1
|
Verma S, Khanna V, Kumar S, Kumar S. The Art of Building Living Tissues: Exploring the Frontiers of Biofabrication with 3D Bioprinting. ACS OMEGA 2023; 8:47322-47339. [PMID: 38144142 PMCID: PMC10734012 DOI: 10.1021/acsomega.3c02600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/11/2023] [Indexed: 12/26/2023]
Abstract
The scope of three-dimensional printing is expanding rapidly, with innovative approaches resulting in the evolution of state-of-the-art 3D bioprinting (3DbioP) techniques for solving issues in bioengineering and biopharmaceutical research. The methods and tools in 3DbioP emphasize the extrusion process, bioink formulation, and stability of the bioprinted scaffold. Thus, 3DbioP technology augments 3DP in the biological world by providing technical support to regenerative therapy, drug delivery, bioengineering of prosthetics, and drug kinetics research. Besides the above, drug delivery and dosage control have been achieved using 3D bioprinted microcarriers and capsules. Developing a stable, biocompatible, and versatile bioink is a primary requisite in biofabrication. The 3DbioP research is breaking the technical barriers at a breakneck speed. Numerous techniques and biomaterial advancements have helped to overcome current 3DbioP issues related to printability, stability, and bioink formulation. Therefore, this Review aims to provide an insight into the technical challenges of bioprinting, novel biomaterials for bioink formulation, and recently developed 3D bioprinting methods driving future applications in biofabrication research.
Collapse
Affiliation(s)
- Saurabh Verma
- Department
of Health Research-Multi-Disciplinary Research Unit, King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Vikram Khanna
- Department
of Oral Medicine and Radiology, King George’s
Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Smita Kumar
- Department
of Health Research-Multi-Disciplinary Research Unit, King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Sumit Kumar
- Department
of Health Research-Multi-Disciplinary Research Unit, King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| |
Collapse
|
2
|
Ando Y, Chang FC, James M, Zhou Y, Zhang M. Chitosan Scaffolds as Microcarriers for Dynamic Culture of Human Neural Stem Cells. Pharmaceutics 2023; 15:1957. [PMID: 37514142 PMCID: PMC10384976 DOI: 10.3390/pharmaceutics15071957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Human neural stem cells (hNSCs) possess remarkable potential for regenerative medicine in the treatment of presently incurable diseases. However, a key challenge lies in producing sufficient quantities of hNSCs, which is necessary for effective treatment. Dynamic culture systems are recognized as a powerful approach to producing large quantities of hNSCs required, where microcarriers play a critical role in supporting cell expansion. Nevertheless, the currently available microcarriers have limitations, including a lack of appropriate surface chemistry to promote cell adhesion, inadequate mechanical properties to protect cells from dynamic forces, and poor suitability for mass production. Here, we present the development of three-dimensional (3D) chitosan scaffolds as microcarriers for hNSC expansion under defined conditions in bioreactors. We demonstrate that chitosan scaffolds with a concentration of 4 wt% (4CS scaffolds) exhibit desirable microstructural characteristics and mechanical properties suited for hNSC expansion. Furthermore, they could also withstand degradation in dynamic conditions. The 4CS scaffold condition yields optimal metabolic activity, cell adhesion, and protein expression, enabling sustained hNSC expansion for up to three weeks in a dynamic culture. Our study introduces an effective microcarrier approach for prolonged expansion of hNSCs, which has the potential for mass production in a three-dimensional setting.
Collapse
Affiliation(s)
- Yoshiki Ando
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
- Materials Department, Medical R&D Center, Corporate R&D Group, KYOCERA Corporation, Yasu 520-2362, Shiga, Japan
| | - Fei-Chien Chang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Matthew James
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Yang Zhou
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
3
|
Paganini C, Boyce H, Libort G, Arosio P. High-Yield Production of Extracellular Vesicle Subpopulations with Constant Quality Using Batch-Refeed Cultures. Adv Healthc Mater 2023; 12:e2202232. [PMID: 36479632 PMCID: PMC11468747 DOI: 10.1002/adhm.202202232] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/29/2022] [Indexed: 12/12/2022]
Abstract
The conventional manufacturing of extracellular vesicles (EVs) is characterized by low yields and batch-to-batch variability, hampering fundamental research on EVs and their practical applications. Perfusion operations have huge potential to address these limitations and increase the productivity and quality of EVs. In this study, perfusion cultures are simulated with batch-refeed systems and their productivity is compared with that achieved using batch cultures. It is shown that a shift from batch to batch-refeed system can increase the space-time yields of a target EV subpopulation characterized by CD81 and CD63 biomarkers by threefold. Moreover, it is demonstrated that the method facilitates the consistent production of the target EVs from cells maintained under constant conditions for 13 days. These results indicate that the use of perfusion cultures is a promising strategy to increase the manufacturing yield of EVs and control the production of specific EV subpopulations with constant quality attributes, thereby improving reproducibility.
Collapse
Affiliation(s)
- Carolina Paganini
- Department of Chemistry and Applied BiosciencesInstitute for Chemical and BioengineeringETH ZurichVladimir‐Prelog‐Weg 1–5/10Zurich8093Switzerland
| | - Hannah Boyce
- Department of Chemistry and Applied BiosciencesInstitute for Chemical and BioengineeringETH ZurichVladimir‐Prelog‐Weg 1–5/10Zurich8093Switzerland
| | - Gabriela Libort
- Department of Chemistry and Applied BiosciencesInstitute for Chemical and BioengineeringETH ZurichVladimir‐Prelog‐Weg 1–5/10Zurich8093Switzerland
| | - Paolo Arosio
- Department of Chemistry and Applied BiosciencesInstitute for Chemical and BioengineeringETH ZurichVladimir‐Prelog‐Weg 1–5/10Zurich8093Switzerland
| |
Collapse
|
4
|
Alternative lung cell model systems for toxicology testing strategies: Current knowledge and future outlook. Semin Cell Dev Biol 2023; 147:70-82. [PMID: 36599788 DOI: 10.1016/j.semcdb.2022.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023]
Abstract
Due to the current relevance of pulmonary toxicology (with focus upon air pollution and the inhalation of hazardous materials), it is important to further develop and implement physiologically relevant models of the entire respiratory tract. Lung model development has the aim to create human relevant systems that may replace animal use whilst balancing cost, laborious nature and regulatory ambition. There is an imperative need to move away from rodent models and implement models that mimic the holistic characteristics important in lung function. The purpose of this review is therefore, to describe and identify the various alternative models that are being applied towards assessing the pulmonary toxicology of inhaled substances, as well as the current and potential developments of various advanced models and how they may be applied towards toxicology testing strategies. These models aim to mimic various regions of the lung, as well as implementing different exposure methods with the addition of various physiologically relevent conditions (such as fluid-flow and dynamic movement). There is further progress in the type of models used with focus on the development of lung-on-a-chip technologies and bioprinting, as well as and the optimization of such models to fill current knowledge gaps within toxicology.
