1
|
Roy JS, Chatterjee D, Das N, Giri AK. Substantial Evidences Indicate That Inorganic Arsenic Is a Genotoxic Carcinogen: a Review. Toxicol Res 2018; 34:311-324. [PMID: 30370006 PMCID: PMC6195883 DOI: 10.5487/tr.2018.34.4.311] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 08/24/2018] [Accepted: 09/07/2018] [Indexed: 01/04/2023] Open
Abstract
Arsenic is one of the most toxic environmental toxicants. More than 150 million people worldwide are exposed to arsenic through ground water contamination. It is an exclusive human carcinogen. Although the hallmarks of arsenic toxicity are skin lesions and skin cancers, arsenic can also induce cancers in the lung, liver, kidney, urinary bladder, and other internal organs. Arsenic is a non-mutagenic compound but can induce significant cytogenetic damage as measured by chromosomal aberrations, sister chromatid exchanges, and micronuclei formation in human systems. These genotoxic end points are extensively used to predict genotoxic potentials of different environmental chemicals, drugs, pesticides, and insecticides. These cytogenetic end points are also used for evaluating cancer risk. Here, by critically reviewing and analyzing the existing literature, we conclude that inorganic arsenic is a genotoxic carcinogen.
Collapse
Affiliation(s)
- Jinia Sinha Roy
- Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Debmita Chatterjee
- Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Nandana Das
- Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Ashok K Giri
- Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
2
|
Kirkland D, Kasper P, Martus HJ, Müller L, van Benthem J, Madia F, Corvi R. Updated recommended lists of genotoxic and non-genotoxic chemicals for assessment of the performance of new or improved genotoxicity tests. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 795:7-30. [DOI: 10.1016/j.mrgentox.2015.10.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 01/09/2023]
|
3
|
Markopoulos G, Noutsopoulos D, Mantziou S, Vartholomatos G, Monokrousos N, Angelidis C, Tzavaras T. Arsenic induces VL30 retrotransposition: the involvement of oxidative stress and heat-shock protein 70. Toxicol Sci 2013; 134:312-22. [PMID: 23708403 DOI: 10.1093/toxsci/kft118] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Arsenic is an environmental contaminant with known cytotoxic and carcinogenic properties, but the cellular mechanisms of its action are not fully known. As retrotransposition consists a potent mutagenic factor affecting genome stability, we investigated the effect of arsenic on retrotransposition of an enhanced green fluorescent protein (EGFP)-tagged nonautonomous long terminal repeat (LTR)-retrotransposon viral-like 30 (VL30) in a mouse NIH3T3 cell culture-retrotransposition assay. Flow cytometry analysis of assay cells treated with 2.5-20μM sodium arsenite revealed induction of retrotransposition events in a dose- and time-dependent manner, which was further confirmed as genomic integrations by PCR analysis and appearance of EGFP-positive cells by UV microscopy. Specifically, 20μM sodium arsenite strongly induced the VL30 retrotransposition frequency, which was ~90,000-fold higher than the natural one and also VL30 RNA expression was ~6.6-fold. Inhibition of the activity of endogenous reverse transcriptases by efavirenz at 15μM or nevirapine at 375μM suppressed the arsenite-induced VL30 retrotransposition by 71.16 or 79.88%, respectively. In addition, the antioxidant N-acetyl-cysteine reduced the level of arsenite-induced retrotransposition, which correlated with the rescue of arsenite-induced G2/M cell cycle arrest and cell toxicity. Treatment of assay cells ectopically overexpressing the human heat-shock protein 70 (Hsp70) with 15μM sodium arsenite resulted in an additional ~4.5-fold induction of retrotransposition compared with normal assay cells, whereas treatment with 20μM produced a massive cell death. Our results show for the first time that arsenic both as an oxidative and heat-shock mimicking agent is a potent inducer of VL30 retrotransposition in mouse cells. The impact of arsenic-induced retrotransposition, as a cellular response, on contribution to or explanation of the arsenic-associated toxicity and carcinogenicity is discussed.
Collapse
Affiliation(s)
- Georgios Markopoulos
- Laboratory of General Biology, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | | | | | | | | | | | | |
Collapse
|
4
|
Dennis LK, Lynch CF, Sandler DP, Alavanja MC. Pesticide use and cutaneous melanoma in pesticide applicators in the agricultural heath study. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:812-7. [PMID: 20164001 PMCID: PMC2898858 DOI: 10.1289/ehp.0901518] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 02/17/2010] [Indexed: 05/21/2023]
Abstract
BACKGROUND Melanoma rates continue to increase; however, few risk factors other than sun sensitivity and ultraviolet radiation (including sun exposure) have been identified. Although studies of farmers have shown an excess risk of melanoma and other skin cancers, it is unclear how much of this is related to sun exposure compared with other agricultural exposures. METHODS We examined dose-response relationships for 50 agricultural pesticides and cutaneous melanoma incidence in the Agricultural Health Study cohort of licensed pesticide applicators, along with ever use of older pesticides that contain arsenic. Logistic regression was used to examine odds ratios (ORs) and 95% confidence intervals (CIs) associated with pesticide exposure adjusted for age, sex, and other potential confounders. RESULTS We found significant associations between cutaneous melanoma and maneb/mancozeb (>or= 63 exposure days: OR = 2.4; 95% CI, 1.2-4.9; trend p = 0.006), parathion (>or= 56 exposure days: OR = 2.4; 95% CI, 1.3-4.4; trend p = 0.003), and carbaryl (>or= 56 exposure days: OR = 1.7; 95% CI, 1.1-2.5; trend p = 0.013). Other associations with benomyl and ever use of arsenical pesticides were also suggested. CONCLUSIONS Most previous melanoma literature has focused on host factors and sun exposure. Our research shows an association between several pesticides and melanoma, providing support for the hypotheses that agricultural chemicals may be another important source of melanoma risk.
