1
|
Chen CJ, Chang CT, Lin ZR, Chiu WC, Liu JY, Ye ZC, Wang CJ, Shieh YT, Liu MY. Coupling capillary electrophoresis with mass spectrometry for the analysis of oxidized phospholipids in human high-density lipoproteins. Electrophoresis 2024; 45:333-345. [PMID: 37985935 DOI: 10.1002/elps.202300139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
The oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (ox-PAPC) products in human high-density lipoproteins (HDLs) were investigated by low-flow capillary electrophoresis-mass spectrometry (low-flow CE-MS). To accelerate the optimization, native PAPC (n-PAPC) standard was first analyzed by a commercial CE instrument with a photodiode array detector. The optimal separation buffer contained 60% (v/v) acetonitrile, 40% (v/v) methanol, 20 mM ammonium acetate, 0.5% (v/v) formic acid, and 0.1% (v/v) water. The selected separation voltage and capillary temperature were 20 kV and 23°C. The optimal CE separation buffer was then used for the low-flow CE-MS analysis. The selected MS conditions contained heated capillary temperature (250°C), capillary voltage (10 V), and injection time (1 s). No sheath gas was used for MS. The linear range for n-PAPC was 2.5-100.0 µg/mL. The coefficient of determination (R2 ) was 0.9918. The concentration limit of detection was 1.52 µg/mL, and the concentration limit of quantitation was 4.60 µg/mL. The optimal low-flow CE-MS method showed good repeatability and sensitivity. The ox-PAPC products in human HDLs were determined based on the in vitro ox-PAPC products of n-PAPC standard. Twenty-one ox-PAPC products have been analyzed in human HDLs. Uremic patients showed significantly higher levels of 15 ox-PAPC products than healthy subjects.
Collapse
Affiliation(s)
- Chao-Jung Chen
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, Proteomics Core Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Chiz-Tzung Chang
- Department of Medicine, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Zhi-Ru Lin
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | - Wen-Chien Chiu
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | - Jia-Yuan Liu
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | - Zhi-Cheng Ye
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | - Chuan-Jun Wang
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | - Ying-Tzu Shieh
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | - Mine-Yine Liu
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| |
Collapse
|
2
|
Chang CT, Chiu WC, Lin ZR, Shieh YT, Chang IT, Hsia MH, Wang CJ, Chen CJ, Liu MY. Determination of oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine products in human very low-density lipoproteins by nonaqueous low-flow capillary electrophoresis-mass spectrometry. J Chromatogr A 2023; 1687:463694. [PMID: 36502642 DOI: 10.1016/j.chroma.2022.463694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
A simple and fast low-flow capillary electrophoresis-mass spectrometry (low-flow CE-MS) method has been developed to analyze oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (ox-PAPC) products in human very low-density lipoproteins (VLDLs). Native PAPC standard was analyzed to optimize the low-flow CE-MS method. The optimal CE conditions included separation buffer (60% (v/v) acetonitrile, 40% (v/v) methanol, 0.1% (v/v) water, 0.5% (v/v) formic acid, 20 mM ammonium acetate), sheath liquid (60% (v/v) acetonitrile, 40% (v/v) methanol, 0.1% (v/v) water, 20 mM ammonium acetate), separation voltage (20 kV), separation capillary internal diameter (i.d.) (75 µm), separation capillary temperature (23˚C) and sample injection time (6 s). The selected MS conditions included heated capillary temperature (250°C), capillary voltage (10 V), and injection time (1 s). Sheath gas was not used in this study. The total ion chromatograms (TICs), extracted ion chromatograms (EICs) and MS spectra of native PAPC standard and its in vitro oxidation products showed good repeatability and sensitivity. To determine the ox-PAPC products in human VLDLs, the EICs and MS spectra of VLDLs were compared with the in vitro oxidation products of native PAPC standard. For native PAPC standard, the measured linear range was 2.5 - 100.0 µg/mL, and the coefficients of determination (R2) was 0.9994. The concentration limit of detection (LOD) was 0.44 µg/mL, and the concentration limit of quantitation (LOQ) was 1.34 µg/mL. A total of 21 ox-PAPC products were analyzed for the VLDLs of healthy and uremic subjects. The levels of 7 short-chain and 5 long-chain ox-PAPC products on uremic VLDLs were significantly higher than healthy VLDLs. This simple low-flow CE-MS method might be a good alternative for LC-MS for the analysis of ox-PAPC products. Furthermore, it might also help scientists to expedite the search for uremic biomarkers.