Collapse
|
5
|
Park S, Avera AD, Kim Y. BIOMANUFACTURING OF GLIOBLASTOMA ORGANOIDS EXHIBITING HIERARCHICAL AND SPATIALLY ORGANIZED TUMOR MICROENVIRONMENT VIA TRANSDIFFERENTIATION. Biotechnol Bioeng 2022; 119:3252-3274. [DOI: 10.1002/bit.28191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Seungjo Park
- Department of Chemical and Biological EngineeringThe University of AlabamaTuscaloosaAlabama
| | - Alexandra D. Avera
- Department of Chemical and Biological EngineeringThe University of AlabamaTuscaloosaAlabama
| | - Yonghyun Kim
- Department of Chemical and Biological EngineeringThe University of AlabamaTuscaloosaAlabama
| |
Collapse
|
6
|
Tristan CA, Ormanoglu P, Slamecka J, Malley C, Chu PH, Jovanovic VM, Gedik Y, Jethmalani Y, Bonney C, Barnaeva E, Braisted J, Mallanna SK, Dorjsuren D, Iannotti MJ, Voss TC, Michael S, Simeonov A, Singeç I. Robotic high-throughput biomanufacturing and functional differentiation of human pluripotent stem cells. Stem Cell Reports 2021; 16:3076-3092. [PMID: 34861164 PMCID: PMC8693769 DOI: 10.1016/j.stemcr.2021.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/21/2022] Open
Abstract
Efficient translation of human induced pluripotent stem cells (hiPSCs) requires scalable cell manufacturing strategies for optimal self-renewal and functional differentiation. Traditional manual cell culture is variable and labor intensive, posing challenges for high-throughput applications. Here, we established a robotic platform and automated all essential steps of hiPSC culture and differentiation under chemically defined conditions. This approach allowed rapid and standardized manufacturing of billions of hiPSCs that can be produced in parallel from up to 90 different patient- and disease-specific cell lines. Moreover, we established automated multi-lineage differentiation and generated functional neurons, cardiomyocytes, and hepatocytes. To validate our approach, we compared robotic and manual cell culture operations and performed comprehensive molecular and cellular characterizations (e.g., single-cell transcriptomics, mass cytometry, metabolism, electrophysiology) to benchmark industrial-scale cell culture operations toward building an integrated platform for efficient cell manufacturing for disease modeling, drug screening, and cell therapy.
Collapse
Affiliation(s)
- Carlos A Tristan
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation (DPI), Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Pinar Ormanoglu
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation (DPI), Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Jaroslav Slamecka
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation (DPI), Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Claire Malley
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation (DPI), Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Pei-Hsuan Chu
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation (DPI), Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Vukasin M Jovanovic
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation (DPI), Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Yeliz Gedik
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation (DPI), Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Yogita Jethmalani
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation (DPI), Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Charles Bonney
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation (DPI), Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Elena Barnaeva
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation (DPI), Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - John Braisted
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation (DPI), Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Sunil K Mallanna
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation (DPI), Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Dorjbal Dorjsuren
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation (DPI), Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Michael J Iannotti
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation (DPI), Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Ty C Voss
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation (DPI), Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Sam Michael
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation (DPI), Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation (DPI), Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Ilyas Singeç
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation (DPI), Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), 9800 Medical Center Drive, Rockville, MD 20850, USA.
| |
Collapse
|
7
|
|
8
|
DL4-μbeads induce T cell lineage differentiation from stem cells in a stromal cell-free system. Nat Commun 2021; 12:5023. [PMID: 34408144 PMCID: PMC8373879 DOI: 10.1038/s41467-021-25245-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/26/2021] [Indexed: 11/08/2022] Open
Abstract
T cells are pivotal effectors of the immune system and can be harnessed as therapeutics for regenerative medicine and cancer immunotherapy. An unmet challenge in the field is the development of a clinically relevant system that is readily scalable to generate large numbers of T-lineage cells from hematopoietic stem/progenitor cells (HSPCs). Here, we report a stromal cell-free, microbead-based approach that supports the efficient in vitro development of both human progenitor T (proT) cells and T-lineage cells from CD34+cells sourced from cord blood, GCSF-mobilized peripheral blood, and pluripotent stem cells (PSCs). DL4-μbeads, along with lymphopoietic cytokines, induce an ordered sequence of differentiation from CD34+ cells to CD34+CD7+CD5+ proT cells to CD3+αβ T cells. Single-cell RNA sequencing of human PSC-derived proT cells reveals a transcriptional profile similar to the earliest thymocytes found in the embryonic and fetal thymus. Furthermore, the adoptive transfer of CD34+CD7+ proT cells into immunodeficient mice demonstrates efficient thymic engraftment and functional maturation of peripheral T cells. DL4-μbeads provide a simple and robust platform to both study human T cell development and facilitate the development of engineered T cell therapies from renewable sources. T cells derived from stem cells can be harnessed for regenerative medicine and cancer immunotherapy, but current technologies limit production and translation. Here, the authors present a serum-free, stromal-cell free DLL4-coated microbead method for the scalable production of T-lineage cells from multiple sources of stem cells.
Collapse
|
9
|
Wang L, Isobe R, Okano Y, Kino-Oka M. Numerical Investigation on Suspension Culture in an Orbitally Shaken Cylindrical Bioreactor. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2021. [DOI: 10.1252/jcej.21we015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Liya Wang
- Department of Materials Engineering Science, Osaka University
| | - Ryosuke Isobe
- Department of Materials Engineering Science, Osaka University
| | - Yasunori Okano
- Department of Materials Engineering Science, Osaka University
| | | |
Collapse
|
10
|
Khodabakhshaghdam S, Khoshfetrat AB, Rahbarghazi R. Alginate-chitosan core-shell microcapsule cultures of hepatic cells in a small scale stirred bioreactor: impact of shear forces and microcapsule core composition. J Biol Eng 2021; 15:14. [PMID: 33865460 PMCID: PMC8052835 DOI: 10.1186/s13036-021-00265-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/03/2021] [Indexed: 01/20/2023] Open
Abstract
A small scale stirred bioreactor was designed and the effect of different agitation rates (30, 60 and 100 rpm) was investigated on HepG2 cells cultured in alginate-chitosan (AC) core-shell microcapsule in terms of the cell proliferation and liver-specific function. The microencapsulated hepatic cells could proliferate well when they were cultured for 10 days at 30 rpm while the cell-laden microcapsules showed no cell proliferation at 100 rpm in the bioreactor system. Albumin production rate, as an important liver function, increased also 1.8- and 1.5- fold under stirring rate of 30 rpm compared to the static culture and 60 rpm of agitation, respectively. Moreover, In comparison with the static culture, about 1.5-fold increment in urea production was observed at 30 rpm. Similarly, the highest expressions of albumin and P450 genes were found at 30 rpm stirring rate, which were 4.9- and 19.2-fold of the static culture. Addition of collagen to the microcapsule core composition (ACol/C) could improve the cell proliferation and functionality at 60 rpm in comparison with the cell-laden microcapsules without collagen. The study demonstrated the hepatic cell-laden ACol/C microcapsule hydrogel cultured in the small scale stirred bioreactor at low mixing rate has a great potential for mass production of the hepatic cells while maintaining liver-specific functions.
Collapse
Affiliation(s)
- Shahla Khodabakhshaghdam
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, 51335-1996, Iran
- Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, 51335-1996, Iran
| | - Ali Baradar Khoshfetrat
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, 51335-1996, Iran.
- Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, 51335-1996, Iran.