Collapse
Affiliation(s)
- Leslie K. Dennis
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Charles F. Lynch
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Michael C.R. Alavanja
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| |
Collapse
|
5
|
Genotoxicity of sodium arsenite and DNA fragmentation in ovarian cells of rat. Toxicol Lett 2009; 190:81-5. [DOI: 10.1016/j.toxlet.2009.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 06/30/2009] [Accepted: 07/02/2009] [Indexed: 11/23/2022]
|
6
|
Yadav KK, Trivedi SP. Chromosomal aberrations in a fish, Channa punctata after in vivo exposure to three heavy metals. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2009; 678:7-12. [DOI: 10.1016/j.mrgentox.2009.05.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2008] [Revised: 04/29/2009] [Accepted: 05/29/2009] [Indexed: 10/20/2022]
|
7
|
Major histopathological patterns of lung cancer related to arsenic exposure in German uranium miners. Int Arch Occup Environ Health 2008; 82:867-75. [PMID: 19020892 DOI: 10.1007/s00420-008-0386-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 11/03/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The mechanisms of action of arsenic in the development of lung cancer are still not yet elucidated. Considering the relationship between arsenic and squamous cell carcinomas of the skin, we hypothesized that arsenic exposure may be more closely associated with squamous cell carcinoma of the lung. METHODS A comprehensive histopathological database and a detailed job-exposure matrix developed for former German uranium miners with exposure to arsenic, radon, and quartz were analyzed to quantitatively assess the effect of arsenic regarding cell type of lung cancer. The distributions of major lung cancer cell types in 1,786 German uranium miners were associated with levels of arsenic exposure under control for the other lung carcinogens. To evaluate the arsenic effects in association with a frequent occupational lung disease in miners stratification by silicosis was performed. RESULTS There was an arsenic-related increase of the proportion of squamous cell carcinoma of the lung but restricted to miners without silicosis. The increase was found at all levels of co-exposure to radon and quartz dust. In miners with silicosis, the proportion of adenocarcinoma increased with rising arsenic exposure. Arsenic exposure was associated with non-small cell lung cancer. Silicosis turned out as major determinant of the cell type related with arsenic. CONCLUSION These results indicate a cell type characteristic effect of arsenic in the development of lung cancer.
Collapse
|
8
|
Mishra D, Flora SJS. Differential oxidative stress and DNA damage in rat brain regions and blood following chronic arsenic exposure. Toxicol Ind Health 2008; 24:247-56. [DOI: 10.1177/0748233708093355] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Chronic arsenic poisoning caused by contaminated drinking water is a wide spread and worldwide problem particularly in India and Bangladesh. One of the possible mechanisms suggested for arsenic toxicity is the generation of reactive oxygen species (ROS). The present study was planned 1) to evaluate if chronic exposure to arsenic leads to oxidative stress in blood and brain – parts of male Wistar rats and 2) to evaluate which brain region of the exposed animals was more sensitive to oxidative injury. Male Wistar rats were exposed to arsenic (50 ppm sodium arsenite in drinking water) for 10 months. The brain was dissected into five major parts, pons medulla, corpus striatum, cortex, hippocampus, and cerebellum. A number of biochemical variables indicative of oxidative stress were studied in blood and different brain regions. Single-strand DNA damage using comet assay was also assessed in lymphocytes. We observed a significant increase in blood and brain ROS levels accompanied by the depletion of GSH/GSSG ratio and glucose-6-phosphate dehydrogenase (G6PD) activity in different brain regions of arsenic-exposed rats. Chronic arsenic exposure also caused significant single-strand DNA damage in lymphocytes as depicted by comet with a tail in arsenic-exposed cells compared with the control cells. On the basis of results, we concluded that the cortex region of the brain was more sensitive to oxidative injury compared with the other regions studied. The present study, thus, leads us to suggest that arsenic induces differential oxidative stress in brain regions with cortex followed by hippocampus and causes single-strand DNA damage in lymphocytes.
Collapse
Affiliation(s)
- D Mishra
- Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Gwalior, India
| | - SJS Flora
- Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Gwalior, India
| |
Collapse
|
9
|
Kligerman AD, Tennant AH. Insights into the carcinogenic mode of action of arsenic. Toxicol Appl Pharmacol 2007; 222:281-8. [PMID: 17118416 DOI: 10.1016/j.taap.2006.10.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 10/05/2006] [Accepted: 10/05/2006] [Indexed: 12/14/2022]
Abstract
That arsenic can induce cancer in humans has been known since the late 17th century, yet how arsenic induces cancer has been the subject of numerous scientific publications. Various modes of action (MOA) have been proposed for arsenic's carcinogenicity. In this paper we review our previous studies on the ability of arsenicals to cause DNA damage, the relative inability of these arsenicals to induce point mutations, and the involvement of arsenicals in spindle disruption. We present new evidence that shows that reduced glutathione (GSH) can chemically reduce inactive pentavalent arsenicals to trivalent arsenicals which can disrupt tubulin polymerization, and show that reactive oxygen species (ROS) are most likely not involved in tubulin disruption. A hypothesis is also presented on how arsenic may induce stable chromosome aberrations (CAs) that can lead to cancer, thus supporting a role for genetic damage in the MOA for arsenic. We then propose promising areas of research that might give insight into the MOA of arsenic.
Collapse
Affiliation(s)
- A D Kligerman
- Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, B143-06 US Environmental Protection Agency Research Triangle Park, NC 27711, USA.
