1
|
Yuen ZWS, Shanmuganandam S, Stanley M, Jiang S, Hein N, Daniel R, McNevin D, Jack C, Eyras E. Profiling age and body fluid DNA methylation markers using nanopore adaptive sampling. Forensic Sci Int Genet 2024; 71:103048. [PMID: 38640705 DOI: 10.1016/j.fsigen.2024.103048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
DNA methylation plays essential roles in regulating physiological processes, from tissue and organ development to gene expression and aging processes and has emerged as a widely used biomarker for the identification of body fluids and age prediction. Currently, methylation markers are targeted independently at specific CpG sites as part of a multiplexed assay rather than through a unified assay. Methylation detection is also dependent on divergent methodologies, ranging from enzyme digestion and affinity enrichment to bisulfite treatment, alongside various technologies for high-throughput profiling, including microarray and sequencing. In this pilot study, we test the simultaneous identification of age-associated and body fluid-specific methylation markers using a single technology, nanopore adaptive sampling. This innovative approach enables the profiling of multiple CpG marker sites across entire gene regions from a single sample without the need for specialized DNA preparation or additional biochemical treatments. Our study demonstrates that adaptive sampling achieves sufficient coverage in regions of interest to accurately determine the methylation status, shows a robust consistency with whole-genome bisulfite sequencing data, and corroborates known CpG markers of age and body fluids. Our work also resulted in the identification of new sites strongly correlated with age, suggesting new possible age methylation markers. This study lays the groundwork for the systematic development of nanopore-based methodologies in both age prediction and body fluid identification, highlighting the feasibility and potential of nanopore adaptive sampling while acknowledging the need for further validation and expansion in future research.
Collapse
Affiliation(s)
- Zaka Wing-Sze Yuen
- EMBL Australia Partner Laboratory Network, John Curtin School of Medical Research, The Australian National University, Canberra, Australia; The Shine-Dalgarno Centre for RNA Innovation, John Curtin School of Medical Research, The Australian National University, Canberra, Australia; The Centre for Computational Biomedical Sciences, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Somasundhari Shanmuganandam
- Department of Immunity, Inflammation and Infection, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia; Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Australian National University, Canberra, ACT 2601, Australia
| | - Maurice Stanley
- Department of Immunity, Inflammation and Infection, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia; Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Australian National University, Canberra, ACT 2601, Australia
| | - Simon Jiang
- Department of Immunity, Inflammation and Infection, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia; Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Australian National University, Canberra, ACT 2601, Australia; Department of Renal Medicine, The Canberra Hospital, Canberra, ACT 2605, Australia
| | - Nadine Hein
- ACRF Department of Cancer Biology and Therapeutics and Division of Genome Sciences and Cancer, John Curtin School of Medical Research, Australian National University, Acton, Canberra, Australia
| | - Runa Daniel
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Queensland, Australia
| | - Dennis McNevin
- Centre for Forensic Science, School of Mathematical & Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Cameron Jack
- ANU Bioinformatics Consultancy, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Eduardo Eyras
- EMBL Australia Partner Laboratory Network, John Curtin School of Medical Research, The Australian National University, Canberra, Australia; The Shine-Dalgarno Centre for RNA Innovation, John Curtin School of Medical Research, The Australian National University, Canberra, Australia; The Centre for Computational Biomedical Sciences, John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
| |
Collapse
|
2
|
Zhang J, Yan M, Ji A, Sun Q, Ying W. Mass spectrometry-based proteomic analysis of biological stains identifies body fluids specific markers. Forensic Sci Int 2024; 357:112008. [PMID: 38522320 DOI: 10.1016/j.forsciint.2024.112008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
The identification of biological stains and their tissue resource is an important part of forensic research. Current methods suffer from several limitations including poor sensitivity and specificity, trace samples, and sample destruction. In this study, we profiled the proteomes of menstrual blood, peripheral blood, saliva, semen, and vaginal fluid with mass spectrometry technology. Tissue-enhanced and tissue-specific proteins of each group have been proposed as potential biomarkers. These candidate proteins were further annotated and screened through the combination with the Human Protein Atlas database. Our data not only validates the protein biomarkers reported in previous studies but also identifies novel candidate biomarkers for human body fluids. These candidates lay the foundation for the development of rapid and specific forensic examination methods.
Collapse
Affiliation(s)
- Jian Zhang
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China; State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Meng Yan
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Anquan Ji
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China
| | - Qifan Sun
- MPS's Key Laboratory of Forensic Genetics, National Engineering Laboratory for Crime Scene Evidence Investigation and Examination, Institute of Forensic Science, Ministry of Public Security (MPS), Beijing 100038, China.
| | - Wantao Ying
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
| |
Collapse
|
3
|
Davidovics R, Saw YL, Brown CO, Prinz M, McKiernan HE, Danielson PB, Legg KM. High-throughput seminal fluid identification by automated immunoaffinity mass spectrometry. J Forensic Sci 2022; 67:1184-1190. [PMID: 35023573 DOI: 10.1111/1556-4029.14975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 11/27/2022]
Abstract
The identification of semen during a criminal investigation may be a critical component in the prosecution of a sexual assault. Commonly employed enzymatic and affinity-based methods for detection lack specificity, are time-consuming, and only provide a presumptive indication that semen is present where microscopic visualization is unable to meet the throughput demands. Contrary to traditional approaches, protein mass spectrometry provides true confirmatory results, but multiday sample preparation and nanoflow sample separation requirements have limited the practical applicability of these approaches. Aiming at streamlining sexual assault screening by mass spectrometry, the work here coupled a 60-minute rapid tryptic digestion, semenogelin-II peptide affinity purification on an Agilent AssayMap Bravo automation platform, and a 3-minute targeted LC-MS/MS method on an Agilent 6495 triple quadrupole mass spectrometer operating in multiple reaction monitoring mode for detecting semenogelin-II peptides in sexual assault samples. The developed assay was assessed using casework-type samples and was successful in detecting trace levels (0.0001 μl) of semen recovered from both cotton and vaginal swabs, as well as semen recovered from vaginal swabs during menses or adulterated with personal lubricants. This work represents a promising technique for high-throughput seminal fluid identification in sexual assault-type samples by mass spectrometry.
