1
|
Akamatsu S, Mitsuhashi S, Soga K, Mizukami H, Shiraishi M, Frith MC, Yamano Y. Targeted nanopore sequencing using the Flongle device to identify mitochondrial DNA variants. Sci Rep 2024; 14:25161. [PMID: 39448697 PMCID: PMC11502840 DOI: 10.1038/s41598-024-75749-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Variants in mitochondrial genomes (mtDNA) can cause various neurological and mitochondrial diseases such as mitochondrial myopathy, encephalopathy, lactic acidosis, stroke-like episodes (MELAS). Given the 16 kb length of mtDNA, continuous sequencing is feasible using long-read sequencing (LRS). Herein, we aimed to show a simple and accessible method for comprehensive mtDNA sequencing with potential diagnostic applications for mitochondrial diseases using the compact and affordable LRS flow cell "Flongle." Whole mtDNA amplification (WMA) was performed using genomic DNA samples derived from four patients with mitochondrial diseases, followed by LRS using Flongle. We compared these results to those obtained using Cas9 enrichment. Additionally, the accuracy of heteroplasmy rates was assessed by incorporating mtDNA variants at equimolar levels. Finally, mtDNA from 19 patients with Parkinson's disease (PD) was sequenced using Flongle to identify disease risk-associated variants. mtDNA variants were detected in all four patients with mitochondrial diseases, with results comparable to those obtained from Cas9 enrichment. Heteroplasmy levels were accurately detected (r2 > 0.99) via WMA using Flongle. A reported variant was identified in three patients with PD. In conclusion, Flongle can simplify the traditionally cumbersome and expensive mtDNA sequencing process, offering a streamlined and accessible approach to diagnosing mitochondrial diseases.
Collapse
Affiliation(s)
- Shintaro Akamatsu
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, 2168511, Japan
| | - Satomi Mitsuhashi
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, 2168511, Japan.
| | - Kaima Soga
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, 2168511, Japan
| | - Heisuke Mizukami
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, 2168511, Japan
| | - Makoto Shiraishi
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, 2168511, Japan
| | - Martin C Frith
- Artificial Intelligence Research Center, AIST, Tokyo, Japan
- Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
- Computational Bio Big-Data Open Innovation Laboratory, AIST, Tokyo, Japan
| | - Yoshihisa Yamano
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, 2168511, Japan.
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan.
| |
Collapse
|
2
|
de Bruin DDSH, Haagmans MA, van der Gaag KJ, Hoogenboom J, Weiler NEC, Tesi N, Salazar A, Zhang Y, Holstege H, Reinders M, M'charek AA, Sijen T, Henneman P. Exploring nanopore direct sequencing performance of forensic STRs, SNPs, InDels, and DNA methylation markers in a single assay. Forensic Sci Int Genet 2024; 74:103154. [PMID: 39426120 DOI: 10.1016/j.fsigen.2024.103154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
INTRODUCTION The field of forensic DNA analysis has undergone rapid advancements in recent decades. The integration of massively parallel sequencing (MPS) has notably expanded the forensic toolkit, moving beyond identity matching to predicting phenotypic traits and biogeographical ancestry. This shift is of particular significance in cases where conventional DNA profiling fails to identify a single suspect. Supplementing forensic analyses with estimated biological age may be valuable but involves a complex and time-consuming DNA methylation analysis. This study explores and validates the performance of a comprehensive forensic third-generation sequencing assay utilizing Oxford Nanopore Technologies (ONT) in an adaptive and direct sequencing approach. We incorporated the most widely used forensic markers, i.e., STRs, SNPs, InDels, mitochondrial DNA (mtDNA), and two methylation-based clock classifiers, thereby combining forensic genetic and epigenetic analysis in one single workflow. METHODS AND RESULTS In our investigation, DNA from six anonymous individuals was sequenced using the ONT standard adaptive direct sequencing approach, reaching a mean percentage of on-target reads ranging from 6.6 % to 7.7 % per sample. ONT data was compared to standard MPS data and Illumina EPIC DNA methylation profiles. Basecalling employed recommended ONT software packages. TREAT was used for ONT-based analysis of autosomal and Y-chromosome STRs, achieving 90-92 % correct calls depending on allelic read depth thresholds. InDel analyses for two lower-quality samples proved challenging due to inadequate read depth, while the remaining four samples significantly contributed to the observed percentage markers (60.9 %) and correct calls (97.8 %). SNP analysis achieved a 98 % call rate, with only two mismatches and two missed alleles. ONT-generated DNA methylation data demonstrated Pearson's correlation coefficients with EPIC data ranging from 0.67 to 0.97 for Horvath's clock. Additional age-associated markers exhibited Pearson's correlation coefficients with chronological age between 0.14 (ELOVL2) and 0.96 (FHL2) at read depths of <30 and <20, respectively. Despite excluding mtDNA from our targeted sequencing approach, adaptive proof-reading fragments covered the complete mtDNA with an average read depth of 21-72, showing 100 % concordance with reference data. DISCUSSION Our exploratory study using ONT adaptive sequencing for conventional forensic and age associated DNA methylation markers showed high sequencing accuracy for a significant number of markers, showcasing ONT as a promising (epi)genetic forensic method. Future studies must address three critical aspects: determining clear quantity and quality measures and detection thresholds for accuracy, optimizing input DNA quantity for forensic casework expectations, and addressing ethical considerations associated with phenotype and ancestry analysis to prevent ethnic biases.
Collapse
Affiliation(s)
- Desiree D S H de Bruin
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands; CLHC, Amsterdam Center for Forensic Science and Medicine, University of Amsterdam, Amsterdam, The Netherlands.
| | - Martin A Haagmans
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | - Jerry Hoogenboom
- Netherlands Forensic Institute, Biological Traces, Den Haag, The Netherlands.
| | - Natalie E C Weiler
- Netherlands Forensic Institute, Biological Traces, Den Haag, The Netherlands.
| | - Niccoló Tesi
- Department of Human Genetics, Genomics of Neurodegenerative Diseases and Aging, Vrije Universiteit Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands; Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands.
| | - Alex Salazar
- Department of Human Genetics, Genomics of Neurodegenerative Diseases and Aging, Vrije Universiteit Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands.
| | - Yaran Zhang
- Department of Human Genetics, Genomics of Neurodegenerative Diseases and Aging, Vrije Universiteit Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands.
| | - Henne Holstege
- Department of Human Genetics, Genomics of Neurodegenerative Diseases and Aging, Vrije Universiteit Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands; Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands.
| | - Marcel Reinders
- Department of Human Genetics, Genomics of Neurodegenerative Diseases and Aging, Vrije Universiteit Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands; Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands.