| | | |
Collapse
|
10
|
Orešcanin V, Franekic-Colic J, Durgo K, Valkovic V. INVESTIGATION OF MUTAGENIC EFFECT OF METALS IN THE PLOMIN BAY SEDIMENTS BY MODIFIED PREINCUBATION AMES ASSAY. ACTA ACUST UNITED AC 2007. [DOI: 10.1081/tma-120002461] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Yu HS, Liao WT, Chai CY. Arsenic carcinogenesis in the skin. J Biomed Sci 2006; 13:657-66. [PMID: 16807664 DOI: 10.1007/s11373-006-9092-8] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 05/09/2006] [Indexed: 11/25/2022] Open
Abstract
Chronic arsenic poisoning is a world public health issue. Long-term exposure to inorganic arsenic (As) from drinking water has been documented to induce cancers in lung, urinary bladder, kidney, liver and skin in a dose-response relationship. Oxidative stress, chromosomal abnormality and altered growth factors are possible modes of action in arsenic carcinogenesis. Arsenic tends to accumulate in the skin. Skin hyperpigmentation and hyperkeratosis have long been known to be the hallmark signs of chronic As exposure. There are significant associations between these dermatological lesions and risk of skin cancer. The most common arsenic-induced skin cancers are Bowen's disease (carcinoma in situ), basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). Arsenic-induced Bowen's disease (As-BD) is able to transform into invasive BCC and SCC. Individuals with As-BD are considered for more aggressive cancer screening in the lung and urinary bladder. As-BD provides an excellent model for studying the early stages of chemical carcinogenesis in human beings. Arsenic exposure is associated with G2/M cell cycle arrest and DNA aneuploidy in both cultured keratinocytes and As-BD lesions. These cellular abnormalities relate to the p53 dysfunction induced by arsenic. The characteristic clinical figures of arsenic-induced skin cancer are: (i) occurrence on sun-protected areas of the body; (ii) multiple and recrudescent lesions. Both As and UVB are able to induce skin cancer. Arsenic treatment enhances the cytotoxicity, mutagenicity and clastogenicity of UV in mammalian cells. Both As and UVB induce apoptosis in keratinocytes by caspase-9 and caspase-8 signaling, respectively. Combined UVB and As treatments resulted in the antiproliferative and proapoptotic effects by stimulating both caspase pathways in the keratinocytes. UVB irradiation inhibited mutant p53 and ki-67 expression, as well as increased in the number of apoptotic cells in As-BD lesions which resulted in an inhibitory effect on proliferation. As-UVB interaction provides a reasonable explanation for the rare occurrences of arsenical cancer in the sun-exposed skin. The multiple and recurrent skin lesions are associated with cellular immune dysfunction in chronic arsenism. A decrease in peripheral CD4+ cells was noticed in the inhabitants of arsenic exposure areas. There was a decrease in the number of Langerhans cells in As-BD lesion which results in an impaired immune function on the lesional sites. Since CD4+ cells are the target cell affected by As, the interaction between CD4+ cells and epidermal keratinocytes under As affection might be closely linked to the pathogenesis of multiple occurrence of arsenic-induced skin cancer. In this review, we provide and discuss the pathomechanisms of arsenic skin cancer and the relationship to its characteristic figures. Such information is critical for understanding the molecular mechanism for arsenic carcinogenesis in other internal organs.
Collapse
Affiliation(s)
- Hsin-Su Yu
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | | | | |
Collapse
|
12
|
Rizki M, Kossatz E, Velázquez A, Creus A, Farina M, Fortaner S, Sabbioni E, Marcos R. Metabolism of arsenic in Drosophila melanogaster and the genotoxicity of dimethylarsinic acid in the Drosophila wing spot test. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2006; 47:162-8. [PMID: 16304668 DOI: 10.1002/em.20178] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Inorganic arsenic is nongenotoxic in the Drosophila melanogaster wing somatic mutation and recombination test (SMART). Recent evidence in mammalian systems indicates that methylated metabolites of arsenic are more genotoxic than inorganic arsenic. Thus, we hypothesized that inorganic arsenic is nongenotoxic in Drosophila because they are unable to biotransform arsenic to methylated forms. In the present study, we fed trivalent and pentavalent inorganic arsenic to Drosophila larvae and adults and measured the production of methylated derivatives. No biomethylated arsenic species were found in the organisms or in the growth medium, which suggests that Drosophila are unable to biomethylate inorganic arsenic. Exposure of Drosophila to the methylated arsenic derivative dimethylarsinic acid (DMA(V)) resulted in incorporation of this organoarsenic compound without demethylation. In addition, we used the SMART wing spot assay, which measures loss of heterozygosity (LOH) resulting from gene mutation, chromosomal rearrangement, chromosome breakage, and chromosome loss, to evaluate the genotoxicity of DMA. DMA by itself induced significant increases in the frequency of total spots, small spots, and large single spots. These results are consistent with the important role of arsenic biomethylation as a determinant of the genotoxicity of arsenic compounds. The absence of biomethylation in Drosophila could explain the lack of genotoxicity for inorganic arsenic and the genotoxicity of methylated arsenic species in the SMART wing spot assay.
Collapse
Affiliation(s)
- Mostapha Rizki
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Mourón SA, Grillo CA, Dulout FN, Golijow CD. Induction of DNA strand breaks, DNA-protein crosslinks and sister chromatid exchanges by arsenite in a human lung cell line. Toxicol In Vitro 2006; 20:279-85. [PMID: 16143491 DOI: 10.1016/j.tiv.2005.07.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Accepted: 07/21/2005] [Indexed: 02/02/2023]
Abstract
Based on in vitro studies, several modes of action for arsenic have been suggested, although the mechanisms responsible for arsenic carcinogenesis have not been well established. In our previous study a dose-dependent increment in DNA migration was detected at low doses of sodium arsenite, but at higher dose levels a reduction in the migration was observed, suggesting the induction of DNA adducts. In order to confirm this hypothesis we performed the experiments considering other parameters and modifications of the standard alkaline comet assay. Additionally, the induction of sister chromatid exchanges was evaluated. The present study showed the induction by sodium arsenite of single strand breaks and DNA-protein adducts assessed by comet assay as well as of sister chromatid exchanges in the human lung fibroblast cell line MRC-5. The standard alkaline comet assay also revealed, at the highest arsenic concentration tested, a reduction in all the considered parameters in relation to untreated cells and the other doses. On the other hand, the incubation with proteinase K induced a dose-dependent increment in DNA migration as a consequence of the release of proteins joined to the DNA. Thus, sodium arsenite was able to induce both DNA-strand breaks and protein-DNA adducts in arsenic exposed MRC-5 cells, depending on the concentrations of arsenic salts tested.