Collapse
Affiliation(s)
- Chiz-Tzung Chang
- Department of Medicine, China Medical University Hospital, Taichung, Taiwan; College of Medicine, China Medical University, Taichung, Taiwan
| | - Wen-Chien Chiu
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | - Zhi-Ru Lin
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | - Ying-Tzu Shieh
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | - I-Ting Chang
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | - Min-Hui Hsia
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | - Chuan-Jun Wang
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | - Chao-Jung Chen
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan; Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| | - Mine-Yine Liu
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan.
| |
Collapse
|
3
|
Shah NS, Thotathil V, Zaidi SA, Sheikh H, Mohamed M, Qureshi A, Sadasivuni KK. Picomolar or beyond Limit of Detection Using Molecularly Imprinted Polymer-Based Electrochemical Sensors: A Review. BIOSENSORS 2022; 12:1107. [PMID: 36551073 PMCID: PMC9775238 DOI: 10.3390/bios12121107] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Over the last decades, molecularly imprinted polymers (MIPs) have emerged as selective synthetic receptors that have a selective binding site for specific analytes/target molecules. MIPs are synthetic analogues to the natural biological antigen-antibody system. Owing to the advantages they exhibit, such as high stability, simple synthetic procedure, and cost-effectiveness, MIPs have been widely used as receptors/sensors for the detection and monitoring of a variety of analytes. Moreover, integrating electrochemical sensors with MIPs offers a promising approach and demonstrates greater potential over traditional MIPs. In this review, we have compiled the methods and techniques for the production of MIP-based electrochemical sensors along with the applications of reported MIP sensors for a variety of analytes. A comprehensive in-depth analysis of recent trends reported on picomolar (pM/10-12 M)) and beyond picomolar concentration LOD (≥pM) achieved using MIPs sensors is reported. Finally, we discuss the challenges faced and put forward future perspectives along with our conclusion.
Collapse
Affiliation(s)
- Naheed Sidiq Shah
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Vandana Thotathil
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Shabi Abbas Zaidi
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Hanan Sheikh
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Maimoona Mohamed
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Ahmadyar Qureshi
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | | |
Collapse
|
4
|
Kawai T, Matsumori N, Otsuka K. Recent advances in microscale separation techniques for lipidome analysis. Analyst 2021; 146:7418-7430. [PMID: 34787600 DOI: 10.1039/d1an00967b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review paper highlights the recent research on liquid-phase microscale separation techniques for lipidome analysis over the last 10 years, mainly focusing on capillary liquid chromatography (LC) and capillary electrophoresis (CE) coupled with mass spectrometry (MS). Lipids are one of the most important classes of biomolecules which are involved in the cell membrane, energy storage, signal transduction, and so on. Since lipids include a variety of hydrophobic compounds including numerous structural isomers, lipidomes are a challenging target in bioanalytical chemistry. MS is the key technology that comprehensively identifies lipids; however, separation techniques like LC and CE are necessary prior to MS detection in order to avoid ionization suppression and resolve structural isomers. Separation techniques using μm-scale columns, such as a fused silica capillary and microfluidic device, are effective at realizing high-resolution separation. Microscale separation usually employs a nL-scale flow, which is also compatible with nanoelectrospray ionization-MS that achieves high sensitivity. Owing to such analytical advantages, microscale separation techniques like capillary/microchip LC and CE have been employed for more than 100 lipidome studies. Such techniques are still being evolved and achieving further higher resolution and wider coverage of lipidomes. Therefore, microscale separation techniques are promising as the fundamental technology in next-generation lipidome analysis.
Collapse
Affiliation(s)
- Takayuki Kawai
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Nobuaki Matsumori
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Koji Otsuka
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| |
Collapse
|
5
|
Abstract
Lipids are natural substances found in all living organisms and involved in many biological functions. Imbalances in the lipid metabolism are linked to various diseases such as obesity, diabetes, or cardiovascular disease. Lipids comprise thousands of chemically distinct species making them a challenge to analyze because of their great structural diversity.Thanks to the technological improvements in the fields of chromatography, high-resolution mass spectrometry, and bioinformatics over the last years, it is now possible to perform global lipidomics analyses, allowing the concomitant detection, identification, and relative quantification of hundreds of lipid species. This review shall provide an insight into a general lipidomics workflow and its application in metabolic biomarker research.
