1
|
Zimmermann EJ, Das A, Huber A, Gawlitta N, Kuhn E, Schlager C, Gutmann B, Krebs T, Schnelle-Kreis J, Delaval MN, Zimmermann R. Toxicological effects of long-term continuous exposure to ambient air on human bronchial epithelial Calu-3 cells exposed at the air-liquid interface. ENVIRONMENTAL RESEARCH 2025; 269:120759. [PMID: 39755196 DOI: 10.1016/j.envres.2025.120759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/18/2024] [Accepted: 01/02/2025] [Indexed: 01/06/2025]
Abstract
Air pollution significantly contributes to the global burden of respiratory and cardiovascular diseases. While single source/compound studies dominate current research, long-term, multi-pollutant studies are crucial to understanding the health impacts of environmental aerosols. Our study aimed to use the first air-liquid interface (ALI) aerosol exposure system adapted for long-term in vitro exposures for ambient air in vitro exposure. The automated exposure system was adapted to enable long-term cell exposure. ALI human bronchial epithelial cells (Calu-3) were continuously exposed for 72 h to the ambient air from a European urban area (3 independent exposures). Experimental evaluation included comprehensive toxicological assessments coupled to physical and chemical characterization of the aerosol. Exposure to ambient air resulted in increased significant cytotoxicity and a non-significant decrease in cell viability. Differential gene expressions were indicated for genes related to inflammation (IL1B, IL6) and to xenobiotic metabolism (CYP1A1, CYP1B1) with possible correlations to the PM2.5 content. Common air pollutants were identified such as the carcinogenic benz[a]pyrene (≤3.4 ng m-3/24h) and PM2.5 (≤11.6 μg m-3/24h) with a maximum particle number mean of 4.4 × 10-3 m3/24h. For the first time, ALI human lung epithelial cells were exposed for 72 h to continuous airflow of ambient air. Despite direct exposure to ambient aerosols, only small decrease in cell viability and gene expression changes was observed. We propose this experimental set-up combining comprehensive aerosol characterization and long-term continuous ALI cell exposure for the identification of hazardous compounds or compound mixtures in ambient air.
Collapse
Affiliation(s)
- E J Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Munich, 85764, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, 18051, Germany
| | - A Das
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Munich, 85764, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, 18051, Germany
| | - A Huber
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Munich, 85764, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, 18051, Germany
| | - N Gawlitta
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Munich, 85764, Germany
| | - E Kuhn
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Munich, 85764, Germany
| | - C Schlager
- Vitrocell Systems GmbH, 79183, Waldkirch, Germany
| | - B Gutmann
- Vitrocell Systems GmbH, 79183, Waldkirch, Germany
| | - T Krebs
- Vitrocell Systems GmbH, 79183, Waldkirch, Germany
| | - J Schnelle-Kreis
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Munich, 85764, Germany
| | - M N Delaval
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Munich, 85764, Germany.
| | - R Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Munich, 85764, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, 18051, Germany
| |
Collapse
|
2
|
Gutiérrez-García AK, Torres-García DA, De Leon-Rodriguez A. Diethyl phthalate and dibutyl phthalate disrupt sirtuins expression in the HepG2 cells. Toxicol Res (Camb) 2024; 13:tfae103. [PMID: 39006882 PMCID: PMC11238114 DOI: 10.1093/toxres/tfae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/08/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Background Phthalates are additives used as plasticizers among other uses, classified as endocrine disruptors and may contribute to some metabolic disorders. The aim of this work was to determine the effect of the exposure of diethyl phthalate (DEP) and dibutyl phthalate (DBP) on cell viability and reactive oxygen species (ROS) production, as well as the regulation of sirloins in HepG2 cells. Methods HepG2 cells were exposed to DEP or DBP at 0.1, 1, 10 and 100 μg/mL, and after 48 or 72 h the gene and protein expression of sirtuins was quantified by qRT-PCR and Western-Blot, respectively. Results Results showed that even at a low concentration of 0.1 μg/mL DEP affected the expression of Sirt3 and Sirt4, whereas DBP at 0.1 μg/mL affected Sirt3 and Sirt5 gene expression. Protein analysis showed a reduction in Sirt1 levels at a DEP concentration of 1 μg/mL and higher, while DBP at higher dose (100 μg/mL) decreased Sirt3 protein levels. Cell viability decreased by 20% only at higher dose (100 μg/mL) and ROS production increased at 10 and 100 μg/mL for both phthalates. Conclusion These findings indicate that exposure to low concentrations (0.1 μg/mL) of DEP or DBP can negatively influence the expression of some sirtuins.