Collapse
Affiliation(s)
- Silvana Andrea Mourón
- Centro de Investigaciones en Genética Básica y Aplicada (CIGEBA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118 s/n, 1900 La Plata, Argentina
| | | | | | | |
Collapse
|
14
|
Kligerman AD, Doerr CL, Tennant AH. Oxidation and methylation status determine the effects of arsenic on the mitotic apparatus. Mol Cell Biochem 2005; 279:113-21. [PMID: 16283520 DOI: 10.1007/s11010-005-8283-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We investigated the spindle inhibitory properties of six arsenicals differing in their methylation or oxidation state. Human lymphoblasts were exposed for 6 h to either sodium arsenate (NaAs(V)), sodium arsenite (NaAs(III)), monomethylarsonic acid (MMA(V)), monomethylarsonous acid (MMA(III)), dimethylarsinic acid (DMA(V)), or dimethylarsinous acid (DMA(III)). After exposure slides were prepared, and the mitotic indices (MI) were assessed. We also exposed tubulin directly to each arsenical and spectrophotometrically measured its effect on polymerization. NaAs(V) caused a small but significant increase in MI. MMA(V) also caused only a slight increase in MI that just reached statistical significance. In contrast, DMA(V) caused a significant increase in MI, producing approximately 75% the MI of demecolcine and approximately 4 times the MI of the control. NaAs(III) had no significant effect on MI and was quite toxic. MMA(III) induced more than a twofold increase in MI compared to the control, which was about 40% that caused by demecolcine. On a micromolar basis, MMA(III) was the most potent of the arsenicals tested. DMA(III) gave inconsistent results. None of the pentavalent arsenicals had a substantial effect (either inhibition or enhancement) on GTP-induced polymerization of tubulin. In contrast, NaAs(III) inhibited polymerization at concentrations of 1 mM and above and MMA(III) and DMA(III) at 10 microM and above. Taken together, these results present a complex picture of how arsenicals may affect cells. These studies demonstrate that the metabolites of arsenic are active not only as chromosome breaking and DNA damaging agents but can also interfere with cell division via tubulin disruption.
Collapse
Affiliation(s)
- A D Kligerman
- Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
| | | | | |
Collapse
|
15
|
Dopp E, Hartmann LM, von Recklinghausen U, Florea AM, Rabieh S, Zimmermann U, Shokouhi B, Yadav S, Hirner AV, Rettenmeier AW. Forced Uptake of Trivalent and Pentavalent Methylated and Inorganic Arsenic and Its Cyto-/genotoxicity in Fibroblasts and Hepatoma Cells. Toxicol Sci 2005; 87:46-56. [PMID: 15947026 DOI: 10.1093/toxsci/kfi218] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mammals are able to convert inorganic arsenic to mono-, di-, and trimethylated metabolites. In previous studies we have shown that the trivalent organoarsenic compounds are more toxic than their inorganic counterparts and that the toxicity is associated with the cellular uptake of the arsenicals. In the present study, we investigated cyto-/genotoxic effects of the arsenic compounds arsenate [As(i)(V)], arsenite [As(i)(III)], monomethylarsonic acid [MMA(V)], monomethylarsonous acid [MMA(III)], dimethylarsinic acid [DMA(V)], dimethylarsinous acid [DMA(III)], and trimethylarsine oxide [TMAO(V)] after an extended exposure time (24 h) and compared the uptake capabilities of fibroblasts (CHO-9 cells: Chinese hamster ovary) used for genotoxicity studies, with those of hepatic cells (Hep G2: hepatoma cell-line). To find out whether the arsenic compounds are bound to membranes or if they are present in the cytosol, the amount of arsenic was measured in whole-cell extracts and in membrane-removed cell extracts by inductively coupled plasma-mass spectrometry (ICP-MS). In addition, we forced the cellular uptake of the arsenic compounds into CHO-9 cells by electroporation and measured the intracellular arsenic concentrations before and after this procedure. Our results show that organic and inorganic arsenicals are taken up to a higher degree by fibroblasts compared to hepatoma cells. The arsenic metabolite DMA(III) was the most membrane permeable species in both cell lines and induced strong genotoxic effects in CHO-9 cells after an exposure time of 24 h. The uptake of all other arsenic species was relatively low (<1% by Hep G2 and <4% by CHO cells), but was dose-dependent. Electroporation increased the intracellular arsenic levels as well as the number of induced MN in CHO-9 cells. With the exception of As(i)(III) and DMA(III) in CHO-9 cells, the tested arsenic compounds were not bound to cell membranes, but were present in the cytosol. This may indicate the existence of DMA(III)-specific exporter proteins as are known for As(i)(III). Our results indicate that the uptake capabilities of arsenic compounds are highly dependent upon the cell type. It may be hypothesized that the arsenic-induced genotoxic effects observed in fibroblasts are due to the high uptake of arsenicals into this cell type. This may explain the high susceptibility of skin fibroblasts to arsenic exposure.
Collapse
Affiliation(s)
- E Dopp
- Institute of Hygiene and Occupational Medicine, University Hospital, Hufelandstrasse 55, 45122 Essen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tapio S, Danescu-Mayer J, Asmuss M, Posch A, Gomolka M, Hornhardt S. Combined effects of gamma radiation and arsenite on the proteome of human TK6 lymphoblastoid cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2005; 581:141-52. [PMID: 15725613 DOI: 10.1016/j.mrgentox.2004.11.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Revised: 11/18/2004] [Accepted: 11/29/2004] [Indexed: 01/21/2023]
Abstract
Arsenic present in drinking water and mining environments in some areas has been associated with an increased rate of skin and internal cancers. Contrary to the epidemiological evidence in humans, arsenic does not induce cancer in animal models, but is able to enhance the mutagenicity of other agents. In order to achieve a better understanding of the interaction between arsenic and ionising radiation, an investigation was conducted to detect differences at the proteome level of human TK6 lymphoblastoid cells exposed to these agents. Cells were exposed to either a single dose of 1-Gy 137Cs-gamma-rays or to 1 microM arsenite (As(III)) or to both agents in combination. Two-dimensional (2D) electrophoresis and matrix-assisted laser desorption/ionisation-time of flight (MALDI-TOF) were employed for the screening and identification of proteins, respectively. It proved possible to identify seven proteins with significantly affected abundance, three of which showed increased levels and the remaining four showed decreased levels under at least one of the exposure conditions. Following arsenite treatment or irradiation, a significant increase compared with that of the control was observed for glutathione (GSH) transferase omega 1 and proteasome subunit beta type 4 precursor. The combined exposure did not result in an induction of the enzymes. The expression of electron-transfer flavoprotein subunit alpha was found to be enhanced under all three-exposure conditions. Ubiquinol-cytochrome C reductase complex core protein I, adenine phosphoribosyl transferase and endoplasmic reticulum protein hERp29 showed decreased levels after irradiation or arsenite treatment, but not after the combined exposure. The level of serine/threonine protein phosphatase 1 alpha decreased with all treatments. The main conclusions are that both arsenite and gamma-radiation influence the levels of several proteins involved in major metabolic and regulatory pathways, either directly or by triggering the defence mechanisms of the cell. The combined effect of both exposures on the level of some essential proteins such as glutathione transferase, proteasome or serine/threonine phosphatase may contribute to the co-carcinogenic effect of arsenic.