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Ornelas-González A, González-González M, Rito-Palomares M. Microcarrier-based stem cell bioprocessing: GMP-grade culture challenges and future trends for regenerative medicine. Crit Rev Biotechnol 2021; 41:1081-1095. [PMID: 33730936 DOI: 10.1080/07388551.2021.1898328] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Recently, stem cell-based therapies have been proposed as an alternative for the treatment of many diseases. Stem cells (SCs) are well known for their capacity to preserve themselves, proliferate, and differentiate into multiple lineages. These characteristics allow stem cells to be a viable option for the treatment of diverse diseases. Traditional methodologies based on 2-dimensional culture techniques (T-flasks and Petri dishes) are simple and well standardized; however, they present disadvantages that limit the production of the cell yield required for regenerative medicine applications. Lately, microcarrier (MC)-based culture techniques have emerged as an attractive platform for expanding stem cells in suspension systems. Although the use of stem cell expansion on MCs has recently shown significant increase, their implementation for medical purposes is been hampered by bottlenecks in upstream and downstream processing. Therefore, there is an urgent need in the development of bioprocesses that simplify stem cell cultures under xeno-free conditions and detachment from MCs without diminishing their pluripotency and viability. A critical analysis of the factors that impact the up and downstream bioprocessing on MC-based stem cell cultures is presented in this review. This analysis aims to raise the awareness of the current drawbacks that limit MC-based stem cell bioprocessing in regenerative medicine and propose alternatives to overcome them.
Collapse
Affiliation(s)
| | | | - Marco Rito-Palomares
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| |
Collapse
|
12
|
Borys BS, Dang T, So T, Rohani L, Revay T, Walsh T, Thompson M, Argiropoulos B, Rancourt DE, Jung S, Hashimura Y, Lee B, Kallos MS. Overcoming bioprocess bottlenecks in the large-scale expansion of high-quality hiPSC aggregates in vertical-wheel stirred suspension bioreactors. Stem Cell Res Ther 2021; 12:55. [PMID: 33436078 PMCID: PMC7805206 DOI: 10.1186/s13287-020-02109-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Human induced pluripotent stem cells (hiPSCs) hold enormous promise in accelerating breakthroughs in understanding human development, drug screening, disease modeling, and cell and gene therapies. Their potential, however, has been bottlenecked in a mostly laboratory setting due to bioprocess challenges in the scale-up of large quantities of high-quality cells for clinical and manufacturing purposes. While several studies have investigated the production of hiPSCs in bioreactors, the use of conventional horizontal-impeller, paddle, and rocking-wave mixing mechanisms have demonstrated unfavorable hydrodynamic environments for hiPSC growth and quality maintenance. This study focused on using computational fluid dynamics (CFD) modeling to aid in characterizing and optimizing the use of vertical-wheel bioreactors for hiPSC production. METHODS The vertical-wheel bioreactor was modeled with CFD simulation software Fluent at agitation rates between 20 and 100 rpm. These models produced fluid flow patterns that mapped out a hydrodynamic environment to guide in the development of hiPSC inoculation and in-vessel aggregate dissociation protocols. The effect of single-cell inoculation on aggregate formation and growth was tested at select CFD-modeled agitation rates and feeding regimes in the vertical-wheel bioreactor. An in-vessel dissociation protocol was developed through the testing of various proteolytic enzymes and agitation exposure times. RESULTS CFD modeling demonstrated the unique flow pattern and homogeneous distribution of hydrodynamic forces produced in the vertical-wheel bioreactor, making it the opportune environment for systematic bioprocess optimization of hiPSC expansion. We developed a scalable, single-cell inoculation protocol for the culture of hiPSCs as aggregates in vertical-wheel bioreactors, achieving over 30-fold expansion in 6 days without sacrificing cell quality. We have also provided the first published protocol for in-vessel hiPSC aggregate dissociation, permitting the entire bioreactor volume to be harvested into single cells for serial passaging into larger scale reactors. Importantly, the cells harvested and re-inoculated into scaled-up vertical-wheel bioreactors not only maintained consistent growth kinetics, they maintained a normal karyotype and pluripotent characterization and function. CONCLUSIONS Taken together, these protocols provide a feasible solution for the culture of high-quality hiPSCs at a clinical and manufacturing scale by overcoming some of the major documented bioprocess bottlenecks.
Collapse
Affiliation(s)
- Breanna S Borys
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Tiffany Dang
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Tania So
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Leili Rohani
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, T2N 4N1, Canada
| | - Tamas Revay
- Department of Medical Genetics, Alberta Health Services, Alberta Children's Hospital, 28 Oki Drive, Calgary, AB, T3B 6A8, Canada
| | - Tylor Walsh
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Madalynn Thompson
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, T2N 4N1, Canada
| | - Bob Argiropoulos
- Department of Medical Genetics, Alberta Health Services, Alberta Children's Hospital, 28 Oki Drive, Calgary, AB, T3B 6A8, Canada
| | - Derrick E Rancourt
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, T2N 4N1, Canada
| | - Sunghoon Jung
- PBS Biotech Inc, 1183 Calle Suerte, Camarillo, CA, 93012, USA
| | - Yas Hashimura
- PBS Biotech Inc, 1183 Calle Suerte, Camarillo, CA, 93012, USA
| | - Brian Lee
- PBS Biotech Inc, 1183 Calle Suerte, Camarillo, CA, 93012, USA
| | - Michael S Kallos
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
13
|
Djeljadini S, Lohaus T, Gausmann M, Rauer S, Kather M, Krause B, Pich A, Möller M, Wessling M. Trypsin-Free Cultivation of 3D Mini-Tissues in an Adaptive Membrane Bioreactor. ACTA ACUST UNITED AC 2020; 4:e2000081. [PMID: 33089652 DOI: 10.1002/adbi.202000081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/11/2020] [Indexed: 11/07/2022]
Abstract
The production of large scaffold-free tissues is a key challenge in regenerative medicine. Nowadays, temperature-responsive polymers allow intact tissue harvesting without needing proteolytic enzymes. This method is limited to tissue culture plastic with limited upscaling capacity and plain process control. Here, a thermoresponsive hollow fiber membrane bioreactor is presented to produce large scaffold-free tissues. Intact tissues, rich in cell-to-cell connections and ECM, are harvested from a poly(N-vinylcaprolactam) microgel functionalized poly(ether sulfone)/poly(vinylpyrrolidone) hollow fiber membrane by a temperature shift. The harvested 3D tissues adhere in successive cultivation and exhibit high vitality for several days. The facile adsorptive coating waives the need for extensive surface treatment. The research is anticipated to be a starting point for upscaling the production of interconnected tissues enabling new opportunities in regenerative medicine, large-scale drug screening on physiological relevant tissues, and potentially opening new chances in cell-based therapies.