Collapse
Affiliation(s)
- Rachel Davidovics
- NMS Labs, Horsham, Pennsylvania, USA.,College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Yih Ling Saw
- Department of Chemistry and Physics, Arcadia University, Glenside, Pennsylvania, USA
| | - Catherine O Brown
- Department of Biological Sciences, The University of Denver, Denver, Colordo, USA
| | - Mechthild Prinz
- John Jay College of Criminal Justice, New York, New York, USA
| | - Heather E McKiernan
- Department of Chemistry and Physics, Arcadia University, Glenside, Pennsylvania, USA
| | - Phillip B Danielson
- Department of Biological Sciences, The University of Denver, Denver, Colordo, USA
| | - Kevin M Legg
- College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,The Center for Forensic Science Research & Education, Willow Grove, Pennsylvania, USA
| |
Collapse
|
4
|
Sijen T, Harbison S. On the Identification of Body Fluids and Tissues: A Crucial Link in the Investigation and Solution of Crime. Genes (Basel) 2021; 12:1728. [PMID: 34828334 PMCID: PMC8617621 DOI: 10.3390/genes12111728] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
Body fluid and body tissue identification are important in forensic science as they can provide key evidence in a criminal investigation and may assist the court in reaching conclusions. Establishing a link between identifying the fluid or tissue and the DNA profile adds further weight to this evidence. Many forensic laboratories retain techniques for the identification of biological fluids that have been widely used for some time. More recently, many different biomarkers and technologies have been proposed for identification of body fluids and tissues of forensic relevance some of which are now used in forensic casework. Here, we summarize the role of body fluid/ tissue identification in the evaluation of forensic evidence, describe how such evidence is detected at the crime scene and in the laboratory, elaborate different technologies available to do this, and reflect real life experiences. We explain how, by including this information, crucial links can be made to aid in the investigation and solution of crime.
Collapse
Affiliation(s)
- Titia Sijen
- Division Human Biological Traces, Netherlands Forensic Institute, Laan van Ypenburg 6, 2497 GB The Hague, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - SallyAnn Harbison
- Institute of Environmental Science and Research Limited, Private Bag 92021, Auckland 1142, New Zealand;
- Department of Statistics, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
5
|
Goecker ZC, Legg KM, Salemi MR, Herren AW, Phinney BS, McKiernan HE, Parker GJ. Alternative LC-MS/MS Platforms and Data Acquisition Strategies for Proteomic Genotyping of Human Hair Shafts. J Proteome Res 2021; 20:4655-4666. [PMID: 34491751 DOI: 10.1021/acs.jproteome.1c00209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein is a major component of all biological evidence. Proteomic genotyping is the use of genetically variant peptides (GVPs) that contain single-amino-acid polymorphisms to infer the genotype of matching nonsynonymous single-nucleotide polymorphisms for the individual from whom the protein sample originated. This can be used to statistically associate an individual to evidence found at a crime scene. The utility of the inferred genotype increases as the detection of GVPs increases, which is the direct result of technology transfer to mass spectrometry platforms typically available. Digests of single (2 cm) human hair shafts from three European and two African subjects were analyzed using data-dependent acquisition on a Q-Exactive Plus Hybrid Quadrupole-Orbitrap system, data-independent acquisition and a variant of parallel reaction monitoring (PRM) on an Orbitrap Fusion Lumos Tribrid system, and multiple reaction monitoring (MRM) on an Agilent 6495 triple quadrupole system. In our hands, average GVP detection from a selected panel of 24 GVPs increased from 6.5 ± 1.1 and 3.1 ± 0.8 using data-dependent and -independent acquisition to 9.5 ± 0.7 and 11.7 ± 1.7 using PRM and MRM (p < 0.05), respectively. PRM resulted in a 1.3-fold increase in detection sensitivity, and MRM resulted in a 1.6-fold increase in detection sensitivity. This increase in biomarker detection has a functional impact on the statistical association of a protein sample and an individual. Increased biomarker sensitivity, using Markov Chain Monte Carlo modeling, produced a median-estimated random match probability of over 1 in 10 trillion from a single hair using targeted proteomics. For PRM and MRM, detected GVPs were validated by the inclusion of stable isotope-labeled peptides in each sample, which served also as a detection trigger. This research accomplishes two aims: the demonstration of utility for alternative analytical platforms in proteomic genotyping and the establishment of validation methods for the evaluation of inferred genotypes.