Collapse
Affiliation(s)
- Ana K Gutiérrez-García
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A.C., Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP, 78216, México
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, 460 W 12th Ave, Columbus, OH 43210, United States
| | - Daniel A Torres-García
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A.C., Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP, 78216, México
| | - Antonio De Leon-Rodriguez
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A.C., Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP, 78216, México
| |
Collapse
|
3
|
Yu Y, Wang JQ. Phthalate exposure and lung disease: the epidemiological evidences, plausible mechanism and advocacy of interventions. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:37-45. [PMID: 36151703 DOI: 10.1515/reveh-2022-0077] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Phthalates are a kind of synthetic plasticizers, which extensively used as plastic productions to improve their plasticity and flexibility. However, exposure to phthalates has been proved an increased risk of respiratory disease, because by they affect the development and functions of the lung and immune system. Here, we attempt to review respiratory health of phthalate exposure. Firstly, we describe the relationship between phthalates and lung function and airway inflammation. Then, the role of phthalates in asthma, lung cancer, rhinitis, and respiratory tract infections and the possible mechanisms of action are discussed. Finally, possible effective measures to reduce exposure to phthalates are proposed, and health care workers are called upon to provide educational resources and advocate for informed public health policies. Overall, the evidence for association between phthalate exposure and respiratory disease is weak and inconsistent. Therefore, thorough implementation in large populations is needed to produce more consistent and robust results and to enhance the overall understanding of the potential respiratory health risks of phthalate in long-term exposure.
Collapse
Affiliation(s)
- Yun Yu
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Jian Qing Wang
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
4
|
Song X, Wang C, He H, Peng M, Hu Q, Wang B, Tang L, Yu F. Association of phthalate exposure with pulmonary function in adults: NHANES 2007-2012. ENVIRONMENTAL RESEARCH 2023; 237:116902. [PMID: 37625539 DOI: 10.1016/j.envres.2023.116902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/03/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Epidemiological evidence for the adverse effect of phthalate exposure on respiratory health is on the rise, but cross-sectional studies regarding its effects on lung function are limited and contradictory, especially in adults. OBJECTIVE To assess the associations between individual and a mixture of urinary phthalate metabolites and adult pulmonary function in the United States, and to identify which ones were primarily responsible for impaired respiratory function. METHODS We obtained a cross-sectional data on 3788 adults aged 20 years and older from the National Health and Nutrition Examination Survey (2007-2012). Respiratory function was evaluated using spirometry, and phthalate exposure was assessed by measuring the levels of ten urinary phthalate metabolites. The effects of individual and mixed phthalate metabolites exposure on lung function were assessed using multivariate linear regression models and the repeated holdout weighted quantile sum (WQS) regression models, respectively, after adjusting for potential confounders including age, gender, family poverty income ratio, body mass index, and serum cotinine. RESULTS When modeled as continuous variables or quantiles, urinary phthalate metabolites, including mono-ethyl phthalate (MEP), mono-n-butyl phthalate, mono-iso-butyl phthalate, mono-benzyl phthalate, mono-(2-ethyl-5-oxohexyl) phthalate, mono-(2-ethyl-5-hydroxyhexyl) phthalate, mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP), mono-(3-carboxypropyl) phthalate, and mono-carboxyoctyl phthalate, were identified to be negatively associated with forced vital capacity in percent predicted values (ppFVC) and forced expiratory volume in the first second in percent predicted values (ppFEV1). In addition, per each decile increase in the WQS index, ppFVC (β = -2.87, 95% CI: -3.56, -2.08) and ppFEV1 (β = -2.53, 95% CI: -3.47, -1.54) declined significantly, primarily due to the contribution of MEP and MECPP. Furthermore, there were no significant interactions between co-exposure to urinary phthalate metabolites and each covariate. CONCLUSION Our findings reveal that urinary phthalate metabolites are significantly associated with adult respiratory decrements, with diethyl and di-(2-ethylhexyl) phthalate contributing the most to the impaired lung function.
