1
|
Chlipała P, Janeczko T, Mazur M. Bioreduction of 4'-Hydroxychalcone in Deep Eutectic Solvents: Optimization and Efficacy with Various Yeast Strains. Int J Mol Sci 2024; 25:7152. [PMID: 39000255 PMCID: PMC11241015 DOI: 10.3390/ijms25137152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
4'-dihydrochalcones are secondary metabolites isolated from many medicinal plants and from the resin known as 'dragon's blood'. Due to their biological potential, our research objective was to determine the possibilities of using biocatalysis processes carried out in deep eutectic solvents (DESs) to obtain 4'-dihydrochalcones as a model compound. The processes were carried out in a culture of the yeast Yarrowia lipolytica KCh 71 and also in cultures of strains of the genera Rhodotorula and Debaryomyces. Based on the experiments carried out, an optimum process temperature of 35 °C was chosen, and the most suitable DES contained glycerol as a hydrogen bond donor (HBD). For a medium with 30% water content (DES 11), the conversion observed after 24 h exceeded 70%, while increasing the amount of water to 50% resulted in a similar level of conversion after just 1 h. A fivefold increase in the amount of added substrate resulted in a reduction in conversion, which reached 30.3%. Of the other yeast strains tested, Rhodotorula marina KCh 77 and Rhodotorula rubra KCh 4 also proved to be good biocatalysts for the bioreduction process. For these strains, the conversion reached 95.4% and 95.1%, respectively. These findings highlight the potential of yeast as a biocatalyst for the selective reduction of α,β-unsaturated ketones and the possibility of using a DESs as a reaction medium in this process.
Collapse
Affiliation(s)
| | | | - Marcelina Mazur
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (P.C.); (T.J.)
| |
Collapse
|
2
|
Califano D, Schoevaart R, Barnard KE, Callaghan C, Mattia D, Edler KJ. Diaminated Cellulose Beads as a Sustainable Support for Industrially Relevant Lipases. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:7703-7712. [PMID: 38783841 PMCID: PMC11110057 DOI: 10.1021/acssuschemeng.3c07849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Environmentally persistent polystyrene or polyacrylic beads are used as supports in enzyme large-scale bioprocesses, including conversion glucose isomerization for high-fructose corn syrup production, hydrolysis of lactose, and synthesis of active pharmaceutical ingredients. In this paper, we report the development of a novel sustainable and scalable method to produce diaminated cellulose beads (DAB) as highly efficient alternative supports for industrially relevant lipases. Regenerated cellulose beads were grafted with diaminated aliphatic hydrocarbons via periodate oxidation and reductive amination. The oxidation step indicated that aldehyde content can be easily tuned through the reaction time and concentration of reactants. Reductive amination of dialdehyde cellulose was more efficient as the length of the diaminated hydrocarbon compound increased. Morphological analysis of DAB showed that cellulose chemical grafting enabled the preservation of the bead shape and internal structure upon freeze-drying. Enzymatic degradability studies demonstrated that chemical functionalization did not undermine enzyme cellulose hydrolysis. The addition of aminated moieties on cellulose dramatically increased absorption efficiency for all industrially relevant lipases used, reaching 100% for Thermomyces lanuginosus lipase (TLL). Storage and recyclability experiments demonstrated that enzymes were retained and recyclable for at least nine cycles, although the activity gradually declined after each cycle. Medium chain triacylglycerol hydrolysis in a SpinChem reactor using TLL immobilized on 1,6 DAB exhibited higher activity compared to acrylic beads (588 vs 459 U/g) suggesting that biodegradable cellulose-based materials could be a valid and attractive alternative to plastics carriers.
Collapse
Affiliation(s)
| | - Rob Schoevaart
- ChiralVision, 44 Hoog-Harnasch, 2635 DL Den Hoorn, The Netherlands
| | | | - Ciarán Callaghan
- Department
of Chemical Engineering, University of Bath, Bath BA27AY, U.K.
| | - Davide Mattia
- Department
of Chemical Engineering, University of Bath, Bath BA27AY, U.K.
| | - Karen J. Edler
- Department
of Chemistry, University of Bath, Bath BA27AY, U.K.
| |
Collapse
|
3
|
Verma S, Paliwal S. Recent Developments and Applications of Biocatalytic and Chemoenzymatic Synthesis for the Generation of Diverse Classes of Drugs. Curr Pharm Biotechnol 2024; 25:448-467. [PMID: 37885105 DOI: 10.2174/0113892010238984231019085154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 08/26/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023]
Abstract
Biocatalytic and chemoenzymatic biosynthesis are powerful methods of organic chemistry that use enzymes to execute selective reactions and allow the efficient production of organic compounds. The advantages of these approaches include high selectivity, mild reaction conditions, and the ability to work with complex substrates. The utilization of chemoenzymatic techniques for the synthesis of complicated compounds has lately increased dramatically in the area of organic chemistry. Biocatalytic technologies and modern synthetic methods are utilized synergistically in a multi-step approach to a target molecule under this paradigm. Chemoenzymatic techniques are promising for simplifying access to essential bioactive compounds because of the remarkable regio- and stereoselectivity of enzymatic transformations and the reaction diversity of modern organic chemistry. Enzyme kits may include ready-to-use, reproducible biocatalysts. Its use opens up new avenues for the synthesis of active therapeutic compounds and aids in drug development by synthesizing active components to construct scaffolds in a targeted and preparative manner. This study summarizes current breakthroughs as well as notable instances of biocatalytic and chemoenzymatic synthesis. To assist organic chemists in the use of enzymes for synthetic applications, it also provides some basic guidelines for selecting the most appropriate enzyme for a targeted reaction while keeping aspects like cofactor requirement, solvent tolerance, use of whole cell or isolated enzymes, and commercial availability in mind.