Collapse
Affiliation(s)
- Soile Tapio
- Federal Office for Radiation Protection, Department of Radiation Protection and Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany.
| | | | | | | | | | | |
Collapse
|
17
|
Cortés F, Mateos S, Pastor N, Domínguez I. Toward a comprehensive model for induced endoreduplication. Life Sci 2004; 76:121-35. [PMID: 15519359 DOI: 10.1016/j.lfs.2004.08.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Accepted: 08/28/2004] [Indexed: 11/25/2022]
Abstract
Both the biological significance and the molecular mechanism of endoreduplication (END) have been debated for a long time by cytogeneticists and researchers into cell cycle enzymology and dynamics alike. Mainly due to the fact that a wide variety of agents have been reported as able to induce endoreduplication and the diversity of cell types where it has been described, until now no clear or unique mechanism of induction of this phenomenon, rare in animals but otherwise quite common in plants, has been proposed. DNA topoisomerase II (topo II), plays a major role in mitotic chromosome segregation after DNA replication. The classical topo II poisons act by stabilizing the enzyme in the so-called cleavable complex and result in DNA damage as well as END, while the true catalytic inhibitors, which are not cleavable-complex-stabilizers, do induce END without concomitant DNA and chromosome damage. Taking into account these observations on the induction of END by drugs that interfere with topo II, together with our recently obtained evidence that the nature of DNA plays an important role for chromosome segregation [Cortes, F., Pastor, N., Mateos, S., Dominguez, I., 2003. The nature of DNA plays a role in chromosome segregation: endoreduplication in halogen-substituted chromosomes. DNA Repair 2, 719-726.], a straightforward model is proposed in which the different mechanisms leading to induced END are considered.
Collapse
Affiliation(s)
- Felipe Cortés
- Department of Cell Biology, Faculty of Biology of Seville, Avenue Reina Mercedes 6, E-41012 Seville, Spain.
| | | | | | | |
Collapse
|
18
|
Jiang SJ, Lin TM, Shi GY, Eng HL, Chen HY, Wu HL. Inhibition of bovine herpesvirus-4 replication in endothelial cells by arsenite. Antiviral Res 2004; 63:167-75. [PMID: 15451184 DOI: 10.1016/j.antiviral.2004.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Accepted: 04/12/2004] [Indexed: 11/24/2022]
Abstract
The effect of arsenite pretreatment on bovine herpesvirus-4 (BHV-4) replication in bovine arterial endothelial (BAE) cells was studied. BHV-4 infectivity, including IE-2 expression, DNA replication and viral yield, were significantly reduced at nontoxic concentrations of arsenite in which cellular DNA synthesis or cell viability of BAE cells were not affected under resting and confluent conditions. This effect was accompanied by the induction of heat shock protein 70 (HSP70) and an interrupted cell cycle (causing cell cultures to accumulate at the S and G2/M phases). Actinomycin D inhibited the induction of HSP70 and reduced arsenite antiviral activity. In conclusion, cellular stress response induced by arsenite in BAE cells inhibited replication of BHV-4, and probably resulted from the induction of HSP70 and interference of cell cycle progression.
Collapse
Affiliation(s)
- Shinn-Jong Jiang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
19
|
Bernstam L, Lan CH, Lee J, Nriagu JO. Effects of arsenic on human keratinocytes: morphological, physiological, and precursor incorporation studies. ENVIRONMENTAL RESEARCH 2002; 89:220-235. [PMID: 12176006 DOI: 10.1006/enrs.2002.4367] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Measurement of in vitro percutaneous absorption of As(III) and As(V) by artificial human skin shows a strong affinity of arsenic for the human keratinocytes, with 1-10% of the applied arsenic dose retained by the artificial skin per hour. The inordinate retention of arsenic by the skin is a risk factor for As toxicity. The calculated permeability constant (K(p)) averaged about 4.3 x 10(-5) cm/h for As(V) and 10.1 x 10(-5) cm/h for As(III). A facile calculation suggests that dermal absorption during showering and hand washing can be an important exposure route if the water contains more than 100 microg/L As(III) or As(V). The effects of the absorbed arsenic in artificial skin were evaluated in terms of morphological characteristics, integrity of the cell membrane (by means of lactate dehydrogenase and MTS assays), and rates of DNA, RNA, and protein synthesis estimated by incorporation of radioactive precursors. We found significant morphological changes, cytotoxicity associated with disruption of the cell membrane, and inhibition of DNA and protein syntheses at As(III) exposure doses as low as 10 microg/L.
Collapse
Affiliation(s)
- Luda Bernstam
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
20
|
Del Razo LM, Quintanilla-Vega B, Brambila-Colombres E, Calderón-Aranda ES, Manno M, Albores A. Stress proteins induced by arsenic. Toxicol Appl Pharmacol 2001; 177:132-48. [PMID: 11740912 DOI: 10.1006/taap.2001.9291] [Citation(s) in RCA: 187] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The elevated expression of stress proteins is considered to be a universal response to adverse conditions, representing a potential mechanism of cellular defense against disease and a potential target for novel therapeutics. Exposure to arsenicals either in vitro or in vivo in a variety of model systems has been shown to cause the induction of a number of the major stress protein families such as heat shock proteins (Hsp). Among them are members with low molecular weight, such as metallotionein and ubiquitin, as well as ones with masses of 27, 32, 60, 70, 90, and 110 kDa. In most of the cases, the induction of stress proteins depends on the capacity of the arsenical to reach the target, its valence, and the type of exposure, arsenite being the biggest inducer of most Hsp in several organs and systems. Hsp induction is a rapid dose-dependent response (1-8 h) to the acute exposure to arsenite. Thus, the stress response appears to be useful to monitor the sublethal toxicity resulting from a single exposure to arsenite. The present paper offers a critical review of the capacity of arsenicals to modulate the expression and/or accumulation of stress proteins. The physiological consequences of the arsenic-induced stress and its usefulness in monitoring effects resulting from arsenic exposure in humans and other organisms are discussed.