Collapse
Affiliation(s)
- Zachary C Goecker
- Department of Environmental Toxicology, University of California, Davis, California 95616, United States
| | - Kevin M Legg
- The Center for Forensic Science Research and Education, Willow Grove, Pennsylvania 19090, United States
| | - Michelle R Salemi
- Proteomics Core Facility, University of California, Davis, California 95616, United States
| | - Anthony W Herren
- Proteomics Core Facility, University of California, Davis, California 95616, United States
| | - Brett S Phinney
- Proteomics Core Facility, University of California, Davis, California 95616, United States
| | - Heather E McKiernan
- The Center for Forensic Science Research and Education, Willow Grove, Pennsylvania 19090, United States
| | - Glendon J Parker
- Department of Environmental Toxicology, University of California, Davis, California 95616, United States
| |
Collapse
|
6
|
McKiernan HE, Danielson PB, Brown CO, Signaevsky M, Westring CG, Legg KM. Developmental validation of a multiplex proteomic assay for the identification of forensically relevant biological fluids. Forensic Sci Int 2021; 326:110908. [PMID: 34311288 DOI: 10.1016/j.forsciint.2021.110908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022]
Abstract
The aim of this study was to validate a multiplex proteomic assay for the identification of high-specificity protein biomarkers by multiple reaction monitoring mass spectrometry on a triple quadrupole mass spectrometer for the accurate, reliable, and confirmatory identification of bodily fluids commonly encountered in a forensic context. This includes the identification of peripheral blood, semen, saliva, urine, and vaginal/menstrual fluid. The assay is able to efficiently identify pure or mixed stains through the identification of target peptide fragments originating from tissue-specific proteins including: uromodulin from urine; prostatic acid phosphatase, prostate specific antigen and semenogelin-II for semen; statherin, submaxillary gland androgen-regulated protein 3B and amylase for saliva; cornulin, martrigel-induced gene C4 protein, suprabasin and neutrophil gelatinase-associated lipocalin for vaginal/menstrual fluid; and alpha-1 antitrypsin, hemopexin, and hemoglobin subunit beta for peripheral blood. Based on the results of the developmental validation studies which included an assessment of reproducibility and repeatability, sensitivity, species specificity, carryover, mixtures, as well as a series of casework type samples. Only a small selection of case samples was unable to unambiguously identify the target fluid including urine recovered from substrates as well as semen when mixed with personal lubricants. Overall, the mass spectrometry-based workflow offers significant advantages compared to existing serological methods.
Collapse
Affiliation(s)
- Heather E McKiernan
- Department of Chemistry and Physics, Arcadia University, Glenside, PA 19038, USA
| | - Phillip B Danielson
- The Center for Forensic Science Research & Education, Willow Grove, PA 19090, USA; The University of Denver, Department of Biological Sciences, Denver, CO 80208, USA
| | - Catherine O Brown
- The Center for Forensic Science Research & Education, Willow Grove, PA 19090, USA; The University of Denver, Department of Biological Sciences, Denver, CO 80208, USA
| | - Masha Signaevsky
- Department of Chemistry and Physics, Arcadia University, Glenside, PA 19038, USA
| | - Christian G Westring
- Purdue University Northwest, Center for Crime, Forensics, and Security Analysis, Hammond, IN 46323, USA
| | - Kevin M Legg
- The Center for Forensic Science Research & Education, Willow Grove, PA 19090, USA.
| |
Collapse
|
7
|
Forensic proteomics. Forensic Sci Int Genet 2021; 54:102529. [PMID: 34139528 DOI: 10.1016/j.fsigen.2021.102529] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/19/2022]
Abstract
Protein is a major component of all biological evidence, often the matrix that embeds other biomolecules such as polynucleotides, lipids, carbohydrates, and small molecules. The proteins in a sample reflect the transcriptional and translational program of the originating cell types. Because of this, proteins can be used to identify body fluids and tissues, as well as convey genetic information in the form of single amino acid polymorphisms, the result of non-synonymous SNPs. This review explores the application and potential of forensic proteomics. The historical role that protein analysis played in the development of forensic science is examined. This review details how innovations in proteomic mass spectrometry have addressed many of the historical limitations of forensic protein science, and how the application of forensic proteomics differs from proteomics in the life sciences. Two more developed applications of forensic proteomics are examined in detail: body fluid and tissue identification, and proteomic genotyping. The review then highlights developing areas of proteomics that have the potential to impact forensic science in the near future: fingermark analysis, species identification, peptide toxicology, proteomic sex estimation, and estimation of post-mortem intervals. Finally, the review highlights some of the newer innovations in proteomics that may drive further development of the field. In addition to potential impact, this review also attempts to evaluate the stage of each application in the development, validation and implementation process. This review is targeted at investigators who are interested in learning about proteomics in a forensic context and expanding the amount of information they can extract from biological evidence.
Collapse
|
8
|
Abstract
Proteomics, the large-scale study of all proteins of an organism or system, is a powerful tool for studying biological systems. It can provide a holistic view of the physiological and biochemical states of given samples through identification and quantification of large numbers of peptides and proteins. In forensic science, proteomics can be used as a confirmatory and orthogonal technique for well-built genomic analyses. Proteomics is highly valuable in cases where nucleic acids are absent or degraded, such as hair and bone samples. It can be used to identify body fluids, ethnic group, gender, individual, and estimate post-mortem interval using bone, muscle, and decomposition fluid samples. Compared to genomic analysis, proteomics can provide a better global picture of a sample. It has been used in forensic science for a wide range of sample types and applications. In this review, we briefly introduce proteomic methods, including sample preparation techniques, data acquisition using liquid chromatography-tandem mass spectrometry, and data analysis using database search, spectral library search, and de novo sequencing. We also summarize recent applications in the past decade of proteomics in forensic science with a special focus on human samples, including hair, bone, body fluids, fingernail, muscle, brain, and fingermark, and address the challenges, considerations, and future developments of forensic proteomics.