Collapse
Affiliation(s)
- Swati Verma
- Department of Pharmacy, ITS College of Pharmacy, Muradnagar, Ghaziabad, India
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| |
Collapse
|
4
|
Romero EO, Saucedo AT, Hernández-Meléndez JR, Yang D, Chakrabarty S, Narayan ARH. Enabling Broader Adoption of Biocatalysis in Organic Chemistry. JACS AU 2023; 3:2073-2085. [PMID: 37654599 PMCID: PMC10466347 DOI: 10.1021/jacsau.3c00263] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 09/02/2023]
Abstract
Biocatalysis is becoming an increasingly impactful method in contemporary synthetic chemistry for target molecule synthesis. The selectivity imparted by enzymes has been leveraged to complete previously intractable chemical transformations and improve synthetic routes toward complex molecules. However, the implementation of biocatalysis in mainstream organic chemistry has been gradual to this point. This is partly due to a set of historical and technological barriers that have prevented chemists from using biocatalysis as a synthetic tool with utility that parallels alternative modes of catalysis. In this Perspective, we discuss these barriers and how they have hindered the adoption of enzyme catalysts into synthetic strategies. We also summarize tools and resources that already enable organic chemists to use biocatalysts. Furthermore, we discuss ways to further lower the barriers for the adoption of biocatalysis by the broader synthetic organic chemistry community through the dissemination of resources, demystifying biocatalytic reactions, and increasing collaboration across the field.
Collapse
Affiliation(s)
- Evan O. Romero
- Life Sciences Institute & Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Anthony T. Saucedo
- Life Sciences Institute & Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - José R. Hernández-Meléndez
- Life Sciences Institute & Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Di Yang
- Life Sciences Institute & Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Suman Chakrabarty
- Life Sciences Institute & Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alison R. H. Narayan
- Life Sciences Institute & Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
5
|
Tian J, Garcia AA, Donnan PH, Bridwell-Rabb J. Leveraging a Structural Blueprint to Rationally Engineer the Rieske Oxygenase TsaM. Biochemistry 2023. [PMID: 37188334 DOI: 10.1021/acs.biochem.3c00150] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Rieske nonheme iron oxygenases use two metallocenters, a Rieske-type [2Fe-2S] cluster and a mononuclear iron center, to catalyze oxidation reactions on a broad range of substrates. These enzymes are widely used by microorganisms to degrade environmental pollutants and to build complexity in a myriad of biosynthetic pathways that are industrially interesting. However, despite the value of this chemistry, there is a dearth of understanding regarding the structure-function relationships in this enzyme class, which limits our ability to rationally redesign, optimize, and ultimately exploit the chemistry of these enzymes. Therefore, in this work, by leveraging a combination of available structural information and state-of-the-art protein modeling tools, we show that three "hotspot" regions can be targeted to alter the site selectivity, substrate preference, and substrate scope of the Rieske oxygenase p-toluenesulfonate methyl monooxygenase (TsaM). Through mutation of six to 10 residues distributed between three protein regions, TsaM was engineered to behave as either vanillate monooxygenase (VanA) or dicamba monooxygenase (DdmC). This engineering feat means that TsaM was rationally engineered to catalyze an oxidation reaction at the meta and ortho positions of an aromatic substrate, rather than its favored native para position, and that TsaM was redesigned to perform chemistry on dicamba, a substrate that is not natively accepted by the enzyme. This work thus contributes to unlocking our understanding of structure-function relationships in the Rieske oxygenase enzyme class and expands foundational principles for future engineering of these metalloenzymes.
Collapse
Affiliation(s)
- Jiayi Tian
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Patrick H Donnan
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jennifer Bridwell-Rabb
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
6
|
Emmanuel MA, Bender SG, Bilodeau C, Carceller JM, DeHovitz JS, Fu H, Liu Y, Nicholls BT, Ouyang Y, Page CG, Qiao T, Raps FC, Sorigué DR, Sun SZ, Turek-Herman J, Ye Y, Rivas-Souchet A, Cao J, Hyster TK. Photobiocatalytic Strategies for Organic Synthesis. Chem Rev 2023; 123:5459-5520. [PMID: 37115521 PMCID: PMC10905417 DOI: 10.1021/acs.chemrev.2c00767] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Biocatalysis has revolutionized chemical synthesis, providing sustainable methods for preparing various organic molecules. In enzyme-mediated organic synthesis, most reactions involve molecules operating from their ground states. Over the past 25 years, there has been an increased interest in enzymatic processes that utilize electronically excited states accessed through photoexcitation. These photobiocatalytic processes involve a diverse array of reaction mechanisms that are complementary to one another. This comprehensive review will describe the state-of-the-art strategies in photobiocatalysis for organic synthesis until December 2022. Apart from reviewing the relevant literature, a central goal of this review is to delineate the mechanistic differences between the general strategies employed in the field. We will organize this review based on the relationship between the photochemical step and the enzymatic transformations. The review will include mechanistic studies, substrate scopes, and protein optimization strategies. By clearly defining mechanistically-distinct strategies in photobiocatalytic chemistry, we hope to illuminate future synthetic opportunities in the area.
Collapse
Affiliation(s)
- Megan A Emmanuel
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Sophie G Bender
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Catherine Bilodeau
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jose M Carceller
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Institute of Chemical Technology (ITQ), Universitat Politècnica de València, València 46022,Spain
| | - Jacob S DeHovitz
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Haigen Fu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Yi Liu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Bryce T Nicholls
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yao Ouyang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Claire G Page
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Tianzhang Qiao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Felix C Raps
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Damien R Sorigué
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Shang-Zheng Sun
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Joshua Turek-Herman
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yuxuan Ye
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ariadna Rivas-Souchet
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jingzhe Cao
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Todd K Hyster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
7
|
Engineering Rieske oxygenase activity one piece at a time. Curr Opin Chem Biol 2023; 72:102227. [PMID: 36410250 PMCID: PMC9939785 DOI: 10.1016/j.cbpa.2022.102227] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022]
Abstract
Enzyme engineering plays a central role in the development of biocatalysts for biotechnology, chemical and pharmaceutical manufacturing, and environmental remediation. Rational design of proteins has historically relied on targeting active site residues to confer a protein with desirable catalytic properties. However, additional "hotspots" are also known to exist beyond the active site. Structural elements such as subunit-subunit interactions, entrance tunnels, and flexible loops influence enzyme catalysis and serve as potential "hotspots" for engineering. For the Rieske oxygenases, which use a Rieske cluster and mononuclear iron center to catalyze a challenging set of reactions, these outside of the active site regions are increasingly being shown to drive catalytic outcomes. Therefore, here, we highlight recent work on structurally characterized Rieske oxygenases that implicates architectural pieces inside and outside of the active site as key dictators of catalysis, and we suggest that these features may warrant attention in efforts aimed at Rieske oxygenase engineering.