Collapse
Affiliation(s)
- L M Del Razo
- Sección de Toxicología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico National, Mexico City, Mexico
| | | | | | | | | | | |
Collapse
|
21
|
Mourón SA, Golijow CD, Dulout FN. DNA damage by cadmium and arsenic salts assessed by the single cell gel electrophoresis assay. Mutat Res 2001; 498:47-55. [PMID: 11673070 DOI: 10.1016/s1383-5718(01)00266-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Human exposure to metals is frequent due to their ubiquity, wide use in industry, and environmental persistence. Direct and indirect genotoxic effects of cadmium (Cd) and arsenic (As) were reported. However, the mechanisms of induction of genetic damage are not well known. The aim of the present work was to evaluate the degree of damage induced by Cd and As salts in a human lung fibroblasts cell line using the single cell gel electrophoresis assay (SCGE). MRC-5 cells were treated with cadmium chloride (CdCl(2)), cadmium sulfate (CdSO(4)), sodium arsenite (NaAsO(2)) and cacodylic acid (C(2)H(7)AsO(2)). A significant dose-dependent increment in the extent of DNA migration as well as in the percentage of cells with tails was observed (P<0.001) after treatment with CdSO(4) and NaAsO(2). Treatment with CdCl(2) induced a relatively low level of DNA strand breaks in comparison with that induced by CdSO(4). The increase migration observed with the three compounds could be originated either by the direct induction of DNA lesions or by the inhibition of excision repair mechanisms. On the other hand, cells treated with C(2)H(7)AsO(2) showed a decrease in the migration length with the three doses employed (P<0.001). The decrease in the rate of DNA migration could be a consequence of the induction of DNA cross-links by organic arsenicals.Cd and As salts induced DNA damage in fibroblast cells, detected as DNA migration in the single cell gel (SCG) assay. The distribution of DNA migration among cells as a function of dose revealed that the majority of exposed cells showed more DNA damage than cells obtained from control cultures. The potential for human exposure to both metals has been increased over the years due to the increment in their use. For this reason, elucidation of carcinogenic mechanisms is very important.
Collapse
Affiliation(s)
- S A Mourón
- Centro de Investigaciones en Genética Básica y Aplicada (CIGEBA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60y 118 s/n, 1900 La Plata, Argentina
| | | | | |
Collapse
|
22
|
Souza K, Maddock DA, Zhang Q, Chen J, Chiu C, Mehta S, Wan Y. Arsenite Activation of PI3K/AKT Cell Survival Pathway is Mediated by p38 in Cultured Human Keratinocytes. Mol Med 2001. [DOI: 10.1007/bf03401967] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
23
|
Bouganim N, David J, Wysocki R, Ramotar D. Yap1 overproduction restores arsenite resistance to the ABC transporter deficient mutant ycf1 by activating ACR3 expression. Biochem Cell Biol 2001. [DOI: 10.1139/o01-033] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ycf1 and Acr3 are transporters that have been previously shown to protect Saccharomyces cerevisiae cells from the toxic effects of arsenite. Ycf1 and Acr3 are positively regulated by distinct, but related bZIP transcriptional activators, Yap1 and Yap8, respectively. In this study, we show that overexpression of Yap1 complemented the arsenite hypersensitivity of the ycf1 null mutant, but only if the ACR3 gene is functional. We further show that the expression of either an ACR3-lacZ promoter fusion reporter or the endogenous ACR3 gene was stimulated by the overproduction of Yap1 upon exposure to arsenite. These data suggest that Yap1 confers arsenite resistance to the ycf1 null mutant by activating expression of the Yap8-dependent target gene, ACR3. Our data also show Yap8-dependent ACR3-lacZ expression was greatly stimulated by arsenite in a dose-dependent manner in the parental strain. However, overproduction of Yap1 in the parental strain severely limited dose-dependent activation of the reporter by arsenite. We conclude that Yap1 may compete with Yap8 for binding to the ACR3 promoter, but is unable to act as a potent activator.Key words: arsenite, ABC transporters, AP-1 factors, overproduction, element, yeast.
Collapse
|
24
|
Basu A, Mahata J, Gupta S, Giri AK. Genetic toxicology of a paradoxical human carcinogen, arsenic: a review. Mutat Res 2001; 488:171-94. [PMID: 11344043 DOI: 10.1016/s1383-5742(01)00056-4] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Arsenic is widely distributed in nature in air, water and soil in the form of either metalloids or chemical compounds. It is used commercially, as pesticide, wood preservative, in the manufacture of glass, paper and semiconductors. Epidemiological and clinical studies indicate that arsenic is a paradoxical human carcinogen that does not easily induce cancer in animal models. It is one of the toxic compounds known in the environment. Intermittent incidents of arsenic contamination in ground water have been reported from several parts of the world. Arsenic containing drinking water has been associated with a variety of skin and internal organ cancers. The wide human exposure to this compound through drinking water throughout the world causes great concern for human health. In the present review, we have attempted to evaluate and update the mutagenic and genotoxic effects of arsenic and its compounds based on available literature.
Collapse
Affiliation(s)
- A Basu
- Division of Human Genetics and Genomics, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Calcutta 700032, India
| | | | | | | |
Collapse
|
25
|
Ho IC, Yih LH, Kao CY, Lee TC. Tin-protoporphyrin potentiates arsenite-induced DNA strand breaks, chromatid breaks and kinetochore-negative micronuclei in human fibroblasts. Mutat Res 2000; 452:41-50. [PMID: 10894889 DOI: 10.1016/s0027-5107(00)00035-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Numerous reports have shown that oxidative stress is involved in arsenite-induced genetic damage. Arsenite is also a potent inducer of heme oxygenase (HO)-1. To understand whether HO-1 could function as a cellular antioxidant and protect cells from arsenite injury, the effects of tin-protoporphyrin (SnPP), a competitive inhibitor of HO-1, on arsenite-induced genetic damage were examined in human skin fibroblasts (HFW). In the present study, we found that SnPP at 100 microM significantly potentiated arsenite-induced cytotoxicity, DNA strand breaks (assayed by alkaline single cell gel electrophoresis(SCGE)), and chromatid breaks. Although arsenite alone mainly induced kinetochore-plus micronuclei (K(+)-MN), SnPP only synergistically enhanced kinetochore-negative micronuclei (K(-)-MN). The increase in K(-)-MN by SnPP cotreatment was consistent with the increase in DNA strand breaks and chromatid breaks caused by SnPP. However, at higher arsenite doses, K(+)-MN was significantly reduced by SnPP. Pretreatment of HFW cells with hemin, an inducer of HO-1, significantly attenuated the cytotoxicity of arsenite. Therefore, the present results suggest that HO-1 induction by arsenite plays certain roles in protecting cells from arsenite-induced injury.