| | | | - Titia Sijen
- Netherlands Forensic Institute, Biological Traces, Den Haag, The Netherlands; University of Amsterdam, Swammerdam Institute for Life Sciences, Amsterdam, The Netherlands.
| | - Peter Henneman
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Reproduction and Development research Institute, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Ferreira MR, Carratto TMT, Frontanilla TS, Bonadio RS, Jain M, de Oliveira SF, Castelli EC, Mendes-Junior CT. Advances in forensic genetics: Exploring the potential of long read sequencing. Forensic Sci Int Genet 2024; 74:103156. [PMID: 39427416 DOI: 10.1016/j.fsigen.2024.103156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/22/2024]
Abstract
DNA-based technologies have been used in forensic practice since the mid-1980s. While PCR-based STR genotyping using Capillary Electrophoresis remains the gold standard for generating DNA profiles in routine casework worldwide, the research community is continually seeking alternative methods capable of providing additional information to enhance discrimination power or contribute with new investigative leads. Oxford Nanopore Technologies (ONT) and PacBio third-generation sequencing have revolutionized the field, offering real-time capabilities, single-molecule resolution, and long-read sequencing (LRS). ONT, the pioneer of nanopore sequencing, uses biological nanopores to analyze nucleic acids in real-time. Its devices have revolutionized sequencing and may represent an interesting alternative for forensic research and routine casework, given that it offers unparalleled flexibility in a portable size: it enables sequencing approaches that range widely from PCR-amplified short target regions (e.g., CODIS STRs) to PCR-free whole transcriptome or even ultra-long whole genome sequencing. Despite its higher error rate compared to Illumina sequencing, it can significantly improve accuracy in read alignment against a reference genome or de novo genome assembly. This is achieved by generating long contiguous sequences that correctly assemble repetitive sections and regions with structural variation. Moreover, it allows real-time determination of DNA methylation status from native DNA without the need for bisulfite conversion. LRS enables the analysis of thousands of markers at once, providing phasing information and eliminating the need for multiple assays. This maximizes the information retrieved from a single invaluable sample. In this review, we explore the potential use of LRS in different forensic genetics approaches.
Collapse
Affiliation(s)
- Marcel Rodrigues Ferreira
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit - Unipex, School of Medicine, São Paulo State University - Unesp, Botucatu, São Paulo, Brazil
| | - Thássia Mayra Telles Carratto
- Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Tamara Soledad Frontanilla
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Raphael Severino Bonadio
- Depto Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - Miten Jain
- Department of Bioengineering, Department of Physics, Khoury College of Computer Sciences, Northeastern University, Boston, MA, United States
| | | | - Erick C Castelli
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit - Unipex, School of Medicine, São Paulo State University - Unesp, Botucatu, São Paulo, Brazil; Pathology Department, School of Medicine, São Paulo State University - Unesp, Botucatu, São Paulo, Brazil
| | - Celso Teixeira Mendes-Junior
- Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil.
| |
Collapse
|
4
|
Sutopo S, Lestari DA, Setiaji A, Bugiwati SRA, Dagong MIA, Hilmia N, Garnida D, Asmara IY, Kurnianto E. Revealing the complete mtDNA genome sequence of Cemani chicken (Gallus gallus) by using Nanopore sequencing analysis. Anim Biosci 2024; 37:1664-1672. [PMID: 38938041 PMCID: PMC11366513 DOI: 10.5713/ab.23.0513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/02/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
OBJECTIVE This study aimed to identify, discover and explore the characteristics of the mtDNA genomes of Cemani chicken (Gallus gallus). METHODS This study used gDNA of Cemani chicken isolated from liver tissue. mtDNA sequencing was performed using WGS mtDNA analysis with nanopore technology by Oxford Nanopore Technologies GridION. Bioinformatics and data analysis were then performed. RESULTS This study showed that the length of the mtDNA genome is 16,789 bp, consisting of two ribosomal RNA (12S rRNA, 16S rRNA), 22 transfer RNA genes (trnR, trnG, trnK, trnD, trnS, trnY, trnC, trnN, trnA, trnW, trnM, trnQ, trnl, trnL, trnV, trnF, trnP, trnT, trnE, trnL, trnS, trnH), 13 protein-coding genes (PCGs) (ND4l, ND3, COX3, ATP6, ATP8, COX2, COX1, ND2, ND1, CYTB, ND6, ND5, ND4), and a noncoding control region (Dloop). Furthermore, analysis showed there were polymorphic sites and amino acid alterations when mtDNA Cemani chicken was aligned with references from GenBank. CONCLUSION Site (988T>*) in Dloop genes and (328A>G) in ND3 genes which alter glycine to stop codon, were specific markers found only in Cemani chicken.
Collapse
Affiliation(s)
- Sutopo Sutopo
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, 50275,
Indonesia
| | - Dela Ayu Lestari
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, 50275,
Indonesia
| | - Asep Setiaji
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, 50275,
Indonesia
| | | | - Muhammad Ihsan Andi Dagong
- Department of Animal Production, Faculty of Animal Science, Universitas Hasanuddin, Makassar, 90245,
Indonesia
| | - Nena Hilmia
- Department of Animal Production, Faculty of Animal Husbandry, Universitas Padjajaran, Bandung, 45363,
Indonesia
| | - Dani Garnida
- Department of Animal Production, Faculty of Animal Husbandry, Universitas Padjajaran, Bandung, 45363,
Indonesia
| | - Indrawati Yudha Asmara
- Department of Animal Production, Faculty of Animal Husbandry, Universitas Padjajaran, Bandung, 45363,
Indonesia
| | - Edy Kurnianto
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, 50275,
Indonesia
| |
Collapse
|
5
|
Hu X, Liu J, Xu T, Qin K, Feng Y, Jia Z, Zhao X. Research progress and application of the third-generation sequencing technologies in forensic medicine. Leg Med (Tokyo) 2024; 71:102532. [PMID: 39504855 DOI: 10.1016/j.legalmed.2024.102532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/18/2024] [Accepted: 09/22/2024] [Indexed: 11/08/2024]
Abstract
Third-generation sequencing technologies, exemplified by single-molecule real-time sequencing and nanopore sequencing, provide a constellation of advantages, including long read lengths, high throughput, real-time sequencing capabilities, and remarkable portability. These cutting-edge methodologies have provided new tools for genomic analysis in forensic medicine. To gain a comprehensive understanding of the current applications and cutting-edge trends of third-generation sequencing technologies in forensic medicine, this study retrieved relevant literature from the China National Knowledge Infrastructure (CNKI) database and the Web of Science (WOS) database. Using bibliometric software CiteSpace 6.1.R6, the study visualized publication volume, countries, and keywords related to the application of third-generation sequencing technologies in forensic medicine from 2014 to 2023. The review then summarized the foundational principles, characteristics, and promising prospects of third-generation sequencing technologies in forensic medicine. Notably, it highlights their remarkable contributions in forensic individual identification, body fluid identification, forensic epigenetic analysis, microbial analysis and forensic species identification.
