS technology, and MS instrumentation / data processing approaches to achieving accurate and reliable characterization of protein deamidation in complex biological and clinical samples.
Collapse
Affiliation(s)
- Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Gnanasekaran JebaMercy
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - SoFong Cam Ngan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
3
|
An overview of mammographic density and its association with breast cancer. Breast Cancer 2018; 25:259-267. [PMID: 29651637 PMCID: PMC5906528 DOI: 10.1007/s12282-018-0857-5] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 03/30/2018] [Indexed: 12/24/2022]
Abstract
In 2017, breast cancer became the most commonly diagnosed cancer among women in the US. After lung cancer, breast cancer is the leading cause of cancer-related mortality in women. The breast consists of several components, including milk storage glands, milk ducts made of epithelial cells, adipose tissue, and stromal tissue. Mammographic density (MD) is based on the proportion of stromal, epithelial, and adipose tissue. Women with high MD have more stromal and epithelial cells and less fatty adipose tissue, and are more likely to develop breast cancer in their lifetime compared to women with low MD. Because of this correlation, high MD is an independent risk factor for breast cancer. Further, mammographic screening is less effective in detecting suspicious lesions in dense breast tissue, which can lead to late-stage diagnosis. Molecular differences between dense and non-dense breast tissues explain the underlying biological reasons for why women with dense breasts are at a higher risk for developing breast cancer. The goal of this review is to highlight the current molecular understanding of MD, its association with breast cancer risk, the demographics pertaining to MD, and the environmental factors that modulate MD. Finally, we will review the current legislation regarding the disclosure of MD on a traditional screening mammogram and the supplemental screening options available to women with dense breast tissue.
Collapse
|
4
|
Law HCH, Kong RPW, Szeto SSW, Zhao Y, Zhang Z, Wang Y, Li G, Quan Q, Lee SMY, Lam HC, Chu IK. A versatile reversed phase-strong cation exchange-reversed phase (RP–SCX–RP) multidimensional liquid chromatography platform for qualitative and quantitative shotgun proteomics. Analyst 2015; 140:1237-52. [DOI: 10.1039/c4an01893a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We developed a novel online MDLC platform that integrates a dual-trap configuration and two separation technologies into a single automated commercial platform.
Collapse
Affiliation(s)
- Henry C. H. Law
- Department of Chemistry
- the University of Hong Kong
- Hong Kong
- China
| | - Ricky P. W. Kong
- Department of Chemistry
- the University of Hong Kong
- Hong Kong
- China
| | | | - Yun Zhao
- Department of Chemistry
- the University of Hong Kong
- Hong Kong
- China
| | - Zaijun Zhang
- Institute of New Drug Research
- Jinan University College of Pharmacy
- Guangzhou 510632
- China
| | - Yuqiang Wang
- Institute of New Drug Research
- Jinan University College of Pharmacy
- Guangzhou 510632
- China
| | - Guohui Li
- Department of Chemistry
- the University of Hong Kong
- Hong Kong
- China
- Institute of Chinese Medical Sciences
| | - Quan Quan
- Department of Chemistry
- the University of Hong Kong
- Hong Kong
- China
| | - Simon M. Y. Lee
- Institute of Chinese Medical Sciences
- University of Macau
- Macau
- China
| | - Herman C. Lam
- Department of Chemistry
- the University of Hong Kong
- Hong Kong
- China
| | - Ivan K. Chu
- Department of Chemistry
- the University of Hong Kong
- Hong Kong
- China
| |
Collapse
|
5
|
Affiliation(s)
- Piliang Hao
- School of Biological Sciences, Nanyang Technological University Singapore
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University Singapore
| |
Collapse
|
6
|
Gao M, Qi D, Zhang P, Deng C, Zhang X. Development of multidimensional liquid chromatography and application in proteomic analysis. Expert Rev Proteomics 2014; 7:665-78. [DOI: 10.1586/epr.10.49] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
7
|
The potential of electrophoretic sample pretreatment techniques and new instrumentation for bioanalysis, with a focus on peptidomics and metabolomics. Bioanalysis 2013; 5:2785-801. [DOI: 10.4155/bio.13.254] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This Review highlights the potential of new electromigration-based sample pretreatment techniques for bioanalysis. Sample pretreatment is a challenging part of the analytical workflow, especially in the fields of peptidomics and metabolomics, where the analytes are very diverse, both in physicochemical properties and in endogenous concentration. Electromigration-based techniques have several strengths, such as fast selective analyte concentration and that complementary information on the content of a sample can be obtained when compared with more conventional (chromatography-based) techniques. In the past decade, various new electromigration-based sample pretreatment techniques have been developed, and importantly, new instrumental setups. In this Review, we provide an introduction on electromigration and its strengths. Then, selected examples of electromigration-based sample pretreatment techniques and instrumentation are discussed, namely free-flow electrophoresis, isoelectric focusing, isotachophoresis, electrodialysis, electromembrane extraction and electroextraction. Finally, the promising perspectives of electromigration-based sample pretreatment techniques are outlined.
