1
|
Guo X, Harada C, Harada T. Asking one mechanism in glial cells during neuroinflammation. Neural Regen Res 2025; 20:1077-1078. [PMID: 38989939 PMCID: PMC11438330 DOI: 10.4103/nrr.nrr-d-24-00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/23/2024] [Accepted: 04/30/2024] [Indexed: 07/12/2024] Open
Affiliation(s)
- Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | |
Collapse
|
2
|
Seki E, Guo X, Namekata K, Komori T, Hayashi H, Arai N, Harada T. ASK1 activation in glial cells in post-mortem multiple sclerosis tissue. Neuropathology 2025; 45:20-29. [PMID: 38775061 DOI: 10.1111/neup.12978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/03/2024] [Revised: 03/18/2024] [Accepted: 04/14/2024] [Indexed: 02/04/2025]
Abstract
Multiple sclerosis (MS), the leading cause of disability in young adults, is an inflammatory disease of the central nervous system characterized by localized areas of demyelination. Apoptosis signal-regulating kinase 1 (ASK1) is a mitogen-activated protein kinase kinase kinase that has been shown to be implicated in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Interestingly, ASK1 signaling regulates glial cell interactions and drives neuroinflammation in EAE mice. To further investigate its clinical significance, in the present study, we examined the activation of ASK1 in the post-mortem brain of MS patients. ASK1 activation was found in active lesions of the corpus callosum in both microglia/macrophages and astrocytes. Moreover, ASK1 activation in astrocytes was higher than that in microglia/macrophages, which was in line with our findings in EAE mice. Our results suggest an important role of ASK1 in glial cells, indicating that ASK1 might be a good therapeutic target for MS.
Collapse
Affiliation(s)
- Erika Seki
- Laboratory of Molecular Pathology and Histology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takashi Komori
- Department of Laboratory Medicine and Pathology (Neuropathology), Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Hiroyuki Hayashi
- Department of Pathology, Yokohama Municipal Citizen's Hospital, Kanagawa, Japan
| | - Nobutaka Arai
- Department of Laboratory Medicine and Pathology (Neuropathology), Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
3
|
Han X, Lan P, Chen Q, Liu H, Chen Z, Wang T, Wang Z. Synthesis and biological evaluation of quinoxaline derivatives as ASK1 inhibitors. J Enzyme Inhib Med Chem 2024; 39:2414382. [PMID: 39431736 PMCID: PMC11494716 DOI: 10.1080/14756366.2024.2414382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/22/2023] [Revised: 09/21/2024] [Accepted: 10/03/2024] [Indexed: 10/22/2024] Open
Abstract
Inhibiting apoptosis signal regulated kinase 1 (ASK1) is an attractive strategy for treating diseases such as non-alcoholic steatohepatitis and multiple sclerosis. Here, we report the discovery of a dibromo substituted quinoxaline fragment containing 26e as an effective small-molecule inhibitor of ASK1, with an IC50 value of 30.17 nM. In addition, the cell survival rate of 26e at different concentrations was greater than 80%, especially at 0.4 μM. Its cell survival rate was significantly higher than GS-4997, indicating its good safety in normal human liver LO2 cells. The Oil Red O staining experiment showed that 26e decreased the lipid droplets in a dose-dependent manner. Further biochemical analyses revealed that 26e could reduce the content of T-CHO, LDL, and TG in FFA-induced LO2 cells, and had the potential to treat non-alcoholic fatty disease. These findings provide a good choice for the future development of ASK1 inhibitors.
Collapse
Affiliation(s)
- Xiaorui Han
- Jiangxi Provincial Key Laboratory of TCM Female Reproductive Health and Related Diseases Research and Transformation, Jiangxi University of Chinese Medicine, Nanchang, PR China
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, PR China
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, PR China
| | - Pingping Lan
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, PR China
| | - Qianfeng Chen
- College of Chinese Medicine and Life Science, Jiangxi University of Chinese Medicine, Nanchang, PR China
| | - Hua Liu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, PR China
| | - Zhongwen Chen
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, PR China
| | - Tiantian Wang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, PR China
| | - Zengtao Wang
- Jiangxi Provincial Key Laboratory of TCM Female Reproductive Health and Related Diseases Research and Transformation, Jiangxi University of Chinese Medicine, Nanchang, PR China
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, PR China
| |
Collapse
|
4
|
Shen J, Lai W, Li Z, Zhu W, Bai X, Yang Z, Wang Q, Ji J. SDS3 regulates microglial inflammation by modulating the expression of the upstream kinase ASK1 in the p38 MAPK signaling pathway. Inflamm Res 2024; 73:1547-1564. [PMID: 39008037 PMCID: PMC11349808 DOI: 10.1007/s00011-024-01913-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/07/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Microglia, the main innate immune cells in the central nervous system, are key drivers of neuroinflammation, which plays a crucial role in the pathogenesis of neurodegenerative diseases. The Sin3/histone deacetylase (HDAC) complex, a highly conserved multiprotein co-repressor complex, primarily performs transcriptional repression via deacetylase activity; however, the function of SDS3, which maintains the integrity of the complex, in microglia remains unclear. METHODS To uncover the regulatory role of the transcriptional co-repressor SDS3 in microglial inflammation, we used chromatin immunoprecipitation to identify SDS3 target genes and combined with transcriptomics and proteomics analysis to explore expression changes in cells following SDS3 knocking down. Subsequently, we validated our findings through experimental assays. RESULTS Our analysis revealed that SDS3 modulates the expression of the upstream kinase ASK1 of the p38 MAPK pathway, thus regulating the activation of signaling pathways and ultimately influencing inflammation. CONCLUSIONS Our findings provide important evidence of the contributions of SDS3 toward microglial inflammation and offer new insights into the regulatory mechanisms of microglial inflammatory responses.
Collapse
Affiliation(s)
- Jian Shen
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Wenjia Lai
- Division of Nanotechnology Development, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zeyang Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Wenyuan Zhu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Xue Bai
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Zihao Yang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qingsong Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Jianguo Ji
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
5
|
Darlami O, Pun R, Ahn SH, Kim SH, Shin D. Macrocyclization strategy for improving candidate profiles in medicinal chemistry. Eur J Med Chem 2024; 272:116501. [PMID: 38754142 DOI: 10.1016/j.ejmech.2024.116501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/06/2024] [Revised: 05/12/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
Macrocycles are defined as cyclic compounds with 12 or more members. In medicinal chemistry, they are categorized based on their core chemistry into cyclic peptides and macrocycles. Macrocycles are advantageous because of their structural diversity and ability to achieve high affinity and selectivity towards challenging targets that are often not addressable by conventional small molecules. The potential of macrocyclization to optimize drug-like properties while maintaining adequate bioavailability and permeability has been emphasized as a key innovation in medicinal chemistry. This review provides a detailed case study of the application of macrocyclization over the past 5 years, starting from the initial analysis of acyclic active compounds to optimization of the resulting macrocycles for improved efficacy and drug-like properties. Additionally, it illustrates the strategic value of macrocyclization in contemporary drug discovery efforts.
Collapse
Affiliation(s)
- Om Darlami
- College of Pharmacy, Gachon University, Hambakmoe-ro 191, Yeunsu-gu, Incheon, 21935, Republic of Korea
| | - Rabin Pun
- College of Pharmacy, Gachon University, Hambakmoe-ro 191, Yeunsu-gu, Incheon, 21935, Republic of Korea
| | - Sung-Hoon Ahn
- College of Pharmacy, Kangwon National University, Gangwondaehak-gil 1, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Seok-Ho Kim
- College of Pharmacy, Kangwon National University, Gangwondaehak-gil 1, Chuncheon, Gangwon-do, 24341, Republic of Korea.
| | - Dongyun Shin
- College of Pharmacy, Gachon University, Hambakmoe-ro 191, Yeunsu-gu, Incheon, 21935, Republic of Korea.
| |
Collapse
|
6
|
Yan H, He L, Lv D, Yang J, Yuan Z. The Role of the Dysregulated JNK Signaling Pathway in the Pathogenesis of Human Diseases and Its Potential Therapeutic Strategies: A Comprehensive Review. Biomolecules 2024; 14:243. [PMID: 38397480 PMCID: PMC10887252 DOI: 10.3390/biom14020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/06/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
JNK is named after c-Jun N-terminal kinase, as it is responsible for phosphorylating c-Jun. As a member of the mitogen-activated protein kinase (MAPK) family, JNK is also known as stress-activated kinase (SAPK) because it can be activated by extracellular stresses including growth factor, UV irradiation, and virus infection. Functionally, JNK regulates various cell behaviors such as cell differentiation, proliferation, survival, and metabolic reprogramming. Dysregulated JNK signaling contributes to several types of human diseases. Although the role of the JNK pathway in a single disease has been summarized in several previous publications, a comprehensive review of its role in multiple kinds of human diseases is missing. In this review, we begin by introducing the landmark discoveries, structures, tissue expression, and activation mechanisms of the JNK pathway. Next, we come to the focus of this work: a comprehensive summary of the role of the deregulated JNK pathway in multiple kinds of diseases. Beyond that, we also discuss the current strategies for targeting the JNK pathway for therapeutic intervention and summarize the application of JNK inhibitors as well as several challenges now faced. We expect that this review can provide a more comprehensive insight into the critical role of the JNK pathway in the pathogenesis of human diseases and hope that it also provides important clues for ameliorating disease conditions.
Collapse
Affiliation(s)
- Huaying Yan
- Department of Ultrasound, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (H.Y.); (L.H.)
| | - Lanfang He
- Department of Ultrasound, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (H.Y.); (L.H.)
| | - De Lv
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Jun Yang
- Cancer Center and State Key Laboratory of Biotherapy, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Zhu Yuan
- Cancer Center and State Key Laboratory of Biotherapy, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China;
| |
Collapse
|
7
|
Sadier NS, El Hajjar F, Al Sabouri AAK, Abou-Abbas L, Siomava N, Almutary AG, Tambuwala MM. Irisin: An unveiled bridge between physical exercise and a healthy brain. Life Sci 2024; 339:122393. [PMID: 38176582 DOI: 10.1016/j.lfs.2023.122393] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/03/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 01/06/2024]
Abstract
AIMS Physical exercise has been widely recognized for its positive effects on health and well-being. Recently, the impact of exercise on the nervous system has gained attention, with evidence indicating improvements in attention, memory, neurogenesis, and the release of "happiness hormones." One potential mediator of these benefits is Irisin, a myokine induced by exercise that can cross the blood-brain barrier, reduce neuroinflammation, and counteract neurodegeneration. The objective of this study is to conduct a systematic review of animal trials to summarize the neuroprotective effects of Irisin injection in mitigating neuroinflammation and neurodegeneration. MATERIALS AND METHODS Two independent reviewers screened three databases (PubMed, Embase, and Google Scholar) in November 2022. Animal studies assessing the neuroprotective effects of Irisin in mitigating neuroinflammation or counteracting neurodegeneration were included. The methodological quality of the included studies was assessed using SYRCLE's Risk of Bias tool. KEY FINDINGS Twelve studies met the inclusion criteria. Irisin injection in rodents significantly reduced neuroinflammation, cytokine cascades, and neurodegeneration. It also protected neurons from damage and apoptosis, reduced oxidative stress, blood-brain barrier disruption, and neurobehavioral deficits following disease or injury. Various mechanisms were suggested to be responsible for these neuroprotective effects. Most of the included studies presented a low risk of bias based on SYRCLE's Risk of Bias tool. Irisin injection demonstrated the potential to alleviate neuroinflammation and counteract neurodegeneration in rodent models through multiple pathways. However, further research is needed to fully understand its mechanism of action and its potential applications in clinical practice and drug discovery.