Collapse
|
6
|
Boonsriwong W, Chunta S, Thepsimanon N, Singsanan S, Lieberzeit PA. Thin Film Plastic Antibody-Based Microplate Assay for Human Serum Albumin Determination. Polymers (Basel) 2021; 13:polym13111763. [PMID: 34072152 PMCID: PMC8198403 DOI: 10.3390/polym13111763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
Herein we demonstrate molecularly imprinted polymers (MIP) as plastic antibodies for a microplate-based assay. As the most abundant plasma protein, human serum albumin (HSA) was selected as the target analyte model. Thin film MIP was synthesized by the surface molecular imprinting approach using HSA as the template. The optimized polymer consisted of acrylic acid (AA) and N-vinylpyrrolidone (VP) in a 2:3 (w/w) ratio, crosslinked with N,N'-(1,2-dihydroxyethylene) bisacrylamide (DHEBA) and then coated on the microplate well. The binding of MIP toward the bound HSA was achieved via the Bradford reaction. The assay revealed a dynamic detection range toward HSA standards in the clinically relevant 1-10 g/dL range, with a 0.01 g/dL detection limit. HSA-MIP showed minimal interference from other serum protein components: γ-globulin had 11% of the HSA response, α-globulin of high-density lipoprotein had 9%, and β-globulin of low-density lipoprotein had 7%. The analytical accuracy of the assay was 89-106% at the 95% confidence interval, with precision at 4-9%. The MIP-coated microplate was stored for 2 months at room temperature without losing its binding ability. The results suggest that the thin film plastic antibody system can be successfully applied to analytical/pseudoimmunological HSA determinations in clinical applications.
Collapse
Affiliation(s)
| | - Suticha Chunta
- Department of Clinical Chemistry, Faculty of Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand;
- Correspondence: ; Tel.: +66-74-28-9125
| | - Nonthawat Thepsimanon
- Department of Clinical Chemistry, Faculty of Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Sanita Singsanan
- Department of Medical Technology, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand;
| | - Peter A. Lieberzeit
- Department of Physical Chemistry, Faculty for Chemistry, University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
7
|
Zaidi SA. An Overview of Bio-Inspired Intelligent Imprinted Polymers for Virus Determination. BIOSENSORS 2021; 11:bios11030089. [PMID: 33801007 PMCID: PMC8004044 DOI: 10.3390/bios11030089] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 05/03/2023]
Abstract
The molecular imprinting polymers (MIPs) have shown their potential in various applications including pharmaceuticals, chemical sensing and biosensing, medical diagnosis, and environmental related issues, owing to their artificial selective biomimetic recognition ability. Despite the challenges posed in the imprinting and recognition of biomacromolecules, the use of MIP for the imprinting of large biomolecular oragnism such as viruses is of huge interest because of the necessity of early diagnosis of virus-induced diseases for clinical and point-of-care (POC) purposes. Thus, many fascinating works have been documented in which such synthetic systems undoubtedly explore a variety of potential implementations, from virus elimination, purification, and diagnosis to virus and bacteria-borne disease therapy. This study is focused comprehensively on the fabrication strategies and their usage in many virus-imprinted works that have appeared in the literature. The drawbacks, challenges, and perspectives are also highlighted.
Collapse
Affiliation(s)
- Shabi Abbas Zaidi
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| |
Collapse
|
8
|
Bouvarel T, Delaunay N, Pichon V. Molecularly imprinted polymers in miniaturized extraction and separation devices. J Sep Sci 2021; 44:1727-1751. [DOI: 10.1002/jssc.202001223] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022]
Affiliation(s)
- Thomas Bouvarel
- Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation—UMR Chimie Biologie Innovation 8231, ESPCI Paris, CNRS PSL University Paris 75005 France
| | - Nathalie Delaunay
- Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation—UMR Chimie Biologie Innovation 8231, ESPCI Paris, CNRS PSL University Paris 75005 France
| | - Valérie Pichon
- Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation—UMR Chimie Biologie Innovation 8231, ESPCI Paris, CNRS PSL University Paris 75005 France
- Sorbonne Université Paris 75005 France
| |
Collapse
|
9
|
Combining capillary electromigration with molecular imprinting techniques towards an optimal separation and determination. Talanta 2021; 221:121546. [DOI: 10.1016/j.talanta.2020.121546] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 01/24/2023]
|
10
|
Gong M, Wei W, Hu Y, Jin Q, Wang X. Structure determination of conjugated linoleic and linolenic acids. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1153:122292. [PMID: 32755819 DOI: 10.1016/j.jchromb.2020.122292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
Abstract
Conjugated linoleic and linolenic acids (CLA and CLnA) can be found in dairy, ruminant meat and oilseeds, these types of unsaturated fatty acids consist of various positional and geometrical isomers, and have demonstrated health-promoting potential for human beings. Extensive reviews have reported the physiological effects of CLA, CLnA, while little is known regarding their isomer-specific effects. However, the isomers are difficult to identify, owing to (i) the similar retention time in common chromatographic methods; and (ii) the isomers are highly sensitive to high temperature, pH changes, and oxidation. The uncertainties in molecular structure have hindered investigations on the physiological effects of CLA and CLnA. Therefore, this review presents a summary of the currently available technologies for the structural determination of CLA and CLnA, including the presence confirmation, double bond position determination, and the potential stereo-isomer determination. Special focus has been projected to the novel techniques for structure determination of CLA and CLnA. Some possible future directions are also proposed.