Collapse
|
8
|
Babudieri S, Soddu A, Nieddu P, Tanca A, Madeddu G, Addis M, Pagnozzi D, Cossu-Rocca P, Massarelli G, Dore M, Uzzau S, Mura M. Proteomic characterization of hepatitis C eradication: Enzyme switch in the healing liver. J Clin Virol 2013; 57:274-8. [DOI: 10.1016/j.jcv.2013.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/23/2013] [Accepted: 03/02/2013] [Indexed: 12/13/2022]
|
9
|
Hao P, Ren Y, Dutta B, Sze SK. Comparative evaluation of electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) and high-pH reversed phase (Hp-RP) chromatography in profiling of rat kidney proteome. J Proteomics 2013; 82:254-62. [PMID: 23486160 DOI: 10.1016/j.jprot.2013.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 02/05/2013] [Accepted: 02/13/2013] [Indexed: 01/17/2023]
Abstract
UNLABELLED ERLIC and high-pH RP (Hp-RP) have been reported to be promising alternatives to strong cation exchange (SCX) in proteome fractionation. Here we compared the performance of ERLIC, concatenated ERLIC and concatenated Hp-RP in proteome profiling. The protein identification is comparable in these three strategies, but significantly more unique peptides are identified by the two concatenation methods, resulting in a significant increase of the average protein sequence coverage. The pooling of fractions from spaced intervals results in more uniform distribution of peptides in each fraction compared with the chromatogram-based pooling of adjacent fractions. ERLIC fractionates peptides according to their pI and GRAVY values. These properties remains but becomes less remarkable in concatenated ERLIC. In contrast, the average pI and GRAVY values of the peptides are comparable in each fraction in concatenated Hp-RP. ERLIC performs the best in identifying peptides with pI>9 among the three strategies, while concatenated Hp-RP is good at identifying peptides with pI<4. These advantages are useful when either basic or acidic peptides/proteins are analytical targets. The power of ERLIC in identification of basic peptides seems to be due to their efficient separation from acidic peptides. This study facilitates the choice of proper fractionation strategies based on specific objectives. BIOLOGICAL SIGNIFICANCE For in-depth proteomic analysis of a cell, tissue and plasma, multidimensional liquid chromatography (MDLC) is still necessary to reduce sample complexity for improving analytical dynamic range and proteome coverage. This work conducts a direct comparison of three promising first-dimensional proteome fractionation methods. They are comparable in identifying proteins, but concatenated ERLIC and concatenated Hp-RP identify significantly more unique peptides than ERLIC. ERLIC is good at analyzing basic peptides, while concatenated Hp-RP performs the best in analyzing acidic peptides with pI<4. This will facilitate the choice of the proper peptide fractionation strategy based on a specific need. A combination of different fractionation strategies can be used to increase the sequence coverage and number of protein identification due to the complementary effect between different methods.