Collapse
Affiliation(s)
- Xiaoxin Hu
- School of Investigation, People's Public Security University of China, Beijing 100038, China.
| | - Jinjie Liu
- Criminal Investigation Corps of Beijing Public Security Bureau, Beijing 100054, China
| | - Tingyu Xu
- School of Investigation, People's Public Security University of China, Beijing 100038, China
| | - Kaiyue Qin
- School of Investigation, People's Public Security University of China, Beijing 100038, China
| | - Yunpeng Feng
- School of Investigation, People's Public Security University of China, Beijing 100038, China
| | - Zhenjun Jia
- School of Investigation, People's Public Security University of China, Beijing 100038, China.
| | - Xingchun Zhao
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| |
Collapse
|
6
|
Bury A, Pyle A, Vincent AE, Actis P, Hudson G. Nanobiopsy investigation of the subcellular mtDNA heteroplasmy in human tissues. Sci Rep 2024; 14:13789. [PMID: 38877095 PMCID: PMC11178779 DOI: 10.1038/s41598-024-64455-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
Mitochondrial function is critical to continued cellular vitality and is an important contributor to a growing number of human diseases. Mitochondrial dysfunction is typically heterogeneous, mediated through the clonal expansion of mitochondrial DNA (mtDNA) variants in a subset of cells in a given tissue. To date, our understanding of the dynamics of clonal expansion of mtDNA variants has been technically limited to the single cell-level. Here, we report the use of nanobiopsy for subcellular sampling from human tissues, combined with next-generation sequencing to assess subcellular mtDNA mutation load in human tissue from mitochondrial disease patients. The ability to map mitochondrial mutation loads within individual cells of diseased tissue samples will further our understanding of mitochondrial genetic diseases.
Collapse
Affiliation(s)
- Alexander Bury
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
- NIHR Biomedical Research Centre, Faculty of Medical Science, Newcastle University, Newcastle, UK
- School of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds, UK
- Bragg Centre for Materials Research, Leeds, UK
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Amy E Vincent
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK.
- NIHR Biomedical Research Centre, Faculty of Medical Science, Newcastle University, Newcastle, UK.
| | - Paolo Actis
- School of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds, UK.
- Bragg Centre for Materials Research, Leeds, UK.
| | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK.
- NIHR Biomedical Research Centre, Faculty of Medical Science, Newcastle University, Newcastle, UK.
| |
Collapse
|
7
|
Nakanishi H, Takada A, Yoneyama K, Hara M, Sakai K, Saito K. Estimating bloodstain age in the short term based on DNA fragment length using nanopore sequencer. Forensic Sci Int 2024; 358:112010. [PMID: 38581825 DOI: 10.1016/j.forsciint.2024.112010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024]
Abstract
We used a nanopore sequencer to quantify DNA fragments > 10,000 bp in size and then evaluated their relationship with short-term bloodstain age. Moreover, DNA degradation was investigated after bloodstains were wetted once with water. Bloodstain samples on cotton gauze were stored at room temperature and low humidity for up to 6 months. Bloodstains stored for 1 day were wetted with nuclease-free water, allowed to dry, and stored at room temperature and low humidity for up to 1 week. The proportion of fragments > 20,000 bp in dry bloodstains tended to decrease over time, particularly for fragments > 50,000 bp in size. This trend was modeled using a power approximation curve, with the highest R2 value (0.6475) noted for fragments > 50,000 bp in size; lower values were recorded for shorter fragments. The proportion of longer fragments was significantly reduced in bloodstains that were dried after being wetted once, and there was significant difference in fragments > 50,000 bp between dry conditions and once-wetted. This result suggests that even temporary exposure to water causes significant DNA fragmentation, but not extensive degradation. Thus, bloodstains that appear fresh but have a low proportion of long DNA fragments may have been wetted previously. Our results indicate that evaluating the proportion of long DNA fragments yields information on both bloodstain age and the environment in which they were stored.
Collapse
Affiliation(s)
- Hiroaki Nakanishi
- Department of Forensic Medicine, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Forensic Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama 350-0495, Japan.
| | - Aya Takada
- Department of Forensic Medicine, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Forensic Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama 350-0495, Japan; Tokyo Medical Examiner's Office, Tokyo Metropolitan Government, 4-21-18, Otsuka, Bunkyo-Ku, Tokyo 112-0012, Japan
| | - Katsumi Yoneyama
- Department of Forensic Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama 350-0495, Japan
| | - Masaaki Hara
- Department of Forensic Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama 350-0495, Japan
| | - Kentaro Sakai
- Department of Forensic Medicine, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan; Tokyo Medical Examiner's Office, Tokyo Metropolitan Government, 4-21-18, Otsuka, Bunkyo-Ku, Tokyo 112-0012, Japan
| | - Kazuyuki Saito
- Department of Forensic Medicine, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Forensic Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama 350-0495, Japan; Tokyo Medical Examiner's Office, Tokyo Metropolitan Government, 4-21-18, Otsuka, Bunkyo-Ku, Tokyo 112-0012, Japan
| |
Collapse
|
8
|
Setiaji A, Lestari DA, Pandupuspitasari NS, Agusetyaningsih I, Khan FA. Genetic characteristics of complete mtDNA genome sequence of Indonesian local rabbit (Oryctolagus cuniculus). J Genet Eng Biotechnol 2023; 21:96. [PMID: 37812313 PMCID: PMC10562326 DOI: 10.1186/s43141-023-00546-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Indonesian local rabbit (Oryctolagus cuniculus) is a local breed in Indonesia. We reveal the mitochondrial genome sequence of the Indonesian local Rabbit for the first time. A better understanding of the mechanisms underlying these beneficial aspects of local breeds over imported ones requires detailed genetic investigations, of which mtDNA genome sequencing is of particular importance. Such an investigation will solve the major issues of misidentification with Javanese hares (Lepus nigricollis) and maternal lineage. In addition, this information will guide better statistics on the Indonesian local rabbit breed population and strategies for its conservation and breeding plans. This study aimed to identify and explore the characteristics of the mtDNA genomes of Indonesian local rabbits. RESULT This study observed that the length of the mtDNA genome is 17,469 bp, consisting of two ribosomal RNA (12S rRNA, 16S rRNA), 22 transfer RNA genes (trnR, trnG, trnK, trnD, trnS, trnY, trnC, trnN, trnA, trnW, trnM, trnQ, trnl, trnL, trnV, trnF, trnP, trnT, trnE, trnL, trnS, trnH), 13 protein-coding genes (PCGs) (ND4l, ND3, COX3, ATP6, ATP8, COX2, COX1, ND2, ND1, CYTB, ND6, ND5, ND4), a replication origin, and a noncoding control region (D-loop). CONCLUSIONS mtDNA genome of Indonesian local rabbit was the longest and had the most extended D-loop sequence among the other references of Oryctolagus cuniculus. Other specific differences were also found in the percentage of nucleotides and variation in most of the PCGs when they were aligned with Oryctolagus cuniculus references from GenBank. Indonesian local Rabbits strongly suspected brought from Europe during the colonial period in Indonesia.