Collapse
Affiliation(s)
- I C Ho
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | | | | |
Collapse
|
26
|
Abstract
Okadaic acid (OA) enhances the resumption of meiosis in mouse oocytes, indicating that serine/threonine protein phosphatase-1 (PP1) and/or PP2A is involved. However, specific identification of PP1 and/or PP2A in mouse oocytes has not been reported. Here we demonstrate that fully grown germinal vesicle-intact (GVI) mouse oocytes contain mRNA corresponding to two isotypes of PP1, PP1alpha and PP1gamma. In addition, the transcript for PP2A was also present. At the protein level only PP1alpha and PP2A were recognized in fully grown GVI oocytes by Western blot analysis. Neither of the PP1gamma spliced variant proteins, PP1gamma1 and PP1gamma2, was detectable. Immunohistochemical analysis of ovarian tissue from gonadotropin-stimulated adult mice resulted in subcellular localization of both PP1alpha and PP2A, but not PP1gamma, in oocytes from all stages of folliculogenesis. In primordial oocytes, PP1alpha and PP2A were present in the cytoplasm. In more advanced stages of oogenesis, PP1alpha, although still present in the cytoplasm, was highly concentrated in the nucleus, whereas PP2A was predominantly cytoplasmic with a distinct reduction in the nuclear area. Both PP1alpha and PP2A were immunodetectable in oocytes during the prepubertal period. Eleven-day-old mouse oocytes, considered OA-insensitive and germinal vesicle breakdown (GVB)-incompetent, displayed both PP1alpha and PP2A predominantly in the cytoplasm. By 15 days of age mouse oocytes, which are beginning to acquire OA sensitivity and GVB competence, showed a relocation of PP1alpha into the nucleoplasm while PP2A remained predominantly cytoplasmic. This is the first specific identification of PP1alpha and PP2A in mouse oocytes. The differential localization of PP1alpha and PP2A, in addition to the relocation of PP1alpha during the acquisition of meiotic competence, suggests that these PPs have distinct regulatory roles during the resumption of meiosis.
Collapse
Affiliation(s)
- G D Smith
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, Illinois, 60637, USA.
| | | | | | | |
Collapse
|
27
|
Hu Y, Su L, Snow ET. Arsenic toxicity is enzyme specific and its affects on ligation are not caused by the direct inhibition of DNA repair enzymes. Mutat Res 1998; 408:203-18. [PMID: 9806419 DOI: 10.1016/s0921-8777(98)00035-4] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The molecular mechanism of arsenic toxicity is believed to be due to the ability of arsenite [As(III)] to bind protein thiols. Numerous studies have shown that arsenic is cytotoxic at micromolar concentrations. Micromolar As can also induce chromosomal damage and inhibit DNA repair. The mechanism of arsenic-induced genotoxicity is very important because arsenic is a human carcinogen, but not a mutagen, and there is a need to establish recommendations for safe levels of As in the environment. We have measured the dose-response for arsenic inhibition of several purified human DNA repair enzymes, including DNA polymerase beta, DNA ligase I and DNA ligase III and have found that most enzymes, even those with critical SH groups, are very insensitive to As. Many repair enzymes are activated by millimolar concentrations of As(III) and/or As(V). Only pyruvate dehydrogenase, one of eight purified enzymes examined so far, is inhibited by micromolar arsenic. In contrast to the purified enzymes, treatment of human cells in culture with micromolar arsenic produces a significant dose-dependent decrease in DNA ligase activity in nuclear extracts from the treated cells. However, the ligase activity in extracts from untreated cells is no more sensitive to arsenic than the purified enzymes. Our results show that direct enzyme inhibition is not a common toxic effect of As and that only a few sensitive enzymes are responsible for arsenic-induced cellular toxicity. Thus, arsenic-induced co-mutagenesis and inhibition of DNA repair is probably not the result of direct enzyme inhibition, but may be an indirect effect caused by As-induced changes in cellular redox levels or alterations in signal transduction pathways and consequent changes in gene expression.
Collapse
Affiliation(s)
- Y Hu
- Nelson Institute of Environmental Medicine and Kaplan Comprehensive Cancer Center, New York University Medical Center, Tuxedo 10987, USA
| | | | | |
Collapse
|
28
|
Mäki-Paakkanen J, Kurttio P, Paldy A, Pekkanen J. Association between the clastogenic effect in peripheral lymphocytes and human exposure to arsenic through drinking water. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1998; 32:301-13. [PMID: 9882004 DOI: 10.1002/(sici)1098-2280(1998)32:4<301::aid-em3>3.0.co;2-i] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We describe the association between structural chromosome aberrations (CAs) and parameters of exposure to arsenic among 42 individuals exposed to arsenic through well waters in Finland. The median concentration of arsenic in the wells was 410 microg/l, the total arsenic concentrations in urine (As-tot) was 180 microg/l, and in hair 1.3 microg/g, for current users (n = 32) of contaminated wells. Urinary arsenic species and CAs were also analyzed in eight control individuals from the same village who consumed water which contained arsenic <1.0 microg/l (detection limit). Increased arsenic exposure, indicated best by increased concentrations of arsenic species (inorganic arsenic, methylarsonic acid (MMA), dimethylarsinic acid (DMA)) in urine, was associated with increased frequency of CAs. The increased urinary ratio of MMA/As-tot and the decreased ratio of DMA/As-tot were associated with increased CAs when all aberration types, including gaps, were considered. Associations between CAs and arsenic exposure indicators were stronger among current users than among persons who had stopped using the contaminated well water for 2-4 months before sampling (ex-users, n = 10). Furthermore, there was a positive but not statistically significant association between CAs and arsenic in hair among the current users, but not among the ex-users, who still had relatively high arsenic concentrations in hair. The results suggest that the effect observed in the present study reflects relatively recent arsenic exposure.