Collapse
Affiliation(s)
- Najwane Said Sadier
- College of Health Sciences, Abu Dhabi University, Al Ain Road, Abu Dhabi, PO Box 3838-111188, United Arab Emirates; Neurosciences Research Center, Faculty of Medical Sciences, Lebanese University, 275 Old Saida Road, Beirut, PO Box 6573/14, Lebanon.
| | - Farah El Hajjar
- Neurosciences Research Center, Faculty of Medical Sciences, Lebanese University, 275 Old Saida Road, Beirut, PO Box 6573/14, Lebanon.
| | - Amani Al Khayat Al Sabouri
- Neurosciences Research Center, Faculty of Medical Sciences, Lebanese University, 275 Old Saida Road, Beirut, PO Box 6573/14, Lebanon
| | - Linda Abou-Abbas
- Neurosciences Research Center, Faculty of Medical Sciences, Lebanese University, 275 Old Saida Road, Beirut, PO Box 6573/14, Lebanon; INSPECT-LB (Institut National de Santé Publique, d'Épidémiologie Clinique et de Toxicologie-Liban), Beirut, Lebanon.
| | - Natalia Siomava
- Department of Biology, Belarusian State University, Minsk, Belarus
| | - Abdulmajeed G Almutary
- College of Health Sciences, Abu Dhabi University, Al Ain Road, Abu Dhabi, PO Box 3838-111188, United Arab Emirates; Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia.
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, England, United Kingdom; College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
| |
Collapse
|
8
|
Dogan EO, Bouley J, Zhong J, Harkins AL, Keeler AM, Bosco DA, Brown RH, Henninger N. Genetic ablation of Sarm1 attenuates expression and mislocalization of phosphorylated TDP-43 after mouse repetitive traumatic brain injury. Acta Neuropathol Commun 2023; 11:206. [PMID: 38124145 PMCID: PMC10731794 DOI: 10.1186/s40478-023-01709-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/15/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Traumatic brain injury (TBI), particularly when moderate-to-severe and repetitive, is a strong environmental risk factor for several progressive neurodegenerative disorders. Mislocalization and deposition of transactive response DNA binding protein 43 (TDP-43) has been reported in both TBI and TBI-associated neurodegenerative diseases. It has been hypothesized that axonal pathology, an early event after TBI, may promote TDP-43 dysregulation and serve as a trigger for neurodegenerative processes. We sought to determine whether blocking the prodegenerative Sarm1 (sterile alpha and TIR motif containing 1) axon death pathway attenuates TDP-43 pathology after TBI. We subjected 111 male Sarm1 wild type, hemizygous, and knockout mice to moderate-to-severe repetitive TBI (rTBI) using a previously established injury paradigm. We conducted serial neurological assessments followed by histological analyses (NeuN, MBP, Iba-1, GFAP, pTDP-43, and AT8) at 1 month after rTBI. Genetic ablation of the Sarm1 gene attenuated the expression and mislocalization of phosphorylated TDP-43 (pTDP-43) and accumulation of pTau. In addition, Sarm1 knockout mice had significantly improved cortical neuronal and axonal integrity, functional deficits, and improved overall survival after rTBI. In contrast, removal of one Sarm1 allele delayed, but did not prevent, neurological deficits and neuroaxonal loss. Nevertheless, Sarm1 haploinsufficient mice showed significantly less microgliosis, pTDP-43 pathology, and pTau accumulation when compared to wild type mice. These data indicate that the Sarm1-mediated prodegenerative pathway contributes to pathogenesis in rTBI including the pathological accumulation of pTDP-43. This suggests that anti-Sarm1 therapeutics are a viable approach for preserving neurological function after moderate-to-severe rTBI.
Collapse
Affiliation(s)
- Elif O Dogan
- Department of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA
| | - James Bouley
- Department of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA
| | - Jianjun Zhong
- Department of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ashley L Harkins
- Department of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Allison M Keeler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Daryl A Bosco
- Department of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA
| | - Nils Henninger
- Department of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA.
- Department of Psychiatry, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA.
| |
Collapse
|
9
|
Wang T, Pang L, He M, Wang Z. Small-molecule inhibitors targeting apoptosis signal-regulated kinase 1. Eur J Med Chem 2023; 262:115889. [PMID: 37883895 DOI: 10.1016/j.ejmech.2023.115889] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/13/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
Apoptosis signal regulated kinase 1 (ASK1, also known as MAP3K5) is a member of the mitogen activated protein kinase kinase kinase (MAP3K) family. Since its first isolation from a human macrophage library in 1996, its research has been ongoing for over 25 years. A large number of reports have revealed that ASK1, as a key activator of the p38 mitogen-activated protein kinase and c-Jun N-terminal kinase (JNK) signaling cascade, responds to various stressors, and its inhibitors have important potential value in the treatment of diseases such as inflammation, cancer, and the nervous system and so on. This review summarizes the recent development in this field, including the structure and signaling pathways of ASK1, with a particular focus on the structure-activity relationships, and the hit-to-lead optimization strategies.
Collapse
Affiliation(s)
- Tiantian Wang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, PR China; National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, PR China
| | - Lidan Pang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, PR China
| | - Mengni He
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, PR China
| | - Zengtao Wang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, PR China.
| |
Collapse
|
10
|
EL-Seedy A, Pellerin L, Page G, Ladeveze V. Identification of Intron Retention in the Slc16a3 Gene Transcript Encoding the Transporter MCT4 in the Brain of Aged and Alzheimer-Disease Model (APPswePS1dE9) Mice. Genes (Basel) 2023; 14:1949. [PMID: 37895298 PMCID: PMC10606527 DOI: 10.3390/genes14101949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/21/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
The monocarboxylate transporter 4 (MCT4; Slc16a3) is expressed in the central nervous system, notably by astrocytes. It is implicated in lactate release and the regulation of glycolytic flux. Whether its expression varies during normal and/or pathological aging is unclear. As the presence of its mature transcript in the brain of young and old mice was determined, an unexpectedly longer RT-PCR fragment was detected in the mouse frontal cortex and hippocampus at 12 vs. 3 months of age. Cultured astrocytes expressed the expected 516 base pair (bp) fragment but treatment with IL-1β to mimic inflammation as can occur during aging led to the additional expression of a 928 bp fragment like that seen in aged mice. In contrast, cultured pericytes (a component of the blood-brain barrier) only exhibited the 516 bp fragment. Intriguingly, cultured endothelial cells constitutively expressed both fragments. When RT-PCR was performed on brain subregions of an Alzheimer mouse model (APPswePS1dE9), no fragment was detected at 3 months, while only the 928 bp fragment was present at 12 months. Sequencing of MCT4 RT-PCR products revealed the presence of a remaining intron between exon 2 and 3, giving rise to the longer fragment detected by RT-PCR. These results unravel the existence of intron retention for the MCT4 gene in the central nervous system. Such alternative splicing appears to increase with age in the brain and might be prominent in neurodegenerative diseases such as Alzheimer's disease. Hence, further studies in vitro and in vivo of intron 2 retention in the Slc16a3 gene transcript are required for adequate characterization concerning the biological roles of Slc16a3 isoforms in the context of aging and Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Ayman EL-Seedy
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Alexandria University, Aflaton Street, El-Shatby, Alexandria 21545, Egypt;
- Neurovascular Unit and Cognitive Disorders (NEUVACOD), Faculty of Pharmacy (GP), Faculty of Fundamental and Applied Science (VL), University of Poitiers, Pôle Biologie Santé, 86073 Poitiers, France;
| | - Luc Pellerin
- IRMETIST, INSERM, Faculty of Medicine, University of Poitiers (U1313), CHU de Poitiers, 86021 Poitiers, France;
| | - Guylène Page
- Neurovascular Unit and Cognitive Disorders (NEUVACOD), Faculty of Pharmacy (GP), Faculty of Fundamental and Applied Science (VL), University of Poitiers, Pôle Biologie Santé, 86073 Poitiers, France;
| | - Veronique Ladeveze
- Neurovascular Unit and Cognitive Disorders (NEUVACOD), Faculty of Pharmacy (GP), Faculty of Fundamental and Applied Science (VL), University of Poitiers, Pôle Biologie Santé, 86073 Poitiers, France;
| |
Collapse
|
11
|
Ghafouri-Fard S, Gholipour M, Eslami S, Hussen BM, Taheri M, Samadian M, Omrani MD. Abnormal expression of MAPK14-related lncRNAs in the peripheral blood of patients with multiple sclerosis. Noncoding RNA Res 2023; 8:335-339. [PMID: 37091283 PMCID: PMC10114144 DOI: 10.1016/j.ncrna.2023.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/01/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 04/25/2023] Open
Abstract
Introduction Contribution of MAPK14 in the pathogenesis of multiple sclerosis (MS) has been proposed by several studies. Long non-coding RNA (lncRNA) have been suggested to be functionally linked with Mitogen-activated protein kinase 14 (MAPK14). Methods Expression levels of MAPK14 and its associated lncRNAs were measured in the circulation of MS patients compared with control subjects. Results Expression levels of NORAD and RAD51-AS1 were higher in total patients compared with controls (Expression ratio (95% CI) = 1.4 (1.04-1.89), P value = 0.015 and Expression ratio (95% CI) = 1.91 (1.43-2.6), P value = 0.0001, respectively). Conversely, ZNRD1ASP was under-expressed in cases compared with controls (Expression ratio (95% CI) = 0.61 (0.41-0.8), P value = 0.0005). In spite of the observed abnormal expression levels of these lncRNAs in the circulation of MS patients, their expressions were not correlated with Expanded Disability Status Scale (EDSS) score, disease duration or age at disease onset. Conclusion To sum up, the current investigation shows dysregulation of MAPK14-related lncRNAs in MS patients.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholipour
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Solat Eslami
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Corresponding author. Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Samadian
- Department of Neurosurgery, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding author.
| | - Mir Davood Omrani
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding author.
| |
Collapse
|
12
|
Buonfiglio F, Böhm EW, Pfeiffer N, Gericke A. Oxidative Stress: A Suitable Therapeutic Target for Optic Nerve Diseases? Antioxidants (Basel) 2023; 12:1465. [PMID: 37508003 PMCID: PMC10376185 DOI: 10.3390/antiox12071465] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/27/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Optic nerve disorders encompass a wide spectrum of conditions characterized by the loss of retinal ganglion cells (RGCs) and subsequent degeneration of the optic nerve. The etiology of these disorders can vary significantly, but emerging research highlights the crucial role of oxidative stress, an imbalance in the redox status characterized by an excess of reactive oxygen species (ROS), in driving cell death through apoptosis, autophagy, and inflammation. This review provides an overview of ROS-related processes underlying four extensively studied optic nerve diseases: glaucoma, Leber's hereditary optic neuropathy (LHON), anterior ischemic optic neuropathy (AION), and optic neuritis (ON). Furthermore, we present preclinical findings on antioxidants, with the objective of evaluating the potential therapeutic benefits of targeting oxidative stress in the treatment of optic neuropathies.
Collapse
Affiliation(s)
- Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (E.W.B.); (N.P.)
| | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (E.W.B.); (N.P.)
| |
Collapse
|
13
|
Kumar P, Mathew S, Gamage R, Bodkin F, Doyle K, Rossetti I, Wagnon I, Zhou X, Raju R, Gyengesi E, Münch G. From the Bush to the Brain: Preclinical Stages of Ethnobotanical Anti-Inflammatory and Neuroprotective Drug Discovery-An Australian Example. Int J Mol Sci 2023; 24:11086. [PMID: 37446262 DOI: 10.3390/ijms241311086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/12/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
The Australian rainforest is a rich source of medicinal plants that have evolved in the face of dramatic environmental challenges over a million years due to its prolonged geographical isolation from other continents. The rainforest consists of an inherent richness of plant secondary metabolites that are the most intense in the rainforest. The search for more potent and more bioavailable compounds from other plant sources is ongoing, and our short review will outline the pathways from the discovery of bioactive plants to the structural identification of active compounds, testing for potency, and then neuroprotection in a triculture system, and finally, the validation in an appropriate neuro-inflammatory mouse model, using some examples from our current research. We will focus on neuroinflammation as a potential treatment target for neurodegenerative diseases including multiple sclerosis (MS), Parkinson's (PD), and Alzheimer's disease (AD) for these plant-derived, anti-inflammatory molecules and highlight cytokine suppressive anti-inflammatory drugs (CSAIDs) as a better alternative to conventional nonsteroidal anti-inflammatory drugs (NSAIDs) to treat neuroinflammatory disorders.