Collapse
Affiliation(s)
- Asep Setiaji
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, 50275, Indonesia
| | - Dela Ayu Lestari
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, 50275, Indonesia.
| | | | - Ikania Agusetyaningsih
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, 50275, Indonesia
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), South Tangerang, 15314, Indonesia
- Faculty of Science and Technology, University of Central Punjab, Lahore, 54000, Pakistan
| |
Collapse
|
9
|
Frascarelli C, Zanetti N, Nasca A, Izzo R, Lamperti C, Lamantea E, Legati A, Ghezzi D. Nanopore long-read next-generation sequencing for detection of mitochondrial DNA large-scale deletions. Front Genet 2023; 14:1089956. [PMID: 37456669 PMCID: PMC10344361 DOI: 10.3389/fgene.2023.1089956] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Primary mitochondrial diseases are progressive genetic disorders affecting multiple organs and characterized by mitochondrial dysfunction. These disorders can be caused by mutations in nuclear genes coding proteins with mitochondrial localization or by genetic defects in the mitochondrial genome (mtDNA). The latter include point pathogenic variants and large-scale deletions/rearrangements. MtDNA molecules with the wild type or a variant sequence can exist together in a single cell, a condition known as mtDNA heteroplasmy. MtDNA single point mutations are typically detected by means of Next-Generation Sequencing (NGS) based on short reads which, however, are limited for the identification of structural mtDNA alterations. Recently, new NGS technologies based on long reads have been released, allowing to obtain sequences of several kilobases in length; this approach is suitable for detection of structural alterations affecting the mitochondrial genome. In the present work we illustrate the optimization of two sequencing protocols based on long-read Oxford Nanopore Technology to detect mtDNA structural alterations. This approach presents strong advantages in the analysis of mtDNA compared to both short-read NGS and traditional techniques, potentially becoming the method of choice for genetic studies on mtDNA.
Collapse
Affiliation(s)
- Chiara Frascarelli
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Nadia Zanetti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessia Nasca
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Rossella Izzo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Costanza Lamperti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Eleonora Lamantea
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Andrea Legati
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| |
Collapse
|
10
|
Enhancing Molecular Testing for Effective Delivery of Actionable Gene Diagnostics. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120745. [PMID: 36550951 PMCID: PMC9774983 DOI: 10.3390/bioengineering9120745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/07/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022]
Abstract
There is a deep need to navigate within our genomic data to find, understand and pave the way for disease-specific treatments, as the clinical diagnostic journey provides only limited guidance. The human genome is enclosed in every nucleated cell, and yet at the single-cell resolution many unanswered questions remain, as most of the sequencing techniques use a bulk approach. Therefore, heterogeneity, mosaicism and many complex structural variants remain partially uncovered. As a conceptual approach, nanopore-based sequencing holds the promise of being a single-molecule-based, long-read and high-resolution technique, with the ability of uncovering the nucleic acid sequence and methylation almost in real time. A key limiting factor of current clinical genetics is the deciphering of key disease-causing genomic sequences. As the technological revolution is expanding regarding genetic data, the interpretation of genotype-phenotype correlations should be made with fine caution, as more and more evidence points toward the presence of more than one pathogenic variant acting together as a result of intergenic interplay in the background of a certain phenotype observed in a patient. This is in conjunction with the observation that many inheritable disorders manifest in a phenotypic spectrum, even in an intra-familial way. In the present review, we summarized the relevant data on nanopore sequencing regarding clinical genomics as well as highlighted the importance and content of pre-test and post-test genetic counselling, yielding a complex approach to phenotype-driven molecular diagnosis. This should significantly lower the time-to-right diagnosis as well lower the time required to complete a currently incomplete genotype-phenotype axis, which will boost the chance of establishing a new actionable diagnosis followed by therapeutical approach.
Collapse
|
11
|
Muhammad Sajeer P, Simran, Nukala P, Manoj M. Varma. TEM based applications in solid state nanopores: From fabrication to liquid in-situ bio-imaging. Micron 2022; 162:103347. [DOI: 10.1016/j.micron.2022.103347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 10/31/2022]
|
12
|
Frey JE, Frey B, Frei D, Blaser S, Gueuning M, Bühlmann A. Next generation biosecurity: Towards genome based identification to prevent spread of agronomic pests and pathogens using nanopore sequencing. PLoS One 2022; 17:e0270897. [PMID: 35877652 PMCID: PMC9312391 DOI: 10.1371/journal.pone.0270897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/19/2022] [Indexed: 11/19/2022] Open
Abstract
The unintentional movement of agronomic pests and pathogens is steadily increasing due to the intensification of global trade. Being able to identify accurately and rapidly early stages of an invasion is critical for developing successful eradication or management strategies. For most invasive organisms, molecular diagnostics is today the method of choice for species identification. However, the currently implemented tools are often developed for certain taxa and need to be adapted for new species, making them ill-suited to cope with the current constant increase in new invasive species. To alleviate this impediment, we developed a fast and accurate sequencing tool allowing to modularly obtain genetic information at different taxonomical levels. Using whole genome amplification (WGA) followed by Oxford nanopore MinION sequencing, our workflow does not require any a priori knowledge on the investigated species and its classification. While mainly focusing on harmful plant pathogenic insects, we also demonstrate the suitability of our workflow for the molecular identification of bacteria (Erwinia amylovora and Escherichia coli), fungi (Cladosporium herbarum, Colletotrichum salicis, Neofabraea alba) and nematodes (Globodera rostochiensis). On average, the pairwise identity between the generated consensus sequences and best GenBank BLAST matches was 99.6 ± 0.6%. Additionally, assessing the generated insect genomic dataset, the potential power of the workflow to detect pesticide resistance genes, as well as arthropod-infecting viruses and endosymbiotic bacteria is demonstrated.