Collapse
Affiliation(s)
- Mengyue Gong
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Wei Wei
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Yulin Hu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Qingzhe Jin
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Xingguo Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
11
|
Suravajhala R, Burri HR, Malik B. Selective Targeted Drug Delivery Mechanism via Molecular Imprinted Polymers in Cancer Therapeutics. Curr Top Med Chem 2020; 20:1993-1998. [PMID: 32568022 DOI: 10.2174/1568026620666200622150710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/21/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023]
Abstract
Artificial receptor-like structures such as molecular imprinted polymers (MIPs) are biomimetic molecules are used to replicate target specific antibody-antigen mechanism. In MIPs, selective binding of template molecule can be significantly correlated with lock and key mechanism, which play a major role in the drug delivery mechanism. The MIPs are biocompatible with high efficiency and are considered in several drug delivery and biosensor applications besides continuous and controlled drug release leading to better therapeutics. There is a need to explore the potential synthetic methods to improve MIPs with respect to the imprinting capacity in cancer therapeutics. In this review, we focus on MIPs as drug delivery mechanism in cancer and the challenges related to their synthesis and applications.
Collapse
Affiliation(s)
- Renuka Suravajhala
- Department of Chemistry, School of Basic Science, Manipal University Jaipur, Jaipur, India
| | | | - Babita Malik
- Department of Chemistry, School of Basic Science, Manipal University Jaipur, Jaipur, India
| |
Collapse
|
12
|
Şarkaya K, Aşir S, Göktürk I, Ektirici S, Yilmaz F, Yavuz H, Denizli A. Separation of histidine enantiomers by capillary electrochromatography with molecularly imprinted monolithic columns. SEPARATION SCIENCE PLUS 2020. [DOI: 10.1002/sscp.201900101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Koray Şarkaya
- Department of ChemistryHacettepe University Ankara Turkey
| | - Süleyman Aşir
- Department of Materials Science and Nanotechnology EngineeringNear East University Mersin Turkey
| | - Ilgım Göktürk
- Department of ChemistryHacettepe University Ankara Turkey
| | - Sisem Ektirici
- Department of ChemistryHacettepe University Ankara Turkey
| | - Fatma Yilmaz
- Department of Chemistry TechnolgyBolu Abant İzzet Baysal University Bolu Turkey
| | - Handan Yavuz
- Department of ChemistryHacettepe University Ankara Turkey
| | - Adil Denizli
- Department of ChemistryHacettepe University Ankara Turkey
| |
Collapse
|
13
|
Amorim TL, de Oliveira MAL. Advances in Lipid Capillary Electromigration Methods to Food Analysis Within the 2010s Decade. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01772-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Gong M, Hu Y, Wei W, Jin Q, Wang X. Production of conjugated fatty acids: A review of recent advances. Biotechnol Adv 2019; 37:107454. [PMID: 31639444 DOI: 10.1016/j.biotechadv.2019.107454] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/26/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
Abstract
Conjugated fatty acids (CFAs) have received a deal of attention due to the increasing understanding of their beneficial physiological effects, especially the anti-cancer effects and metabolism-regulation activities. However, the production of CFAs is generally difficult. Several challenges are the low CFAs content in natural sources, the difficulty to chemically synthesize target CFA isomers in high purity, and the sensitive characteristics of CFAs. In this article, the current technologies to produce CFAs, including physical, chemical, and biotechnical approaches were summarized, with a focus on the conjugated linoleic acids (CLAs) and conjugated linolenic acids (CLNAs) which are the most common investigated CFAs. CFAs usually demonstrate stronger physiological effects than other non-conjugated fatty acids; however, they are more sensitive to heat and oxidation. Consequently, the quality control throughout the entire production process of CFAs is significant. Special attention was given to the micro- or nano-encapsulation which presented as an emerging technique to improve the bioavailability and storage stability of CFAs. The current applications of CFAs and the potential research directions were also discussed.