Collapse
Affiliation(s)
- Payaal Kumar
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Shintu Mathew
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Rashmi Gamage
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Frances Bodkin
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Kerrie Doyle
- Indigenous Health Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Ilaria Rossetti
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Ingrid Wagnon
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Ritesh Raju
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Erika Gyengesi
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Gerald Münch
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| |
Collapse
|
14
|
Dabi YT, Ajagbe AO, Degechisa ST. Toll-like receptors in pathogenesis of neurodegenerative diseases and their therapeutic potential. Immun Inflamm Dis 2023; 11:e839. [PMID: 37102648 PMCID: PMC10116887 DOI: 10.1002/iid3.839] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 04/28/2023] Open
Abstract
Toll-like receptors (TLRs) are a family of pattern-recognition receptors triggered by pathogen-derived and tissue-damage-related ligands. TLRs were previously believed to only be expressed in immune cells. However, it is now confirmed that they are ubiquitously expressed in cells within the body including neurons, astrocytes, and microglia of the central nervous system (CNS). Activation of TLRs is capable of inducing immunologic and inflammatory responses to injury or infection of CNS. This response is self-limiting that usually resolves once the infection has been eradicated or the tissue damage has been repaired. However, the persistence of inflammation-inducing insults or a failure in normal resolution mechanisms may result in overwhelming inflammation which may induce neurodegeneration. This implies that TLRs may play a role in mediating the link between inflammation and neurodegenerative diseases namely Alzheimer's disease, Parkinson's disease, Huntington's disease, stroke, and amyotrophic lateral sclerosis. So, new therapeutic approaches that specifically target TLRs may be developed by better understanding TLR expression mechanisms in the CNS and their connections to particular neurodegenerative disorders. Therefore, this review paper discussed the role of TLRs in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yosef Tsegaye Dabi
- Department of Medical Laboratory Science, Institute of Health SciencesWollega UniversityNekemteEthiopia
| | - Abayomi O. Ajagbe
- Department of Anatomy, College of Health Sciences, Faculty of Basic Medical SciencesNile University of NigeriaAbujaNigeria
| | - Sisay T. Degechisa
- Department of Medical Biochemistry, School of Medicine, College of Health SciencesAddis Ababa UniversityAddis AbabaEthiopia
- Department of Medical Laboratory Sciences, College of Medicine and Health SciencesArba Minch UniversityArba MinchEthiopia
| |
Collapse
|
15
|
Shen WC, Huang BQ, Yang J. Regulatory mechanisms of retinal ganglion cell death in normal tension glaucoma and potential therapies. Neural Regen Res 2023; 18:87-93. [PMID: 35799514 PMCID: PMC9241424 DOI: 10.4103/1673-5374.344831] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/04/2022] Open
Abstract
Normal tension glaucoma (NTG) is a multifactorial optic neuropathy characterized by normal intraocular pressure, progressive retinal ganglion cell (RGC) death, and glaucomatous visual field loss. Recent studies have described the mechanisms underlying the pathogenesis of NTG. In addition to controlling intraocular pressure, neuroprotection and reduction of RGC degeneration may be beneficial therapies for NTG. In this review, we summarized the main regulatory mechanisms of RGC death in NTG, including autophagy, glutamate neurotoxicity, oxidative stress, neuroinflammation, immunity, and vasoconstriction. Autophagy can be induced by retinal hypoxia and axonal damage. In this process, ischemia can cause mutations of optineurin and activate the nuclear factor-kappa B pathway. Glutamate neurotoxicity is induced by the over-stimulation of N-methyl-D-aspartate membrane receptors by glutamate, which occurs in RGCs and induces progressive glaucomatous optic neuropathy. Oxidative stress also participates in NTG-related glaucomatous optic neuropathy. It impairs the mitochondrial and DNA function of RGCs through the apoptosis signal-regulating kinase-JUN N-terminal kinase pathway. Moreover, it increases inflammation and the immune response of RGCs. Endothelin 1 causes endothelial dysfunction and impairment of ocular blood flow, promoting vasospasm and glaucomatous optic neuropathy, as a result of NTG. In conclusion, we discussed research progress on potential options for the protection of RGCs, including TANK binding kinase 1 inhibitors regulating autophagy, N-methyl-D-aspartate receptor antagonists inhibiting glutamate toxicity, ASK1 inhibitors regulating mitochondrial function, and antioxidants inhibiting oxidative stress. In NTG, RGC death is regulated by a network of mechanisms, while various potential targets protect RGCs. Collectively, these findings provide insight into the pathogenesis of NTG and potential therapeutic strategies.
Collapse
|
16
|
Lee JH, Ji SH, Lim JS, Ahn S, Yun HY, Kim SH, Song JS. Anti-neuroinflammatory Effects and Brain Pharmacokinetic Properties of Selonsertib, an Apoptosis signal-regulating Kinase 1 Inhibitor, in mice. Neurochem Res 2022; 47:3829-3837. [PMID: 36309631 DOI: 10.1007/s11064-022-03777-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/11/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 12/14/2022]
Abstract
Selonsertib is a first-in-class apoptosis signal-regulating kinase 1 (ASK1) inhibitor in clinical trials for treating NASH and diabetic kidney disease due to its anti-inflammatory and anti-fibrotic activities. In the present study, we investigated the anti-neuroinflammatory effects and brain pharmacokinetic properties of selonsertib. It inhibited inflammatory cytokines and NO production by suppressing phosphorylated ASK1 in the LPS-stimulated microglial cell line, BV2 cells. Consistent with the in vitro results, selonsertib attenuated plasma and brain TNF-α levels in the LPS-induced murine neuroinflammation model. In vitro and in vivo pharmacokinetic studies of selonsertib were conducted in support of central nervous system (CNS) drug discovery. In both Caco-2 and MDR-MDCK cells, selonsertib exhibited a high efflux ratio, showing that it is a P-gp substrate. Selonsertib was rapidly and effectively absorbed into the systemic circulation after oral treatment, with a Tmax of 0.5 h and oral bioavailability of 74%. In comparison with high systemic exposure with Cmax of 16.2 µg/ml and AUC of 64 µg·h/mL following oral dosing of 10 mg/kg, the brain disposition of selonsertib was limited, with Cmax of 0.08 µg/g and Kp value of 0.004. This study demonstrates that selonsertib can be a therapeutic agent for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Ji Hun Lee
- Data Convergence Drug Research Center, Therapeutics & Biotechnology Division, Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, 34114, Daejeon, Korea.,College of Pharmacy, Chungnam National University, Daejeon, Korea.,New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundataion, 41061, Daegu, Korea
| | - Sang Hee Ji
- Drug Discovery Platform Research Center, Therapeutics & Biotechnology Division, Research Institute of Chemical Technology, 34114, Daejeon, Korea.,Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Korea
| | - Jong Seung Lim
- Data Convergence Drug Research Center, Therapeutics & Biotechnology Division, Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, 34114, Daejeon, Korea
| | - Sunjoo Ahn
- Data Convergence Drug Research Center, Therapeutics & Biotechnology Division, Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, 34114, Daejeon, Korea
| | - Hwi-Yeol Yun
- College of Pharmacy, Chungnam National University, Daejeon, Korea
| | - Seong Hwan Kim
- Drug Discovery Platform Research Center, Therapeutics & Biotechnology Division, Research Institute of Chemical Technology, 34114, Daejeon, Korea. .,Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Korea.
| | - Jin Sook Song
- Data Convergence Drug Research Center, Therapeutics & Biotechnology Division, Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, 34114, Daejeon, Korea.
| |
Collapse
|
17
|
Baratta AM, Mangieri RA, Aziz HC, Lopez MF, Farris SP, Homanics GE. Effect of chronic intermittent ethanol vapor exposure on RNA content of brain-derived extracellular vesicles. Alcohol 2022; 105:9-24. [PMID: 36055466 PMCID: PMC10173183 DOI: 10.1016/j.alcohol.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/17/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 01/26/2023]
Abstract
Extracellular vesicles (EVs) are important players in normal biological function and disease pathogenesis. Of the many biomolecules packaged into EVs, coding and noncoding RNA transcripts are of particular interest for their ability to significantly alter cellular and molecular processes. Here we investigate how chronic ethanol exposure impacts EV RNA cargo and the functional outcomes of these changes. Following chronic intermittent ethanol (CIE) vapor exposure, EVs were isolated from male and female C57BL/6J mouse brain. Total RNA from EVs was analyzed by lncRNA/mRNA microarray to survey changes in RNA cargo following vapor exposure. Differential expression analysis of microarray data revealed a number of lncRNA and mRNA types differentially expressed in CIE compared to control EVs. Weighted gene co-expression network analysis identified multiple male and female specific modules related to neuroinflammation, cell death, demyelination, and synapse organization. To functionally test these changes, whole-cell voltage-clamp recordings were used to assess synaptic transmission. Incubation of nucleus accumbens brain slices with EVs led to a reduction in spontaneous excitatory postsynaptic current amplitude, although no changes in synaptic transmission were observed between control and CIE EV administration. These results indicate that CIE vapor exposure significantly changes the RNA cargo of brain-derived EVs, which have the ability to impact neuronal function.
Collapse
Affiliation(s)
- Annalisa M Baratta
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Regina A Mangieri
- College of Pharmacy, University of Texas at Austin, Texas, United States
| | - Heather C Aziz
- College of Pharmacy, University of Texas at Austin, Texas, United States
| | - Marcelo F Lopez
- Department of Psychiatry and Behavioral Science, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Sean P Farris
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States; Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States; Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Gregg E Homanics
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States; Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States.
| |
Collapse
|
18
|
Xu Z, Chu M. Advances in Immunosuppressive Agents Based on Signal Pathway. Front Pharmacol 2022; 13:917162. [PMID: 35694243 PMCID: PMC9178660 DOI: 10.3389/fphar.2022.917162] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/10/2022] [Accepted: 05/02/2022] [Indexed: 12/13/2022] Open
Abstract
Immune abnormality involves in various diseases, such as infection, allergic diseases, autoimmune diseases, as well as transplantation. Several signal pathways have been demonstrated to play a central role in the immune response, including JAK/STAT, NF-κB, PI3K/AKT-mTOR, MAPK, and Keap1/Nrf2/ARE pathway, in which multiple targets have been used to develop immunosuppressive agents. In recent years, varieties of immunosuppressive agents have been approved for clinical use, such as the JAK inhibitor tofacitinib and the mTOR inhibitor everolimus, which have shown good therapeutic effects. Additionally, many immunosuppressive agents are still in clinical trials or preclinical studies. In this review, we classified the immunosuppressive agents according to the immunopharmacological mechanisms, and summarized the phase of immunosuppressive agents.
Collapse
Affiliation(s)
- Zhiqing Xu
- Department of Immunology, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University, Beijing, China
- Department of Pharmacology, Jilin University, Changchun, China
| | - Ming Chu
- Department of Immunology, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
19
|
Zhou X, Venigalla M, Raju R, Münch G. Pharmacological considerations for treating neuroinflammation with curcumin in Alzheimer's disease. J Neural Transm (Vienna) 2022; 129:755-771. [PMID: 35294663 DOI: 10.1007/s00702-022-02480-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 12/14/2022]
Abstract
Prof. Dr. Peter Riederer, the former Head of the Neurochemistry Department of the Psychiatry and Psychotherapy Clinic at the University of Würzburg (Germany), has been one of the pioneers of research into oxidative stress in Parkinson's and Alzheimer's disease (AD). This review will outline how his scientific contribution to the field has opened a new direction for AD treatment beyond "plaques and tangles". In the 1990s, Prof. Riederer was one of the first scientists who proposed oxidative stress and neuroinflammation as one of the major contributors to Alzheimer's disease, despite the overwhelming support for the "amyloid-only" hypothesis at the time, which postulated that the sole and only cause of AD is β-amyloid. His group also highlighted the role of advanced glycation end products, sugar and dicarbonyl-derived protein modifications, which crosslink proteins into insoluble aggregates and potent pro-inflammatory activators of microglia. For the treatment of chronic neuroinflammation, he and his group suggested that the most appropriate drug class would be cytokine-suppressive anti-inflammatory drugs (CSAIDs) which have a broader anti-inflammatory action range than conventional non-steroidal anti-inflammatory drugs. One of the most potent CSAIDs is curcumin, but it suffers from a variety of pharmacokinetic disadvantages including low bioavailability, which might have tainted many human clinical trials. Although a variety of oral formulations with increased bioavailability have been developed, curcumin's absorption after oral delivery is too low to reach therapeutic concentrations in the micromolar range in the systemic circulation and the brain. This review will conclude with evidence that rectally applied suppositories might be the best alternatives to oral medications, as this route will be able to evade first-pass metabolism in the liver and achieve high concentrations of curcumin in plasma and tissues, including the brain.