Collapse
Affiliation(s)
- Suzana Djeljadini
- Aachener Verfahrenstechnik, Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstrasse 51, Aachen, 52074, Germany
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, Aachen, 52074, Germany
| | - Theresa Lohaus
- Aachener Verfahrenstechnik, Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstrasse 51, Aachen, 52074, Germany
| | - Marcel Gausmann
- Aachener Verfahrenstechnik, Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstrasse 51, Aachen, 52074, Germany
| | - Sebastian Rauer
- Aachener Verfahrenstechnik, Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstrasse 51, Aachen, 52074, Germany
| | - Michael Kather
- Aachener Verfahrenstechnik, Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstrasse 51, Aachen, 52074, Germany
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, Aachen, 52074, Germany
| | - Bernd Krause
- Baxter International Inc., Research and Development, Holger-Crafoord-Straße 26, Hechingen, 72379, Germany
| | - Andrij Pich
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, Aachen, 52074, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen, 52074, Germany
| | - Martin Möller
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, Aachen, 52074, Germany
| | - Matthias Wessling
- Aachener Verfahrenstechnik, Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstrasse 51, Aachen, 52074, Germany
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, Aachen, 52074, Germany
| |
Collapse
|
14
|
Tristan CA, Ormanoglu P, Slamecka J, Malley C, Chu PH, Jovanovic VM, Gedik Y, Bonney C, Barnaeva E, Braisted J, Mallanna SK, Dorjsuren D, Iannotti MJ, Voss TC, Michael S, Simeonov A, Singeç I. Robotic High-Throughput Biomanufacturing and Functional Differentiation of Human Pluripotent Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.08.03.235242. [PMID: 32793899 PMCID: PMC7418713 DOI: 10.1101/2020.08.03.235242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Efficient translation of human induced pluripotent stem cells (hiPSCs) depends on implementing scalable cell manufacturing strategies that ensure optimal self-renewal and functional differentiation. Currently, manual culture of hiPSCs is highly variable and labor-intensive posing significant challenges for high-throughput applications. Here, we established a robotic platform and automated all essential steps of hiPSC culture and differentiation under chemically defined conditions. This streamlined approach allowed rapid and standardized manufacturing of billions of hiPSCs that can be produced in parallel from up to 90 different patient-and disease-specific cell lines. Moreover, we established automated multi-lineage differentiation to generate primary embryonic germ layers and more mature phenotypes such as neurons, cardiomyocytes, and hepatocytes. To validate our approach, we carefully compared robotic and manual cell culture and performed molecular and functional cell characterizations (e.g. bulk culture and single-cell transcriptomics, mass cytometry, metabolism, electrophysiology, Zika virus experiments) in order to benchmark industrial-scale cell culture operations towards building an integrated platform for efficient cell manufacturing for disease modeling, drug screening, and cell therapy. Combining stem cell-based models and non-stop robotic cell culture may become a powerful strategy to increase scientific rigor and productivity, which are particularly important during public health emergencies (e.g. opioid crisis, COVID-19 pandemic).
Collapse
Affiliation(s)
- Carlos A. Tristan
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Pinar Ormanoglu
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Jaroslav Slamecka
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Claire Malley
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Pei-Hsuan Chu
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Vukasin M. Jovanovic
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Yeliz Gedik
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Charles Bonney
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Elena Barnaeva
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - John Braisted
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | | | - Dorjbal Dorjsuren
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Michael J. Iannotti
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Ty C. Voss
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Sam Michael
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Ilyas Singeç
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| |
Collapse
|
15
|
Achinas S, Yska SK, Charalampogiannis N, Krooneman J, Euverink GJW. A Technological Understanding of Biofilm Detection Techniques: A Review. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3147. [PMID: 32679710 PMCID: PMC7412299 DOI: 10.3390/ma13143147] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022]
Abstract
Biofouling is a persistent problem in almost any water-based application in several industries. To eradicate biofouling-related problems in bioreactors, the detection of biofilms is necessary. The current literature does not provide clear supportive information on selecting biofilm detection techniques that can be applied to detect biofouling within bioreactors. Therefore, this research aims to review all available biofilm detection techniques and analyze their characteristic properties to provide a comparative assessment that researchers can use to find a suitable biofilm detection technique to investigate their biofilms. In addition, it discusses the confluence of common bioreactor fabrication materials in biofilm formation.
Collapse
Affiliation(s)
- Spyridon Achinas
- Faculty of Science and Engineering, University of Groningen, 9747 AG Groningen, The Netherlands; (S.K.Y.); (J.K.); (G.J.W.E.)
| | - Stijn Keimpe Yska
- Faculty of Science and Engineering, University of Groningen, 9747 AG Groningen, The Netherlands; (S.K.Y.); (J.K.); (G.J.W.E.)
| | | | - Janneke Krooneman
- Faculty of Science and Engineering, University of Groningen, 9747 AG Groningen, The Netherlands; (S.K.Y.); (J.K.); (G.J.W.E.)
| | - Gerrit Jan Willem Euverink
- Faculty of Science and Engineering, University of Groningen, 9747 AG Groningen, The Netherlands; (S.K.Y.); (J.K.); (G.J.W.E.)
| |
Collapse
|
16
|
Borys BS, So T, Colter J, Dang T, Roberts EL, Revay T, Larijani L, Krawetz R, Lewis I, Argiropoulos B, Rancourt DE, Jung S, Hashimura Y, Lee B, Kallos MS. Optimized serial expansion of human induced pluripotent stem cells using low-density inoculation to generate clinically relevant quantities in vertical-wheel bioreactors. Stem Cells Transl Med 2020; 9:1036-1052. [PMID: 32445290 PMCID: PMC7445025 DOI: 10.1002/sctm.19-0406] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/24/2020] [Accepted: 03/22/2020] [Indexed: 01/21/2023] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) have generated a great deal of attention owing to their capacity for self‐renewal and differentiation into the three germ layers of the body. Their discovery has facilitated a new era in biomedicine for understanding human development, drug screening, disease modeling, and cell therapy while reducing ethical issues and risks of immune rejection associated with traditional embryonic stem cells. Bioreactor‐based processes have been the method of choice for the efficient expansion and differentiation of stem cells in controlled environments. Current protocols for the expansion of hiPSCs use horizontal impeller, paddle, or rocking wave mixing method bioreactors which require large static cell culture starting populations and achieve only moderate cell fold increases. This study focused on optimizing inoculation, agitation, oxygen, and nutrient availability for the culture of hiPSCs as aggregates in single‐use, low‐shear, vertical‐wheel bioreactors. Under optimized conditions, we achieved an expansion of more than 30‐fold in 6 days using a small starting population of cells and minimal media resources throughout. Importantly, we showed that that this optimized bioreactor expansion protocol could be replicated over four serial passages resulting in a cumulative cell expansion of 1.06E6‐fold in 28 days. Cells from the final day of the serial passage were of high quality, maintaining a normal karyotype, pluripotent marker staining, and the ability to form teratomas in vivo. These findings demonstrate that a vertical‐wheel bioreactor‐based bioprocess can provide optimal conditions for efficient, rapid generation of high‐quality hiPSCs to meet the demands for clinical manufacturing of therapeutic cell products.