Collapse
Affiliation(s)
- Jürg E. Frey
- Research Group Molecular Diagnostics Genomics and Bioinformatics, Department of Method Development and Analytics, Agroscope, Wädenswil, Switzerland
| | - Beatrice Frey
- Research Group Molecular Diagnostics Genomics and Bioinformatics, Department of Method Development and Analytics, Agroscope, Wädenswil, Switzerland
| | - Daniel Frei
- Research Group Molecular Diagnostics Genomics and Bioinformatics, Department of Method Development and Analytics, Agroscope, Wädenswil, Switzerland
| | - Simon Blaser
- Department of Plants and Plant Products, Agroscope Phytosanitary Service, Agroscope, Wädenswil, Switzerland
- Forest Health and Biotic Interactions, Federal Research Station for Forest, Snow and Landscape, Birmensdorf, Switzerland
| | - Morgan Gueuning
- Research Group Molecular Diagnostics Genomics and Bioinformatics, Department of Method Development and Analytics, Agroscope, Wädenswil, Switzerland
| | - Andreas Bühlmann
- Strategic Research Division Food Microbial Systems, Research Group Product Quality and –Innovation, Agroscope, Wädenswil, Switzerland
| |
Collapse
|
13
|
Lüth T, Schaake S, Grünewald A, May P, Trinh J, Weissensteiner H. Benchmarking Low-Frequency Variant Calling With Long-Read Data on Mitochondrial DNA. Front Genet 2022; 13:887644. [PMID: 35664331 PMCID: PMC9161029 DOI: 10.3389/fgene.2022.887644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Sequencing quality has improved over the last decade for long-reads, allowing for more accurate detection of somatic low-frequency variants. In this study, we used mixtures of mitochondrial samples with different haplogroups (i.e., a specific set of mitochondrial variants) to investigate the applicability of nanopore sequencing for low-frequency single nucleotide variant detection. Methods: We investigated the impact of base-calling, alignment/mapping, quality control steps, and variant calling by comparing the results to a previously derived short-read gold standard generated on the Illumina NextSeq. For nanopore sequencing, six mixtures of four different haplotypes were prepared, allowing us to reliably check for expected variants at the predefined 5%, 2%, and 1% mixture levels. We used two different versions of Guppy for base-calling, two aligners (i.e., Minimap2 and Ngmlr), and three variant callers (i.e., Mutserve2, Freebayes, and Nanopanel2) to compare low-frequency variants. We used F1 score measurements to assess the performance of variant calling. Results: We observed a mean read length of 11 kb and a mean overall read quality of 15. Ngmlr showed not only higher F1 scores but also higher allele frequencies (AF) of false-positive calls across the mixtures (mean F1 score = 0.83; false-positive allele frequencies < 0.17) compared to Minimap2 (mean F1 score = 0.82; false-positive AF < 0.06). Mutserve2 had the highest F1 scores (5% level: F1 score >0.99, 2% level: F1 score >0.54, and 1% level: F1 score >0.70) across all callers and mixture levels. Conclusion: We here present the benchmarking for low-frequency variant calling with nanopore sequencing by identifying current limitations.
Collapse
Affiliation(s)
- Theresa Lüth
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Susen Schaake
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Anne Grünewald
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Joanne Trinh
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
- *Correspondence: Joanne Trinh, ; Hansi Weissensteiner,
| | - Hansi Weissensteiner
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
- *Correspondence: Joanne Trinh, ; Hansi Weissensteiner,
| |
Collapse
|
14
|
Wang X, Stevens KC, Ting JM, Marras AE, Rezvan G, Wei X, Taheri-Qazvini N, Tirrell MV, Liu C. Translocation Behaviors of Synthetic Polyelectrolytes through Alpha-Hemolysin (α-HL) and Mycobacterium smegmatis Porin A (MspA) Nanopores. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2022; 169:057510. [PMID: 35599744 PMCID: PMC9121822 DOI: 10.1149/1945-7111/ac6c55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
DNAs have been used as probes for nanopore sensing of noncharged biomacromolecules due to its negative phosphate backbone. Inspired by this, we explored the potential of diblock synthetic polyelectrolytes as more flexible and inexpensive nanopore sensing probes by investigating translocation behaviors of PEO-b-PSS and PEO-b-PVBTMA through commonly used alpha-hemolysin (α-HL) and Mycobacterium smegmatis porin A (MspA) nanopores. Translocation recordings in different configurations of pore orientation and testing voltage indicated efficient PEO-b-PSS translocations through α-HL and PEO-b-PVBTMA translocations through MspA. This work provides insight into synthetic polyelectrolyte-based probes to expand probe selection and flexibility for nanopore sensing.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Kaden C. Stevens
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Jeffrey M. Ting
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Alexander E. Marras
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Gelareh Rezvan
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Xiaojun Wei
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Nader Taheri-Qazvini
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Matthew V. Tirrell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Chang Liu
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina 29208, USA
| |
Collapse
|
15
|
Nakanishi H, Yoneyama K, Hara M, Takada A, Sakai K, Saito K. Estimating individual mtDNA haplotypes in mixed DNA samples by combining MinION and MiSeq. Int J Legal Med 2022; 136:423-432. [PMID: 35001166 DOI: 10.1007/s00414-021-02763-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/03/2021] [Indexed: 12/30/2022]
Abstract
We tried to estimate individual mtDNA haplotypes in mixed DNA samples by combining MinION and MiSeq. The BAM files produced by MiSeq were viewed using Integrative Genomics Viewer (IGV) to verify mixed bases. By sorting the reads according to base type for each mixed base, partial haplotypes were determined. Then, the BAM files produced by MinKNOW were viewed using IGV. To determine haplotypes with IGV, only mixed bases determined by MiSeq were used as target bases. By sorting the reads according to base type for each target base, each contributor's haplotype was estimated. In mixed samples from two contributors, even a haplotype with a minor contribution of 5% could be distinguished from the haplotype of the major contributor. In mixed samples of three contributors (mixture ratios of 1:1:1 and 4:2:1), each haplotype could also be distinguished. Sequences of C-stretches were determined very inaccurately in the MinION analysis. Although the analysis method was simple, each haplotype was correctly detected in all mixed samples with two or three contributors in various mixture ratios by combining MinION and MiSeq. This should be useful for identifying contributors to mixed samples.