Collapse
|
8
|
Enzyme immobilization: Implementation of nanoparticles and an insight into polystyrene as the contemporary immobilization matrix. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Federsel HJ. Taking the Green Road Towards Pharmaceutical Manufacturing. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1752-5471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractThe introduction of the Green Chemistry Principles in the late 1990s formed the basis for a transition to a greener environment. These Principles have become an integral part in the work on designing chemical processes, especially for large-scale manufacture. The ultimate target is the achievement of a sustainable production method allowing hundreds of tons of valuable materials to be prepared. For this purpose, a holistic view must be applied to the elements constituting a fully-fledged process encompassing layout of the synthetic route, defining starting materials and their origin, output of product and quality features, quantity of effluent streams and waste, recovery and recycling of chemicals involved, and energy consumption. These parameters form a complex matrix where the individual components are in a complicated relationship with each other. This short review addresses these issues and the benefits of life-cycle assessment and metrics commonly used to measure the performance of chemical manufacturing – all from a pharmaceutical industry perspective as experienced by the author.1 Introduction: Facing Severe Challenges2 The Historical Context: Addressing an Image Problem3 Prospects, Drivers and Roadmap for the Green Future4 Living by the Principles: Industrial Perspectives5 Taking the Green Route – Catalysis Leading the Way: Case Stories6 State of the Art: How Green Are We?7 Sending Signals, Creating Impressions: Focus on Communication8 Conclusions
Collapse
|
10
|
Rigoletto DM, Calza P, Gaggero E, Laurenti DE. Hybrid materials for the removal of emerging pollutants in water: classification, synthesis, and properties. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
11
|
Simić S, Zukić E, Schmermund L, Faber K, Winkler CK, Kroutil W. Shortening Synthetic Routes to Small Molecule Active Pharmaceutical Ingredients Employing Biocatalytic Methods. Chem Rev 2021; 122:1052-1126. [PMID: 34846124 DOI: 10.1021/acs.chemrev.1c00574] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biocatalysis, using enzymes for organic synthesis, has emerged as powerful tool for the synthesis of active pharmaceutical ingredients (APIs). The first industrial biocatalytic processes launched in the first half of the last century exploited whole-cell microorganisms where the specific enzyme at work was not known. In the meantime, novel molecular biology methods, such as efficient gene sequencing and synthesis, triggered breakthroughs in directed evolution for the rapid development of process-stable enzymes with broad substrate scope and good selectivities tailored for specific substrates. To date, enzymes are employed to enable shorter, more efficient, and more sustainable alternative routes toward (established) small molecule APIs, and are additionally used to perform standard reactions in API synthesis more efficiently. Herein, large-scale synthetic routes containing biocatalytic key steps toward >130 APIs of approved drugs and drug candidates are compared with the corresponding chemical protocols (if available) regarding the steps, reaction conditions, and scale. The review is structured according to the functional group formed in the reaction.
Collapse
Affiliation(s)
- Stefan Simić
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Erna Zukić
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Luca Schmermund
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Kurt Faber
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Christoph K Winkler
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria.,Field of Excellence BioHealth─University of Graz, 8010 Graz, Austria.,BioTechMed Graz, 8010 Graz, Austria
| |
Collapse
|
12
|
Characterization of Two Hydrogen Peroxide Resistant Peroxidases from Rhodococcus opacus 1CP. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11177941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The dye-decolorizing peroxidases (DyP) are a family of heme-dependent enzymes present on a broad spectrum of microorganisms. While the natural function of these enzymes is not fully understood, their capacity to degrade highly contaminant pigments such as azo dyes or anthraquinones make them excellent candidates for applications in bioremediation and organic synthesis. In this work, two novel DyP peroxidases from the organism Rhodococcus opacus 1CP (DypA and DypB) were cloned and expressed in Escherichia coli. The enzymes were purified and biochemically characterized. The activities of the two DyPs via 2,2′-azino-bis [3-ethylbenzthiazoline-6-sulphonic acid] (ABTS) assay and against Reactive Blue 5 were assessed and optimized. Results showed varying trends for DypA and DypB. Remarkably, these enzymes presented a particularly high tolerance towards H2O2, retaining its activities at about 10 mM H2O2 for DypA and about 4.9 mM H2O2 for DypB.
Collapse
|
13
|
Hall M. Enzymatic strategies for asymmetric synthesis. RSC Chem Biol 2021; 2:958-989. [PMID: 34458820 PMCID: PMC8341948 DOI: 10.1039/d1cb00080b] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Enzymes, at the turn of the 21st century, are gaining a momentum. Especially in the field of synthetic organic chemistry, a broad variety of biocatalysts are being applied in an increasing number of processes running at up to industrial scale. In addition to the advantages of employing enzymes under environmentally friendly reaction conditions, synthetic chemists are recognizing the value of enzymes connected to the exquisite selectivity of these natural (or engineered) catalysts. The use of hydrolases in enantioselective protocols paved the way to the application of enzymes in asymmetric synthesis, in particular in the context of biocatalytic (dynamic) kinetic resolutions. After two decades of impressive development, the field is now mature to propose a panel of catalytically diverse enzymes for (i) stereoselective reactions with prochiral compounds, such as double bond reduction and bond forming reactions, (ii) formal enantioselective replacement of one of two enantiotopic groups of prochiral substrates, as well as (iii) atroposelective reactions with noncentrally chiral compounds. In this review, the major enzymatic strategies broadly applicable in the asymmetric synthesis of optically pure chiral compounds are presented, with a focus on the reactions developed within the past decade.