Collapse
Affiliation(s)
- Breanna S Borys
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada.,Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada.,Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Tania So
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada.,Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - James Colter
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada.,Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada
| | - Tiffany Dang
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada.,Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Erin L Roberts
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Tamas Revay
- Department of Medical Genetics, Alberta Health Services, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Leila Larijani
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Roman Krawetz
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ian Lewis
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Bob Argiropoulos
- Department of Medical Genetics, Alberta Health Services, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Derrick E Rancourt
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | | - Brian Lee
- PBS Biotech Inc., Camarillo, California, USA
| | - Michael S Kallos
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada.,Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada.,Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
17
|
Preparation and characterization of aliphatic polyurethane and modified hydroxyapatite composites for bone tissue engineering. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-03067-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Ko UH, Choi J, Choung J, Moon S, Shin JH. Physicochemically Tuned Myofibroblasts for Wound Healing Strategy. Sci Rep 2019; 9:16070. [PMID: 31690789 PMCID: PMC6831678 DOI: 10.1038/s41598-019-52523-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/18/2019] [Indexed: 12/22/2022] Open
Abstract
Normal healing of skin wounds involves a complex interplay between many different cellular constituents, including keratinocytes, immune cells, fibroblasts, myofibroblasts, as well as extracellular matrices. Especially, fibroblasts play a critical role in regulating the immune response and matrix reconstruction by secreting many cytokines and matrix proteins. Myofibroblasts, which are differentiated form of fibroblasts, feature high cellular contractility and encourage the synthesis of matrix proteins to promote faster closure of the wounds. We focus on the functional characteristics of these myofibroblasts as the healing strategy for severe wounds where the surplus amount of matrix proteins could be beneficial for better regeneration. In this study, we first employed multiple physicochemical cues, namely topographical alignment, TGF-β1, and electrical field (EF), to induce differentiation of dermal fibroblasts into myofibroblasts, and to further activate the differentiated cells. We then used these cells in a mouse wound model to verify their potential as a transplantable substitute for the severe wound. Our results confirmed that physicochemically stimulated myofibroblasts promoted faster healing of the wound compared to the case with non-stimulated myofibroblasts through elevated matrix reconstruction in the mouse model. Conclusively, we propose the utilization of physicochemically tuned myofibroblasts as a novel strategy for promoting better healing of moderate to severe wounds.
Collapse
Affiliation(s)
- Ung Hyun Ko
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jongjin Choi
- School of Medicine, Konkuk University, Seoul, Republic of Korea
- BYON Co. Ltd., Seoul, Republic of Korea
| | - Jinseung Choung
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sunghwan Moon
- School of Medicine, Konkuk University, Seoul, Republic of Korea.
| | - Jennifer H Shin
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
19
|
Derakhti S, Safiabadi-Tali SH, Amoabediny G, Sheikhpour M. Attachment and detachment strategies in microcarrier-based cell culture technology: A comprehensive review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109782. [DOI: 10.1016/j.msec.2019.109782] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/11/2019] [Accepted: 05/20/2019] [Indexed: 12/27/2022]
|
20
|
A fully automated bioreactor system for precise control of stem cell proliferation and differentiation. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Schwedhelm I, Zdzieblo D, Appelt-Menzel A, Berger C, Schmitz T, Schuldt B, Franke A, Müller FJ, Pless O, Schwarz T, Wiedemann P, Walles H, Hansmann J. Automated real-time monitoring of human pluripotent stem cell aggregation in stirred tank reactors. Sci Rep 2019; 9:12297. [PMID: 31444389 PMCID: PMC6707254 DOI: 10.1038/s41598-019-48814-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 08/13/2019] [Indexed: 12/21/2022] Open
Abstract
The culture of human induced pluripotent stem cells (hiPSCs) at large scale becomes feasible with the aid of scalable suspension setups in continuously stirred tank reactors (CSTRs). Innovative monitoring options and emerging automated process control strategies allow for the necessary highly defined culture conditions. Next to standard process characteristics such as oxygen consumption, pH, and metabolite turnover, a reproducible and steady formation of hiPSC aggregates is vital for process scalability. In this regard, we developed a hiPSC-specific suspension culture unit consisting of a fully monitored CSTR system integrated into a custom-designed and fully automated incubator. As a step towards cost-effective hiPSC suspension culture and to pave the way for flexibility at a large scale, we constructed and utilized tailored miniature CSTRs that are largely made from three-dimensional (3D) printed polylactic acid (PLA) filament, which is a low-cost material used in fused deposition modelling. Further, the monitoring tool for hiPSC suspension cultures utilizes in situ microscopic imaging to visualize hiPSC aggregation in real-time to a statistically significant degree while omitting the need for time-intensive sampling. Suitability of our culture unit, especially concerning the developed hiPSC-specific CSTR system, was proven by demonstrating pluripotency of CSTR-cultured hiPSCs at RNA (including PluriTest) and protein level.
Collapse
Affiliation(s)
- Ivo Schwedhelm
- University Hospital Würzburg, Department Tissue Engineering and Regenerative Medicine (TERM), 97070, Würzburg, Germany
| | - Daniela Zdzieblo
- University Hospital Würzburg, Department Tissue Engineering and Regenerative Medicine (TERM), 97070, Würzburg, Germany
| | - Antje Appelt-Menzel
- University Hospital Würzburg, Department Tissue Engineering and Regenerative Medicine (TERM), 97070, Würzburg, Germany
- Translational Center for Regenerative Therapies, Fraunhofer Institute for Silicate Research ISC, 97070, Würzburg, Germany
| | - Constantin Berger
- University Hospital Würzburg, Department Tissue Engineering and Regenerative Medicine (TERM), 97070, Würzburg, Germany
| | - Tobias Schmitz
- University Hospital Würzburg, Department Tissue Engineering and Regenerative Medicine (TERM), 97070, Würzburg, Germany
| | - Bernhard Schuldt
- University Hospital Schleswig-Holstein, Department of Psychiatry and Psychotherapy, 24105, Kiel, Germany
| | - Andre Franke
- University Hospital Schleswig-Holstein, Institute of Clinical Molecular Biology, 24105, Kiel, Germany
| | - Franz-Josef Müller
- University Hospital Schleswig-Holstein, Department of Psychiatry and Psychotherapy, 24105, Kiel, Germany
| | - Ole Pless
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 22525, Hamburg, Germany
| | - Thomas Schwarz
- Translational Center for Regenerative Therapies, Fraunhofer Institute for Silicate Research ISC, 97070, Würzburg, Germany
| | - Philipp Wiedemann
- Mannheim University of Applied Sciences, Institute of Molecular and Cell Biology, 68163, Mannheim, Germany
| | - Heike Walles
- University Hospital Würzburg, Department Tissue Engineering and Regenerative Medicine (TERM), 97070, Würzburg, Germany
- Translational Center for Regenerative Therapies, Fraunhofer Institute for Silicate Research ISC, 97070, Würzburg, Germany
| | - Jan Hansmann
- University Hospital Würzburg, Department Tissue Engineering and Regenerative Medicine (TERM), 97070, Würzburg, Germany.
- Translational Center for Regenerative Therapies, Fraunhofer Institute for Silicate Research ISC, 97070, Würzburg, Germany.
| |
Collapse
|
22
|
Galvanauskas V, Simutis R, Nath SC, Kino-Oka M. Kinetic modeling of human induced pluripotent stem cell expansion in suspension culture. Regen Ther 2019; 12:88-93. [PMID: 31890771 PMCID: PMC6933447 DOI: 10.1016/j.reth.2019.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/05/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022] Open
Abstract
To date, practical application of mathematical models for model-based design of stem cell expansion processes is limited. Nevertheless, the first attempts show vast potential of this approach for the improvement of expansion process performance. This article presents the developed dynamic kinetic model of the human induced pluripotent stem cell expansion process in suspension culture. The model predicts cell growth, consumption of glucose and production of lactic acid, as well as the average aggregate size. The latter process variable is of particular importance for achieving high cell density. By adding botulinum hemagglutinin, an E-cadherin inhibitor and subsequent aggregate break-up, one can significantly increase performance of cell expansion process. After defining the appropriate optimization criteria and additional modification of the model, the latter can be further applied for model-based optimization of the final cell concentration by calculating optimal aggregate break-up and glucose/glutamine feeding strategies.