Collapse
Affiliation(s)
- Mengyue Gong
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Yulin Hu
- Department of Chemical and Biochemical Engineering, Western University, London, ON N6A 3K7, Canada
| | - Wei Wei
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Qingzhe Jin
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Xingguo Wang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
15
|
Poinsot V, Ta HY, Meang VO, Perquis L, Gavard P, Pipy B, Couderc F. A digest of capillary electrophoretic methods applied to lipid analyzes. Electrophoresis 2018; 40:190-211. [DOI: 10.1002/elps.201800264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/27/2018] [Accepted: 07/27/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Véréna Poinsot
- Laboratoire des IMRCP; Université de Toulouse, Université Toulouse III - Paul Sabatier; Toulouse France
| | - Hai Yen Ta
- Laboratoire des IMRCP; Université de Toulouse, Université Toulouse III - Paul Sabatier; Toulouse France
| | - Varravaddheay Ong Meang
- Laboratoire des IMRCP; Université de Toulouse, Université Toulouse III - Paul Sabatier; Toulouse France
| | - Lucie Perquis
- Laboratoire des IMRCP; Université de Toulouse, Université Toulouse III - Paul Sabatier; Toulouse France
| | - Pierre Gavard
- Laboratoire des IMRCP; Université de Toulouse, Université Toulouse III - Paul Sabatier; Toulouse France
| | - Bernard Pipy
- Laboratoire Pharma DEV; Université de Toulouse, Université Toulouse III - Paul Sabatier; Toulouse France
| | - François Couderc
- Laboratoire des IMRCP; Université de Toulouse, Université Toulouse III - Paul Sabatier; Toulouse France
| |
Collapse
|
16
|
Chunta S, Suedee R, Lieberzeit PA. High-density lipoprotein sensor based on molecularly imprinted polymer. Anal Bioanal Chem 2017; 410:875-883. [PMID: 28664338 PMCID: PMC5775361 DOI: 10.1007/s00216-017-0442-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/24/2017] [Accepted: 05/30/2017] [Indexed: 01/01/2023]
Abstract
Decreased blood level of high-density lipoprotein (HDL) is one of the essential criteria in diagnosing metabolic syndrome associated with the development of atherosclerosis and coronary heart disease. Herein, we report the synthesis of a molecularly imprinted polymer (MIP) that selectively binds HDL, namely, HDL-MIP, and thus serves as an artificial, biomimetic sensor layer. The optimized polymer contains methacrylic acid and N-vinylpyrrolidone in the ratio of 2:3, cross-linked with ethylene glycol dimethacrylate. On 10 MHz dual electrode quartz crystal microbalances (QCM), such HDL-MIP revealed dynamic detection range toward HDL standards in the clinically relevant ranges of 2–250 mg/dL HDL cholesterol (HDL-C) in 10 mM phosphate-buffered saline (PBS, pH = 7.4) without significant interference: low-density lipoprotein (LDL) yields 5% of the HDL signal, and both very-low-density lipoprotein (VLDL) and human serum albumin (HSA) yield 0%. The sensor reveals recovery rates between 94 and 104% at 95% confidence interval with precision of 2.3–7.7% and shows appreciable correlation (R2 = 0.97) with enzymatic colorimetric assay, the standard in clinical tests. In contrast to the latter, it achieves rapid results (10 min) during one-step analysis without the need for sample preparation. ᅟ ![]()
Collapse
Affiliation(s)
- Suticha Chunta
- University of Vienna, Faculty for Chemistry, Department of Physical Chemistry, Währinger Straße 42, 1090, Vienna, Austria
| | - Roongnapa Suedee
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Peter A Lieberzeit
- University of Vienna, Faculty for Chemistry, Department of Physical Chemistry, Währinger Straße 42, 1090, Vienna, Austria.
| |
Collapse
|
17
|
Molecularly imprinted polymers for selective solid-phase extraction of phospholipids from human milk samples. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2345-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Zaidi SA. Molecular imprinting polymers and their composites: a promising material for diverse applications. Biomater Sci 2017; 5:388-402. [DOI: 10.1039/c6bm00765a] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular imprinted polymerization is considered one of the most useful preparation strategies to obtain highly selective polymeric materials called molecular imprinted polymers (MIPs).
Collapse
|
19
|
Abstract
Molecular imprinted polymers (MIP) are promising and versatile materials that have been used for the determination of many different analytes.
Collapse
|
20
|
Chen L, Wang X, Lu W, Wu X, Li J. Molecular imprinting: perspectives and applications. Chem Soc Rev 2016; 45:2137-211. [DOI: 10.1039/c6cs00061d] [Citation(s) in RCA: 1438] [Impact Index Per Article: 179.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This critical review presents a survey of recent developments in technologies and strategies for the preparation of MIPs, followed by the application of MIPs in sample pretreatment, chromatographic separation and chemical sensing.