Collapse
Affiliation(s)
- Mélanie Hall
- Institute of Chemistry, University of Graz Heinrichstrasse 28 8010 Graz Austria
- Field of Excellence BioHealth - University of Graz Austria
| |
Collapse
|
14
|
Pyser J, Chakrabarty S, Romero EO, Narayan ARH. State-of-the-Art Biocatalysis. ACS CENTRAL SCIENCE 2021; 7:1105-1116. [PMID: 34345663 PMCID: PMC8323117 DOI: 10.1021/acscentsci.1c00273] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Indexed: 05/03/2023]
Abstract
The use of enzyme-mediated reactions has transcended ancient food production to the laboratory synthesis of complex molecules. This evolution has been accelerated by developments in sequencing and DNA synthesis technology, bioinformatic and protein engineering tools, and the increasingly interdisciplinary nature of scientific research. Biocatalysis has become an indispensable tool applied in academic and industrial spheres, enabling synthetic strategies that leverage the exquisite selectivity of enzymes to access target molecules. In this Outlook, we outline the technological advances that have led to the field's current state. Integration of biocatalysis into mainstream synthetic chemistry hinges on increased access to well-characterized enzymes and the permeation of biocatalysis into retrosynthetic logic. Ultimately, we anticipate that biocatalysis is poised to enable the synthesis of increasingly complex molecules at new levels of efficiency and throughput.
Collapse
Affiliation(s)
- Joshua
B. Pyser
- Department
of Chemistry, Life Sciences Institute, and Program in Chemical Biology, University of Michigan, , 210 Washtenaw Avenue, Ann Arbor, Michigan 48109, United
States
| | - Suman Chakrabarty
- Department
of Chemistry, Life Sciences Institute, and Program in Chemical Biology, University of Michigan, , 210 Washtenaw Avenue, Ann Arbor, Michigan 48109, United
States
| | - Evan O. Romero
- Department
of Chemistry, Life Sciences Institute, and Program in Chemical Biology, University of Michigan, , 210 Washtenaw Avenue, Ann Arbor, Michigan 48109, United
States
| | - Alison R. H. Narayan
- Department
of Chemistry, Life Sciences Institute, and Program in Chemical Biology, University of Michigan, , 210 Washtenaw Avenue, Ann Arbor, Michigan 48109, United
States
| |
Collapse
|
15
|
Winkler C, Schrittwieser JH, Kroutil W. Power of Biocatalysis for Organic Synthesis. ACS CENTRAL SCIENCE 2021; 7:55-71. [PMID: 33532569 PMCID: PMC7844857 DOI: 10.1021/acscentsci.0c01496] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 05/05/2023]
Abstract
Biocatalysis, using defined enzymes for organic transformations, has become a common tool in organic synthesis, which is also frequently applied in industry. The generally high activity and outstanding stereo-, regio-, and chemoselectivity observed in many biotransformations are the result of a precise control of the reaction in the active site of the biocatalyst. This control is achieved by exact positioning of the reagents relative to each other in a fine-tuned 3D environment, by specific activating interactions between reagents and the protein, and by subtle movements of the catalyst. Enzyme engineering enables one to adapt the catalyst to the desired reaction and process. A well-filled biocatalytic toolbox is ready to be used for various reactions. Providing nonnatural reagents and conditions and evolving biocatalysts enables one to play with the myriad of options for creating novel transformations and thereby opening new, short pathways to desired target molecules. Combining several biocatalysts in one pot to perform several reactions concurrently increases the efficiency of biocatalysis even further.
Collapse
Affiliation(s)
- Christoph
K. Winkler
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße
28, 8010 Graz, Austria
| | - Joerg H. Schrittwieser
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße
28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße
28, 8010 Graz, Austria
- Field
of Excellence BioHealth − University of Graz, 8010 Graz, Austria
- BioTechMed
Graz, 8010 Graz, Austria
| |
Collapse
|
16
|
Heckmann CM, Paradisi F. Looking Back: A Short History of the Discovery of Enzymes and How They Became Powerful Chemical Tools. ChemCatChem 2020; 12:6082-6102. [PMID: 33381242 PMCID: PMC7756376 DOI: 10.1002/cctc.202001107] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/02/2020] [Indexed: 12/20/2022]
Abstract
Enzymatic approaches to challenges in chemical synthesis are increasingly popular and very attractive to industry given their green nature and high efficiency compared to traditional methods. In this historical review we highlight the developments across several fields that were necessary to create the modern field of biocatalysis, with enzyme engineering and directed evolution at its core. We exemplify the modular, incremental, and highly unpredictable nature of scientific discovery, driven by curiosity, and showcase the resulting examples of cutting-edge enzymatic applications in industry.
Collapse
Affiliation(s)
- Christian M Heckmann
- School of Chemistry University of Nottingham University Park Nottingham NG7 2RD UK
| | - Francesca Paradisi
- School of Chemistry University of Nottingham University Park Nottingham NG7 2RD UK
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
17
|
Carneiro T, Wrzosek K, Bettenbrock K, Lorenz H, Seidel‐Morgenstern A. Immobilization of an amino acid racemase for application in crystallization-based chiral resolutions of asparagine monohydrate. Eng Life Sci 2020; 20:550-561. [PMID: 33304228 PMCID: PMC7708953 DOI: 10.1002/elsc.202000029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/15/2020] [Accepted: 08/13/2020] [Indexed: 01/04/2023] Open
Abstract
Integration of racemization and a resolution process is an attractive way to overcome yield limitations in the production of pure chiral molecules. Preferential crystallization and other crystallization-based techniques usually produce low enantiomeric excess in solution, which is a constraint for coupling with racemization. We developed an enzymatic fixed bed reactor that can potentially overcome these unfavorable conditions and improve the overall yield of preferential crystallization. Enzyme immobilization strategies were investigated on covalent-binding supports. The amino acid racemase immobilized in Purolite ECR 8309F with a load of 35 mg-enzyme/g-support showed highest specific activity (approx. 500 U/g-support) and no loss in activity in reusability tests. Effects of substrate inhibition observed for the free enzyme were overcome after immobilization. A packed bed reactor with the immobilized racemase showed good performance in steady state operation processing low enantiomeric excess inlet. Kinetic parameters from batch reactor experiments can be successfully used for prediction of packed bed reactor performance. Full conversions could be achieved for residence times above 1.1 min. The results suggest the potential of the prepared racemase reactor to be combined with preferential crystallization to improve resolution of asparagine enantiomers.