Collapse
|
9
|
Haas C, Neubauer J, Salzmann AP, Hanson E, Ballantyne J. Forensic transcriptome analysis using massively parallel sequencing. Forensic Sci Int Genet 2021; 52:102486. [PMID: 33657509 DOI: 10.1016/j.fsigen.2021.102486] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/15/2022]
Abstract
The application of transcriptome analyses in forensic genetics has experienced tremendous growth and development in the past decade. The earliest studies and main applications were body fluid and tissue identification, using targeted RNA transcripts and a reverse transcription endpoint PCR method. A number of markers have been identified for the forensically most relevant body fluids and tissues and the method has been successfully used in casework. The introduction of Massively Parallel Sequencing (MPS) opened up new perspectives and opportunities to advance the field. Contrary to genomic DNA where two copies of an autosomal DNA segment are present in a cell, abundant RNA species are expressed in high copy numbers. Even whole transcriptome sequencing (RNA-Seq) of forensically relevant body fluids and of postmortem material was shown to be possible. This review gives an overview on forensic transcriptome analyses and applications. The methods cover whole transcriptome as well as targeted MPS approaches. High resolution forensic transcriptome analyses using MPS are being applied to body fluid/ tissue identification, determination of the age of stains and the age of the donor, the estimation of the post-mortem interval and to post mortem death investigations.
Collapse
Affiliation(s)
- Cordula Haas
- University of Zurich, Zurich Institute of Forensic Medicine, Forensic Genetics, Winterthurerstrasse 190/52, CH-8057 Zurich, Switzerland.
| | - Jacqueline Neubauer
- University of Zurich, Zurich Institute of Forensic Medicine, Forensic Genetics, Winterthurerstrasse 190/52, CH-8057 Zurich, Switzerland
| | - Andrea Patrizia Salzmann
- University of Zurich, Zurich Institute of Forensic Medicine, Forensic Genetics, Winterthurerstrasse 190/52, CH-8057 Zurich, Switzerland
| | - Erin Hanson
- National Center for Forensic Science, University of Central Florida, 12354 Research Parkway, Suite 225, Orlando, FL 32826, USA
| | - Jack Ballantyne
- National Center for Forensic Science, University of Central Florida, 12354 Research Parkway, Suite 225, Orlando, FL 32826, USA; Department of Chemistry, National Center for Forensic Science, University of Central Florida, 12354 Research Parkway, Suite 225, Orlando, FL 32826, USA
| |
Collapse
|
10
|
Brown CO, Robbins BL, McKiernan HE, Danielson PB, Legg KM. Direct seminal fluid identification by protease-free high-resolution mass spectrometry. J Forensic Sci 2020; 66:1017-1023. [PMID: 33289932 DOI: 10.1111/1556-4029.14646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/05/2020] [Accepted: 11/18/2020] [Indexed: 12/26/2022]
Abstract
Serological screening of sexual assault evidence has traditionally focused on enzyme activity and immunochromatographic assays that provide only a presumptive indication of seminal fluid and have limited sensitivity relative to DNA testing. Seminal fluid detection based on protein mass spectrometry represents a "Next Gen" serological technology that overcomes the specificity and sensitivity limitations of traditional serological screening but requires time-consuming sample preparation protocols. This paper describes a novel "peptidomics" approach to seminal fluid detection that eliminates the need for lengthy trypsin digestion. This streamlines sample preparation to a one-step process followed by high-resolution mass spectrometry to identify naturally occurring seminal fluid peptides and low-molecular weight proteins. Multiple protein biomarkers of seminal fluid were consistently and confidently identified based on the multiplexed detection of numerous endogenous peptides. These included Semenogelin I and II (90% and 86% sequence coverage, respectively); Prostate Specific Antigen/p30 (29% sequence coverage); and Prostatic Acid Phosphatase (24% sequence coverage). The performance of this streamlined peptidomics approach to seminal fluid identification in a forensic context was also assessed using simulated casework samples of the type typically collected as part of a sexual assault examination (e.g., oral and vaginal swabs stained with semen). The resulting data demonstrate that sub-microliter quantities of seminal fluid on cotton swabs can be recovered and reliably detected. This supports the forensic applicability of a peptidomic assay for seminal fluid identification with same-day sample preparation and analysis. Future development and streamlined multiplex peptidomic assays for additional biological stains can easily be envisaged.
Collapse
Affiliation(s)
- Catherine O Brown
- The Center for Forensic Science Research & Education, Willow Grove, PA, USA.,Department of Biological Sciences, The University of Denver, Denver, CO, USA
| | | | | | - Phillip B Danielson
- Department of Biological Sciences, The University of Denver, Denver, CO, USA
| | - Kevin M Legg
- The Center for Forensic Science Research & Education, Willow Grove, PA, USA
| |
Collapse
|
11
|
Satoh T, Kouroki S, Kitamura Y, Ihara T, Matsumura K, Iwase S. Detection of prostate-specific antigen in semen using DNA aptamers: an application of nucleic acid aptamers in forensic body fluid identification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2703-2709. [PMID: 32930301 DOI: 10.1039/d0ay00371a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In forensics, body fluid identification plays an important role because it aids in reconstructing a crime scene. Therefore, it is essential to develop simple and reliable techniques for body fluid identification. Nucleic acid aptamers are useful tools in analytical chemistry that can be used to improve conventional forensic analytical techniques. They have numerous advantages over antibodies including their low cost, long shelf life, and applicability for chemical modification and PCR amplification. A DNA aptamer against a human prostate-specific antigen (PSA), which is a well-known protein marker for semen identification in forensics, has been reported previously. In this study, as a proof-of-concept for nucleic acid aptamer-based identification of body fluids, we developed a technique of aptamer-based PSA assays for semen identification that employed enzyme-linked oligonucleotide assay (ELONA) and real-time PCR. We evaluated their sensitivity and specificity for semen compared with those for blood, saliva, urine, sweat, and vaginal secretion. The assays have equivalent procedures compared to enzyme-linked immunosorbent assay; their results were consistent with those produced by the conventional immunochromatographic assay. The minimum volume of semen required for detection was 62.5 nL in ELONA and 5 nL in real-time PCR, making this assay applicable for semen detection in actual criminal investigation. Aptamers can be a cost-effective and versatile tool for forensic body fluid identification.