Collapse
Affiliation(s)
- Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Xiaoyan Wang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Wenhui Lu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Xiaqing Wu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Jinhua Li
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| |
Collapse
|
21
|
Chunta S, Suedee R, Lieberzeit PA. Low-Density Lipoprotein Sensor Based on Molecularly Imprinted Polymer. Anal Chem 2015; 88:1419-25. [PMID: 26643785 DOI: 10.1021/acs.analchem.5b04091] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Increased level of low-density lipoprotein (LDL) strongly correlates with incidence of coronary heart disease. We synthesized novel molecularly imprinted polymers (MIP) as biomimetic specific receptors to establish rapid analysis of LDL levels. For that purpose the ratios of monomers acrylic acid (AA), methacrylic acid (MAA), and N-vinylpyrrolidone (VP), respectively, were screened on 10 MHz dual-electrode quartz crystal microbalances (QCM). Mixing MAA and VP in the ratio 3:2 (m/m) revealed linear sensor characteristic to LDL cholesterol (LDL-C) from 4 to 400 mg/dL or 0.10-10.34 mmol/L in 100 mM phosphate-buffered saline (PBS) without significant interference: high-density lipoprotein (HDL) yields 4-6% of the LDL signal, very-low-density-lipoprotein (VLDL) yields 1-3%, and human serum albumin (HSA) yields 0-2%. The LDL-MIP sensor reveals analytical accuracy of 95-96% at the 95% confidence interval with precision at 6-15%, respectively. Human serum diluted 1:2 with PBS buffer was analyzed by LDL-MIP sensors to demonstrate applicability to real-life samples. The sensor responses are excellently correlated to the results of the standard technique, namely, a homogeneous enzymatic assay (R(2) = 0.97). This demonstrates that the system can be successfully applied to human serum samples for determining LDL concentrations.
Collapse
Affiliation(s)
- Suticha Chunta
- University of Vienna , Faculty for Chemistry, Department of Analytical Chemistry, Waehringer Strasse 38, A-1090 Vienna, Austria
| | | | - Peter A Lieberzeit
- University of Vienna , Faculty for Chemistry, Department of Analytical Chemistry, Waehringer Strasse 38, A-1090 Vienna, Austria
| |
Collapse
|
22
|
Sanz-Vicente I, Lapieza MP, Cebolla VL, Galbán J. Rapid enzymatic method for the determination of phosphoryl choline using the fluorescence of the enzyme choline oxidase. Sequential determination of choline and phosphorylcholine in milk powder for children. Microchem J 2015. [DOI: 10.1016/j.microc.2015.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Wu Y, Zhang W, Chen Y, Chen Z. Electroosmotic pump-supported molecularly imprinted monolithic column for capillary chromatographic separation of nitrophenol isomers. Electrophoresis 2015; 36:2881-7. [DOI: 10.1002/elps.201500085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 05/16/2015] [Accepted: 08/10/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Yue Wu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education; Wuhan University School of Pharmaceutical Sciences; Wuhan P. R. China
| | - Wenpeng Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education; Wuhan University School of Pharmaceutical Sciences; Wuhan P. R. China
| | - Ying Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education; Wuhan University School of Pharmaceutical Sciences; Wuhan P. R. China
| | - Zilin Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education; Wuhan University School of Pharmaceutical Sciences; Wuhan P. R. China
| |
Collapse
|
24
|
Zhao YY, Miao H, Cheng XL, Wei F. Lipidomics: Novel insight into the biochemical mechanism of lipid metabolism and dysregulation-associated disease. Chem Biol Interact 2015; 240:220-38. [PMID: 26358168 DOI: 10.1016/j.cbi.2015.09.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 05/15/2015] [Accepted: 09/03/2015] [Indexed: 12/15/2022]
Abstract
The application of lipidomics, after genomics, proteomics and metabolomics, offered largely opportunities to illuminate the entire spectrum of lipidome based on a quantitative or semi-quantitative level in a biological system. When combined with advances in proteomics and metabolomics high-throughput platforms, lipidomics provided the opportunity for analyzing the unique roles of specific lipids in complex cellular processes. Abnormal lipid metabolism was demonstrated to be greatly implicated in many human lifestyle-related diseases. In this review, we focused on lipidomic applications in brain injury disease, cancer, metabolic disease, cardiovascular disease, respiratory disease and infectious disease to discover disease biomarkers and illustrate biochemical metabolic pathways. We also discussed the analytical techniques, future perspectives and potential problems of lipidomic applications. The application of lipidomics in disease biomarker discovery provides the opportunity for gaining novel insights into biochemical mechanism.