Collapse
Affiliation(s)
- Thiane Carneiro
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
| | - Katarzyna Wrzosek
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
| | - Katja Bettenbrock
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
| | - Heike Lorenz
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
| | - Andreas Seidel‐Morgenstern
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
- Otto‐von‐Guericke University MagdeburgMagdeburgGermany
| |
Collapse
|
18
|
CHEN YAO, CHEN XUEYE. MONOPHASIC REACTION WITH A PACKED BED MICROREACTOR: CHARACTERIZATION OF MASS TRANSFER AND REACTION. J MECH MED BIOL 2020. [DOI: 10.1142/s0219519420500335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this paper, the monophasic catalytic reaction in the microreactor is studied. Several factors that may affect the catalytic reaction are discussed, including the pressure drop, the size of catalyst particles, and the channel structure. Finally, some important conclusions can be reached. The change of pressure drop has an effect on the reaction. For example, the C3H6 conversion rate is 62.88% when the pressure drop is 8[Formula: see text]atm, and the C3H6 conversion rate is 61.78% when the pressure drop is 11[Formula: see text]atm. The effect of the change particle radius is not obvious on the reaction. Enhancing the mixing of substances before entering the reaction domain is helpful to the catalytic reaction. There are different substances concentration in catalyst particles at different positions in microreactors. But from the surface to the inside of catalyst particles, the substances concentration has a clear change rule.
Collapse
Affiliation(s)
- YAO CHEN
- Faculty of Mechanical Engineering and Automation, Liaoning University of Technology, Jinzhou 121001, P. R. China
| | - XUEYE CHEN
- Faculty of Mechanical Engineering and Automation, Liaoning University of Technology, Jinzhou 121001, P. R. China
| |
Collapse
|
19
|
Synthesizing Chiral Drug Intermediates by Biocatalysis. Appl Biochem Biotechnol 2020; 192:146-179. [DOI: 10.1007/s12010-020-03272-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/13/2020] [Indexed: 01/16/2023]
|
20
|
Routoula E, Patwardhan SV. Degradation of Anthraquinone Dyes from Effluents: A Review Focusing on Enzymatic Dye Degradation with Industrial Potential. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:647-664. [PMID: 31913605 DOI: 10.1021/acs.est.9b03737] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Up to 84 000 tons of dye can be lost in water, and 90 million tons of water are attributed annually to dye production and their application, mainly in the textile and leather industry, making the dyestuff industry responsible for up to 20% of the industrial water pollution. The majority of dyes industrially used today are aromatic compounds with complex, reinforced structures, with anthraquinone dyes being the second largest produced in terms of volume. Despite the progress on decolorization and degradation of azo dyes, very little attention has been given to anthraquinone dyes. Anthraquinone dyes pose a serious environmental problem as their reinforced structure makes them difficult to degrade naturally. Existing methods of decolorization might be effective but are neither efficient nor practical due to extended time, space, and cost requirements. Attention should be given to the emerging routes for dye decolorization via the enzymatic action of oxidoreductases, which have already a strong presence in various other bioremediation applications. This review will discusses the presence of anthraquinone dyes in the effluents and ways for their remediation from dyehouse effluents, focusing on enzymatic processes.
Collapse
Affiliation(s)
- Eleni Routoula
- Department of Chemical and Biological Engineering , University of Sheffield Mappin Street , Sheffield , United Kingdom , S1 3JD
| | - Siddharth V Patwardhan
- Department of Chemical and Biological Engineering , University of Sheffield Mappin Street , Sheffield , United Kingdom , S1 3JD
| |
Collapse
|
21
|
Uhrich D, Jang HY, Park JB, von Langermann J. Characterization and application of chemical-resistant polyurethane-based enzyme and whole cell compartments. J Biotechnol 2019; 289:31-38. [PMID: 30439386 DOI: 10.1016/j.jbiotec.2018.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 10/23/2018] [Accepted: 11/07/2018] [Indexed: 01/28/2023]
Abstract
This study presents the preparation and physical-chemical characterization of chemical resistant polyurethane-based compartments for biocatalytic application. The artificial compartments were prepared from an emulsion of polymer precursor and an aqueous phase that includes a biocatalytic reaction system. After curing, highly dispersed aqueous domains were obtained, which still contain the entire biocatalytic reaction system and remain fixed in the solid polymer preparation. The tensile and compression behavior of the prepared polymeric material is not significantly affected by the incorporation and facilitates excellent stability against various organic solvents and acid solutions. Thereby, the compartments can be used not only for enantioselective alcohol-dehydrogenase catalyzed reduction but also for a whole cell catalyzed hydrolysis of esters. Moreover, the compartmented whole-cell system was considerably stable to allow multiple reuses without a noticeable loss of catalytic activity of the incorporated whole cell catalytic reaction system.
Collapse
Affiliation(s)
- Diana Uhrich
- Biocatalytic Synthesis Group, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Hyun-Young Jang
- Department of Food Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Jin-Byung Park
- Department of Food Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Jan von Langermann
- Biocatalytic Synthesis Group, Institute of Chemistry, University of Rostock, Rostock, Germany.
| |
Collapse
|
22
|
Mbanjwa MB, Land KJ, Windvoel T, Papala PM, Fourie L, Korvink JG, Visser D, Brady D. Production of self-immobilised enzyme microspheres using microfluidics. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Schrittwieser JH, Velikogne S, Hall M, Kroutil W. Artificial Biocatalytic Linear Cascades for Preparation of Organic Molecules. Chem Rev 2017; 118:270-348. [DOI: 10.1021/acs.chemrev.7b00033] [Citation(s) in RCA: 371] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Joerg H. Schrittwieser
- Institute
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Stefan Velikogne
- ACIB
GmbH, Department of Chemistry, University of Graz, Heinrichstrasse
28, 8010 Graz, Austria
| | - Mélanie Hall
- Institute
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Heinrichstrasse 28, 8010 Graz, Austria
- ACIB
GmbH, Department of Chemistry, University of Graz, Heinrichstrasse
28, 8010 Graz, Austria
| |
Collapse
|
24
|
Demain AL, Vandamme EJ, Collins J, Buchholz K. History of Industrial Biotechnology. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Arnold L. Demain
- Drew University; Charles A. Dana Research Institute for Scientists Emeriti (R.I.S.E.); 36, Madison Ave Madison NJ 07940 USA
| | - Erick J. Vandamme
- Ghent University; Department of Biochemical and Microbial Technology; Belgium
| | - John Collins
- Science historian; Leipziger Straße 82A; 38124 Braunschweig Germany
| | - Klaus Buchholz
- Technical University Braunschweig; Institute of Chemical Engineering; Hans-Sommer-Str. 10 38106 Braunschweig Germany
| |
Collapse
|
25
|
Hinze J, Süss P, Strohmaier S, Bornscheuer UT, Wardenga R, von Langermann J. Recombinant Pig Liver Esterase-Catalyzed Synthesis of (1S,4R)-4-Hydroxy-2-cyclopentenyl Acetate Combined with Subsequent Enantioselective Crystallization. Org Process Res Dev 2016. [DOI: 10.1021/acs.oprd.6b00093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Janine Hinze
- University of Rostock, Institute of Chemistry, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
| | - Philipp Süss
- Enzymicals AG, Walther-Rathenau-Str.