Collapse
Affiliation(s)
- Xian Zhou
- NICM Health Research Institute, Western Sydney University, 158-160 Hawkesbury Rd, Westmead, NSW, 2145, Australia
| | - Madhuri Venigalla
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Ritesh Raju
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Gerald Münch
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia.
| |
Collapse
|
20
|
ASK1 signaling regulates phase-specific glial interactions during neuroinflammation. Proc Natl Acad Sci U S A 2022; 119:2103812119. [PMID: 35101972 PMCID: PMC8832969 DOI: 10.1073/pnas.2103812119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 12/06/2021] [Indexed: 01/08/2023] Open
Abstract
Neuroinflammation is associated with many neurodegenerative diseases such as Alzheimer’s disease and multiple sclerosis (MS). Thus, decreasing neuroinflammation may be a promising treatment for these diseases. Apoptosis signal-related kinase 1 (ASK1) has been shown to cause neuroinflammation in neurodegenerative disease models, but its mechanism of action has been unclear. Here, we generated conditional knockout mice that lack ASK1 in T cells, dendritic cells, microglia/macrophages, microglia, or astrocytes, to assess the roles of ASK1 during experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. We propose that ASK1 is required in microglia and astrocytes to cause and maintain neuroinflammation by a feedback loop between these two cell types. Neuroinflammation is well known to be associated with neurodegenerative diseases. Apoptosis signal-regulating kinase 1 (ASK1) is a mitogen-activated protein kinase kinase kinase that has been implicated in neuroinflammation, but its precise cellular and molecular mechanisms remain unknown. In this study, we generated conditional knockout (CKO) mice that lack ASK1 in T cells, dendritic cells, microglia/macrophages, microglia, or astrocytes, to assess the roles of ASK1 during experimental autoimmune encephalomyelitis (EAE). We found that neuroinflammation was reduced in both the early and later stages of EAE in microglia/macrophage-specific ASK1 knockout mice, whereas only the later-stage neuroinflammation was ameliorated in astrocyte-specific ASK1 knockout mice. ASK1 deficiency in T cells and dendritic cells had no significant effects on EAE severity. Further, we found that ASK1 in microglia/macrophages induces a proinflammatory environment, which subsequently activates astrocytes to exacerbate neuroinflammation. Microglia-specific ASK1 deletion was achieved using a CX3CR1CreER system, and we found that ASK1 signaling in microglia played a major role in generating and maintaining disease. Activated astrocytes produce key inflammatory mediators, including CCL2, that further activated and recruited microglia/macrophages, in an astrocytic ASK1-dependent manner. Astrocyte-specific analysis revealed CCL2 expression was higher in the later stage compared with the early stage, suggesting a greater proinflammatory role of astrocytes in the later stage. Our findings demonstrate cell-type–specific roles of ASK1 and suggest phase-specific ASK1-dependent glial cell interactions in EAE pathophysiology. We propose glial ASK1 as a promising therapeutic target for reducing neuroinflammation.
Collapse
|
21
|
de Klerk DJ, de Keijzer MJ, Dias LM, Heemskerk J, de Haan LR, Kleijn TG, Franchi LP, Heger M. Strategies for Improving Photodynamic Therapy Through Pharmacological Modulation of the Immediate Early Stress Response. Methods Mol Biol 2022; 2451:405-480. [PMID: 35505025 DOI: 10.1007/978-1-0716-2099-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/14/2023]
Abstract
Photodynamic therapy (PDT) is a minimally to noninvasive treatment modality that has emerged as a promising alternative to conventional cancer treatments. PDT induces hyperoxidative stress and disrupts cellular homeostasis in photosensitized cancer cells, resulting in cell death and ultimately removal of the tumor. However, various survival pathways can be activated in sublethally afflicted cancer cells following PDT. The acute stress response is one of the known survival pathways in PDT, which is activated by reactive oxygen species and signals via ASK-1 (directly) or via TNFR (indirectly). The acute stress response can activate various other survival pathways that may entail antioxidant, pro-inflammatory, angiogenic, and proteotoxic stress responses that culminate in the cancer cell's ability to cope with redox stress and oxidative damage. This review provides an overview of the immediate early stress response in the context of PDT, mechanisms of activation by PDT, and molecular intervention strategies aimed at inhibiting survival signaling and improving PDT outcome.
Collapse
Affiliation(s)
- Daniel J de Klerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Mark J de Keijzer
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Lionel M Dias
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Faculdade de Ciências da Saúde (FCS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| | - Jordi Heemskerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Tony G Kleijn
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Leonardo P Franchi
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas (ICB) 2, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
- Faculty of Philosophy, Department of Chemistry, Center of Nanotechnology and Tissue Engineering-Photobiology and Photomedicine Research Group, Sciences, and Letters of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China.
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands.
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
22
|
Obsilova V, Honzejkova K, Obsil T. Structural Insights Support Targeting ASK1 Kinase for Therapeutic Interventions. Int J Mol Sci 2021; 22:ijms222413395. [PMID: 34948191 PMCID: PMC8705584 DOI: 10.3390/ijms222413395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/24/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/22/2022] Open
Abstract
Apoptosis signal-regulating kinase (ASK) 1, a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family, modulates diverse responses to oxidative and endoplasmic reticulum (ER) stress and calcium influx. As a crucial cellular stress sensor, ASK1 activates c-Jun N-terminal kinases (JNKs) and p38 MAPKs. Their excessive and sustained activation leads to cell death, inflammation and fibrosis in various tissues and is implicated in the development of many neurological disorders, such as Alzheimer’s, Parkinson’s and Huntington disease and amyotrophic lateral sclerosis, in addition to cardiovascular diseases, diabetes and cancer. However, currently available inhibitors of JNK and p38 kinases either lack efficacy or have undesirable side effects. Therefore, targeted inhibition of their upstream activator, ASK1, stands out as a promising therapeutic strategy for treating such severe pathological conditions. This review summarizes recent structural findings on ASK1 regulation and its role in various diseases, highlighting prospects for ASK1 inhibition in the treatment of these pathologies.
Collapse
Affiliation(s)
- Veronika Obsilova
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, 25250 Vestec, Czech Republic
- Correspondence: (V.O.); (T.O.); Tel.: +420-325-87-3513 (V.O.); +420-22-195-1303 (T.O.)
| | - Karolina Honzejkova
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 12843 Prague, Czech Republic;
| | - Tomas Obsil
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, 25250 Vestec, Czech Republic
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 12843 Prague, Czech Republic;
- Correspondence: (V.O.); (T.O.); Tel.: +420-325-87-3513 (V.O.); +420-22-195-1303 (T.O.)
| |
Collapse
|
23
|
Volynets GP, Pletnova LV, Sapelkin VM, Savytskyi OV, Yarmoluk SM. A computational analysis of the binding free energies of apoptosis signal-regulating kinase 1 inhibitors from different chemotypes. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1922686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/09/2023]
Affiliation(s)
- Galyna P. Volynets
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics, NAS of Ukraine, Kyiv, Ukraine
- Scientific Services Company Otava Ltd., Kyiv, Ukraine
| | - Larysa V. Pletnova
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics, NAS of Ukraine, Kyiv, Ukraine
| | - Vladislav M. Sapelkin
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics, NAS of Ukraine, Kyiv, Ukraine
| | - Oleksandr V. Savytskyi
- Department of Protein Engineering and Bioinformatics, Institute of Molecular Biology and Genetics, NAS of Ukraine, Kyiv, Ukraine
| | - Sergiy M. Yarmoluk
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics, NAS of Ukraine, Kyiv, Ukraine
| |
Collapse
|
24
|
Jones JH, Xin Z, Himmelbauer M, Dechantsreiter M, Enyedy I, Hedde J, Fang T, Coomaraswamy J, King KW, Murugan P, Santoro JC, Hesson T, Walther DM, Wei R, Zheng F, Marcotte DJ, Spilker K, Kumar PR, Liu Y, Gilfillan R, Gonzalez-Lopez de Turiso F. Discovery of Potent, Selective, and Brain-Penetrant Apoptosis Signal-Regulating Kinase 1 (ASK1) Inhibitors that Modulate Brain Inflammation In Vivo. J Med Chem 2021; 64:15402-15419. [PMID: 34653340 DOI: 10.1021/acs.jmedchem.1c01458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/26/2023]
Abstract
Apoptosis signal-regulating kinase 1 (ASK1) is one of the key mediators of the cellular stress response that regulates inflammation and apoptosis. To probe the therapeutic value of modulating this pathway in preclinical models of neurological disease, we further optimized the profile of our previously reported inhibitor 3. This effort led to the discovery of 32, a potent (cell IC50 = 25 nM) and selective ASK1 inhibitor with suitable pharmacokinetic and brain penetration (rat Cl/Clu = 1.6/56 L/h/kg and Kp,uu = 0.46) for proof-of-pharmacology studies. Specifically, the ability of 32 to inhibit ASK1 in the central nervous system (CNS) was evaluated in a human tau transgenic (Tg4510) mouse model exhibiting elevated brain inflammation. In this study, transgenic animals treated with 32 (at 3, 10, and 30 mg/kg, BID/PO for 4 days) showed a robust reduction of inflammatory markers (e.g., IL-1β) in the cortex, thus confirming inhibition of ASK1 in the CNS.
Collapse
Affiliation(s)
- J Howard Jones
- Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Zhili Xin
- Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Martin Himmelbauer
- Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Michael Dechantsreiter
- Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Istvan Enyedy
- Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Joseph Hedde
- Acute Neurology Research Unit, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Terry Fang
- Acute Neurology Research Unit, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Janaky Coomaraswamy
- Movement Disorders Research Unit, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Kristopher W King
- Drug Metabolism and Pharmacokinetics, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Paramasivam Murugan
- Bioassays, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Joseph C Santoro
- Bioassays, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Thomas Hesson
- Bioassays, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Dirk M Walther
- Chemical Biology and Proteomics, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Ru Wei
- Chemical Biology and Proteomics, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Fengmei Zheng
- Technical Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Douglas J Marcotte
- Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Kerri Spilker
- Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - P Rajesh Kumar
- Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Ying Liu
- Drug Metabolism and Pharmacokinetics, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Rab Gilfillan
- Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | | |
Collapse
|
25
|
Candadai AA, Liu F, Verma A, Adil MS, Alfarhan M, Fagan SC, Somanath PR, Narayanan SP. Neuroprotective Effects of Fingolimod in a Cellular Model of Optic Neuritis. Cells 2021; 10:cells10112938. [PMID: 34831161 PMCID: PMC8616192 DOI: 10.3390/cells10112938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/10/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022] Open
Abstract
Visual dysfunction resulting from optic neuritis (ON) is one of the most common clinical manifestations of multiple sclerosis (MS), characterized by loss of retinal ganglion cells, thinning of the nerve fiber layer, and inflammation to the optic nerve. Current treatments available for ON or MS are only partially effective, specifically target the inflammatory phase, and have limited effects on long-term disability. Fingolimod (FTY) is an FDA-approved immunomodulatory agent for MS therapy. The objective of the current study was to evaluate the neuroprotective properties of FTY in the cellular model of ON-associated neuronal damage. R28 retinal neuronal cell damage was induced through treatment with tumor necrosis factor-α (TNFα). In our cell viability analysis, FTY treatment showed significantly reduced TNFα-induced neuronal death. Treatment with FTY attenuated the TNFα-induced changes in cell survival and cell stress signaling molecules. Furthermore, immunofluorescence studies performed using various markers indicated that FTY treatment protects the R28 cells against the TNFα-induced neurodegenerative changes by suppressing reactive oxygen species generation and promoting the expression of neuronal markers. In conclusion, our study suggests neuroprotective effects of FTY in an in vitro model of optic neuritis.