Collapse
Affiliation(s)
- Xinli Song
- School of Public Health, Institute of Child and Adolescent Health, Peking University, Beijing, China; National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Cheng Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hao He
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Muyun Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qikang Hu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Bin Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lei Tang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Fenglei Yu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
5
|
Kohl Y, Müller M, Fink M, Mamier M, Fürtauer S, Drexel R, Herrmann C, Dähnhardt-Pfeiffer S, Hornberger R, Arz MI, Metzger C, Wagner S, Sängerlaub S, Briesen H, Meier F, Krebs T. Development and Characterization of a 96-Well Exposure System for Safety Assessment of Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207207. [PMID: 36922728 DOI: 10.1002/smll.202207207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/31/2023] [Indexed: 06/08/2023]
Abstract
In this study, a 96-well exposure system for safety assessment of nanomaterials is developed and characterized using an air-liquid interface lung epithelial model. This system is designed for sequential nebulization. Distribution studies verify the reproducible distribution over all 96 wells, with lower insert-to-insert variability compared to non-sequential application. With a first set of chemicals (TritonX), drugs (Bortezomib), and nanomaterials (silver nanoparticles and (non-)fluorescent crystalline nanocellulose), sequential exposure studies are performed with human lung epithelial cells followed by quantification of the deposited mass and of cell viability. The developed exposure system offers for the first time the possibility of exposing an air-liquid interface model in a 96-well format, resulting in high-throughput rates, combined with the feature for sequential dosing. This exposure system allows the possibility of creating dose-response curves resulting in the generation of more reliable cell-based assay data for many types of applications, such as safety analysis. In addition to chemicals and drugs, nanomaterials with spherical shapes, but also morphologically more complex nanostructures can be exposed sequentially with high efficiency. This allows new perspectives on in vivo-like and animal-free approaches for chemical and pharmaceutical safety assessment, in line with the 3R principle of replacing and reducing animal experiments.
Collapse
Affiliation(s)
- Yvonne Kohl
- Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Michelle Müller
- Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Marielle Fink
- VITROCELL Systems GmbH, Fabrik Sonntag 3, 79183, Waldkirch, Germany
| | - Marc Mamier
- VITROCELL Systems GmbH, Fabrik Sonntag 3, 79183, Waldkirch, Germany
| | - Siegfried Fürtauer
- Materials Development, Fraunhofer Institute for Process Engineering & Packaging IVV, Giggenhauser Str. 35, 85354, Freising, Germany
| | - Roland Drexel
- Postnova Analytics GmbH, 86899, Landsberg am Lech, Germany
| | - Christine Herrmann
- Process Systems Engineering, School of Life Sciences, Technical University Munich, Gregor-Mendel-Str. 4, 85354, Freising, Germany
| | | | - Ramona Hornberger
- Materials Development, Fraunhofer Institute for Process Engineering & Packaging IVV, Giggenhauser Str. 35, 85354, Freising, Germany
| | - Marius I Arz
- Materials Development, Fraunhofer Institute for Process Engineering & Packaging IVV, Giggenhauser Str. 35, 85354, Freising, Germany
| | - Christoph Metzger
- Process Systems Engineering, School of Life Sciences, Technical University Munich, Gregor-Mendel-Str. 4, 85354, Freising, Germany
| | - Sylvia Wagner
- Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Sven Sängerlaub
- Materials Development, Fraunhofer Institute for Process Engineering & Packaging IVV, Giggenhauser Str. 35, 85354, Freising, Germany
| | - Heiko Briesen
- Process Systems Engineering, School of Life Sciences, Technical University Munich, Gregor-Mendel-Str. 4, 85354, Freising, Germany
| | - Florian Meier
- Postnova Analytics GmbH, 86899, Landsberg am Lech, Germany
| | - Tobias Krebs
- VITROCELL Systems GmbH, Fabrik Sonntag 3, 79183, Waldkirch, Germany
| |
Collapse
|
6
|
Zimmermann EJ, Candeias J, Gawlitta N, Bisig C, Binder S, Pantzke J, Offer S, Rastak N, Bauer S, Huber A, Kuhn E, Buters J, Groeger T, Delaval MN, Oeder S, Di Bucchianico S, Zimmermann R. Biological impact of sequential exposures to allergens and ultrafine particle-rich combustion aerosol on human bronchial epithelial BEAS-2B cells at the air liquid interface. J Appl Toxicol 2023. [PMID: 36869434 DOI: 10.1002/jat.4458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
The prevalence of allergic diseases is constantly increasing since few decades. Anthropogenic ultrafine particles (UFPs) and allergenic aerosols is highly involved in this increase; however, the underlying cellular mechanisms are not yet understood. Studies observing these effects focused mainly on singular in vivo or in vitro exposures of single particle sources, while there is only limited evidence on their subsequent or combined effects. Our study aimed at evaluating the effect of subsequent exposures to allergy-related anthropogenic and biogenic aerosols on cellular mechanism exposed at air-liquid interface (ALI) conditions. Bronchial epithelial BEAS-2B cells were exposed to UFP-rich combustion aerosols for 2 h with or without allergen pre-exposure to birch pollen extract (BPE) or house dust mite extract (HDME). The physicochemical properties of the generated particles were characterized by state-of-the-art analytical instrumentation. We evaluated the cellular response in terms of cytotoxicity, oxidative stress, genotoxicity, and in-depth gene expression profiling. We observed that single exposures with UFP, BPE, and HDME cause genotoxicity. Exposure to UFP induced pro-inflammatory canonical pathways, shifting to a more xenobiotic-related response with longer preincubation time. With additional allergen exposure, the modulation of pro-inflammatory and xenobiotic signaling was more pronounced and appeared faster. Moreover, aryl hydrocarbon receptor (AhR) signaling activation showed to be an important feature of UFP toxicity, which was especially pronounced upon pre-exposure. In summary, we were able to demonstrate the importance of subsequent exposure studies to understand realistic exposure situations and to identify possible adjuvant allergic effects and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Elias Josef Zimmermann