49a, 17489 Greifswald, Germany
- University of Greifswald, Institute of Biochemistry, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Silja Strohmaier
- University of Rostock, Institute of Chemistry, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Uwe T. Bornscheuer
- University of Greifswald, Institute of Biochemistry, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Rainer Wardenga
- Enzymicals AG, Walther-Rathenau-Str.
49a, 17489 Greifswald, Germany
| | - Jan von Langermann
- University of Rostock, Institute of Chemistry, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
| |
Collapse
|
26
|
A breakthrough in enzyme technology to fight penicillin resistance—industrial application of penicillin amidase. Appl Microbiol Biotechnol 2016; 100:3825-39. [DOI: 10.1007/s00253-016-7399-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/10/2016] [Accepted: 02/12/2016] [Indexed: 11/26/2022]
|
27
|
Immobilization of Escherichia coli cells expressing 4-oxalocrotonate tautomerase for improved biotransformation of β-nitrostyrene. Bioprocess Biosyst Eng 2015; 38:2389-95. [DOI: 10.1007/s00449-015-1474-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 09/21/2015] [Indexed: 10/23/2022]
|
28
|
Tsakona S, Kopsahelis N, Chatzifragkou A, Papanikolaou S, Kookos IK, Koutinas AA. Formulation of fermentation media from flour-rich waste streams for microbial lipid production by Lipomyces starkeyi. J Biotechnol 2014; 189:36-45. [DOI: 10.1016/j.jbiotec.2014.08.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/06/2014] [Accepted: 08/12/2014] [Indexed: 01/26/2023]
|
29
|
Jovanovic P, Jeremic S, Djokic L, Savic V, Radivojevic J, Maslak V, Ivkovic B, Vasiljevic B, Nikodinovic-Runic J. Chemoselective biocatalytic reduction of conjugated nitroalkenes: new application for an Escherichia coli BL21(DE3) expression strain. Enzyme Microb Technol 2014; 60:16-23. [PMID: 24835095 DOI: 10.1016/j.enzmictec.2014.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 02/26/2014] [Accepted: 03/20/2014] [Indexed: 11/29/2022]
Abstract
Chemoselective reduction of activated carbon-carbon double bond in conjugated nitroalkenes was achieved using Escherichia coli BL21(DE3) whole cells. Nine different substrates have been used furnishing the reduced products in moderate to good yields. 1-Nitro-4-phenyl-1,3-butadiene and (2-nitro-1-propenyl)benzene were successfully biotransformed with corresponding product yields of 54% and 45% respectively. Using this simple and environmentally friendly system 2-(2-nitropropyl)pyridine and 2-(2-nitropropyl)naphthalene were synthesized and characterized for the first time. High substrate conversion efficiency was coupled with low enantioselectivity, however 29% enantiomeric excess was detected in the case of 2-(2-nitropropyl)pyridine. It was shown that electronic properties of the aromatic ring, which affected polarity of the double bond, were not highly influential factors in the reduction process, but the presence of the nitro functionality was essential for the reaction to proceed. 1-Phenyl-4-nitro-1,3-butadiene could not be biotransformed by whole cells of Pseudomonas putida KT2440 or Bacillus subtilis 168 while it was successfully reduced by E. coli DH5α but with lower efficiency in comparison to E. coli BL21(DE3). Knockout mutant affected in nemA gene coding for N-ethylmaleimide reductase (BL21ΔnemA) could still catalyze bioreductions suggesting multiple active reductases within E. coli BL21(DE3) biocatalyst. The described biocatalytic reduction of substituted nitroalkenes provides an efficient route for the preparation of the corresponding nitroalkanes and introduces the new application of the strain traditionally utilized for recombinant protein expression.
Collapse
Affiliation(s)
- Predrag Jovanovic
- Department of Organic Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Sanja Jeremic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia
| | - Lidija Djokic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia
| | - Vladimir Savic
- Department of Organic Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Jelena Radivojevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia; Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, 11000 Belgrade, Serbia
| | - Veselin Maslak
- Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, 11000 Belgrade, Serbia
| | - Branka Ivkovic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Branka Vasiljevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia.
| |
Collapse
|
30
|
Buchholz K, Collins J. The roots--a short history of industrial microbiology and biotechnology. Appl Microbiol Biotechnol 2013; 97:3747-62. [PMID: 23504077 DOI: 10.1007/s00253-013-4768-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/08/2013] [Accepted: 02/09/2013] [Indexed: 11/26/2022]
Abstract
Early biotechnology (BT) had its roots in fascinating discoveries, such as yeast as living matter being responsible for the fermentation of beer and wine. Serious controversies arose between vitalists and chemists, resulting in the reversal of theories and paradigms, but prompting continuing research and progress. Pasteur's work led to the establishment of the science of microbiology by developing pure monoculture in sterile medium, and together with the work of Robert Koch to the recognition that a single pathogenic organism is the causative agent for a particular disease. Pasteur also achieved innovations for industrial processes of high economic relevance, including beer, wine and alcohol. Several decades later Buchner, disproved the hypothesis that processes in living cells required a metaphysical 'vis vitalis' in addition to pure chemical laws. Enzymes were shown to be the chemical basis of bioconversions. Studies on the formation of products in microbial fermentations, resulted in the manufacture of citric acid, and chemical components required for explosives particularly in war time, acetone and butanol, and further products through fermentation. The requirements for penicillin during the Second World War lead to the industrial manufacture of penicillin, and to the era of antibiotics with further antibiotics, like streptomycin, becoming available. This was followed by a new class of high value-added products, mainly secondary metabolites, e.g. steroids obtained by biotransformation. By the mid-twentieth century, biotechnology was becoming an accepted specialty with courses being established in the life sciences departments of several universities. Starting in the 1970s and 1980s, BT gained the attention of governmental agencies in Germany, the UK, Japan, the USA, and others as a field of innovative potential and economic growth, leading to expansion of the field. Basic research in Biochemistry and Molecular Biology dramatically widened the field of life sciences and at the same time unified them considerably by the study of genes and their relatedness throughout the evolutionary process. The scope of accessible products and services expanded significantly. Economic input accelerated research and development, by encouraging and financing the development of new methods, tools, machines and the foundation of new companies. The discipline of 'New Biotechnology' became one of the lead sciences. Although biotechnology has historical roots, it continues to influence diverse industrial fields of activity, including food, feed and other commodities, for example polymer manufacture, biofuels and energy production, providing services such as environmental protection, and the development and production of many of the most effective drugs. The understanding of biology down to the molecular level opens the way to create novel products and efficient environmentally acceptable methods for their production.