Collapse
Affiliation(s)
- Amritha A. Candadai
- Clinical and Experimental Therapeutics Program, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA; (A.A.C.); (F.L.); (A.V.); (M.S.A.); (M.A.); (S.C.F.); (P.R.S.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
| | - Fang Liu
- Clinical and Experimental Therapeutics Program, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA; (A.A.C.); (F.L.); (A.V.); (M.S.A.); (M.A.); (S.C.F.); (P.R.S.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
| | - Arti Verma
- Clinical and Experimental Therapeutics Program, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA; (A.A.C.); (F.L.); (A.V.); (M.S.A.); (M.A.); (S.C.F.); (P.R.S.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Mir S. Adil
- Clinical and Experimental Therapeutics Program, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA; (A.A.C.); (F.L.); (A.V.); (M.S.A.); (M.A.); (S.C.F.); (P.R.S.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Moaddey Alfarhan
- Clinical and Experimental Therapeutics Program, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA; (A.A.C.); (F.L.); (A.V.); (M.S.A.); (M.A.); (S.C.F.); (P.R.S.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
| | - Susan C. Fagan
- Clinical and Experimental Therapeutics Program, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA; (A.A.C.); (F.L.); (A.V.); (M.S.A.); (M.A.); (S.C.F.); (P.R.S.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Payaningal R. Somanath
- Clinical and Experimental Therapeutics Program, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA; (A.A.C.); (F.L.); (A.V.); (M.S.A.); (M.A.); (S.C.F.); (P.R.S.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - S. Priya Narayanan
- Clinical and Experimental Therapeutics Program, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA; (A.A.C.); (F.L.); (A.V.); (M.S.A.); (M.A.); (S.C.F.); (P.R.S.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
- Correspondence:
| |
Collapse
|
26
|
Mdivi-1 Modulates Macrophage/Microglial Polarization in Mice with EAE via the Inhibition of the TLR2/4-GSK3β-NF-κB Inflammatory Signaling Axis. Mol Neurobiol 2021; 59:1-16. [PMID: 34618332 DOI: 10.1007/s12035-021-02552-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/13/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022]
Abstract
Macrophage/microglial modulation plays a critical role in the pathogenesis of multiple sclerosis (MS), which is an inflammatory disorder of the central nervous system. Dynamin-related protein 1 is a cytoplasmic molecule that regulates mitochondrial fission. It has been proven that mitochondrial fission inhibitor 1 (Mdivi-1), a small molecule inhibitor of Drp1, can relieve experimental autoimmune encephalomyelitis (EAE), a preclinical animal model of MS. Whether macrophages/microglia are involved in the pathological process of Mdivi-1-treated EAE remains to be determined. Here, we studied the anti-inflammatory effect of Mdivi-1 on mice with oligodendrocyte glycoprotein peptide35-55 (MOG35-55)-induced EAE. We found that Drp1 phosphorylation at serine 616 in macrophages/microglia was decreased with Mdivi-1 treatment, which was accompanied by decreased antigen presentation capacity of the macrophages/microglia in the EAE mouse spinal cord. The Mdivi-1 treatment caused macrophage/microglia to produce low levels of proinflammatory molecules, such as CD16/32, iNOS, and TNF-α, and high levels of anti-inflammatory molecules, such as CD206, IL-10, and Arginase-1, suggesting that Mdivi-1 promoted the macrophage/microglia shift from the inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. Moreover, Mdivi-1 was able to downregulate the expression of TRL2, TRL4, GSK-3β, and phosphorylated NF-κB-p65 and prevent NF-κB-mediated IL-1β and IL-6 production. In conclusion, these results indicate that Mdivi-1 significantly alleviates inflammation in mice with EAE by promoting M2 polarization by inhibiting TLR2/4- and GSK3β-mediated NF-κB activation.
Collapse
|
27
|
Abstract
Objectives Oral lichen planus (OLP) is a T cell-mediated autoimmune disease recognized as an oral potential malignant disorder (OPMD) with the precise mechanism unknown. This study focused on the transcriptional profiles of OLP to elucidate its potential pathogenesis. Methods We conducted RNA sequencing on matched 6 OLP tissues and 6 normal oral mucosal tissues. Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and weighted gene co-expression network analysis (WGCNA) were performed on differentially expressed genes (DEGs). We utilized qRT-PCR to validated the top dysregulated genes and hub genes in another 10 pairs of specimens. Results A total of 153 DEGs (p-values< 0.05) were detected from RNA-Seq. According to GO and KEGG analysis, the dysregulated genes were mainly related to T cell related pathway and Wnt signaling. Based on the WGCNA analysis, 5 modules with high intramodular connectivity and hub genes in each module were gained. Conclusions RNA-Seq and bioinformatic methods offered a valuable understanding of the biological pathways and key genes in the regulation of OLP. The identified DEGs and hub genes categorized into 2 groups including T cell regulation and inflammation and Wnt signaling pathway may serve as potential novel molecular targets for therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s41065-021-00202-z.
Collapse
|
28
|
Iloun P, Hooshmandi E, Gheibi S, Kashfi K, Ghasemi R, Ahmadiani A. Roles and Interaction of the MAPK Signaling Cascade in Aβ25-35-Induced Neurotoxicity Using an Isolated Primary Hippocampal Cell Culture System. Cell Mol Neurobiol 2021; 41:1497-1507. [PMID: 32601776 DOI: 10.1007/s10571-020-00912-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/29/2020] [Accepted: 06/22/2020] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is characterized with increased formation of amyloid-β (Aβ) in the brain. Aβ peptide toxicity is associated with disturbances of several intracellular signaling pathways such as mitogen activated protein kinases (MAPKs). The aim of this study was to investigate the role of MAPKs and their interactions in Aβ-induced neurotoxicity using isolated hippocampal neurons from the rat. Primary hippocampal cells were cultured in neurobasal medium for 4 days. Cells were treated with Aβ25-35 and/or MAPKs inhibitors for 24 h. Cell viability was determined by an MTT assay and phosphorylated levels of P38, JNK, and ERK were measured by Western blots. Aβ treatment (10-40 µM) significantly decreased hippocampal cell viability in a dose-dependent manner. Inhibition of P38 and ERK did not restore cell viability, while JNK inhibition potentiated the Aβ-induced neurotoxicity. Compared to the controls, Aβ treatment increased levels of phosphorylated JNK, ERK, and c-Jun, while it had no effect on levels of phosphorylated P38. In addition, P38 inhibition led to decreased expression levels of phosphorylated ERK; inhibition of JNK resulted in decreased expression of c-Jun; and inhibition of ERK, decreased phosphorylated levels of JNK. These results strongly suggest that P38, ERK, and JNK are not independently involved in Aβ-induced toxicity in the hippocampal cells. In AD, which is a multifactorial disease, inhibiting a single member of the MAPK signaling pathway, does not seem to be sufficient to mitigate Aβ-induced toxicity and thus their interactions with each other or potentially with different signaling pathways should be taken into account.
Collapse
Affiliation(s)
- Parisa Iloun
- Physiology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Etrat Hooshmandi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Velenjak, Chamran Exp. Way, P.O. Box 19615-1178, Tehran, Iran
| | - Sevda Gheibi
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, USA
| | - Rasoul Ghasemi
- Physiology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Velenjak, Chamran Exp. Way, P.O. Box 19615-1178, Tehran, Iran.
| |
Collapse
|
29
|
Understanding Abnormal c-JNK/p38MAPK Signaling Overactivation Involved in the Progression of Multiple Sclerosis: Possible Therapeutic Targets and Impact on Neurodegenerative Diseases. Neurotox Res 2021; 39:1630-1650. [PMID: 34432262 DOI: 10.1007/s12640-021-00401-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/20/2021] [Revised: 08/01/2021] [Accepted: 08/09/2021] [Indexed: 12/16/2022]
Abstract
Demyelination, immune dysregulation, and neuroinflammation are the most common triggers of motor neuron disorders such as multiple sclerosis (MS). MS is a chronic demyelinating neurodegenerative disease of the central nervous system caused by abnormal immune activation, which causes myelin sheath damage. Cell signal transduction pathways are required for a variety of physiological and pathological processes in the brain. When these signaling systems become overactive, they can lead to disease progression. In various physiological conditions, abnormal mitogen-activated protein kinase (MAPK) activation is associated with several physiological dysfunctions that cause neurodegeneration. Previous research indicates that c-JNK and p38MAPK signaling play critical roles in neuronal growth and differentiation. c-JNK/p38MAPK is a member of the MAPK family, which regulates metabolic pathways, cell proliferation, differentiation, and apoptosis that control certain neurological activities. During brain injuries, c-JNK/p38MAPK also affects neuronal elastic properties, nerve growth, and cognitive processing. This review systematically linked abnormal c-JNK/p38MAPK signaling activation to multiple neuropathological pathways in MS and related neurological dysfunctions. MS progression is linked to genetic defects, oligodendrocyte destruction, glial overactivation, and immune dysregulation. We concluded that inhibiting both the c-JNK/p38MAPK signaling pathways can promote neuroprotection and neurotrophic effects against the clinical-pathological presentation of MS and influence other neurological disorders. As a result, the potential benefits of c-JNK/p38MAPK downregulation for the development of disease-modifying treatment interventions in the future could include MS prevention and related neurocomplications.
Collapse
|
30
|
Kojima K, Ichijo H, Naguro I. Molecular functions of ASK family in diseases caused by stress-induced inflammation and apoptosis. J Biochem 2021; 169:395-407. [PMID: 33377973 DOI: 10.1093/jb/mvaa145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/22/2020] [Accepted: 12/02/2020] [Indexed: 11/13/2022] Open
Abstract
VCells are constantly exposed to various types of stress, and disruption of the proper response leads to a variety of diseases. Among them, inflammation and apoptosis are important examples of critical responses and should be tightly regulated, as inappropriate control of these responses is detrimental to the organism. In several disease states, these responses are abnormally regulated, with adverse effects. Apoptosis signal-regulating kinase (ASK) family members are stress-responsive kinases that regulate inflammation and apoptosis after a variety of stimuli, such as oxidative stress and endoplasmic reticulum stress. In this review, we summarize recent reports on the ASK family in terms of their involvement in inflammatory diseases, focussing on upstream stimuli that regulate ASK family members.
Collapse
Affiliation(s)
- Kazuki Kojima
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Isao Naguro
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
31
|
17-β Estradiol Rescued Immature Rat Brain against Glutamate-Induced Oxidative Stress and Neurodegeneration via Regulating Nrf2/HO-1 and MAP-Kinase Signaling Pathway. Antioxidants (Basel) 2021; 10:antiox10060892. [PMID: 34206065 PMCID: PMC8229583 DOI: 10.3390/antiox10060892] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/08/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022] Open
Abstract
Dysregulated glutamate signaling, leading to neuronal excitotoxicity and death, has been associated with neurodegenerative pathologies. 17β-estradiol (E2) is a human steroid hormone having a role in reproduction, sexual maturation, brain health and biological activities. The study aimed to explain the neuroprotective role of E2 against glutamate-induced ROS production, MAP kinase-dependent neuroinflammation, synaptic dysfunction and neurodegeneration in the cortex and hippocampus of postnatal day 7 rat brain. Biochemical and immunofluorescence analyses were applied. Our results showed that a single subcutaneous injection of glutamate (10 mg/kg) induced brain oxidative stress after 4 h by disturbing the homeostasis of glutathione (GSH) and revealed an upsurge in ROS and LPO levels and downregulated the expression of Nrf2 and HO-1 antioxidant protein. The glutamate-exposed P7 pups illustrated increased phosphorylation of stress-activated c-Jun N-terminal kinase (JNK) and p38 kinase (p38) and downregulated expression of P-Erk1/2. This was accompanied by pathological neuroinflammation as revealed by enhanced gliosis with upregulated expression of GFAP and Iba-1, and the activation of proinflammatory cytokines (TNF-α) in glutamate-injected P7 pups. Moreover, exogenous glutamate also reduced the expression of synaptic markers (PSD-95, SYP) and induced apoptotic neurodegeneration in the cortical and hippocampal regions by dysregulating the expression of Bax, Bcl-2 and caspase-3 in the developing rat brain. On the contrary, co-treatment of E2 (10 mg/kg) with glutamate significantly abrogated brain neuroinflammation, neurodegeneration and synapse loss by alleviating brain oxidative stress by upregulating the Nrf2/HO-1 antioxidant pathway and by deactivating pro-apoptotic P-JNK/P-p38 and activation of pro-survival P-Erk1/2 MAP kinase pathways. In brief, the data demonstrate the neuroprotective role of E2 against glutamate excitotoxicity-induced neurodegeneration. The study also encourages future studies investigating if E2 may be a potent neuroprotective and neurotherapeutic agent in different neurodegenerative diseases.