Collapse
Affiliation(s)
- Piliang Hao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | | | |
Collapse
|
10
|
Wang C, Fang X, Lee CS. Recent advances in capillary electrophoresis-based proteomic techniques for biomarker discovery. Methods Mol Biol 2013; 984:1-12. [PMID: 23386332 DOI: 10.1007/978-1-62703-296-4_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Due to the inherent disadvantage of biomarker dilution in complex biological fluids such as serum/plasma, urine, and saliva, investigative studies directed at tissues obtained from the primary site of pathology probably afford the best opportunity for the discovery of disease biomarkers. Still, the large variation of protein relative abundances with clinical specimens often exceeds the dynamic range of currently available proteomic techniques. Furthermore, since the sizes of human tissue biopsies are becoming significantly smaller due to the advent of minimally invasive methods and early detection and treatment of lesions, a more effective discovery-based proteomic technology is critically needed to enable comprehensive and comparative studies of protein profiles that will have diagnostic and therapeutic relevance.This review therefore focuses on the most recent advances in capillary electrophoresis-based single and multidimensional separations coupled with mass spectrometry for performing comprehensive proteomic analysis of clinical specimens. In addition to protein identification, monitoring quantitative changes in protein expression is essential for the discovery of disease-associated biomarkers. Comparative proteomics involving measurements in changes of biological pathways or functional processes are further expected to provide relevant markers and networks, molecular relationships among different stages of disease, and molecular mechanisms that drive the progression of disease.
Collapse
Affiliation(s)
- Chenchen Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | | | | |
Collapse
|
11
|
Fang X, Wang C, Lee CS. Capillary electrophoresis-based proteomic techniques for biomarker discovery. Methods Mol Biol 2013; 919:181-187. [PMID: 22976101 DOI: 10.1007/978-1-62703-029-8_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Besides proteome complexity, the greatest bioanalytical challenge facing comprehensive proteomic analysis, particularly in the identification of low abundance proteins, is related to the large variation of protein relative abundances. In contrast to universally enriching all analytes by a similar degree, the result of the capillary isotachophoresis (CITP) stacking process is that major components may be diluted, but trace compounds are concentrated. Such selective enhancement toward low abundance proteins drastically reduces the range of relative protein abundances within complex proteomes and greatly enhances the resulting proteome coverage. Furthermore, CITP offers seamless combination with nano-reversed phase liquid chromatography (nano-RPLC) as two highly resolving and completely orthogonal separation techniques critically needed for analyzing complex proteomes.
Collapse
|
12
|
Comparability of differential proteomics data generated from paired archival fresh-frozen and formalin-fixed samples by GeLC-MS/MS and spectral counting. J Proteomics 2012; 77:561-76. [PMID: 23043969 DOI: 10.1016/j.jprot.2012.09.033] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/17/2012] [Accepted: 09/22/2012] [Indexed: 11/22/2022]
Abstract
In this study, a Veterinary Department repository composed by paired formalin-fixed paraffin-embedded (FFPE) and fresh-frozen (FrFr) sets of the same tissues, routinely archived in the typical conditions of a clinical setting, was exploited to perform a comparative evaluation of the results generated by GeLC-MS/MS (1-DE followed by in-gel digestion and LC-MS/MS) and spectral counting with the two types of archival samples. Therefore, two parallel differential proteomic studies were performed using 3 canine mammary carcinomas and 3 normal controls in a paired fashion (6 FrFr and 6 FFPE in total). As a result, the FrFr and FFPE differential proteomic datasets exhibited fair consistency in differential expression trends, according to protein molecular function, cellular localization, networks, and pathways. However, FFPE samples were globally slightly less informative, especially concerning the high-MW subproteome. As a further investigation, new insights into the molecular aspects of protein fixation and retrieval were obtained. In conclusion, archival FFPE samples can be reliably used for differential proteomics studies employing a spectral counting GeLC-MS/MS approach, although some typical biases need to be taken into account, and FrFr specimens (when available) should still be considered as the gold standard for clinical proteomics.