Collapse
Affiliation(s)
- Klaus Buchholz
- Institute for Chemical Engineering, Technical University of Braunschweig, Hans-Sommer Str. 10, 38106 Braunschweig, Germany.
| | | |
Collapse
|
31
|
Esterification of polyglycerol with polycondensed ricinoleic acid catalysed by immobilised Rhizopus oryzae lipase. Bioprocess Biosyst Eng 2012; 36:1291-302. [PMID: 23263570 DOI: 10.1007/s00449-012-0874-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 12/04/2012] [Indexed: 10/27/2022]
Abstract
The enzymatic method for synthesising polyglycerol polyricinoleate (PGPR), a food additive named E-476, was successfully carried out in the presence of immobilised Rhizopus oryzae lipase in a solvent-free medium. The great advantage of using the commercial preparation of R. oryzae lipase is that it is ten times cheaper than the commercial preparation of R. arrhizus lipase, the biocatalyst used in previous studies. The reaction, which is really a reversal of hydrolysis, takes place in the presence of a very limited amount of aqueous phase. Immobilisation of the lipase by physical adsorption onto an anion exchange resin provided good results in terms of activity, enzyme stability and reuse of the immobilised derivative. It has been established that the adsorption of R. oryzae lipase on Lewatit MonoPlus MP 64 follows a pseudo-second order kinetics, which means that immobilisation is a process of chemisorption, while the equilibrium adsorption follows a Langmuir isotherm. The use of this immobilised derivative as catalyst for obtaining PGPR under a controlled atmosphere in a vacuum reactor, with a dry nitrogen flow intake, allowed the synthesis of a product with an acid value lower than 6 mg KOH/g, which complies with the value established by the European Commission Directive. This product also fulfils the European specifications regarding the hydroxyl value and refractive index given for this food additive, one of whose benefits, as proved in our experiments, is that it causes a drastic decrease in the viscosity (by 50 %) and yield stress (by 82 %) of chocolate, comparable to the impact of customary synthesised PGPR.
Collapse
|
32
|
Wells AS, Finch GL, Michels PC, Wong JW. Use of Enzymes in the Manufacture of Active Pharmaceutical Ingredients—A Science and Safety-Based Approach To Ensure Patient Safety and Drug Quality. Org Process Res Dev 2012. [DOI: 10.1021/op300153b] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrew S. Wells
- Charnwood Technical Consulting Ltd, Parklands, 24 Northage Close, Quorn,
Leics LE12 8AT, U.K
| | - Gregory L. Finch
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton,
Connecticut 06340, United States
| | - Peter C. Michels
- AMRI Inc., Department of Chemical Development,
Fermentation and Biotransformations,
21 Corporate Circle, Albany, New York 12203, United States
| | - John W. Wong
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton,
Connecticut 06340, United States
| |
Collapse
|
33
|
Alissandratos A, Halling PJ. Enzymatic acylation of starch. BIORESOURCE TECHNOLOGY 2012; 115:41-47. [PMID: 22138593 DOI: 10.1016/j.biortech.2011.11.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 11/02/2011] [Accepted: 11/06/2011] [Indexed: 05/31/2023]
Abstract
Starch a cheap, abundant and renewable natural material has been chemically modified for many years. The popular modification acylation has been used to adjust rheological properties as well as deliver polymers with internal plasticizers and other potential uses. However the harsh reaction conditions required to produce these esters may limit their use, especially in sensitive applications (foods, pharmaceuticals, etc.). The use of enzymes to catalyse acylation may provide a suitable alternative due to high selectivities and mild reaction conditions. Traditional hydrolase-catalysed synthesis in non-aqueous apolar media is hard due to lack of polysaccharide solubility. However, acylated starch derivatives have recently been successfully produced in other non-conventional systems: (a) surfactant-solubilised subtilisin and suspended amylose in organic media; (b) starch nanoparticles dispersed in organic medium with immobilised lipase; (c) aqueous starch gels with lipase and dispersed fatty acids. We attempt a systematic review that draws parallels between the seemingly unrelated approaches described.
Collapse
|
34
|
Papanikolaou S, Aggelis G. Lipids of oleaginous yeasts. Part II: Technology and potential applications. EUR J LIPID SCI TECH 2011. [DOI: 10.1002/ejlt.201100015] [Citation(s) in RCA: 288] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Syrén PO, Lindgren E, Hoeffken HW, Branneby C, Maurer S, Hauer B, Hult K. Increased activity of enzymatic transacylation of acrylates through rational design of lipases. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2009.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Syrén PO, Hult K. Substrate conformations set the rate of enzymatic acrylation by lipases. Chembiochem 2010; 11:802-10. [PMID: 20301160 DOI: 10.1002/cbic.200900758] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Acrylates represent a class of alpha,beta-unsaturated compounds of high industrial importance. We investigated the influence of substrate conformations on the experimentally determined reaction rates of the enzyme-catalysed transacylation of methyl acrylate and derivatives by ab initio DFT B3LYP calculations and molecular dynamics simulations. The results supported a least-motion mechanism upon the sp(2) to sp(3) substrate transition to reach the transition state in the enzyme active site. This was in accordance with our hypothesis that acrylates form productive transition states from their low-energy s-sis/s-trans conformations. Apparent k(cat) values were measured for Candida antarctica lipase B (CALB), Humicola insolens cutinase and Rhizomucor miehei lipase and were compared to results from computer simulations. More potent enzymes for acryltransfer, such as the CALB mutant V190A and acrylates with higher turnover numbers, showed elevated populations of productive transition states.