Collapse
Affiliation(s)
- J Mäki-Paakkanen
- Laboratory of Toxicology, National Public Health Institute, Kuopio, Finland
| | | | | | | |
Collapse
|
29
|
Wysocki R, Bobrowicz P, Ułaszewski S. The Saccharomyces cerevisiae ACR3 gene encodes a putative membrane protein involved in arsenite transport. J Biol Chem 1997; 272:30061-6. [PMID: 9374482 DOI: 10.1074/jbc.272.48.30061] [Citation(s) in RCA: 163] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The cluster of three genes, ACR1, ACR2, and ACR3, previously was shown to confer arsenical resistance in Saccharomyces cerevisiae. The overexpression of ACR3 induced high level arsenite resistance. The presence of ACR3 together with ACR2 on a multicopy plasmid was conducive to increased arsenate resistance. The function of ACR3 gene has now been investigated. Amino acid sequence analysis of Acr3p showed that this hypothetical protein has hydrophobic character with 10 putative transmembrane spans and is probably located in yeast plasma membrane. We constructed the acr3 null mutation. The resulting disruptants were 5-fold more sensitive to arsenate and arsenite than wild-type cells. The acr3 disruptants showed wild-type sensitivity to antimony, tellurite, cadmium, and phenylarsine oxide. The mechanism of arsenical resistance was assayed by transport experiments using radioactive arsenite. We did not observe any significant differences in the accumulation of 76AsO33- in wild-type cells, acr1 and acr3 disruptants. However, the high dosage of ACR3 gene resulted in loss of arsenite uptake. These results suggest that arsenite resistance in yeast is mediated by an arsenite transporter (Acr3p).
Collapse
Affiliation(s)
- R Wysocki
- Institute of Microbiology, Wroclaw University, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| | | | | |
Collapse
|
30
|
Lee CH, Lin RH, Liu SH, Lin-Shiau SY. Distinct genotoxicity of phenylmercury acetate in human lymphocytes as compared with other mercury compounds. Mutat Res 1997; 392:269-76. [PMID: 9294027 DOI: 10.1016/s1383-5718(97)00081-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the present study, the frequency of sister chromatid exchanges (SCEs) was assayed to evaluate the genotoxic effects of mercury nitrate (Hg2+), methylmercury chloride (CH3HgCl and phenylmercury acetate (PMA) on human lymphocytes. The free radical scavengers, catalase (CA) and superoxide dismutase (SOD) were tested for their antigenotoxic effects toward PMA. PMA (1-30 microM) increased SCE frequency in a concentration-dependent manner. However, CH3HgCl significantly increased SCE frequency only at a concentration of 20 microM, and all concentrations treated with Hg2+ did not induce a positive effect. On the other hand, we first reported that 30 microM Hg2+, 20 microM CH3HgCl and (3-30 microM) PMA significantly increased the frequency of endoreduplicated mitosis. PMA was about 3- or 5-fold more effective in inducing endoreduplication than CH3HgCl or Hg2+ at equivalent toxic concentrations, respectively. However, neither CA nor SOD in concentrations of 75 and 150 microg/ml showed antagonistic action on the genotoxic effects of PMA. The results suggest that the mechanism of PMA-induced genotoxicity is not mediated by superoxide anion nor H2O2. It is concluded that PMA, which was more effective in inducing the elevation of both SCEs and endoreduplication, may be especially hazardous of the three mercury compounds tested.
Collapse
Affiliation(s)
- C H Lee
- Department of Pharmacology, Chung Shan Medical and Dental College, Taichung, Taiwan
| | | | | | | |
Collapse
|
31
|
Bobrowicz P, Wysocki R, Owsianik G, Goffeau A, Ułaszewski S. Isolation of three contiguous genes, ACR1, ACR2 and ACR3, involved in resistance to arsenic compounds in the yeast Saccharomyces cerevisiae. Yeast 1997; 13:819-28. [PMID: 9234670 DOI: 10.1002/(sici)1097-0061(199707)13:9<819::aid-yea142>3.0.co;2-y] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A 4.2 kb region from Saccharomyces cerevisiae chromosome XVI was isolated as a yeast fragment conferring resistance to 7 mM-sodium arsenite (NaAsO2), when put on a multicopy plasmid. Homology searches revealed a cluster of three new open reading frames named ACR1, ACR2 and ACR3. The hypothetical product of the ACR1 gene is similar to the transcriptional regulatory proteins, encoded by YAP1, and YAP2 genes from S. cerevisiae. Disruption of the ACR1 gene conduces to an arsenite and arsenate hypersensitivity phenotype. The ACR2 gene is indispensable for arsenate but not for arsenite resistance. The hypothetical product of the ACR3 gene shows high similarity to the hypothetical membrane protein encoded by Bacillus subtilis ORF1 of the skin element and weak similarity to the ArsB membrane protein of the Staphylococcus aureus arsenical-resistance operon. Overexpression of the ACR3 gene confers an arsenite- but not an arsenate-resistance phenotype. The presence of ACR3 together with ACR2 on a multicopy plasmid expands the resistance phenotype into arsenate. These findings suggest that all three novel genes: ACR1, ACR2 and ACR3 are involved in the arsenical-resistance phenomenon in S. cerevisiae.
Collapse
Affiliation(s)
- P Bobrowicz
- Institute of Microbiology, Wroclaw University, Poland
| | | | | | | | | |
Collapse
|
32
|
Liu YC, Huang H. Involvement of calcium-dependent protein kinase C in arsenite-induced genotoxicity in chinese hamster ovary cells. J Cell Biochem 1997. [DOI: 10.1002/(sici)1097-4644(19970301)64:3<423::aid-jcb9>3.0.co;2-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
33
|
Kochhar TS, Howard W, Hoffman S, Brammer-Carleton L. Effect of trivalent and pentavalent arsenic in causing chromosome alterations in cultured Chinese hamster ovary (CHO) cells. Toxicol Lett 1996; 84:37-42. [PMID: 8597176 DOI: 10.1016/0378-4274(95)03536-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Sodium salts of trivalent and pentavalent arsenic were tested for their effect in inducing chromosome aberrations and sister-chromatid exchange (SCE) in cultured Chinese hamster ovary (CHO) cells. It was discovered that arsenite (As 3) produced excessive endoreduplication of the chromosomes at higher levels. No endoreduplication was observed with arsenate (As 5) treatment. These agents also elevated the frequencies of SCE, but less so compared to aberrations. The results obtained indicate that arsenic may be carcinogenic in animal system.
Collapse
Affiliation(s)
- T S Kochhar
- Division of Mathematics and Sciences, Kentucky State University, Franfort, KY 40601, USA
| | | | | | | |
Collapse
|