Collapse
|
13
|
Fang X, Wang C, Balgley BM, Zhao K, Wang W, He F, Weil RJ, Lee CS. Targeted tissue proteomic analysis of human astrocytomas. J Proteome Res 2012; 11:3937-46. [PMID: 22794670 DOI: 10.1021/pr300303t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Complicating proteomic analysis of whole tissues is the obvious problem of cell heterogeneity in tissues, which often results in misleading or confusing molecular findings. Thus, the coupling of tissue microdissection for tumor cell enrichment with capillary isotachophoresis-based selective analyte concentration not only serves as a synergistic strategy to characterize low abundance proteins, but it can also be employed to conduct comparative proteomic studies of human astrocytomas. A set of fresh frozen brain biopsies were selectively microdissected to provide an enriched, high quality, and reproducible sample of tumor cells. Despite sharing many common proteins, there are significant differences in the protein expression level among different grades of astrocytomas. A large number of proteins, such as plasma membrane proteins EGFR and Erbb2, are up-regulated in glioblastoma. Besides facilitating the prioritization of follow-on biomarker selection and validation, comparative proteomics involving measurements in changes of pathways are expected to reveal the molecular relationships among different pathological grades of gliomas and potential molecular mechanisms that drive gliomagenesis.
Collapse
Affiliation(s)
- Xueping Fang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhao Y, Kong RPW, Li G, Lam MPY, Law CH, Lee SMY, Lam HC, Chu IK. Fully automatable two-dimensional hydrophilic interaction liquid chromatography-reversed phase liquid chromatography with online tandem mass spectrometry for shotgun proteomics. J Sep Sci 2012; 35:1755-63. [DOI: 10.1002/jssc.201200054] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yun Zhao
- Department of Chemistry; The University of Hong Kong; Hong Kong China
| | - Ricky P. W. Kong
- Department of Chemistry; The University of Hong Kong; Hong Kong China
| | - Guohui Li
- Department of Chemistry; The University of Hong Kong; Hong Kong China
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences; University of Macau; Taipa, Macao SAR China
| | - Maggie P. Y. Lam
- Department of Chemistry; The University of Hong Kong; Hong Kong China
| | - C. H. Law
- Department of Chemistry; The University of Hong Kong; Hong Kong China
| | - Simon M. Y. Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences; University of Macau; Taipa, Macao SAR China
| | - Herman C. Lam
- Department of Chemistry; The University of Hong Kong; Hong Kong China
| | - Ivan K. Chu
- Department of Chemistry; The University of Hong Kong; Hong Kong China
| |
Collapse
|
15
|
Pierce KM, Mohler RE. A Review of Chemometrics Applied to Comprehensive Two-dimensional Separations from 2008–2010. SEPARATION AND PURIFICATION REVIEWS 2012. [DOI: 10.1080/15422119.2011.591868] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
16
|
Hao P, Qian J, Dutta B, Cheow ESH, Sim KH, Meng W, Adav SS, Alpert A, Sze SK. Enhanced separation and characterization of deamidated peptides with RP-ERLIC-based multidimensional chromatography coupled with tandem mass spectrometry. J Proteome Res 2012; 11:1804-11. [PMID: 22239700 DOI: 10.1021/pr201048c] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Deamidation of asparaginyl residues in proteins produces a mixture of asparaginyl, n-aspartyl, and isoaspartyl residues, which affects the proteins' structure, function, and stability. Thus, it is important to identify and quantify the products to evaluate the effects in biological systems. It is still a challenging task to distinguish between the n-Asp and isoAsp deamidation products in a proteome-wide analysis because of their similar physicochemical properties. The quantification of the isomeric deamidated peptides is also rather difficult because of their coelution/poor separation in reverse-phase liquid chromatography (RPLC). We here propose a RP-ERLIC-MS/MS approach for separating and quantifying on a proteome-wide scale the three products related to deamidation of the same peptide. The key to the method is the use of RPLC in the first dimensional separation and ERLIC (electrostatic repulsion-hydrophilic interaction chromatography) in the second, with direct online coupling to tandem MS. The coelution of the three deamidation-related peptides in RPLC is then an asset, as they are collected in the same fraction. They are then separated and identified in the second dimension with ERLIC, which separates peptides on the basis of both pI and GRAVY values. The coelution of the three products in RPLC and their efficient separation in ERLIC were validated using synthetic peptides, and the performance of ERLIC-MS/MS was tested using peptide mixtures from two proteins. Applying this sequence to rat liver tissue, we identified 302 unique N-deamidated peptides, of which 20 were identified via all three deamidation-related products and 70 of which were identified via two of them.