Collapse
Affiliation(s)
- Per-Olof Syrén
- Department of Biochemistry, School of Biotechnology, Royal Institute of Technology, AlbaNova University Center, 10691 Stockholm, Sweden
| | | |
Collapse
|
37
|
Schwendt T, Michalik C, Zavrel M, Dennig A, Spiess AC, Poprawe R, Janzen C. Determination of temporal and spatial concentration gradients in hydrogel beads using multiphoton microscopy techniques. APPLIED SPECTROSCOPY 2010; 64:720-726. [PMID: 20615284 DOI: 10.1366/000370210791666372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Multiphoton microscopy is a promising technique to detect spatially and temporally resolved concentration gradients of chemical compounds, e.g., reactants in hydrogel-encapsulated biocatalysts. In contrast to current techniques, the improved spatial and temporal resolution of this method in data acquisition and its ability to measure hydrogel beads facilitates the identification of various kinetic phenomena. To our knowledge, multiphoton microscopy is used here for the first time to examine diffusion, mass transfer, and reaction in immobilized hydrogel systems. In a first step, the phenomena of diffusion and diffusion-coupled mass transfer through the phase interface are investigated in the bead center. Finally, the complete system--consisting of diffusion, mass transfer, and enzymatic reaction--is observed by measuring concentration gradients along the bead radius with temporal and spatial resolution. This metrology enables a subsequent mechanistic model identification, which in turn leads to an enhanced knowledge of reaction kinetics and supports the design of biotechnological processes. This task was only possible due to excellent spatial (25 microm) and temporal (5 s) resolution and the accuracy (+/-1%) achieved by using a multiphoton microscopy setup.
Collapse
Affiliation(s)
- Tilman Schwendt
- Chair for Laser Technology, RWTH Aachen University, Steinbachstrasse 15, 52074 Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Miniaturization in biocatalysis. Int J Mol Sci 2010; 11:858-79. [PMID: 20479988 PMCID: PMC2869239 DOI: 10.3390/ijms11030858] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 02/08/2010] [Accepted: 02/09/2010] [Indexed: 12/14/2022] Open
Abstract
The use of biocatalysts for the production of both consumer goods and building blocks for chemical synthesis is consistently gaining relevance. A significant contribution for recent advances towards further implementation of enzymes and whole cells is related to the developments in miniature reactor technology and insights into flow behavior. Due to the high level of parallelization and reduced requirements of chemicals, intensive screening of biocatalysts and process variables has become more feasible and reproducibility of the bioconversion processes has been substantially improved. The present work aims to provide an overview of the applications of miniaturized reactors in bioconversion processes, considering multi-well plates and microfluidic devices, update information on the engineering characterization of the hardware used, and present perspective developments in this area of research.
Collapse
|
39
|
Buchholz K. Introduction: The spirit of carbohydrates – carbohydrate bioengineering. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420701806751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Antoniotti S, Fernandez X, Duñach E. Reaction design for evaluation of the substrate range of hydrolases. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420701668938] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
41
|
Petruševska-Seebach K, Würges K, Seidel-Morgenstern A, Lütz S, Elsner MP. Enzyme-assisted physicochemical enantioseparation processes—Part II: Solid–liquid equilibria, preferential crystallization, chromatography and racemization reaction. Chem Eng Sci 2009. [DOI: 10.1016/j.ces.2009.02.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
Kayser MM. ‘Designer reagents’ recombinant microorganisms: new and powerful tools for organic synthesis. Tetrahedron 2009. [DOI: 10.1016/j.tet.2008.10.039] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Boersma YL, Dröge MJ, van der Sloot AM, Pijning T, Cool RH, Dijkstra BW, Quax WJ. A Novel Genetic Selection System for Improved Enantioselectivity ofBacillus subtilis Lipase A. Chembiochem 2008; 9:1110-5. [DOI: 10.1002/cbic.200700754] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
44
|
Osterath B, Rao N, Lütz S, Liese A. Technische Anwendung von Enzymen: Weiße Wäsche und Grüne Chemie. CHEM UNSERER ZEIT 2007. [DOI: 10.1002/ciuz.200700412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Pollard DJ, Woodley JM. Biocatalysis for pharmaceutical intermediates: the future is now. Trends Biotechnol 2007; 25:66-73. [PMID: 17184862 DOI: 10.1016/j.tibtech.2006.12.005] [Citation(s) in RCA: 443] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 10/27/2006] [Accepted: 12/06/2006] [Indexed: 11/19/2022]
Abstract
Biocatalysis is continuing to gain momentum and is now becoming a key component in the toolbox of the process chemist, with a place alongside chemocatalysis and chromatographic separations. The pharmaceutical industry demands a speed of development that must be on a parallel with conventional chemistry and high optical purity for complex compounds with multiple chiral centres. This review describes how these demands are being addressed to make biocatalysis successful, particularly by the use of micro-scale technology for high-speed catalyst screening and process development alongside discipline integration of biology and engineering with chemistry. Developments in recombinant technology will further expand the repertoire of biocatalysis in the coming years to new chemistries and enable catalyst design to fit the process. Further development of biocatalysis for green chemistry and high productivity processes can also be expected.
Collapse
Affiliation(s)
- David J Pollard
- Process Research, Merck Research Laboratories, Merck and Co, PO Box 2000, Rahway, NJ 07065, USA
| | | |
Collapse
|
46
|
Wohlgemuth R. Tools for Selective Enzyme Reaction Steps in the Synthesis of Laboratory Chemicals. Eng Life Sci 2006. [DOI: 10.1002/elsc.200620155] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
47
|
Edegger K, Gruber C, Faber K, Hafner A, Kroutil W. Optimization of Reaction Parameters and Cultivation Conditions for Biocatalytic Hydrogen Transfer Employing Overexpressed ADH-‘A’ fromRhodococcus ruber DSM 44541 inE. coli. Eng Life Sci 2006. [DOI: 10.1002/elsc.200620902] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|