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| | - Joana Candeias
- Center for Allergy and Environment (ZAUM), Technical University Munich, Munich, 80802, Germany
| | - Nadine Gawlitta
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christoph Bisig
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Stephanie Binder
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| | - Jana Pantzke
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| | - Svenja Offer
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| | - Narges Rastak
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| | - Stefanie Bauer
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Anja Huber
- Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| | - Evelyn Kuhn
- Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| | - Jeroen Buters
- Center for Allergy and Environment (ZAUM), Technical University Munich, Munich, 80802, Germany
| | - Thomas Groeger
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Mathilde N Delaval
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Sebastian Oeder
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| | - Ralf Zimmermann
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| |
Collapse
|
7
|
Busch M, Brouwer H, Aalderink G, Bredeck G, Kämpfer AAM, Schins RPF, Bouwmeester H. Investigating nanoplastics toxicity using advanced stem cell-based intestinal and lung in vitro models. FRONTIERS IN TOXICOLOGY 2023; 5:1112212. [PMID: 36777263 PMCID: PMC9911716 DOI: 10.3389/ftox.2023.1112212] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Plastic particles in the nanometer range-called nanoplastics-are environmental contaminants with growing public health concern. As plastic particles are present in water, soil, air and food, human exposure via intestine and lung is unavoidable, but possible health effects are still to be elucidated. To better understand the Mode of Action of plastic particles, it is key to use experimental models that best reflect human physiology. Novel assessment methods like advanced cell models and several alternative approaches are currently used and developed in the scientific community. So far, the use of cancer cell line-based models is the standard approach regarding in vitro nanotoxicology. However, among the many advantages of the use of cancer cell lines, there are also disadvantages that might favor other approaches. In this review, we compare cell line-based models with stem cell-based in vitro models of the human intestine and lung. In the context of nanoplastics research, we highlight the advantages that come with the use of stem cells. Further, the specific challenges of testing nanoplastics in vitro are discussed. Although the use of stem cell-based models can be demanding, we conclude that, depending on the research question, stem cells in combination with advanced exposure strategies might be a more suitable approach than cancer cell lines when it comes to toxicological investigation of nanoplastics.
Collapse
Affiliation(s)
- Mathias Busch
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands
| | - Hugo Brouwer
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands
| | - Germaine Aalderink
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands
| | - Gerrit Bredeck
- IUF—Leibniz-Research Institute for Environmental Medicine, Duesseldorf, Germany
| | | | - Roel P. F. Schins
- IUF—Leibniz-Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands,*Correspondence: Hans Bouwmeester,
| |
Collapse
|
8
|
Elje E, Mariussen E, McFadden E, Dusinska M, Rundén-Pran E. Different Sensitivity of Advanced Bronchial and Alveolar Mono- and Coculture Models for Hazard Assessment of Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:407. [PMID: 36770370 PMCID: PMC9921680 DOI: 10.3390/nano13030407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/03/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
For the next-generation risk assessment (NGRA) of chemicals and nanomaterials, new approach methodologies (NAMs) are needed for hazard assessment in compliance with the 3R's to reduce, replace and refine animal experiments. This study aimed to establish and characterize an advanced respiratory model consisting of human epithelial bronchial BEAS-2B cells cultivated at the air-liquid interface (ALI), both as monocultures and in cocultures with human endothelial EA.hy926 cells. The performance of the bronchial models was compared to a commonly used alveolar model consisting of A549 in monoculture and in coculture with EA.hy926 cells. The cells were exposed at the ALI to nanosilver (NM-300K) in the VITROCELL® Cloud. After 24 h, cellular viability (alamarBlue assay), inflammatory response (enzyme-linked immunosorbent assay), DNA damage (enzyme-modified comet assay), and chromosomal damage (cytokinesis-block micronucleus assay) were measured. Cytotoxicity and genotoxicity induced by NM-300K were dependent on both the cell types and model, where BEAS-2B in monocultures had the highest sensitivity in terms of cell viability and DNA strand breaks. This study indicates that the four ALI lung models have different sensitivities to NM-300K exposure and brings important knowledge for the further development of advanced 3D respiratory in vitro models for the most reliable human hazard assessment based on NAMs.