Collapse
Affiliation(s)
- Piliang Hao
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, 637551, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tanca A, Pagnozzi D, Addis MF. Setting proteins free: Progresses and achievements in proteomics of formalin-fixed, paraffin-embedded tissues. Proteomics Clin Appl 2011; 6:7-21. [DOI: 10.1002/prca.201100044] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 09/01/2011] [Accepted: 09/13/2011] [Indexed: 12/25/2022]
|
18
|
Hao P, Qian J, Ren Y, Sze SK. Electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) versus strong cation exchange (SCX) for fractionation of iTRAQ-labeled peptides. J Proteome Res 2011; 10:5568-74. [PMID: 22014306 DOI: 10.1021/pr2007686] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The iTRAQ technique is popular for the comparative analysis of proteins in different complex samples. To increase the dynamic range and sensitivity of peptide identification in shotgun proteomics, SCX chromatography is generally used for the fractionation of iTRAQ-labeled peptides before LC-MS/MS analysis. However, SCX suffers from clustering of similarly charged peptides and the need to desalt fractions. In this report, SCX is compared with the alternative ERLIC method for fractionating iTRAQ-labeled peptides. The simultaneous effect of electrostatic repulsion and hydrophilic interaction in ERLIC results in peptide elution in order of decreasing pI and GRAVY values (increasing polarity). Volatile solvents can be used. We applied ERLIC to iTRAQ-labeled peptides from rat liver tissue, and 2745 proteins and 30,016 unique peptides were identified with high confidence from three technical replicates. This was 12.9 and 49.4% higher, respectively, than was obtained using SCX. In addition, ERLIC is appreciably better at the identification of highly hydrophobic peptides. The results indicate that ERLIC is a more convenient and more effective alternative to SCX for the fractionation of iTRAQ-labeled peptides. Quantification data show that both SCX and ERLIC fractionation have no significant effect on protein quantification by iTRAQ.
Collapse
Affiliation(s)
- Piliang Hao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | | | | | | |
Collapse
|
19
|
Kong RP, Siu S, Lee SS, Lo C, Chu IK. Development of online high-/low-pH reversed-phase–reversed-phase two-dimensional liquid chromatography for shotgun proteomics: A reversed-phase-strong cation exchange-reversed-phase approach. J Chromatogr A 2011; 1218:3681-8. [DOI: 10.1016/j.chroma.2011.04.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 03/30/2011] [Accepted: 04/07/2011] [Indexed: 01/06/2023]
|
20
|
Zhou F, Cardoza JD, Ficarro SB, Adelmant GO, Lazaro JB, Marto JA. Online nanoflow RP-RP-MS reveals dynamics of multicomponent Ku complex in response to DNA damage. J Proteome Res 2010; 9:6242-55. [PMID: 20873769 DOI: 10.1021/pr1004696] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tandem affinity purification (TAP) coupled with mass spectrometry has become the technique of choice for characterization of multicomponent protein complexes. While current TAP protocols routinely provide high yield and specificity for proteins expressed under physiologically relevant conditions, analytical figures of merit required for efficient and in-depth LC-MS analysis remain unresolved. Here we implement a multidimensional chromatography platform, based on two stages of reversed-phase (RP) separation operated at high and low pH, respectively. We compare performance metrics for RP-RP and SCX-RP for the analysis of complex peptide mixtures derived from cell lysate, as well as protein complexes purified via TAP. Our data reveal that RP-RP fractionation outperforms SCX-RP primarily due to increased peak capacity in the first dimension separation. We integrate this system with miniaturized LC assemblies to achieve true online fractionation at low (≤5 nL/min) effluent flow rates. Stable isotope labeling is used to monitor the dynamics of the multicomponent Ku protein complex in response to DNA damage induced by γ radiation.