Collapse
Affiliation(s)
- Hiroaki Nakanishi
- Department of Forensic Medicine, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
| | - Katsumi Yoneyama
- Department of Forensic Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Masaaki Hara
- Department of Forensic Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Aya Takada
- Department of Forensic Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Kentaro Sakai
- Department of Forensic Medicine, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
- Tokyo Medical Examiner's Office, Tokyo Metropolitan Government, 4-21-18, Otsuka, Bunkyo-Ku, Tokyo, 112-0012, Japan
| | - Kazuyuki Saito
- Department of Forensic Medicine, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| |
Collapse
|
16
|
Hall CL, Kesharwani RK, Phillips NR, Planz JV, Sedlazeck FJ, Zascavage RR. Accurate profiling of forensic autosomal STRs using the Oxford Nanopore Technologies MinION device. Forensic Sci Int Genet 2021; 56:102629. [PMID: 34837788 DOI: 10.1016/j.fsigen.2021.102629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/28/2021] [Accepted: 11/01/2021] [Indexed: 01/23/2023]
Abstract
The high variability characteristic of short tandem repeat (STR) markers is harnessed for human identification in forensic genetic analyses. Despite the power and reliability of current typing techniques, sequence-level information both within and around STRs are masked in the length-based profiles generated. Forensic STR typing using next generation sequencing (NGS) has therefore gained attention as an alternative to traditional capillary electrophoresis (CE) approaches. In this proof-of-principle study, we evaluate the forensic applicability of the newest and smallest NGS platform available - the Oxford Nanopore Technologies (ONT) MinION device. Although nanopore sequencing on the handheld MinION offers numerous advantages, including low startup cost and on-site sample processing, the relatively high error rate and lack of forensic-specific analysis software has prevented accurate profiling across STR panels in previous studies. Here we present STRspy, a streamlined method capable of producing length- and sequence-based STR allele designations from noisy, error-prone third generation sequencing reads. To assess the capabilities of STRspy, seven reference samples (female: n = 2; male: n = 5) were amplified at 15 and 30 PCR cycles using the Promega PowerSeq 46GY System and sequenced on the ONT MinION device in triplicate. Basecalled reads were then processed with STRspy using a custom database containing alleles reported in the STRSeq BioProject NIST 1036 dataset. Resultant STR allele designations and flanking region single nucleotide polymorphism (SNP) calls were compared to the manufacturer-validated genotypes for each sample. STRspy generated robust and reliable genotypes across all autosomal STR loci amplified with 30 PCR cycles, achieving 100% concordance based on both length and sequence. Furthermore, we were able to identify flanking region SNPs in the 15-cycle dataset with > 90% accuracy. These results demonstrate that when analyzed with STRspy ONT reads can reveal additional variation in and around STR loci depending on read coverage. As the first and only third generation sequencing platform-specific method to successfully profile the entire panel of autosomal STRs amplified by a commercially available multiplex, STRspy significantly increases the feasibility of nanopore sequencing in forensic applications.
Collapse
Affiliation(s)
- Courtney L Hall
- Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, 3400 Camp Bowie Blvd, Fort Worth, TX 76107, USA.
| | - Rupesh K Kesharwani
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030, USA
| | - Nicole R Phillips
- Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, 3400 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - John V Planz
- Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, 3400 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030, USA
| | - Roxanne R Zascavage
- Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, 3400 Camp Bowie Blvd, Fort Worth, TX 76107, USA; Department of Criminology and Criminal Justice, University of Texas at Arlington, 701 S Nedderman Dr, Arlington, TX 76109, USA
| |
Collapse
|
17
|
Lüth T, Wasner K, Klein C, Schaake S, Tse R, Pereira SL, Laß J, Sinkkonen L, Grünewald A, Trinh J. Nanopore Single-Molecule Sequencing for Mitochondrial DNA Methylation Analysis: Investigating Parkin-Associated Parkinsonism as a Proof of Concept. Front Aging Neurosci 2021; 13:713084. [PMID: 34650424 PMCID: PMC8506010 DOI: 10.3389/fnagi.2021.713084] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/01/2021] [Indexed: 01/08/2023] Open
Abstract
Objective: To establish a workflow for mitochondrial DNA (mtDNA) CpG methylation using Nanopore whole-genome sequencing and perform first pilot experiments on affected Parkin biallelic mutation carriers (Parkin-PD) and healthy controls. Background: Mitochondria, including mtDNA, are established key players in Parkinson's disease (PD) pathogenesis. Mutations in Parkin, essential for degradation of damaged mitochondria, cause early-onset PD. However, mtDNA methylation and its implication in PD is understudied. Herein, we establish a workflow using Nanopore sequencing to directly detect mtDNA CpG methylation and compare mtDNA methylation between Parkin-related PD and healthy individuals. Methods: To obtain mtDNA, whole-genome Nanopore sequencing was performed on blood-derived from five Parkin-PD and three control subjects. In addition, induced pluripotent stem cell (iPSC)-derived midbrain neurons from four of these patients with PD and the three control subjects were investigated. The workflow was validated, using methylated and unmethylated 897 bp synthetic DNA samples at different dilution ratios (0, 50, 100% methylation) and mtDNA without methylation. MtDNA CpG methylation frequency (MF) was detected using Nanopolish and Megalodon. Results: Across all blood-derived samples, we obtained a mean coverage of 250.3X (SD ± 80.5X) and across all neuron-derived samples 830X (SD ± 465X) of the mitochondrial genome. We detected overall low-level CpG methylation from the blood-derived DNA (mean MF ± SD = 0.029 ± 0.041) and neuron-derived DNA (mean MF ± SD = 0.019 ± 0.035). Validation of the workflow, using synthetic DNA samples showed that highly methylated DNA molecules were prone to lower Guppy Phred quality scores and thereby more likely to fail Guppy base-calling. CpG methylation in blood- and neuron-derived DNA was significantly lower in Parkin-PD compared to controls (Mann-Whitney U-test p < 0.05). Conclusion: Nanopore sequencing is a useful method to investigate mtDNA methylation architecture, including Guppy-failed reads is of importance when investigating highly methylated sites. We present a mtDNA methylation workflow and suggest methylation variability across different tissues and between Parkin-PD patients and controls as an initial model to investigate.
Collapse
Affiliation(s)
- Theresa Lüth
- Institute of Neurogenetics BMF, University of Lübeck and University Hospital Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Kobi Wasner
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Christine Klein
- Institute of Neurogenetics BMF, University of Lübeck and University Hospital Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Susen Schaake
- Institute of Neurogenetics BMF, University of Lübeck and University Hospital Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Ronnie Tse
- Institute of Neurogenetics BMF, University of Lübeck and University Hospital Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Sandro L. Pereira
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Joshua Laß
- Institute of Neurogenetics BMF, University of Lübeck and University Hospital Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Lasse Sinkkonen
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Anne Grünewald
- Institute of Neurogenetics BMF, University of Lübeck and University Hospital Schleswig-Holstein Campus Lübeck, Lübeck, Germany
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Joanne Trinh
- Institute of Neurogenetics BMF, University of Lübeck and University Hospital Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| |
Collapse
|
18
|
Ahsan MU, Liu Q, Fang L, Wang K. NanoCaller for accurate detection of SNPs and indels in difficult-to-map regions from long-read sequencing by haplotype-aware deep neural networks. Genome Biol 2021; 22:261. [PMID: 34488830 PMCID: PMC8419925 DOI: 10.1186/s13059-021-02472-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 08/19/2021] [Indexed: 11/24/2022] Open
Abstract
Long-read sequencing enables variant detection in genomic regions that are considered difficult-to-map by short-read sequencing. To fully exploit the benefits of longer reads, here we present a deep learning method NanoCaller, which detects SNPs using long-range haplotype information, then phases long reads with called SNPs and calls indels with local realignment. Evaluation on 8 human genomes demonstrates that NanoCaller generally achieves better performance than competing approaches. We experimentally validate 41 novel variants in a widely used benchmarking genome, which could not be reliably detected previously. In summary, NanoCaller facilitates the discovery of novel variants in complex genomic regions from long-read sequencing.