Collapse
Affiliation(s)
- Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, PR China.
| | - Hua Miao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, PR China
| | - Xian-Long Cheng
- National Institutes for Food and Drug Control, State Food and Drug Administration, No. 2 Tiantan Xili, Beijing, 100050, PR China
| | - Feng Wei
- National Institutes for Food and Drug Control, State Food and Drug Administration, No. 2 Tiantan Xili, Beijing, 100050, PR China
| |
Collapse
|
25
|
Analysis of phosphate and phosphate containing headgroups enzymatically cleaved from phospholipids of Bacillus subtilis by capillary electrophoresis. Anal Bioanal Chem 2015; 407:7215-20. [DOI: 10.1007/s00216-015-8885-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/19/2015] [Accepted: 06/26/2015] [Indexed: 01/20/2023]
|
26
|
Mu LN, Wei ZH, Liu ZS. Current trends in the development of molecularly imprinted polymers in CEC. Electrophoresis 2015; 36:764-72. [PMID: 25502791 DOI: 10.1002/elps.201400389] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/25/2014] [Accepted: 11/27/2014] [Indexed: 12/22/2022]
Abstract
This review focused on the developments in the field of molecularly imprinted polymers (MIPs) for CEC since 2009. New preparation techniques of MIP-based CEC, such as, portable microchip with macroporous monolithic imprinted microchannel, and low cross-linking MIPs based on liquid crystalline monomers, were discussed. Using selected cases rather than a comprehensive review of the entire field, our goal is to highlight the studies of the interest with an emphasis on recent work, and offers suggestions for future development in the field of imprinted materials for CEC separation.
Collapse
Affiliation(s)
- Li-Na Mu
- Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, China; Lianyungang TCM Branch of Jiangsu Union Technical Institute, Lianyungang, China
| | | | | |
Collapse
|
27
|
Colsch B, Seyer A, Boudah S, Junot C. Lipidomic analysis of cerebrospinal fluid by mass spectrometry-based methods. J Inherit Metab Dis 2015; 38:53-64. [PMID: 25488626 DOI: 10.1007/s10545-014-9798-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/06/2014] [Accepted: 11/19/2014] [Indexed: 12/18/2022]
Abstract
Lipids are natural substances found in all living organisms. Essential to the integrity of cell membranes, they also have many biological functions linked to energy storage and cell signaling, and are involved in a large number of heterogeneous diseases such as cancer, diabetes, neurological disorders, and inherited metabolic diseases. Lipids are challenging to analyze because of their huge structural diversity and numerous species. Up to now, lipid analysis has been achieved by targeted approaches focusing on selected families and relying on extraction protocols and chromatographic methods coupled to various detectors including mass spectrometry. Thanks to the technological improvements achieved in the fields of chromatography, high-resolution mass spectrometry and bioinformatics, it is possible to perform global lipidomic analyses enabling the concomitant detection, identification and relative quantification of many lipid species belonging to different families. The aim of this review is to focus on mass spectrometry-based methods to perform lipid and lipidomic analyses and on their application to the analysis of cerebrospinal fluid.
Collapse
Affiliation(s)
- Benoit Colsch
- CEA-Centre d'Etude de Saclay, Laboratoire d'étude du Métabolisme des Médicaments, Gif-sur-Yvette, France,
| | | | | | | |
Collapse
|
28
|
Whitcombe MJ, Kirsch N, Nicholls IA. Molecular imprinting science and technology: a survey of the literature for the years 2004-2011. J Mol Recognit 2014; 27:297-401. [PMID: 24700625 DOI: 10.1002/jmr.2347] [Citation(s) in RCA: 275] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/28/2013] [Accepted: 12/01/2013] [Indexed: 12/11/2022]
Abstract
Herein, we present a survey of the literature covering the development of molecular imprinting science and technology over the years 2004-2011. In total, 3779 references to the original papers, reviews, edited volumes and monographs from this period are included, along with recently identified uncited materials from prior to 2004, which were omitted in the first instalment of this series covering the years 1930-2003. In the presentation of the assembled references, a section presenting reviews and monographs covering the area is followed by sections describing fundamental aspects of molecular imprinting including the development of novel polymer formats. Thereafter, literature describing efforts to apply these polymeric materials to a range of application areas is presented. Current trends and areas of rapid development are discussed.
Collapse
|
29
|
Abstract
This review is aimed to discuss the molecular imprinted polymer (MIP)-based drug delivery systems (DDS). Molecular imprinted polymers have proved to possess the potential and also as a suitable material in several areas over a long period of time. However, only recently it has been employed for pharmaceuticals and biomedical applications, particularly as drug delivery vehicles due to properties including selective recognition generated from imprinting the desired analyte, favorable in harsh experimental conditions, and feedback-controlled recognitive drug release. Hence, this review will discuss their synthesis, the reason they are selected as drug delivery vehicles and for their applications in several drug administration routes (i.e. transdermal, ocular and gastrointestinal or stimuli-reactive routes).