Collapse
Affiliation(s)
- Feng Zhou
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusettes, United States
| | | | | | | | | | | |
Collapse
|
21
|
Dai L, Li C, Shedden KA, Lee CJ, Li C, Quoc H, Simeone DM, Lubman DM. Quantitative proteomic profiling studies of pancreatic cancer stem cells. J Proteome Res 2010; 9:3394-402. [PMID: 20486718 DOI: 10.1021/pr100231m] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Analyzing subpopulations of tumor cells in tissue is a challenging subject in proteomic studies. Pancreatic cancer stem cells (CSCs) are such a group of cells that only constitute 0.2-0.8% of the total tumor cells but have been found to be the origin of pancreatic cancer carcinogenesis and metastasis. Global proteome profiling of pancreatic CSCs from xenograft tumors in mice is a promising way to unveil the molecular machinery underlying the signaling pathways. However, the extremely low availability of pancreatic tissue CSCs (around 10,000 cells per xenograft tumor or patient sample) has limited the utilization of currently standard proteomic approaches which do not work effectively with such a small amount of material. Herein, we describe the profiling of the proteome of pancreatic CSCs using a capillary scale shotgun technique by coupling offline capillary isoelectric focusing(cIEF) with nano reversed phase liquid chromatography(RPLC) followed by spectral counting peptide quantification. A whole cell lysate from 10,000 cells which corresponds to approximately 1 microg of protein material is equally divided for three repeated cIEF separations where around 300 ng of peptide material is used in each run. In comparison with a nontumorigenic tumor cell sample, among 1159 distinct proteins identified with FDR less than 0.2%, 169 differentially expressed proteins are identified after multiple testing corrections where 24% of the proteins are upregulated in the CSCs group. Ingenuity Pathway analysis of these differential expression signatures further suggests significant involvement of signaling pathways related to apoptosis, cell proliferation, inflammation, and metastasis.
Collapse
Affiliation(s)
- Lan Dai
- Bioinformatics Program, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Hao P, Guo T, Li X, Adav SS, Yang J, Wei M, Sze SK. Novel application of electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) in shotgun proteomics: comprehensive profiling of rat kidney proteome. J Proteome Res 2010; 9:3520-6. [PMID: 20450224 DOI: 10.1021/pr100037h] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In shotgun proteomics, multidimensional liquid chromatography (MDLC) is commonly used to reduce sample complexity and increase dynamic range of protein identification. Since reversed-phase chromatography is mostly used as the second-dimensional separation before mass spectrometric analysis, the improvement of MDLC primarily depends on the first dimension of separation. Here, we present a novel whole proteome analysis method that separates peptides based on ERLIC. Tryptic peptides were retained on a weak anion exchange column through ERLIC with a high organic mobile phase. They were then distributed into multiple fractions based on both pI and polarity through the simultaneous effect of electrostatic repulsion and hydrophilic interaction when eluted using a salt-free pH gradient of increasing water content. Applying this to rat kidney tissue, we identified 4821 proteins and 30 659 unique peptides with high confidence from two replicates using LTQ-FT. This was 36.2% and 64.3% higher, respectively, than was obtained with the widely used SCX separation mode. Notably, the identification of both highly hydrophobic and basic peptides increased over 120% using the ERLIC method. The results indicate that ERLIC is a promising alternative to SCX as the first dimension of MDLC. In total, 5499 proteins and 35 847 unique peptides of rat kidney tissue are characterized.
Collapse
Affiliation(s)
- Piliang Hao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore
| | | | | | | | | | | | | |
Collapse
|