Collapse
|
32
|
Toyama T, Hoshi T, Noguchi T, Saito Y, Matsuzawa A, Naganuma A, Hwang GW. Methylmercury induces neuronal cell death by inducing TNF-α expression through the ASK1/p38 signaling pathway in microglia. Sci Rep 2021; 11:9832. [PMID: 33972601 PMCID: PMC8110582 DOI: 10.1038/s41598-021-89210-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/31/2020] [Accepted: 03/15/2021] [Indexed: 02/08/2023] Open
Abstract
We recently found that tumor necrosis factor-α (TNF-α) may be involved in neuronal cell death induced by methylmercury in the mouse brain. Here, we examined the cells involved in the induction of TNF-α expression by methylmercury in the mouse brain by in situ hybridization. TNF-α-expressing cells were found throughout the brain and were identified as microglia by immunostaining for ionized calcium binding adaptor molecule 1 (Iba1). Methylmercury induced TNF-α expression in mouse primary microglia and mouse microglial cell line BV2. Knockdown of apoptosis signal-regulating kinase 1 (ASK1), an inflammatory cytokine up-regulator that is responsible for reactive oxygen species (ROS), decreased methylmercury-induced TNF-α expression through decreased phosphorylation of p38 MAP kinase in BV2 cells. Suppression of methylmercury-induced reactive oxygen species (ROS) by antioxidant treatment largely abolished the induction of TNF-α expression and phosphorylation of p38 by methylmercury in BV2 cells. Finally, in mouse brain slices, the TNF-α antagonist (WP9QY) inhibited neuronal cell death induced by methylmercury, as did the p38 inhibitor SB203580 and liposomal clodronate (a microglia-depleting agent). These results indicate that methylmercury induces mitochondrial ROS that are involved in activation of the ASK1/p38 pathway in microglia and that this is associated with induction of TNF-α expression and neuronal cell death.
Collapse
Affiliation(s)
- Takashi Toyama
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aoba-ku, Aramaki, Sendai, Miyagi, 980-8578, Japan
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Takayuki Hoshi
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aoba-ku, Aramaki, Sendai, Miyagi, 980-8578, Japan
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
- Laboratory of Environmental and Health Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aoba-ku, Aramaki, Sendai, Miyagi, 980-8578, Japan
| | - Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aoba-ku, Aramaki, Sendai, Miyagi, 980-8578, Japan
| | - Akira Naganuma
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aoba-ku, Aramaki, Sendai, Miyagi, 980-8578, Japan
| | - Gi-Wook Hwang
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aoba-ku, Aramaki, Sendai, Miyagi, 980-8578, Japan.
- Laboratory of Environmental and Health Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.
| |
Collapse
|
33
|
Hou S, Yang X, Yang Y, Tong Y, Chen Q, Wan B, Wei R, Lu T, Chen Y, Hu Q. Design, synthesis and biological evaluation of 1H-indazole derivatives as novel ASK1 inhibitors. Eur J Med Chem 2021; 220:113482. [PMID: 33906048 DOI: 10.1016/j.ejmech.2021.113482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/24/2021] [Revised: 04/01/2021] [Accepted: 04/12/2021] [Indexed: 11/19/2022]
Abstract
Apoptosis signal-regulating kinase 1 (ASK1, MAP3K5), a member of the mitogen-activated protein kinase (MAPK) signaling pathway, is involved in cell survival, differentiation, stress response, and apoptosis. ASK1 kinase inhibition has emerged as a promising therapeutic strategy for inflammatory disease. A series of novel ASK1 inhibitors with 1H-indazole scaffold were designed, synthesized and evaluated for their ASK1 kinase activity and AP1-HEK293 cell inhibitory effect. Systematic structure-activity relationship (SAR) efforts led to the discovery of promising compound 15, which showed excellent in vitro ASK1 kinase activity and potent inhibitory effects on ASK1 in AP1-HEK293 cells. In a tumor necrosis factor-α (TNF-α)-induced HT-29 intestinal epithelial cell model, compound 15 exhibited a significantly protective effect on cell viability comparable to that of GS-4997; moreover, compound 15 exhibited no obvious cytotoxicity against HT-29 cells at concentrations up to 25 μM. Mechanistic research demonstrated that compound 15 suppresses phosphorylation in the ASK1-p38/JNK signaling pathway in HT-29 cells, and regulates the expression levels of apoptosis-related proteins. Altogether, these results show that compound 15 may serve as a potential candidate compound for the treatment of inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Shaohua Hou
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Xiping Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Yuejing Yang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Yu Tong
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Quanwei Chen
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Boheng Wan
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Ran Wei
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Tao Lu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China.
| | - Yadong Chen
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China.
| | - Qinghua Hu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China.
| |
Collapse
|
34
|
Yadav RK, Minz E, Mehan S. Understanding Abnormal c-JNK/p38MAPK Signaling in Amyotrophic Lateral Sclerosis: Potential Drug Targets and Influences on Neurological Disorders. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:417-429. [PMID: 33557726 DOI: 10.2174/1871527320666210126113848] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/20/2020] [Revised: 09/29/2020] [Accepted: 10/07/2020] [Indexed: 11/22/2022]
Abstract
c-JNK (c-Jun N-terminal kinase) and p38 mitogen-activated protein kinase (MAPK) family members work in a cell-specific manner to regulate neuronal signals. The abnormal activation of these cellular signals can cause glutamate excitotoxicity, disrupted protein homeostasis, defective axonal transport, and synaptic dysfunction. Various pre-clinical and clinical findings indicate that the up-regulation of c-JNK and p38MAPK signaling is associated with neurological disorders. Exceptionally, a significant amount of experimental data has recently shown that dysregulated c-JNK and p38MAPK are implicated in the damage to the central nervous system, including amyotrophic lateral sclerosis. Furthermore, currently available information has shown that c- JNK/p38MAPK signaling inhibitors may be a promising therapeutic alternative for improving histopathological, functional, and demyelination defects related to motor neuron disabilities. Understanding the abnormal activation of c-JNK/p38MAPK signaling and the prediction of motor neuron loss may help identify important therapeutic interventions that could prevent neurocomplications. Based on the involvement of c-JNK/p38MAPK signaling in the brain, we have assumed that the downregulation of the c-JNK/p38MAPK signaling pathway could trigger neuroprotection and neurotrophic effects towards clinicopathological presentations of ALS and other brain diseases. Thus, this research-based review also outlines the inhibition of c-JNK and p38MAPK signal downregulation in the pursuit of disease-modifying therapies for ALS.
Collapse
Affiliation(s)
- Rajeshwar Kumar Yadav
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Elizabeth Minz
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
35
|
Nakamura K, Kageyama S, Kaldas FM, Hirao H, Ito T, Kadono K, Dery KJ, Kojima H, Gjertson DW, Sosa RA, Kujawski M, Busuttil RW, Reed EF, Kupiec-Weglinski JW. Hepatic CEACAM1 expression indicates donor liver quality and prevents early transplantation injury. J Clin Invest 2021; 130:2689-2704. [PMID: 32027621 DOI: 10.1172/jci133142] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/03/2019] [Accepted: 01/30/2020] [Indexed: 12/16/2022] Open
Abstract
Although CEACAM1 (CC1) glycoprotein resides at the interface of immune liver injury and metabolic homeostasis, its role in orthotopic liver transplantation (OLT) remains elusive. We aimed to determine whether/how CEACAM1 signaling may affect hepatic ischemia-reperfusion injury (IRI) and OLT outcomes. In the mouse, donor liver CC1 null mutation augmented IRI-OLT (CC1-KO→WT) by enhancing ROS expression and HMGB1 translocation during cold storage, data supported by in vitro studies where hepatic flush from CC1-deficient livers enhanced macrophage activation in bone marrow-derived macrophage cultures. Although hepatic CC1 deficiency augmented cold stress-triggered ASK1/p-p38 upregulation, adjunctive ASK1 inhibition alleviated IRI and improved OLT survival by suppressing p-p38 upregulation, ROS induction, and HMGB1 translocation (CC1-KO→WT), whereas ASK1 silencing (siRNA) promoted cytoprotection in cold-stressed and damage-prone CC1-deficient hepatocyte cultures. Consistent with mouse data, CEACAM1 expression in 60 human donor liver biopsies correlated negatively with activation of the ASK1/p-p38 axis, whereas low CC1 levels associated with increased ROS and HMGB1 translocation, enhanced innate and adaptive immune responses, and inferior early OLT function. Notably, reduced donor liver CEACAM1 expression was identified as one of the independent predictors for early allograft dysfunction (EAD) in human OLT patients. Thus, as a checkpoint regulator of IR stress and sterile inflammation, CEACAM1 may be considered as a denominator of donor hepatic tissue quality, and a target for therapeutic modulation in OLT recipients.
Collapse
Affiliation(s)
- Kojiro Nakamura
- Department of Surgery, Division of Liver and Pancreas Transplantation, Dumont-UCLA Liver Transplant Center
| | - Shoichi Kageyama
- Department of Surgery, Division of Liver and Pancreas Transplantation, Dumont-UCLA Liver Transplant Center
| | - Fady M Kaldas
- Department of Surgery, Division of Liver and Pancreas Transplantation, Dumont-UCLA Liver Transplant Center
| | - Hirofumi Hirao
- Department of Surgery, Division of Liver and Pancreas Transplantation, Dumont-UCLA Liver Transplant Center
| | - Takahiro Ito
- Department of Surgery, Division of Liver and Pancreas Transplantation, Dumont-UCLA Liver Transplant Center
| | - Kentaro Kadono
- Department of Surgery, Division of Liver and Pancreas Transplantation, Dumont-UCLA Liver Transplant Center
| | - Kenneth J Dery
- Department of Surgery, Division of Liver and Pancreas Transplantation, Dumont-UCLA Liver Transplant Center
| | - Hidenobu Kojima
- Department of Surgery, Division of Liver and Pancreas Transplantation, Dumont-UCLA Liver Transplant Center
| | - David W Gjertson
- Department of Biostatistics, UCLA School of Public Health.,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Rebecca A Sosa
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Maciej Kujawski
- Department of Molecular Immunology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Ronald W Busuttil
- Department of Surgery, Division of Liver and Pancreas Transplantation, Dumont-UCLA Liver Transplant Center
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jerzy W Kupiec-Weglinski
- Department of Surgery, Division of Liver and Pancreas Transplantation, Dumont-UCLA Liver Transplant Center
| |
Collapse
|
36
|
Xie Z, Yang X, Duan Y, Han J, Liao C. Small-Molecule Kinase Inhibitors for the Treatment of Nononcologic Diseases. J Med Chem 2021; 64:1283-1345. [PMID: 33481605 DOI: 10.1021/acs.jmedchem.0c01511] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023]
Abstract
Great successes have been achieved in developing small-molecule kinase inhibitors as anticancer therapeutic agents. However, kinase deregulation plays essential roles not only in cancer but also in almost all major disease areas. Accumulating evidence has revealed that kinases are promising drug targets for different diseases, including cancer, autoimmune diseases, inflammatory diseases, cardiovascular diseases, central nervous system disorders, viral infections, and malaria. Indeed, the first small-molecule kinase inhibitor for treatment of a nononcologic disease was approved in 2011 by the U.S. FDA. To date, 10 such inhibitors have been approved, and more are in clinical trials for applications other than cancer. This Perspective discusses a number of kinases and their small-molecule inhibitors for the treatment of diseases in nononcologic therapeutic fields. The opportunities and challenges in developing such inhibitors are also highlighted.