Collapse
Affiliation(s)
- Mian Umair Ahsan
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Qian Liu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Li Fang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
19
|
DNA-nanopore technology: a human perspective. Emerg Top Life Sci 2021; 5:455-463. [PMID: 34282838 DOI: 10.1042/etls20200282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/17/2022]
Abstract
The purpose of this article is to give a brief overview of the current state of nanopore sequencing in relation to forensic science with a brief outline of where it stands in relation to current methods, its potential uses in forensic science and factors which may influence acceptance of this technology by forensic practitioners, the judiciary and law enforcement. Perhaps most importantly consideration is also given to concerns which may influence the acceptance of the technology by the general public.
Collapse
|
20
|
The Isolation and Deep Sequencing of Mitochondrial DNA. Methods Mol Biol 2021. [PMID: 34080167 DOI: 10.1007/978-1-0716-1270-5_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
In recent years, next-generation sequencing (NGS) has become a powerful tool for studying both inherited and somatic heteroplasmic mitochondrial DNA (mtDNA) variation. NGS has proved particularly powerful when combined with single-cell isolation techniques, allowing the investigation of low-level heteroplasmic variants both between cells and within tissues. Nevertheless, there remain significant challenges, especially around the selective enrichment of mtDNA from total cellular DNA and the avoidance of nuclear pseudogenes. This chapter summarizes the techniques needed to enrich, amplify, sequence, and analyse mtDNA using NGS .
Collapse
|
21
|
Macken WL, Vandrovcova J, Hanna MG, Pitceathly RDS. Applying genomic and transcriptomic advances to mitochondrial medicine. Nat Rev Neurol 2021; 17:215-230. [PMID: 33623159 DOI: 10.1038/s41582-021-00455-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2021] [Indexed: 02/07/2023]
Abstract
Next-generation sequencing (NGS) has increased our understanding of the molecular basis of many primary mitochondrial diseases (PMDs). Despite this progress, many patients with suspected PMD remain without a genetic diagnosis, which restricts their access to in-depth genetic counselling, reproductive options and clinical trials, in addition to hampering efforts to understand the underlying disease mechanisms. Although they represent a considerable improvement over their predecessors, current methods for sequencing the mitochondrial and nuclear genomes have important limitations, and molecular diagnostic techniques are often manual and time consuming. However, recent advances in genomics and transcriptomics offer realistic solutions to these challenges. In this Review, we discuss the current genetic testing approach for PMDs and the opportunities that exist for increased use of whole-genome NGS of nuclear and mitochondrial DNA (mtDNA) in the clinical environment. We consider the possible role for long-read approaches in sequencing of mtDNA and in the identification of novel nuclear genomic causes of PMDs. We examine the expanding applications of RNA sequencing, including the detection of cryptic variants that affect splicing and gene expression and the interpretation of rare and novel mitochondrial transfer RNA variants.
Collapse
Affiliation(s)
- William L Macken
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Jana Vandrovcova
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Michael G Hanna
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK.
| |
Collapse
|
22
|
Li X, Li L, Bao Z, Tu W, He X, Zhang B, Ye L, Wang X, Li Q. The 287,403 bp Mitochondrial Genome of Ectomycorrhizal Fungus Tuber calosporum Reveals Intron Expansion, tRNA Loss, and Gene Rearrangement. Front Microbiol 2020; 11:591453. [PMID: 33362740 PMCID: PMC7756005 DOI: 10.3389/fmicb.2020.591453] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/09/2020] [Indexed: 02/02/2023] Open
Abstract
In the present study, the mitogenome of Tuber calosporum was assembled and analyzed. The mitogenome of T. calosporum comprises 15 conserved protein-coding genes, two rRNA genes, and 14 tRNAs, with a total size of 287,403 bp. Fifty-eight introns with 170 intronic open reading frames were detected in the T. calosporum mitogenome. The intronic region occupied 69.41% of the T. calosporum mitogenome, which contributed to the T. calosporum mitogenome significantly expand relative to most fungal species. Comparative mitogenomic analysis revealed large-scale gene rearrangements occurred in the mitogenome of T. calosporum, involving gene relocations and position exchanges. The mitogenome of T. calosporum was found to have lost several tRNA genes encoding for cysteine, aspartate, histidine, etc. In addition, a pair of fragments with a total length of 32.91 kb in both the nuclear and mitochondrial genomes of T. calosporum was detected, indicating possible gene transfer events. A total of 12.83% intragenomic duplications were detected in the T. calosporum mitogenome. Phylogenetic analysis based on mitochondrial gene datasets obtained well-supported tree topologies, indicating that mitochondrial genes could be reliable molecular markers for phylogenetic analyses of Ascomycota. This study served as the first report on mitogenome in the family Tuberaceae, thereby laying the groundwork for our understanding of the evolution, phylogeny, and population genetics of these important ectomycorrhizal fungi.
Collapse
Affiliation(s)
- Xiaolin Li
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Lijiao Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Zhijie Bao
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Wenying Tu
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xiaohui He
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Bo Zhang
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Lei Ye
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xu Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Qiang Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
23
|
Nanopore Sequencing of the Fungal Intergenic Spacer Sequence as a Potential Rapid Diagnostic Assay. J Clin Microbiol 2020; 58:JCM.01972-20. [PMID: 32967904 DOI: 10.1128/jcm.01972-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/12/2020] [Indexed: 12/13/2022] Open
Abstract
Fungal infections are being caused by a broadening spectrum of fungi, yet in many cases, identification to the species level is required for proper antifungal selection. We investigated the fungal intergenic spacer (IGS) sequence in combination with nanopore sequencing for fungal identification. We sequenced isolates from two Cryptococcus species complexes, C. gattii and C. neoformans, which are the main pathogenic members of this genus, using the Oxford Nanopore Technologies MinION device and Sanger sequencing. There is enough variation within the two complexes to argue for further resolution into separate species, which we wanted to see if nanopore sequencing could detect. Using the R9.4.1 flow cell, IGS sequence identities averaged 99.57% compared to Sanger sequences of the same region. When the newer R10.3 flow cell was used, accuracy increased to 99.83% identity compared to the same Sanger sequences. Nanopore sequencing errors were predominantly in regions of homopolymers, with G homopolymers displaying the largest number of errors and C homopolymers displaying the least. Phylogenetic analysis of the nanopore- and Sanger-derived sequences resulted in indistinguishable trees. Comparison of average percent identities between the C. gattii and C. neoformans species complexes resulted in only a 74 to 77% identity between the two complexes. Sequencing using the nanopore platform could be completed in less than an hour, and samples could be multiplexed in groups as large as 24 sequences in a single run. These results suggest that sequencing the IGS region using nanopore sequencing could be a potential new molecular diagnostic strategy.