Collapse
Affiliation(s)
| | - Rimvydas Simutis
- Department of Automation, Kaunas University of Technology, Kaunas, Lithuania
| | - Suman Chandra Nath
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| |
Collapse
|
23
|
Study of hydrodynamics in wave bioreactors by computational fluid dynamics reveals a resonance phenomenon. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2018.08.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Moloudi R, Oh S, Yang C, Teo KL, Lam ATL, Warkiani ME, Naing MW. Inertial-Based Filtration Method for Removal of Microcarriers from Mesenchymal Stem Cell Suspensions. Sci Rep 2018; 8:12481. [PMID: 30127526 PMCID: PMC6102204 DOI: 10.1038/s41598-018-31019-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/07/2018] [Indexed: 01/21/2023] Open
Abstract
Rapidly evolving cell-based therapies towards clinical trials demand alternative approaches for efficient expansion of adherent cell types such as human mesenchymal stem cells (hMSCs). Using microcarriers (100-300 µm) in a stirred tank bioreactor offers considerably enhanced surface to volume ratio of culture environment. However, downstream purification of the harvested cell product needs to be addressed carefully due to distinctive features and fragility of these cell products. This work demonstrates a novel alternative approach which utilizes inertial focusing to separate microcarriers (MCs) from the final cell suspension. First, we systematically investigated MC focusing dynamics inside scaled-up curved channels with trapezoidal and rectangular cross-sections. A trapezoidal spiral channel with ultra-low-slope (Tan(α) = 0.0375) was found to contribute to strong MC focusing (~300 < Re < ~400) while managing high MC volume fractions up to ~1.68%. Accordingly, the high-throughput trapezoidal spiral channel successfully separated MCs from hMSC suspension with total cell yield~94% (after two passes) at a high volumetric flow rate of ~30 mL/min (Re~326.5).
Collapse
Affiliation(s)
- Reza Moloudi
- School of Mechanical and Aerospace Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore, 639798, Singapore.,Bio-Manufacturing Programme, Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), Innovis, Singapore, 138634, Singapore
| | - Steve Oh
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore, 138668, Singapore
| | - Chun Yang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Kim Leng Teo
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore, 138668, Singapore
| | - Alan Tin-Lun Lam
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore, 138668, Singapore
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, Center for Health Technologies, University of Technology Sydney, Sydney, Ultimo NSW, 2007, Australia. .,Institute of Molecular Medicine, Sechenov First Moscow State University, Moscow, 119991, Russia.
| | - May Win Naing
- Bio-Manufacturing Programme, Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), Innovis, Singapore, 138634, Singapore.
| |
Collapse
|
25
|
Yi T, Huang S, Liu G, Li T, Kang Y, Luo Y, Wu J. Bioreactor Synergy with 3D Scaffolds: New Era for Stem Cells Culture. ACS APPLIED BIO MATERIALS 2018; 1:193-209. [DOI: 10.1021/acsabm.8b00057] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tianqi Yi
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, , Sun Yat-sen University, Guangzhou 510006, China
| | - Shaoxiong Huang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, , Sun Yat-sen University, Guangzhou 510006, China
| | - Guiting Liu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, , Sun Yat-sen University, Guangzhou 510006, China
| | - Tiancheng Li
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, , Sun Yat-sen University, Guangzhou 510006, China
| | - Yang Kang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yuxi Luo
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, , Sun Yat-sen University, Guangzhou 510006, China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, , Sun Yat-sen University, Guangzhou 510006, China
- Key Laboratory of Polymer Composites and Functional Materials of Ministry of Education, , Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
26
|
Khong D, Li M, Singleton A, Chin LY, Parekkadan B. Stromalized microreactor supports murine hematopoietic progenitor enrichment. Biomed Microdevices 2018; 20:13. [PMID: 29353324 DOI: 10.1007/s10544-017-0255-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
There is an emerging need to process, expand, and even genetically engineer hematopoietic stem and progenitor cells (HSPCs) prior to administration for blood reconstitution therapy. A closed-system and automated solution for ex vivo HSC processing can improve adoption and standardize processing techniques. Here, we report a recirculating flow bioreactor where HSCs are stabilized and enriched for short-term processing by indirect fibroblast feeder coculture. Mouse 3 T3 fibroblasts were seeded on the extraluminal membrane surface of a hollow fiber micro-bioreactor and were found to support HSPC cell number compared to unsupported BMCs. CFSE analysis indicates that 3 T3-support was essential for the enhanced intrinsic cell cycling of HSPCs. This enhanced support was specific to the HSPC population with little to no effect seen with the Lineagepositive and Lineagenegative cells. Together, these data suggest that stromal-seeded hollow fiber micro-reactors represent a platform to screening various conditions that support the expansion and bioprocessing of HSPCs ex vivo.
Collapse
Affiliation(s)
- Danika Khong
- Department of Surgery, Center for Surgery, Innovation, & Bioengineering, Massachusetts General Hospital, Harvard Medical School and the Shriners Hospitals for Children, Boston, MA, 02114, USA
| | - Matthew Li
- Department of Surgery, Center for Surgery, Innovation, & Bioengineering, Massachusetts General Hospital, Harvard Medical School and the Shriners Hospitals for Children, Boston, MA, 02114, USA
| | - Amy Singleton
- Department of Surgery, Center for Surgery, Innovation, & Bioengineering, Massachusetts General Hospital, Harvard Medical School and the Shriners Hospitals for Children, Boston, MA, 02114, USA
| | - Ling-Yee Chin
- Department of Surgery, Center for Surgery, Innovation, & Bioengineering, Massachusetts General Hospital, Harvard Medical School and the Shriners Hospitals for Children, Boston, MA, 02114, USA
| | - Biju Parekkadan
- Department of Surgery, Center for Surgery, Innovation, & Bioengineering, Massachusetts General Hospital, Harvard Medical School and the Shriners Hospitals for Children, Boston, MA, 02114, USA. .,Department of Biomedical Engineering, Rutgers University and the Department of Medicine, Rutgers Biomedical and Health Sciences, Piscataway, NJ, 08854, USA. .,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
27
|
Huang G, Li F, Zhao X, Ma Y, Li Y, Lin M, Jin G, Lu TJ, Genin GM, Xu F. Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chem Rev 2017; 117:12764-12850. [PMID: 28991456 PMCID: PMC6494624 DOI: 10.1021/acs.chemrev.7b00094] [Citation(s) in RCA: 479] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cell microenvironment has emerged as a key determinant of cell behavior and function in development, physiology, and pathophysiology. The extracellular matrix (ECM) within the cell microenvironment serves not only as a structural foundation for cells but also as a source of three-dimensional (3D) biochemical and biophysical cues that trigger and regulate cell behaviors. Increasing evidence suggests that the 3D character of the microenvironment is required for development of many critical cell responses observed in vivo, fueling a surge in the development of functional and biomimetic materials for engineering the 3D cell microenvironment. Progress in the design of such materials has improved control of cell behaviors in 3D and advanced the fields of tissue regeneration, in vitro tissue models, large-scale cell differentiation, immunotherapy, and gene therapy. However, the field is still in its infancy, and discoveries about the nature of cell-microenvironment interactions continue to overturn much early progress in the field. Key challenges continue to be dissecting the roles of chemistry, structure, mechanics, and electrophysiology in the cell microenvironment, and understanding and harnessing the roles of periodicity and drift in these factors. This review encapsulates where recent advances appear to leave the ever-shifting state of the art, and it highlights areas in which substantial potential and uncertainty remain.