Collapse
Affiliation(s)
- Zhouling Xie
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaoxiao Yang
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yajun Duan
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jihong Han
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chenzhong Liao
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
37
|
Joksimović N, Janković N, Davidović G, Bugarčić Z. 2,4-Diketo esters: Crucial intermediates for drug discovery. Bioorg Chem 2020; 105:104343. [PMID: 33086180 DOI: 10.1016/j.bioorg.2020.104343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/05/2020] [Revised: 08/26/2020] [Accepted: 10/01/2020] [Indexed: 12/20/2022]
Abstract
Convenient structures such as 2,4-diketo esters have been widely used as an effective pattern in medicinal chemistry and pharmacology for drug discovery. 2,4-Diketonate is a common scaffold that can be found in many biologically active and naturally occurring compounds. Also, many 2,4-diketo ester derivatives have been prepared due to their suitable synthesis. These synthetic drugs and natural products have shown numerous interesting biological properties with clinical potential as a cure for the broad specter of diseases. This review aims to highlight the important evidence of 2,4-diketo esters as a privileged scaffold in medicinal chemistry and pharmacology. Herein, numerous aspects of 2,4-diketo esters will be summarized, including synthesis and isolation of their derivatives, development of novel synthetic methodologies, the evaluation of their biological properties as well as the mechanisms of action of the diketo ester derivates. This paperwork is expected to be a comprehensive, trustworthy, and critical review of the 2,4-diketo ester intermediate to the chemistry community.
Collapse
Affiliation(s)
- Nenad Joksimović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Nenad Janković
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Sciences, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Goran Davidović
- University of Kragujevac, Faculty of Medical Sciences, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Zorica Bugarčić
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| |
Collapse
|
38
|
Deeba E, Lambrianides A, Pantzaris M, Krashias G, Christodoulou C. The expression profile of virus-recognizing toll-like receptors in natural killer cells of Cypriot multiple sclerosis patients. BMC Res Notes 2020; 13:460. [PMID: 32993761 PMCID: PMC7526110 DOI: 10.1186/s13104-020-05300-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/03/2020] [Accepted: 09/22/2020] [Indexed: 11/14/2022] Open
Abstract
Objective The exact aetiology of multiple sclerosis (MS) remains elusive, although several environmental and genetic risk factors have been implicated to varying degrees. Among the environmental risk factors, viral infections have been suggested as strong candidates contributing to MS pathology/progression. Viral recognition and control are largely tasked to the NK cells via TLR recognition and various cytotoxic and immunoregulatory functions. Additionally, the complex roles of different TLRs in MS pathology are highlighted in multiple, often contradictory, studies. The present work aims to analyse the TLR expression profile of NK cells isolated from MS patients. Highly purified CD56+CD3− NK cells isolated from peripheral blood of MS patients (n = 19) and healthy controls (n = 20) were analysed via flow cytometry for their expression of viral antigen-recognizing TLRs (TLR2, TLR3, TLR7, and TLR9). Results No difference was noted in TLR expression between MS patients and healthy controls. These results aim to supplement previous findings which study expressional or functional differences in TLRs present in various subsets of the immune system in MS, thus aiding in a better understanding of MS as a complex multifaceted disease.
Collapse
Affiliation(s)
- Elie Deeba
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, 2370, Nicosia, Cyprus
| | - Anastasia Lambrianides
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, 2370, Nicosia, Cyprus.,Neurology Clinic C, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Marios Pantzaris
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, 2370, Nicosia, Cyprus.,Neurology Clinic C, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George Krashias
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, 2370, Nicosia, Cyprus. .,Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, P.O.Box 23462, 1683, Nicosia, Cyprus.
| | - Christina Christodoulou
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, 2370, Nicosia, Cyprus.,Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, P.O.Box 23462, 1683, Nicosia, Cyprus
| |
Collapse
|
39
|
Suppression of Oxidative Stress as Potential Therapeutic Approach for Normal Tension Glaucoma. Antioxidants (Basel) 2020; 9:antiox9090874. [PMID: 32947996 PMCID: PMC7554707 DOI: 10.3390/antiox9090874] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Glaucoma is a neurodegenerative disease of the eye, which involves degeneration of retinal ganglion cells (RGCs): the output neurons of the retina to the brain, which with their axons comprise the optic nerve. Recent studies have shown the possible involvement of oxidative stress in the pathogenesis of glaucoma, especially in the subtype of normal tension glaucoma. Basic experiments utilizing rodent and primate models of glaucoma revealed that antioxidants protect RGCs under various pathological conditions including glutamate neurotoxicity and optic nerve injury. These results suggested that existing drugs and food factors may be useful for prevention and hence therapy of glaucoma. In this review, we highlight some therapeutic candidates, particularly those with antioxidant properties, and discuss the therapeutic potential of RGC protection by modulating gene expressions that prevent and ameliorate glaucoma.
Collapse
|
40
|
Takenaka S, Fujisawa T, Ichijo H. Apoptosis signal-regulating kinase 1 (ASK1) as a therapeutic target for neurological diseases. Expert Opin Ther Targets 2020; 24:1061-1064. [PMID: 32930624 DOI: 10.1080/14728222.2020.1821648] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/08/2023]
Affiliation(s)
- Satoshi Takenaka
- The Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo , Tokyo, Japan
| | - Takao Fujisawa
- The Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo , Tokyo, Japan
| | - Hidenori Ichijo
- The Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo , Tokyo, Japan
| |
Collapse
|
41
|
Vinay P, Karen C, Balamurugan K, Rajan KE. Cronobacter sakazakii Infection in Early Postnatal Rats Impaired Contextual-Associated Learning: a Putative Role of C5a-Mediated NF-κβ and ASK1 Pathways. J Mol Neurosci 2020; 71:28-41. [PMID: 32567007 DOI: 10.1007/s12031-020-01622-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/17/2019] [Accepted: 06/08/2020] [Indexed: 12/28/2022]
Abstract
This study was designed to test whether the Cronobacter sakazakii infection-impaired contextual learning and memory are mediated by the activation of the complement system; subsequent activation of inflammatory signals leads to alternations in serotonin transporter (SERT). To test this, rat pups (postnatal day, PND 15) were treated with either C. sakazakii (107 CFU) or Escherichia coli OP50 (107 CFU) or Luria bertani broth (100 μL) through oral gavage and allowed to stay with their mothers until PND 24. Experimental groups' rats were allowed to explore (PNDs 31-35) and then trained in contextual learning task (PNDs 36-43). Five days after training, individuals were tested for memory retention (PNDs 49-56). Observed behavioural data showed that C. sakazakii infection impaired contextual-associative learning and memory. Furthermore, our analysis showed that C. sakazakii infection activates complement system complement anaphylatoxin (C5a) (a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS1)) and mitogen-activated protein kinase kinase1 (MEKK1). Subsequently, MEKK1 induces pro-inflammatory signals possibly through apoptosis signal-regulating kinase-1 (ASK-1), c-Jun N-terminal kinase (JNK1/3) and protein kinase B gamma (AKT-3). In parallel, activated nuclear factor kappa-light-chain-enhancer B cells (NF-κB) induces interleukin-6 (IL-6) and IFNα-1, which may alter the level of serotonin transporter (SERT). Observed results suggest that impaired contextual learning and memory could be correlated with C5a-mediated NF-κβ and ASK1 pathways.
Collapse
Affiliation(s)
- Ponnusamy Vinay
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Christopher Karen
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | | | - Koilmani Emmanuvel Rajan
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, India.
| |
Collapse
|
42
|
Ramirez-Rios S, Michallet S, Peris L, Barette C, Rabat C, Feng Y, Fauvarque MO, Andrieux A, Sadoul K, Lafanechère L. A New Quantitative Cell-Based Assay Reveals Unexpected Microtubule Stabilizing Activity of Certain Kinase Inhibitors, Clinically Approved or in the Process of Approval. Front Pharmacol 2020; 11:543. [PMID: 32425788 PMCID: PMC7204994 DOI: 10.3389/fphar.2020.00543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/17/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022] Open
Abstract
Agents able to modify microtubule dynamics are important anticancer drugs. The absence of microtubules resulting from drug-induced depolymerization is easy to detect. However the detection of a stabilized microtubule network needs specific assays since there is not a significant visual difference between normal and stabilized microtubule networks. Here, we describe a quantitative cell-based assay, suitable for automation, which allows the detection of stabilized microtubules without the need of microscopic examination. The rationale of this assay is based on the drug-induced resistance of the microtubule network to the depolymerizing agent combretastatin A4 and the subsequent detection of the residual microtubules by immunoluminescence. Using this assay to screen a kinase inhibitor library allowed the selection of seven known kinase inhibitors: selonsertib, masatinib, intedanib, PF0477736, SNS-314 mesylate, MPI0479605, and ponatinib. The yet undescribed ability of these inhibitors to stabilize cellular microtubules was confirmed using additional markers of stable microtubules and time-lapse video-microscopy to track individual microtubules in living cells. None of the compounds interacted, however, directly with tubulin. By employing other inhibitors of the same kinases, which have structurally unrelated scaffolds, we determined if the microtubule stabilizing effect was due to the inhibition of the targeted kinase, or to an off-target effect. Many of these inhibitors are clinically approved or currently assayed in phase 2 or phase 3 clinical trials. Their microtubule-stabilizing effect may account for their therapeutic effect as well as for some of their adverse side effects. These results indicate also a possible repurposing of some of these drugs.
Collapse
Affiliation(s)
- Sacnicte Ramirez-Rios
- Institute for Advanced Biosciences, Team Regulation and Pharmacology of the Cytoskeleton, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Sophie Michallet
- Institute for Advanced Biosciences, Team Regulation and Pharmacology of the Cytoskeleton, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Leticia Peris
- Grenoble Institute of Neurosciences, INSERM U1216, Université Grenoble Alpes, CEA, Grenoble, France
| | - Caroline Barette
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, BGE, Genetics and Chemogenomics, Grenoble, France
| | - Clotilde Rabat
- Institute for Advanced Biosciences, Team Regulation and Pharmacology of the Cytoskeleton, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Yangbo Feng
- Reaction Biology Corporation, Malvern, PA, United States
| | - Marie-Odile Fauvarque
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, BGE, Genetics and Chemogenomics, Grenoble, France
| | - Annie Andrieux
- Grenoble Institute of Neurosciences, INSERM U1216, Université Grenoble Alpes, CEA, Grenoble, France
| | - Karin Sadoul
- Institute for Advanced Biosciences, Team Regulation and Pharmacology of the Cytoskeleton, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Laurence Lafanechère
- Institute for Advanced Biosciences, Team Regulation and Pharmacology of the Cytoskeleton, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
43
|
Brys R, Gibson K, Poljak T, Van Der Plas S, Amantini D. Discovery and development of ASK1 inhibitors. PROGRESS IN MEDICINAL CHEMISTRY 2020; 59:101-179. [PMID: 32362327 DOI: 10.1016/bs.pmch.2020.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023]
Abstract
Aberrant activation of mitogen-activated protein kinases (MAPKs) like c-Jun N-terminal kinase (JNK) and p38 is an event involved in the pathophysiology of numerous human diseases. The apoptosis signal-regulating kinase 1 (ASK1) is an upstream target that gets activated only under pathological conditions and as such is a promising target for therapeutic intervention. In the first part of this review the molecular mechanisms leading to ASK1 activation and regulation will be described as well as the evidences supporting a pathogenic role for ASK1 in human disease. In the second part, an update on drug discovery efforts towards the discovery and development of ASK1-targeting therapies will be provided.
Collapse
Affiliation(s)
| | - Karl Gibson
- Sandexis Medicinal Chemistry Ltd, Innovation House Discovery ParkSandwich, Kent, United Kingdom
| | | | | | | |
Collapse
|
44
|
Xin Z, Himmelbauer MK, Jones JH, Enyedy I, Gilfillan R, Hesson T, King K, Marcotte DJ, Murugan P, Santoro JC, Gonzalez-Lopez de Turiso F. Discovery of CNS-Penetrant Apoptosis Signal-Regulating Kinase 1 (ASK1) Inhibitors. ACS Med Chem Lett 2020; 11:485-490. [PMID: 32292554 DOI: 10.1021/acsmedchemlett.9b00611] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/16/2019] [Accepted: 02/12/2020] [Indexed: 02/07/2023] Open
Abstract
Apoptosis signal-regulating kinase 1 (ASK1) is a key mediator in the apoptotic and inflammatory cellular stress response. To investigate the therapeutic value of modulating this pathway in neurological disease, we have completed medicinal chemistry studies to identify novel CNS-penetrant ASK1 inhibitors starting from peripherally restricted compounds reported in the literature. This effort led to the discovery of 21, a novel ASK1 inhibitor with good potency (cell IC50 = 138 nM), low clearance (rat Cl/Clu = 0.36/6.7 L h-1 kg-1) and good CNS penetration (rat K p,uu = 0.38).