Collapse
Affiliation(s)
- Elisabeth Elje
- Health Effects Laboratory, Department for Environmental Chemistry, NILU—Norwegian Institute for Air Research, 2007 Kjeller, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Espen Mariussen
- Health Effects Laboratory, Department for Environmental Chemistry, NILU—Norwegian Institute for Air Research, 2007 Kjeller, Norway
- Department of Air Quality and Noise, Norwegian Institute of Public Health, 0456 Oslo, Norway
| | - Erin McFadden
- Health Effects Laboratory, Department for Environmental Chemistry, NILU—Norwegian Institute for Air Research, 2007 Kjeller, Norway
| | - Maria Dusinska
- Health Effects Laboratory, Department for Environmental Chemistry, NILU—Norwegian Institute for Air Research, 2007 Kjeller, Norway
| | - Elise Rundén-Pran
- Health Effects Laboratory, Department for Environmental Chemistry, NILU—Norwegian Institute for Air Research, 2007 Kjeller, Norway
| |
Collapse
|
9
|
Binder S, Rastak N, Karg E, Huber A, Kuhn E, Dragan GC, Monsé C, Breuer D, Di Bucchianico S, Delaval MN, Oeder S, Sklorz M, Zimmermann R. Construction of an In Vitro Air-Liquid Interface Exposure System to Assess the Toxicological Impact of Gas and Particle Phase of Semi-Volatile Organic Compounds. TOXICS 2022; 10:730. [PMID: 36548563 PMCID: PMC9782028 DOI: 10.3390/toxics10120730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Anthropogenic activities and industrialization render continuous human exposure to semi-volatile organic compounds (SVOCs) inevitable. Occupational monitoring and safety implementations consider the inhalation exposure of SVOCs as critically relevant. Due to the inherent properties of SVOCs as gas/particle mixtures, risk assessment strategies should consider particle size-segregated SVOC association and the relevance of released gas phase fractions. We constructed an in vitro air-liquid interface (ALI) exposure system to study the distinct toxic effects of the gas and particle phases of the model SVOC dibutyl phthalate (DBP) in A549 human lung epithelial cells. Cytotoxicity was evaluated and genotoxic effects were measured by the alkaline and enzyme versions of the comet assay. Deposited doses were assessed by model calculations and chemical analysis using liquid chromatography tandem mass spectrometry. The novel ALI exposure system was successfully implemented and revealed the distinct genotoxic effects of the gas and particle phases of DBP. The empirical measurements of cellular deposition and the model calculations of the DBP particle phase were concordant.The model SVOC DBP showed that inferred oxidative DNA damage may be attributed to particle-related effects. While pure gas phase exposure may follow a distinct mechanism of genotoxicity, the contribution of the gas phase to total aerosol was comparably low.