Collapse
Affiliation(s)
- Tetsuya Satoh
- Forensic Science Laboratory, Kumamoto Prefectural Police Headquarters, 6-18-1 Suizenji, Chuo-ku, Kumamoto 862-8610, Japan
| | - Seiya Kouroki
- Forensic Science Laboratory, Kumamoto Prefectural Police Headquarters, 6-18-1 Suizenji, Chuo-ku, Kumamoto 862-8610, Japan
| | - Yusuke Kitamura
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Toshihiro Ihara
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Kazutoshi Matsumura
- Forensic Science Laboratory, Kumamoto Prefectural Police Headquarters, 6-18-1 Suizenji, Chuo-ku, Kumamoto 862-8610, Japan
| | - Susumu Iwase
- Forensic Science Laboratory, Kumamoto Prefectural Police Headquarters, 6-18-1 Suizenji, Chuo-ku, Kumamoto 862-8610, Japan
| |
Collapse
|
12
|
Mass spectrometry-based proteomics for the forensic identification of vomit traces. J Proteomics 2019; 209:103524. [DOI: 10.1016/j.jprot.2019.103524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/19/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023]
|
13
|
Gauthier QT, Cho S, Carmel JH, McCord BR. Development of a body fluid identification multiplex via DNA methylation analysis. Electrophoresis 2019; 40:2565-2574. [DOI: 10.1002/elps.201900118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/05/2019] [Accepted: 06/25/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Quentin T. Gauthier
- Department of Chemistry and BiochemistryFlorida International University Miami FL USA
| | - Sohee Cho
- Department of Chemistry and BiochemistryFlorida International University Miami FL USA
- Institute of Forensic ScienceSeoul National University College of Medicine Seoul South Korea
| | - Justin H. Carmel
- Department of Chemistry and BiochemistryFlorida International University Miami FL USA
| | - Bruce R. McCord
- Department of Chemistry and BiochemistryFlorida International University Miami FL USA
| |
Collapse
|
14
|
Chu F, Mason KE, Anex DS, Jones AD, Hart BR. Hair Proteome Variation at Different Body Locations on Genetically Variant Peptide Detection for Protein-Based Human Identification. Sci Rep 2019; 9:7641. [PMID: 31113963 PMCID: PMC6529471 DOI: 10.1038/s41598-019-44007-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 04/16/2019] [Indexed: 11/10/2022] Open
Abstract
Human hair contains minimal intact nuclear DNA for human identification in forensic and archaeological applications. In contrast, proteins offer a pathway to exploit hair evidence for human identification owing to their persistence, abundance, and derivation from DNA. Individualizing single nucleotide polymorphisms (SNPs) are often conserved as single amino acid polymorphisms in genetically variant peptides (GVPs). Detection of GVP markers in the hair proteome via high-resolution tandem mass spectrometry permits inference of SNPs with known statistical probabilities. To adopt this approach for forensic investigations, hair proteomic variation and its effects on GVP identification must first be characterized. This research aimed to assess variation in single-inch head, arm, and pubic hair, and discover body location-invariant GVP markers to distinguish individuals. Comparison of protein profiles revealed greater body location-specific variation in keratin-associated proteins and intracellular proteins, allowing body location differentiation. However, robust GVP markers derive primarily from keratins that do not exhibit body location-specific differential expression, supporting GVP identification independence from hair proteomic variation at the various body locations. Further, pairwise comparisons of GVP profiles with 8 SNPs demonstrated greatest interindividual variation and high intraindividual consistency, enabling similar differentiative potential of individuals using single hairs irrespective of body location origin.
Collapse
Affiliation(s)
- Fanny Chu
- Forensic Science Center, Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA, 94550, USA.,Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI, 48824, USA
| | - Katelyn E Mason
- Forensic Science Center, Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA, 94550, USA
| | - Deon S Anex
- Forensic Science Center, Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA, 94550, USA.
| | - A Daniel Jones
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI, 48824, USA.,Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI, 48824, USA
| | - Bradley R Hart
- Forensic Science Center, Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA, 94550, USA
| |
Collapse
|
15
|
Early Proteome Shift and Serum Bioactivity Precede Diesel Exhaust-induced Impairment of Cardiovascular Recovery in Spontaneously Hypertensive Rats. Sci Rep 2019; 9:6885. [PMID: 31053794 PMCID: PMC6499793 DOI: 10.1038/s41598-019-43339-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/18/2019] [Indexed: 01/11/2023] Open
Abstract
Single circulating factors are often investigated to explain air pollution-induced cardiovascular dysfunction, yet broader examinations of the identity and bioactivity of the entire circulating milieu remain understudied. The purpose of this study was to determine if exposure-induced cardiovascular dysfunction can be coupled with alterations in both serum bioactivity and the circulating proteome. Two cohorts of Spontaneously Hypertensive Rats (SHRs) were exposed to 150 or 500 μg/m3 diesel exhaust (DE) or filtered air (FA). In Cohort 1, we collected serum 1 hour after exposure for proteomics analysis and bioactivity measurements in rat aortic endothelial cells (RAECs). In Cohort 2, we assessed left ventricular pressure (LVP) during stimulation and recovery from the sympathomimetic dobutamine HCl, one day after exposure. Serum from DE-exposed rats had significant changes in 66 serum proteins and caused decreased NOS activity and increased VCAM-1 expression in RAECs. While rats exposed to DE demonstrated increased heart rate at the start of LVP assessments, heart rate, systolic pressure, and double product fell below baseline in DE-exposed rats compared to FA during recovery from dobutamine, indicating dysregulation of post-exertional cardiovascular function. Taken together, a complex and bioactive circulating milieu may underlie air pollution-induced cardiovascular dysfunction.