Collapse
Affiliation(s)
- Guoyou Huang
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Fei Li
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Chemistry, School of Science,
Xi’an Jiaotong University, Xi’an 710049, People’s Republic
of China
| | - Xin Zhao
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Interdisciplinary Division of Biomedical
Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong,
People’s Republic of China
| | - Yufei Ma
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Yuhui Li
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Min Lin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Guorui Jin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- MOE Key Laboratory for Multifunctional Materials
and Structures, Xi’an Jiaotong University, Xi’an 710049,
People’s Republic of China
| | - Guy M. Genin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Mechanical Engineering &
Materials Science, Washington University in St. Louis, St. Louis 63130, MO,
USA
- NSF Science and Technology Center for
Engineering MechanoBiology, Washington University in St. Louis, St. Louis 63130,
MO, USA
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| |
Collapse
|
28
|
Kropp C, Massai D, Zweigerdt R. Progress and challenges in large-scale expansion of human pluripotent stem cells. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.09.032] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Egger D, Schwedhelm I, Hansmann J, Kasper C. Hypoxic Three-Dimensional Scaffold-Free Aggregate Cultivation of Mesenchymal Stem Cells in a Stirred Tank Reactor. Bioengineering (Basel) 2017; 4:bioengineering4020047. [PMID: 28952526 PMCID: PMC5590473 DOI: 10.3390/bioengineering4020047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 05/19/2017] [Accepted: 05/21/2017] [Indexed: 01/10/2023] Open
Abstract
Extensive expansion of mesenchymal stem cells (MSCs) for cell-based therapies remains challenging since long-term cultivation and excessive passaging in two-dimensional conditions result in a loss of essential stem cell properties. Indeed, low survival rate of cells, alteration of surface marker profiles, and reduced differentiation capacity are observed after in vitro expansion and reduce therapeutic success in clinical studies. Remarkably, cultivation of MSCs in three-dimensional aggregates preserve stem cell properties. Hence, the large scale formation and cultivation of MSC aggregates is highly desirable. Besides other effects, MSCs cultivated under hypoxic conditions are known to display increased proliferation and genetic stability. Therefore, in this study we demonstrate cultivation of adipose derived human MSC aggregates in a stirred tank reactor under hypoxic conditions. Although aggregates were exposed to comparatively high average shear stress of 0.2 Pa as estimated by computational fluid dynamics, MSCs displayed a viability of 78-86% and maintained their surface marker profile and differentiation potential after cultivation. We postulate that cultivation of 3D MSC aggregates in stirred tank reactors is valuable for large-scale production of MSCs or their secreted compounds after further optimization of cultivation parameters.
Collapse
Affiliation(s)
- Dominik Egger
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| | - Ivo Schwedhelm
- Translational Center, University Hospital Wuerzburg, Roentgenring 11, 97070 Wuerzburg, Germany.
| | - Jan Hansmann
- Translational Center, University Hospital Wuerzburg, Roentgenring 11, 97070 Wuerzburg, Germany.
| | - Cornelia Kasper
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
30
|
Galvanauskas V, Grincas V, Simutis R, Kagawa Y, Kino-oka M. Current state and perspectives in modeling and control of human pluripotent stem cell expansion processes in stirred-tank bioreactors. Biotechnol Prog 2017; 33:355-364. [DOI: 10.1002/btpr.2431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 12/10/2016] [Indexed: 01/02/2023]
Affiliation(s)
| | - Vykantas Grincas
- Department of Automation; Kaunas University of Technology; Kaunas Lithuania
| | - Rimvydas Simutis
- Department of Automation; Kaunas University of Technology; Kaunas Lithuania
| | - Yuki Kagawa
- Department of Biotechnology; Osaka University; Osaka Japan
| | | |
Collapse
|
31
|
Shekaran A, Lam A, Sim E, Jialing L, Jian L, Wen JTP, Chan JKY, Choolani M, Reuveny S, Birch W, Oh S. Biodegradable ECM-coated PCL microcarriers support scalable human early MSC expansion and in vivo bone formation. Cytotherapy 2016; 18:1332-44. [DOI: 10.1016/j.jcyt.2016.06.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/06/2016] [Accepted: 06/27/2016] [Indexed: 10/21/2022]
|
32
|
Pieralisi I, Rodriguez G, Micheletti M, Paglianti A, Ducci A. Microcarriers’ suspension and flow dynamics in orbitally shaken bioreactors. Chem Eng Res Des 2016. [DOI: 10.1016/j.cherd.2015.11.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
33
|
Stem Cell-Based Therapeutics to Improve Wound Healing. PLASTIC SURGERY INTERNATIONAL 2015; 2015:383581. [PMID: 26649195 PMCID: PMC4663003 DOI: 10.1155/2015/383581] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/13/2015] [Accepted: 10/15/2015] [Indexed: 12/18/2022]
Abstract
Issues surrounding wound healing have garnered deep scientific interest as well as booming financial markets invested in novel wound therapies. Much progress has been made in the field, but it is unsurprising to find that recent successes reveal new challenges to be addressed. With regard to wound healing, large tissue deficits, recalcitrant wounds, and pathological scar formation remain but a few of our most pressing challenges. Stem cell-based therapies have been heralded as a promising means by which to surpass current limitations in wound management. The wide differentiation potential of stem cells allows for the possibility of restoring lost or damaged tissue, while their ability to immunomodulate the wound bed from afar suggests that their clinical applications need not be restricted to direct tissue formation. The clinical utility of stem cells has been demonstrated across dozens of clinical trials in chronic wound therapy, but there is hope that other aspects of wound care will inherit similar benefit. Scientific inquiry into stem cell-based wound therapy abounds in research labs around the world. While their clinical applications remain in their infancy, the heavy investment in their potential makes it a worthwhile subject to review for plastic surgeons, in terms of both their current and future applications.
Collapse
|
34
|
Kumar A, Starly B. Large scale industrialized cell expansion: producing the critical raw material for biofabrication processes. Biofabrication 2015; 7:044103. [DOI: 10.1088/1758-5090/7/4/044103] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Gelinsky M, Bernhardt A, Milan F. Bioreactors in tissue engineering: Advances in stem cell culture and three-dimensional tissue constructs. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Michael Gelinsky
- Centre for Translational Bone; Joint and Soft Tissue Research; Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden; Dresden Germany
| | - Anne Bernhardt
- Centre for Translational Bone; Joint and Soft Tissue Research; Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden; Dresden Germany
| | - Falk Milan
- Centre for Translational Bone; Joint and Soft Tissue Research; Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden; Dresden Germany
| |
Collapse
|
36
|
Tong Z, Solanki A, Hamilos A, Levy O, Wen K, Yin X, Karp JM. Application of biomaterials to advance induced pluripotent stem cell research and therapy. EMBO J 2015; 34:987-1008. [PMID: 25766254 PMCID: PMC4406648 DOI: 10.15252/embj.201490756] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/25/2015] [Accepted: 02/17/2015] [Indexed: 12/19/2022] Open
Abstract
Derived from any somatic cell type and possessing unlimited self-renewal and differentiation potential, induced pluripotent stem cells (iPSCs) are poised to revolutionize stem cell biology and regenerative medicine research, bringing unprecedented opportunities for treating debilitating human diseases. To overcome the limitations associated with safety, efficiency, and scalability of traditional iPSC derivation, expansion, and differentiation protocols, biomaterials have recently been considered. Beyond addressing these limitations, the integration of biomaterials with existing iPSC culture platforms could offer additional opportunities to better probe the biology and control the behavior of iPSCs or their progeny in vitro and in vivo. Herein, we discuss the impact of biomaterials on the iPSC field, from derivation to tissue regeneration and modeling. Although still exploratory, we envision the emerging combination of biomaterials and iPSCs will be critical in the successful application of iPSCs and their progeny for research and clinical translation.