Collapse
|
45
|
Discovery of a 2-pyridinyl urea-containing compound YD57 as a potent inhibitor of apoptosis signal-regulating kinase 1 (ASK1). Eur J Med Chem 2020; 195:112277. [PMID: 32289582 DOI: 10.1016/j.ejmech.2020.112277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/06/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 02/02/2023]
Abstract
Inhibition of MAP3K kinase ASK1 has been an attractive strategy for the treatment of nonalcoholic steatohepatitis and multiple sclerosis, among others. Herein, we reported the discovery of 2-pyridinyl urea-containing compound 14l (YD57) as a potent, small-molecule inhibitor of ASK1. 14l was selective against MAP3K kinases ASK2 and TAK1 (>140-fold), while it also inhibited several cell cycle regulating kinases with IC50 values in a range of 90-400 nM (<20-fold selectivity). As a consequence, 14l had stronger apoptosis induction, more potent G1 cell cycle arrest activities, and lower IC50 value of cell growth inhibition than that of GS4997 in HepG2 cancer cell line. On the other hand, 14l did not inhibit ASK1 and p38 phosphorylation in intact cells. We reason that the multi-target effects of 14l likely neutralized the activities caused by inhibition of cellular ASK1. Future studies of these ASK1 inhibitors should pay close attention to their kinome selectivity profile.
Collapse
|
46
|
Namekata K, Guo X, Kimura A, Azuchi Y, Kitamura Y, Harada C, Harada T. Roles of the DOCK-D family proteins in a mouse model of neuroinflammation. J Biol Chem 2020; 295:6710-6720. [PMID: 32241915 DOI: 10.1074/jbc.ra119.010438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/01/2019] [Revised: 03/16/2020] [Indexed: 02/01/2023] Open
Abstract
The DOCK-D (dedicator of cytokinesis D) family proteins are atypical guanine nucleotide exchange factors that regulate Rho GTPase activity. The family consists of Zizimin1 (DOCK9), Zizimin2 (DOCK11), and Zizimin3 (DOCK10). Functions of the DOCK-D family proteins are presently not well-explored, and the role of the DOCK-D family in neuroinflammation is unknown. In this study, we generated three mouse lines in which DOCK9 (DOCK9 -/-), DOCK10 (DOCK10 -/-), or DOCK11 (DOCK11 -/-) had been deleted and examined the phenotypic effects of these gene deletions in MOG35-55 peptide-induced experimental autoimmune encephalomyelitis, an animal model of the neuroinflammatory disorder multiple sclerosis. We found that all the gene knockout lines were healthy and viable. The only phenotype observed under normal conditions was a slightly smaller proportion of B cells in splenocytes in DOCK10 -/- mice than in the other mouse lines. We also found that the migration ability of macrophages is impaired in DOCK10 -/- and DOCK11 -/- mice and that the severity of experimental autoimmune encephalomyelitis was ameliorated only in DOCK10 -/- mice. No apparent phenotype was observed for DOCK9 -/- mice. Further investigations indicated that lipopolysaccharide stimulation up-regulates DOCK10 expression in microglia and that microglial migration is decreased in DOCK10 -/- mice. Up-regulation of C-C motif chemokine ligand 2 (CCL2) expression induced by activation of Toll-like receptor 4 or 9 signaling was reduced in DOCK10 -/- astrocytes compared with WT astrocytes. Taken together, our findings suggest that DOCK10 plays a role in innate immunity and neuroinflammation and might represent a potential therapeutic target for managing multiple sclerosis.
Collapse
Affiliation(s)
- Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yuriko Azuchi
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yuta Kitamura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| |
Collapse
|
47
|
McGill MM, Sabikunnahar B, Fang Q, Teuscher C, Krementsov DN. The sex-specific role of p38 MAP kinase in CNS autoimmunity is regulated by estrogen receptor alpha. J Neuroimmunol 2020; 342:577209. [PMID: 32200131 PMCID: PMC8978838 DOI: 10.1016/j.jneuroim.2020.577209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/14/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/30/2022]
Abstract
Biological sex is a critical factor in regulating immune function. A striking example of this is the higher prevalence of autoimmune diseases such as multiple sclerosis (MS) and lupus in females compared to males. While many studies have implicated the role of sex hormones such as estrogens and androgens in these sex differences, surprisingly little is known about other molecular pathways that underlie sex differences or interact with sex hormones. We have previously shown that conditional ablation of p38α MAP kinase signaling in myeloid cells (p38αCKO) was protective in a mouse model of MS, experimental autoimmune encephalomyelitis (EAE), in female but not male mice. This sex difference was dependent on the presence of sex hormones, leading us to hypothesize that the pathogenic function of p38α in EAE depends on estrogen signaling via one of the two nuclear estrogen receptors, encoded by Esr1 and Esr2 . To test this hypothesis, we performed experiments with p38αCKO macrophages, which demonstrated that the effects of estradiol and p38α were independent of one another in vitro . Since many sex hormone effects are lost in vitro, we generated p38αCKO mice lacking either Esr1 or Esr2 , and evaluated their EAE susceptibility in vivo . Myeloid-specific deletion of Esr1 abrogated protection in p38αCKO females, although global deletion of Esr1 and Esr2 did not. Moreover, global or myeloid-specific disruption of Esr1 unexpectedly promoted protection from EAE in p38αCKO males. Mechanistically, Esr1 deletion resulted in partial reprogramming of p38α-dependent transcriptional modules in male macrophages, in particular those regulated by TGFβ, BRD4, and SMARCA4. These results demonstrate that estrogen signaling in myeloid cells plays an important sex-specific role in programming their dependence on specific intracellular signaling pathways in the context of autoimmune disease pathogenesis, suggesting potential avenues for sex-specific therapeutics or combinatorial approaches for the treatment of such diseases.
Collapse
Affiliation(s)
- Mahalia M McGill
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Bristy Sabikunnahar
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Qian Fang
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Cory Teuscher
- Department of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Dimitry N Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
48
|
Lu M, Yan XF, Si Y, Chen XZ. CTGF Triggers Rat Astrocyte Activation and Astrocyte-Mediated Inflammatory Response in Culture Conditions. Inflammation 2020; 42:1693-1704. [PMID: 31183597 PMCID: PMC6717176 DOI: 10.1007/s10753-019-01029-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022]
Abstract
To improve clinical outcomes for patients with traumatic brain injury (TBI), it is necessary to explore the mechanism of traumatic brain injury (TBI)-induced neuroinflammation. Connective tissue growth factors (CTGF) have been reported to be involved in the process of inflammatory response or tissue repair, whereas whether and how CTGF participates in the astrocyte-mediated inflammation after TBI remains unclear. In the present study, the TBI-induced activation of astrocytes and augmentation of inflammatory response were simulated by stimulating rat astrocytes with TGF-β1 or CTGF in cultured conditions. TGF-β1 and CTGF both upregulated the expression of GFAP in astrocytes and facilitated the production of inflammatory cytokines and chemokines. Activation of astrocytes by CTGF is in an autocrine manner. According to the results of Boyden chamber assay, CTGF enhanced the recruitment of peripheral blood mononuclear cells (PBMCs) by reactive astrocytes. Besides, CTGF-mediated activation of astrocytes and augmentation of inflammatory response can be terminated by the inhibitor of ASK1 or p38 and JNK. Thus, our data suggested that CTGF could activate astrocytes in an autocrine manner and promote astrocyte-mediated inflammatory response by triggering the ASK1-p38/JNK-NF-κB/AP-1 pathways in astrocytes. Collectively, our study provided evidence that astrocyte-secreted CTGF serves as an amplifier of neuroinflammatory and could be a potential target for alleviating TBI-induced inflammation.
Collapse
Affiliation(s)
- Ming Lu
- Department of Neurosurgery, The First People's Hospital of Xiaoshan District of Hangzhou City, 199 Shixin South Road, Xiaoshan District, Hangzhou, 311200, China
| | - Xiao-Feng Yan
- Department of Neurosurgery, The First People's Hospital of Xiaoshan District of Hangzhou City, 199 Shixin South Road, Xiaoshan District, Hangzhou, 311200, China.
| | - Yun Si
- Department of Neurosurgery, The First People's Hospital of Xiaoshan District of Hangzhou City, 199 Shixin South Road, Xiaoshan District, Hangzhou, 311200, China
| | - Xin-Zhi Chen
- Department of Neurosurgery, The First People's Hospital of Xiaoshan District of Hangzhou City, 199 Shixin South Road, Xiaoshan District, Hangzhou, 311200, China
| |
Collapse
|
49
|
ASK1 inhibition: a therapeutic strategy with multi-system benefits. J Mol Med (Berl) 2020; 98:335-348. [PMID: 32060587 PMCID: PMC7080683 DOI: 10.1007/s00109-020-01878-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/20/2019] [Revised: 12/18/2019] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
Abstract
p38 mitogen-activated protein kinases (P38α and β) and c-Jun N-terminal kinases (JNK1, 2, and 3) are key mediators of the cellular stress response. However, prolonged P38 and JNK signalling is associated with damaging inflammatory responses, reactive oxygen species-induced cell death, and fibrosis in multiple tissues, such as the kidney, liver, central nervous system, and cardiopulmonary systems. These responses are associated with many human diseases, including arthritis, dementia, and multiple organ dysfunctions. Attempts to prevent P38- and JNK-mediated disease using small molecule inhibitors of P38 or JNK have generally been unsuccessful. However, apoptosis signal-regulating kinase 1 (ASK1), an upstream regulator of P38 and JNK, has emerged as an alternative drug target for limiting P38- and JNK-mediated disease. Within this review, we compile the evidence that ASK1 mediates damaging cellular responses via prolonged P38 or JNK activation. We discuss the potential benefits of ASK1 inhibition as a therapeutic and summarise the studies that have tested the effects of ASK1 inhibition in cell and animal disease models, in addition to human clinical trials for a variety of disorders.
Collapse
|
50
|
Park H, Shin DH, Sim JR, Aum S, Lee MG. IRE1α kinase-mediated unconventional protein secretion rescues misfolded CFTR and pendrin. SCIENCE ADVANCES 2020; 6:eaax9914. [PMID: 32128399 PMCID: PMC7030921 DOI: 10.1126/sciadv.aax9914] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/10/2019] [Accepted: 12/04/2019] [Indexed: 05/02/2023]
Abstract
The most prevalent pathogenic mutations in the CFTR (ΔF508) and SLC26A4/pendrin (p.H723R), which cause cystic fibrosis and congenital hearing loss, respectively, evoke protein misfolding and subsequent defects in their cell surface trafficking. Here, we report that activation of the IRE1α kinase pathway can rescue the cell surface expression of ΔF508-CFTR and p.H723R-pendrin through a Golgi-independent unconventional protein secretion (UPS) route. In mammalian cells, inhibition of IRE1α kinase, but not inhibition of IRE1α endonuclease and the downstream effector XBP1, inhibited CFTR UPS. Treatment with the IRE1α kinase activator, (E)-2-(2-chlorostyryl)-3,5,6-trimethyl-pyrazine (CSTMP), rescued cell surface expression and functional activity of ΔF508-CFTR and p.H723R-pendrin. Treatment with a nontoxic dose of CSTMP to ΔF508-CFTR mice restored CFTR surface expression and CFTR-mediated anion transport in the mouse colon. These findings suggest that UPS activation via IRE1α kinase is a strategy to treat diseases caused by defective cell surface trafficking of membrane proteins, including ΔF508-CFTR and p.H723R-pendrin.
Collapse
|