Collapse
|
16
|
Applications and challenges of forensic proteomics. Forensic Sci Int 2019; 297:350-363. [DOI: 10.1016/j.forsciint.2019.01.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/09/2019] [Accepted: 01/13/2019] [Indexed: 12/23/2022]
|
17
|
Sterling S, Mason KE, Anex DS, Parker GJ, Hart B, Prinz M. Combined
DNA
Typing and Protein Identification from Unfired Brass Cartridges,,,. J Forensic Sci 2019; 64:1475-1481. [DOI: 10.1111/1556-4029.14042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 12/25/2022]
Affiliation(s)
| | - Katelyn E. Mason
- Lawrence Livermore National Laboratory 7000 East Avenue Livermore CA 94550
| | - Deon S. Anex
- Lawrence Livermore National Laboratory 7000 East Avenue Livermore CA 94550
| | | | - Bradley Hart
- Lawrence Livermore National Laboratory 7000 East Avenue Livermore CA 94550
| | - Mechthild Prinz
- John Jay College of Criminal Justice 524 W. 59th St. New York NY 10019
| |
Collapse
|
18
|
Jiang Y, Sun J, Huang X, Shi H, Xiong C, Nie Z. Direct identification of forensic body fluids by MALDI-MS. Analyst 2019; 144:7017-7023. [DOI: 10.1039/c9an01385g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The rapid identification of human body fluids is meaningful for forensic casework.
Collapse
Affiliation(s)
- Yuming Jiang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory for Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- the Chinese Academy of Sciences
- Beijing 100190
| | - Jie Sun
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory for Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- the Chinese Academy of Sciences
- Beijing 100190
| | - Xi Huang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory for Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- the Chinese Academy of Sciences
- Beijing 100190
| | - Huixia Shi
- Institute of Forensic Science
- Ministry of Public Security P.R.C
- Beijing 100038
- China
| | - Caiqiao Xiong
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory for Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- the Chinese Academy of Sciences
- Beijing 100190
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory for Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- the Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
19
|
Abbas N, Lu X, Badshah MA, In JB, Heo WI, Park KY, Lee MK, Kim CH, Kang P, Chang WJ, Kim SM, Seo SJ. Development of a Protein Microarray Chip with Enhanced Fluorescence for Identification of Semen and Vaginal Fluid. SENSORS 2018; 18:s18113874. [PMID: 30423842 PMCID: PMC6263525 DOI: 10.3390/s18113874] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/03/2018] [Accepted: 11/09/2018] [Indexed: 01/16/2023]
Abstract
The detection of body fluids has been used to identify a suspect and build a criminal case. As the amount of evidence collected at a crime site is limited, a multiplex identification system for body fluids using a small amount of sample is required. In this study, we proposed a multiplex detection platform using an Ag vertical nanorod metal enhanced fluorescence (MEF) substrate for semen and vaginal fluid (VF), which are important evidence in cases of sexual crime. The Ag nanorod MEF substrate with a length of 500 nm was fabricated by glancing angle deposition, and amino functionalization was conducted to improve binding ability. The effect of incubation time was analyzed, and an incubation time of 60 min was selected, at which the fluorescence signal was saturated. To assess the performance of the developed identification chip, the identification of semen and VF was carried out. The developed sensor could selectively identify semen and VF without any cross-reactivity. The limit of detection of the fabricated microarray chip was 10 times better than the commercially available rapid stain identification (RSID) Semen kit.
Collapse
Affiliation(s)
- Naseem Abbas
- Department of Mechanical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea.
| | - Xun Lu
- Department of Mechanical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea.
| | - Mohsin Ali Badshah
- Department of Mechanical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea.
| | - Jung Bin In
- Department of Mechanical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea.
| | - Won Il Heo
- Department of Dermatology, Chung-Ang University Hospital, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Korea.
| | - Kui Young Park
- Department of Dermatology, Chung-Ang University Hospital, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Korea.
| | - Mi-Kyung Lee
- Department of Laboratory Medicine, Chung-Ang University Hospital, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Korea.
| | - Cho Hee Kim
- Forensic DNA Division, National Forensic Service, 10 Ipchun-ro, Wonju-si, Gangwon-do 26460, Korea.
| | - Pilwon Kang
- Forensic DNA Division, National Forensic Service, 10 Ipchun-ro, Wonju-si, Gangwon-do 26460, Korea.
| | - Woo-Jin Chang
- Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 N Cramer St, Milwaukee, WI 53211, USA.
| | - Seok-Min Kim
- Department of Mechanical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea.
| | - Seong Jun Seo
- Department of Dermatology, Chung-Ang University Hospital, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Korea.