Collapse
|
30
|
Zhang Y, Yao X. Preparation of molecularly imprinted polymer for vanillin via seed swelling and suspension polymerization. POLYMER SCIENCE SERIES B 2014. [DOI: 10.1134/s1560090414040137] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Kulsing C, Knob R, Macka M, Junor P, Boysen RI, Hearn MT. Molecular imprinted polymeric porous layers in open tubular capillaries for chiral separations. J Chromatogr A 2014; 1354:85-91. [DOI: 10.1016/j.chroma.2014.05.065] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/14/2014] [Accepted: 05/24/2014] [Indexed: 01/30/2023]
|
32
|
Montealegre C, Verardo V, Luisa Marina M, Caboni MF. Analysis of glycerophospho- and sphingolipids by CE. Electrophoresis 2014; 35:779-92. [DOI: 10.1002/elps.201300534] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 11/19/2013] [Accepted: 11/19/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Cristina Montealegre
- Department of Analytical Chemistry; Faculty of Chemistry; University of Alcalá; Alcalá de Henares Madrid Spain
| | - Vito Verardo
- Inter-Departmental Centre for Agri-Food Industrial Research (CIRI Agroalimentare); University of Bologna; Piazza Goidanich Cesena (FC) Italy
| | - María Luisa Marina
- Department of Analytical Chemistry; Faculty of Chemistry; University of Alcalá; Alcalá de Henares Madrid Spain
| | - Maria Fiorenza Caboni
- Inter-Departmental Centre for Agri-Food Industrial Research (CIRI Agroalimentare); University of Bologna; Piazza Goidanich Cesena (FC) Italy
- Department of Agricultural and Food Sciences; Alma Mater Studiorum-Università di Bologna; Piazza Goidanich Cesena (FC) Italy
| |
Collapse
|
33
|
Li M, Yang L, Bai Y, Liu H. Analytical Methods in Lipidomics and Their Applications. Anal Chem 2013; 86:161-75. [DOI: 10.1021/ac403554h] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Min Li
- Beijing National Laboratory for Molecular Sciences, Key
Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry
of Education, Institute of Analytical Chemistry, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Li Yang
- Beijing National Laboratory for Molecular Sciences, Key
Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry
of Education, Institute of Analytical Chemistry, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key
Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry
of Education, Institute of Analytical Chemistry, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key
Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry
of Education, Institute of Analytical Chemistry, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
34
|
Hartwell SK, Kehling A, Lapanantnoppakhun S, Grudpan K. Flow Injection/Sequential Injection Chromatography: A Review of Recent Developments in Low Pressure with High Performance Chemical Separation. ANAL LETT 2013. [DOI: 10.1080/00032719.2012.749487] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Montealegre C, Sánchez-Hernández L, Crego AL, Marina ML. Determination and characterization of glycerophospholipids in olive fruit and oil by nonaqueous capillary electrophoresis with electrospray-mass spectrometric detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:1823-1832. [PMID: 23379923 DOI: 10.1021/jf304357e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A nonaqueous capillary electrophoresis method with electrospray-mass spectrometric detection was developed to study the glycerophospholipid fraction in olive fruit and olive oil samples. In olive fruits, where the information available about the phospholipid fraction was very scarce, results obtained in this work allowed us to complete and improve this knowledge. The glycerophospholipid fraction of the olive fruit samples analyzed was composed of phosphatidylcholine (PC), phosphatidylethanolamine (PE), lysophosphatidylethanolamine (lyso-PE), phosphatidylinositol (PI), phosphatidic acid (PA), lysophosphatidic acid (lyso-PA), and phosphatidylglycerol (PG). Differences in the relative abundance of the glycerophospholipid classes determined were observed as a function of the botanical and geographical origin of the olive fruits analyzed. Interestingly, the olive stone and pulp analyzed also showed different glycerophospholipid compositions. For olive oil, five glycerophospholipids (lyso-PA, PC, PE, lyso-PE, and PG) were detected. Finally, identification of the main molecular species in the different glycerophospholipid classes for the olive fruit samples analyzed was accomplished by tandem mass spectrometric experiments and information from the literature.
Collapse
Affiliation(s)
- C Montealegre
- Department of Analytical Chemistry, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | | | | | | |
Collapse
|
36
|
Cao J, Li P, Chen J, Tan T, Dai HB. Enhanced separation of Compound Xueshuantong capsule using functionalized carbon nanotubes with cationic surfactant solutions in MEEKC. Electrophoresis 2012; 34:324-30. [DOI: 10.1002/elps.201200101] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 07/05/2012] [Accepted: 08/09/2012] [Indexed: 12/25/2022]
Affiliation(s)
- Jun Cao
- College of Material Chemistry and Chemical Engineering; Hangzhou Normal University; Hangzhou; P. R. China
| | - Ping Li
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing; P. R. China
| | - Jue Chen
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing; P. R. China
| | - Ting Tan
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing; P. R. China
| | - Han-Bin Dai
- College of Material Chemistry and Chemical Engineering; Hangzhou Normal University; Hangzhou; P. R. China
| |
Collapse
|