Collapse
|
24
|
Dhorne-Pollet S, Barrey E, Pollet N. A new method for long-read sequencing of animal mitochondrial genomes: application to the identification of equine mitochondrial DNA variants. BMC Genomics 2020; 21:785. [PMID: 33176683 PMCID: PMC7661214 DOI: 10.1186/s12864-020-07183-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 10/26/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitochondrial DNA is remarkably polymorphic. This is why animal geneticists survey mitochondrial genomes variations for fundamental and applied purposes. We present here an approach to sequence whole mitochondrial genomes using nanopore long-read sequencing. Our method relies on the selective elimination of nuclear DNA using an exonuclease treatment and on the amplification of circular mitochondrial DNA using a multiple displacement amplification step. RESULTS We optimized each preparative step to obtain a 100 million-fold enrichment of horse mitochondrial DNA relative to nuclear DNA. We sequenced these amplified mitochondrial DNA using nanopore sequencing technology and obtained mitochondrial DNA reads that represented up to half of the sequencing output. The sequence reads were 2.3 kb of mean length and provided an even coverage of the mitochondrial genome. Long-reads spanning half or more of the whole mtDNA provided a coverage that varied between 118X and 488X. We evaluated SNPs identified using these long-reads by Sanger sequencing as ground truth and found a precision of 100.0%; a recall of 93.1% and a F1-score of 0.964 using the Twilight horse mtDNA reference. The choice of the mtDNA reference impacted variant calling efficiency with F1-scores varying between 0.947 and 0.964. CONCLUSIONS Our method to amplify mtDNA and to sequence it using the nanopore technology is usable for mitochondrial DNA variant analysis. With minor modifications, this approach could easily be applied to other large circular DNA molecules.
Collapse
Affiliation(s)
- Sophie Dhorne-Pollet
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Eric Barrey
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Nicolas Pollet
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France.
| |
Collapse
|
25
|
Zascavage RR, Hall CL, Thorson K, Mahmoud M, Sedlazeck FJ, Planz JV. Approaches to Whole Mitochondrial Genome Sequencing on the Oxford Nanopore MinION. ACTA ACUST UNITED AC 2020; 104:e94. [PMID: 31743587 DOI: 10.1002/cphg.94] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Traditional approaches for interrogating the mitochondrial genome often involve laborious extraction and enrichment protocols followed by Sanger sequencing. Although preparation techniques are still demanding, the advent of next-generation or massively parallel sequencing has made it possible to routinely obtain nucleotide-level data with relative ease. These short-read sequencing platforms offer deep coverage with unparalleled read accuracy in high-complexity genomic regions but encounter numerous difficulties in the low-complexity homopolymeric sequences characteristic of the mitochondrial genome. The inability to discern identical units within monomeric repeats and resolve copy-number variations for heteroplasmy detection results in suboptimal genome assemblies that ultimately complicate downstream data analysis and interpretation of biological significance. Oxford Nanopore Technologies offers the ability to generate long-read sequencing data on a pocket-sized device known as the MinION. Nanopore-based sequencing is scalable, portable, and theoretically capable of sequencing the entire mitochondrial genome in a single contig. Furthermore, the recent development of a nanopore protein with dual reader heads allows for clear identification of nucleotides within homopolymeric stretches, significantly increasing resolution throughout these regions. The unrestricted read lengths, superior homopolymeric resolution, and affordability of the MinION device make it an attractive alternative to the labor-intensive, time-consuming, and costly mainstay deep-sequencing platforms. This article describes three approaches to extract, prepare, and sequence mitochondrial DNA on the Oxford Nanopore MinION device. Two of the workflows include enrichment of mitochondrial DNA prior to sequencing, whereas the other relies on direct sequencing of native genomic DNA to allow for simultaneous assessment of the nuclear and mitochondrial genomes. © 2019 by John Wiley & Sons, Inc. Basic Protocol: Enrichment-free mitochondrial DNA sequencing Alternate Protocol 1: Mitochondrial DNA sequencing following enrichment with polymerase chain reaction (PCR) Alternate Protocol 2: Mitochondrial DNA sequencing following enrichment with PCR-free hybridization capture Support Protocol 1: DNA quantification and quality assessment using the Agilent 4200 TapeStation System Support Protocol 2: AMPure XP bead clean-up Support Protocol 3: Suggested data analysis pipeline.
Collapse
Affiliation(s)
- Roxanne R Zascavage
- Department of Criminology and Criminal Justice, University of Texas at Arlington, Arlington, Texas.,Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas
| | - Courtney L Hall
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas
| | | | - Medhat Mahmoud
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - John V Planz
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
26
|
Ion torrent high throughput mitochondrial genome sequencing (HTMGS). PLoS One 2019; 14:e0224847. [PMID: 31730669 PMCID: PMC6857855 DOI: 10.1371/journal.pone.0224847] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
The implementation and popularity of next generation sequencing (NGS) has led to the development of various rapid whole mitochondrial genome sequencing techniques. We summarise an efficient and cost-effective NGS approach for mitochondrial genomic DNA in humans using the Ion Torrent platform, and further discuss our bioinformatics pipeline for streamlined variant calling. Ion 316 chips were utilised with the Ion Torrent semi-conductor platform Personal Genome Machine (PGM) to perform tandem sequencing of mitochondrial genomes from the core pedigree (n = 315) of the Norfolk Island Health Study. Key improvements from commercial methods focus on the initial PCR step, which currently requires extensive optimisation to ensure the accurate and reproducible elongation of each section of the complete mitochondrial genome. Dual-platform barcodes were incorporated into our protocol thereby extending its potential application onto Illumina-based systems. Our bioinformatics pipeline consists of a modified version of GATK best practices tailored for mitochondrial genomic data. When compared with current commercial methods, our method, termed high throughput mitochondrial genome sequencing (HTMGS), allows high multiplexing of samples and the use of alternate library preparation reagents at a lower cost per sample (~1.7 times) when compared to current commercial methodologies. Our HTMGS methodology also provides robust mitochondrial sequencing data (>450X average coverage) that can be applied and modified to suit various study designs. On average, we were able to identify ~30 variants per sample with 572 variants observed across 315 samples. We have developed a high throughput sequencing and analysis method targeting complete mitochondrial genomes; with the potential to be platform agnostic with analysis options that adhere to current best practices.
Collapse
|