| |
Collapse
|
20
|
Identification and detection of protein markers to differentiate between forensically relevant body fluids. Forensic Sci Int 2018; 290:196-206. [DOI: 10.1016/j.forsciint.2018.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 06/08/2018] [Accepted: 07/17/2018] [Indexed: 01/25/2023]
|
21
|
Jarman KH, Heller NC, Jenson SC, Hutchison JR, Kaiser BLD, Payne SH, Wunschel DS, Merkley ED. Proteomics Goes to Court: A Statistical Foundation for Forensic Toxin/Organism Identification Using Bottom-Up Proteomics. J Proteome Res 2018; 17:3075-3085. [DOI: 10.1021/acs.jproteome.8b00212] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Kristin H. Jarman
- Applied Statistics and Computational Modeling Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Natalie C. Heller
- Applied Statistics and Computational Modeling Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Sarah C. Jenson
- Chemical and Biological Signatures Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Janine R. Hutchison
- Chemical and Biological Signatures Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Brooke L. Deatherage Kaiser
- Chemical and Biological Signatures Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Samuel H. Payne
- Biological Sciences Division, Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - David S. Wunschel
- Chemical and Biological Signatures Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Eric D. Merkley
- Chemical and Biological Signatures Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
22
|
A complementary forensic ‘proteo-genomic’ approach for the direct identification of biological fluid traces under fingernails. Anal Bioanal Chem 2018; 410:6165-6175. [DOI: 10.1007/s00216-018-1223-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/25/2018] [Accepted: 06/22/2018] [Indexed: 02/03/2023]
|
23
|
Illiano A, Arpino V, Pinto G, Berti A, Verdoliva V, Peluso G, Pucci P, Amoresano A. Multiple Reaction Monitoring Tandem Mass Spectrometry Approach for the Identification of Biological Fluids at Crime Scene Investigations. Anal Chem 2018; 90:5627-5636. [PMID: 29579379 DOI: 10.1021/acs.analchem.7b04742] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Knowledge of the nature of biofluids at a crime scene is just as important as DNA test to link the nature of the biofluid, the criminal act, and the dynamics of the crime. Identification of methods currently used for each biological fluid (blood, semen, saliva, urine) suffer from several limitations including instability of assayed biomolecules, and low selectivity and specificity; as an example of the latter issue, it is not possible to discriminate between alpha-amylase 1 (present in saliva) and alpha-amylase 2 (present in semen and vaginal secretion. In this context, the aim of the work has been to provide a predictive protein signature characteristic of each biofluid by the recognition of specific peptides unique for each protein in a single analysis. A panel of four protein biomarkers for blood, four for saliva, five for semen, and two for urine has been monitored has been monitored by using a single multiple reaction monitoring (MRM)-based method targeting concomitantly 46 different peptides. Then, The optimized method allows four biological matrices to be identified when present on their own or in 50:50 mixture with another biofluid. Finally, a valid strategy combining both DNA analysis and liquid chromatographic-tandem mass spectrometric multiple reaction monitoring (LC-MS-MRM) identification of biofluids on the same sample has been demonstrated to be particularly effective in forensic investigation of real trace evidence collected at a crime scene.
Collapse
Affiliation(s)
- Anna Illiano
- Dipartimento di Scienze Chimiche , Università di Napoli Federico II , Napoli 80126 , Italy
| | - Valentina Arpino
- Dipartimento di Scienze Chimiche , Università di Napoli Federico II , Napoli 80126 , Italy
| | - Gabriella Pinto
- Dipartimento di Scienze Chimiche , Università di Napoli Federico II , Napoli 80126 , Italy
| | - Andrea Berti
- Carabinieri , Reparto Investigazioni Scientifiche (R.I.S.) di Roma , Viale di Tor di Quinto n. 151 , Roma 00191 , Italy
| | - Vincenzo Verdoliva
- Carabinieri , Reparto Investigazioni Scientifiche (R.I.S.) di Roma , Viale di Tor di Quinto n. 151 , Roma 00191 , Italy
| | - Giuseppe Peluso
- Carabinieri , Sezione Investigazioni Scientifiche (S.I.S.) di Napoli , Corso Vittorio Emanuele n. 728 , Napoli 80122 , Italy
| | - Piero Pucci
- Dipartimento di Scienze Chimiche , Università di Napoli Federico II , Napoli 80126 , Italy
| | - Angela Amoresano
- Dipartimento di Scienze Chimiche , Università di Napoli Federico II , Napoli 80126 , Italy
| |
Collapse
|
24
|
Quantitation of peptides from non-invasive skin tapings using isotope dilution and tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1084:132-140. [PMID: 29601982 DOI: 10.1016/j.jchromb.2018.03.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 01/10/2023]
Abstract
Previous work from our laboratories utilized a novel skin taping method and mass spectrometry-based proteomics to discover clinical biomarkers of skin conditions; these included atopic dermatitis, Staphylococcus aureus colonization, and eczema herpeticum. While suitable for discovery purposes, semi-quantitative proteomics is generally time-consuming and expensive. Furthermore, depending on the method used, discovery-based proteomics can result in high variation and inadequate sensitivity to detect low abundant peptides. Therefore, we strove to develop a rapid, sensitive, and reproducible method to quantitate disease-related proteins from skin tapings. We utilized isotopically-labeled peptides and tandem mass spectrometry to obtain absolute quantitation values on 14 peptides from 7 proteins; these proteins had shown previous importance in skin disease. The method demonstrated good reproducibility, dynamic range, and linearity (R2 > 0.993) when n = 3 standards were analyzed across 0.05-2.5 pmol. The method was used to determine if differences exist between skin proteins in a small group of atopic versus non-atopic individuals (n = 12). While only minimal differences were found, peptides were detected in all samples and exhibited good correlation between peptides for 5 of the 7 proteins (R2 = 0.71-0.98). This method can be applied to larger cohorts to further establish the relationships of these proteins to skin disease.