Collapse
Affiliation(s)
- Zhixiang Tong
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital Harvard Medical School, Cambridge, MA, USA Harvard Stem Cell Institute, Cambridge, MA, USA Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - Aniruddh Solanki
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital Harvard Medical School, Cambridge, MA, USA Harvard Stem Cell Institute, Cambridge, MA, USA Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - Allison Hamilos
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital Harvard Medical School, Cambridge, MA, USA Harvard Stem Cell Institute, Cambridge, MA, USA Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - Oren Levy
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital Harvard Medical School, Cambridge, MA, USA Harvard Stem Cell Institute, Cambridge, MA, USA Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - Kendall Wen
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital Harvard Medical School, Cambridge, MA, USA Harvard Stem Cell Institute, Cambridge, MA, USA Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - Xiaolei Yin
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital Harvard Medical School, Cambridge, MA, USA Harvard Stem Cell Institute, Cambridge, MA, USA Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Jeffrey M Karp
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital Harvard Medical School, Cambridge, MA, USA Harvard Stem Cell Institute, Cambridge, MA, USA Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| |
Collapse
|
37
|
Sullivan DC, Repper JP, Frock AW, McFetridge PS, Petersen BE. Current Translational Challenges for Tissue Engineering: 3D Culture, Nanotechnology, and Decellularized Matrices. CURRENT PATHOBIOLOGY REPORTS 2015. [DOI: 10.1007/s40139-015-0066-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Göbel U. Editorial: Integration in bioprocess engineering - highlights of Engineering in Life Sciencesin 2014. Eng Life Sci 2015. [DOI: 10.1002/elsc.201570014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
39
|
Modification and qualification of a stirred single-use bioreactor for the improved expansion of human mesenchymal stem cells at benchtop scale. ACTA ACUST UNITED AC 2014. [DOI: 10.4155/pbp.14.29] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Bradamante S, Barenghi L, Maier JAM. Stem Cells toward the Future: The Space Challenge. Life (Basel) 2014; 4:267-80. [PMID: 25370198 PMCID: PMC4187162 DOI: 10.3390/life4020267] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 05/17/2014] [Accepted: 05/20/2014] [Indexed: 12/13/2022] Open
Abstract
Astronauts experience weightlessness-induced bone loss due to an unbalanced process of bone remodeling that involves bone mesenchymal stem cells (bMSCs), as well as osteoblasts, osteocytes, and osteoclasts. The effects of microgravity on osteo-cells have been extensively studied, but it is only recently that consideration has been given to the role of bone MSCs. These live in adult bone marrow niches, are characterized by their self-renewal and multipotent differentiation capacities, and the published data indicate that they may lead to interesting returns in the biomedical/bioengineering fields. This review describes the published findings concerning bMSCs exposed to simulated/real microgravity, mainly concentrating on how mechanosignaling, mechanotransduction and oxygen influence their proliferation, senescence and differentiation. A comprehensive understanding of bMSC behavior in microgravity and their role in preventing bone loss will be essential for entering the future age of long-lasting, manned space exploration.
Collapse
Affiliation(s)
- Silvia Bradamante
- CNR-ISTM, Institute of Molecular Science and Technologies, Via Golgi 19, 20133 Milano, Italy.
| | - Livia Barenghi
- CNR-ISTM, Institute of Molecular Science and Technologies, Via Golgi 19, 20133 Milano, Italy.
| | - Jeanette A M Maier
- Department Biomedical and Clinical Sciences L. Sacco, Università di Milano, Via GB Grassi 74, 20157 Milano, Italy.
| |
Collapse
|
41
|
Sart S, Agathos SN, Li Y. Process engineering of stem cell metabolism for large scale expansion and differentiation in bioreactors. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
Sart S, Schneider YJ, Li Y, Agathos SN. Stem cell bioprocess engineering towards cGMP production and clinical applications. Cytotechnology 2014; 66:709-22. [PMID: 24500393 DOI: 10.1007/s10616-013-9687-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 12/31/2013] [Indexed: 12/17/2022] Open
Abstract
Stem cells, including mesenchymal stem cells and pluripotent stem cells, are becoming an indispensable tool for various biomedical applications including drug discovery, disease modeling, and tissue engineering. Bioprocess engineering, targeting large scale production, provides a platform to generate a controlled microenvironment that could potentially recreate the stem cell niche to promote stem cell proliferation or lineage-specific differentiation. This survey aims at defining the characteristics of stem cell populations currently in use and the present-day limits in their applications for therapeutic purposes. Furthermore, a bioprocess engineering strategy based on bioreactors and 3-D cultures is discussed in order to achieve the improved stem cell yield, function, and safety required for production under current good manufacturing practices.
Collapse
Affiliation(s)
- Sébastien Sart
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer St, Tallahassee, FL, 32310, USA
| | | | | | | |
Collapse
|
43
|
Li Y, Liu M, Yang ST. Dendritic cells derived from pluripotent stem cells: Potential of large scale production. World J Stem Cells 2014; 6:1-10. [PMID: 24567783 PMCID: PMC3927009 DOI: 10.4252/wjsc.v6.i1.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 10/23/2013] [Accepted: 11/05/2013] [Indexed: 02/06/2023] Open
Abstract
Human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, are promising sources for hematopoietic cells due to their unlimited growth capacity and the pluripotency. Dendritic cells (DCs), the unique immune cells in the hematopoietic system, can be loaded with tumor specific antigen and used as vaccine for cancer immunotherapy. While autologous DCs from peripheral blood are limited in cell number, hPSC-derived DCs provide a novel alternative cell source which has the potential for large scale production. This review summarizes recent advances in differentiating hPSCs to DCs through the intermediate stage of hematopoietic stem cells. Step-wise growth factor induction has been used to derive DCs from hPSCs either in suspension culture of embryoid bodies (EBs) or in co-culture with stromal cells. To fulfill the clinical potential of the DCs derived from hPSCs, the bioprocess needs to be scaled up to produce a large number of cells economically under tight quality control. This requires the development of novel bioreactor systems combining guided EB-based differentiation with engineered culture environment. Hence, recent progress in using bioreactors for hPSC lineage-specific differentiation is reviewed. In particular, the potential scale up strategies for the multistage DC differentiation and the effect of shear stress on hPSC differentiation in bioreactors are discussed in detail.
Collapse
|