Collapse
Affiliation(s)
- Stephanie Binder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, 18051 Rostock, Germany
| | - Narges Rastak
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, 18051 Rostock, Germany
| | - Erwin Karg
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Anja Huber
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Evelyn Kuhn
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - George C. Dragan
- Berufsgenossenschaft Handel und Warenlogistik (BGHW), 80639 Munich, Germany
| | - Christian Monsé
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance (IPA), 44789 Bochum, Germany
| | - Dietmar Breuer
- Institute of Occupational Safety of the German Social Accident Insurance (IFA), 53757 Sankt Augustin, Germany
| | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, 18051 Rostock, Germany
| | - Mathilde N. Delaval
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Sebastian Oeder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Martin Sklorz
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, 18051 Rostock, Germany
| |
Collapse
|
10
|
Clérigo F, Ferreira S, Ladeira C, Marques-Ramos A, Almeida-Silva M, Mendes LA. Cytotoxicity Assessment of Nanoplastics and Plasticizers Exposure in In Vitro Lung Cell Culture Systems—A Systematic Review. TOXICS 2022; 10:toxics10070402. [PMID: 35878307 PMCID: PMC9315584 DOI: 10.3390/toxics10070402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022]
Abstract
Emerging contaminants such as nanoplastics (NPs), as well as manufacturing by-products such as plasticizers, have gained global attention and concern due to their limited biodegradability and their potential impact on human health, in particular the effects on respiratory tissue. In parallel, in vitro cell culture techniques are key to the assessment and characterization of toxic effects and cellular mechanisms in different types of tissues and should provide relevant information to understand the hazardous potential of these emergent contaminants. This systematic review presents the main results on the current knowledge of the effects of NPs and plasticizers on lung cells, as assessed with the use of in vitro cell culture techniques. From the selected studies (n = 10), following the PRISMA approach, it was observed that cell viability was the most frequently assessed endpoint and that most studies focused on epithelial cells and exposures to polystyrene (PS). It was observed that exposure to NPs or plasticizers induces cytotoxicity in a dose-dependent manner, regardless of the size of the NPs. Furthermore, there is evidence that the characteristics of NPs can affect the toxic response by promoting the association with other organic compounds. As such, further in vitro studies focusing on the combination of NPs with plasticizers will be essential for the understanding of mechanisms of NPs toxicity.
Collapse
Affiliation(s)
- Fabiana Clérigo
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (F.C.); (S.F.); (C.L.); (A.M.-R.); (M.A.-S.)
| | - Sandra Ferreira
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (F.C.); (S.F.); (C.L.); (A.M.-R.); (M.A.-S.)
| | - Carina Ladeira
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (F.C.); (S.F.); (C.L.); (A.M.-R.); (M.A.-S.)
- Comprehensive Health Research Center (CHRC), Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal
| | - Ana Marques-Ramos
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (F.C.); (S.F.); (C.L.); (A.M.-R.); (M.A.-S.)
| | - Marina Almeida-Silva
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (F.C.); (S.F.); (C.L.); (A.M.-R.); (M.A.-S.)
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao Km 139.7, Bobadela-Loures, 2695-066 Lisbon, Portugal
| | - Luís André Mendes
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (F.C.); (S.F.); (C.L.); (A.M.-R.); (M.A.-S.)
- Animal Ecology Group (GEA), Universidade de Vigo, 36210 Vigo, Spain
- Correspondence:
| |
Collapse
|
11
|
Assessment of Cytotoxic, Genotoxic, and Oxidative Stress of Dibutyl Phthalate on Cultured Bovine Peripheral Lymphocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9961513. [PMID: 35368873 PMCID: PMC8970799 DOI: 10.1155/2022/9961513] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/15/2022] [Accepted: 03/04/2022] [Indexed: 11/18/2022]
Abstract
Recently, there have been numerous reports showing that phthalates have negative human health impacts and may cause several diseases such as asthma, breast cancer, obesity, type II diabetes, and male infertility. Animals are also exposed to phthalates through the environment and can cause adverse health effects on them. Several studies have been found on the cytogenetic effects of dibutyl phthalate (DBP) on different organisms but no documented evidence has been found on the cytotoxic and genotoxic effects of dibutyl phthalate (DBP) on bovine cultured lymphocytes. MTT assay was performed on different series of DBP concentrations (10 μM, 20 μM, 30 μM, 50 μM, 70 μM, 100 μM). A concentration-dependent decrease in cell viability was observed by the DBP. The LD50, LD50/2, and 2∗LD50 were found to be 50 μM, 30 μM, and 80 μM on bovine lymphocytes, respectively. Then, these concentrations of DBP were utilized to perform comet, micronucleus assays, and oxidative stress. A concentration-dependent increase in DNA damage, oxidative stress, and micronuclei formation was observed in lymphocytes by the DBP as compared to the control group. Highest genotoxic effects were observed at a concentration of 2∗LD50. Similarly, total oxidative stress was found higher, and antioxidative stress was lower in concentration-dependent manner by the DBP. The current study revealed a significant cytotoxic, genotoxic, and oxidative stress of DBP on cultured bovine lymphocytes.
Collapse
|