Collapse
|
25
|
Hanson E, Ballantyne J. Human Organ Tissue Identification by Targeted RNA Deep Sequencing to Aid the Investigation of Traumatic Injury. Genes (Basel) 2017; 8:genes8110319. [PMID: 29125589 PMCID: PMC5704232 DOI: 10.3390/genes8110319] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 11/16/2022] Open
Abstract
Molecular analysis of the RNA transcriptome from a putative tissue fragment should permit the assignment of its source to a specific organ, since each will exhibit a unique pattern of gene expression. Determination of the organ source of tissues from crime scenes may aid in shootings and other investigations. We have developed a prototype massively parallel sequencing (MPS) mRNA profiling assay for organ tissue identification that is designed to definitively identify 10 organ/tissue types using a targeted panel of 46 mRNA biomarkers. The identifiable organs and tissues include brain, lung, liver, heart, kidney, intestine, stomach, skeletal muscle, adipose, and trachea. The biomarkers were chosen after iterative specificity testing of numerous candidate genes in various tissue types. The assay is very specific, with little cross-reactivity with non-targeted tissue, and can detect RNA mixtures from different tissues. We also demonstrate the ability of the assay to successful identify the tissue source of origin using a single blind study.
Collapse
Affiliation(s)
- Erin Hanson
- National Center for Forensic Science, University of Central Florida, Orlando, FL 32816, USA.
| | - Jack Ballantyne
- National Center for Forensic Science, University of Central Florida, Orlando, FL 32816, USA.
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|
26
|
Legg KM, Powell R, Reisdorph N, Reisdorph R, Danielson PB. Verification of protein biomarker specificity for the identification of biological stains by quadrupole time-of-flight mass spectrometry. Electrophoresis 2017; 38:833-845. [PMID: 27943336 DOI: 10.1002/elps.201600352] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/15/2016] [Accepted: 11/24/2016] [Indexed: 01/05/2023]
Abstract
Advances in proteomics technology over the past decade offer forensic serologists a greatly improved opportunity to accurately characterize the tissue source from which a DNA profile has been developed. Such information can provide critical context to evidence and can help to prioritize downstream DNA analyses. Previous proteome studies compiled panels of "candidate biomarkers" specific to each of five body fluids (i.e., peripheral blood, vaginal/menstrual fluid, seminal fluid, urine, and saliva). Here, a multiplex quadrupole time-of-flight mass spectrometry assay has been developed in order to verify the tissue/body fluid specificity the 23 protein biomarkers that comprise these panels and the consistency with which they can be detected across a sample population of 50 humans. Single-source samples of these human body fluids were accurately identified by the detection of one or more high-specificity biomarkers. Recovery of body fluid samples from a variety of substrates did not impede accurate characterization and, of the potential inhibitors assayed, only chewing tobacco juice appeared to preclude the identification of a target body fluid. Using a series of 2-component mixtures of human body fluids, the multiplex assay accurately identified both components in a single-pass. Only in the case of saliva and peripheral blood did matrix effects appear to impede the detection of salivary proteins.
Collapse
Affiliation(s)
- Kevin M Legg
- Department of Biological Sciences, University of Denver, Denver, Colorado, USA.,The Center for Forensic Science Research and Education, Willow Grove, PA, USA
| | - Roger Powell
- Department of Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA
| | - Rick Reisdorph
- Department of Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA
| | - Phillip B Danielson
- Department of Biological Sciences, University of Denver, Denver, Colorado, USA.,The Center for Forensic Science Research and Education, Willow Grove, PA, USA
| |
Collapse
|
27
|
Seashols-Williams S, Lewis C, Calloway C, Peace N, Harrison A, Hayes-Nash C, Fleming S, Wu Q, Zehner ZE. High-throughput miRNA sequencing and identification of biomarkers for forensically relevant biological fluids. Electrophoresis 2016; 37:2780-2788. [DOI: 10.1002/elps.201600258] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/14/2016] [Accepted: 08/17/2016] [Indexed: 12/18/2022]
Affiliation(s)
| | - Carolyn Lewis
- Department of Forensic Science; Virginia Commonwealth University; Richmond VA USA
| | - Chelsea Calloway
- Department of Forensic Science; Virginia Commonwealth University; Richmond VA USA
| | - Nerissa Peace
- Department of Forensic Science; Virginia Commonwealth University; Richmond VA USA
| | - Ariana Harrison
- Department of Forensic Science; Virginia Commonwealth University; Richmond VA USA
| | - Christina Hayes-Nash
- Department of Forensic Science; Virginia Commonwealth University; Richmond VA USA
| | - Samantha Fleming
- Department of Forensic Science; Virginia Commonwealth University; Richmond VA USA
| | - Qianni Wu
- Department of Biochemistry and Molecular Biology; Virginia Commonwealth University; Richmond VA USA
| | - Zendra E. Zehner
- Department of Biochemistry and Molecular Biology; Virginia Commonwealth University; Richmond VA USA
| |
Collapse
|
28
|
Screening and confirmation of microRNA markers for distinguishing between menstrual and peripheral blood. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2015. [DOI: 10.1016/j.fsigss.2015.09.140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Cotton RW, Fisher MB. Review: Properties of sperm and seminal fluid, informed by research on reproduction and contraception. Forensic Sci Int Genet 2015; 18:66-77. [DOI: 10.1016/j.fsigen.2015.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/10/2015] [Accepted: 03/12/2015] [Indexed: 12/12/2022]
|