1
|
Qu HQ, Liu Y, Connolly JJ, Mentch FD, Kao C, Hakonarson H. Risk of Alzheimer's disease in Down syndrome: Insights gained by multi-omics. Alzheimers Dement 2025; 21:e14604. [PMID: 40207399 DOI: 10.1002/alz.14604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 04/11/2025]
Abstract
Individuals with Down syndrome (DS) are highly susceptible to Alzheimer's disease (AD). The integration of genomics, transcriptomics, epigenomics, proteomics, and metabolomics enables unprecedented understanding of DS-AD, offering a detailed picture of this complex issue. The vast -omics data also present challenges that reflect the complexity of genetic information flow. These studies nonetheless reveal critical mechanisms behind AD risk, including unique observations in DS that differ from those seen in the general population and familial dominant AD. In addition, the correlations between the AD polygenic risk score and proteins related to female infertility and autoimmune thyroiditis corroborate clinical observations. Metabolomic data reveal disrupted metabolic networks, offering prospects for a dynamic score to create specialized nutritional interventions. By adopting a multidimensional perspective with integrated reductionism, the evolving landscape presents an opportunity to identify promising directions for developing precision strategies to mitigate the impact of AD in the DS population. HIGHLIGHTS: Individuals with Down syndrome (DS) are highly susceptible to Alzheimer's disease (AD). DS-AD is characterized by its polygenic nature, extending beyond chromosome 21 with significant contributions from various chromosomes. DS-AD also presents unique features that differ from those observed in the general population and familial dominant AD. Our review consolidates key findings from genomics, transcriptomics, epigenomics, proteomics, and metabolomics, providing a comprehensive view of the molecular mechanisms underlying DS-AD. We highlight promising research directions to further elucidate the pathogenesis of DS-AD.
Collapse
Affiliation(s)
- Hui-Qi Qu
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Yichuan Liu
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - John J Connolly
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Frank D Mentch
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Charlly Kao
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hakon Hakonarson
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
2
|
Jáuregui GV, Parpura V. Neuron-Astrocyte Interactions in Aging and Alzheimer's Disease: Dysregulation of Amyloid Precursor Protein. AGEING & LONGEVITY 2025; 6:117-128. [PMID: 40098995 PMCID: PMC11911455 DOI: 10.47855/jal9020-2025-2-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Amyloid precursor protein (APP) is central to Alzheimer's disease (AD) by its role in Aβ build-up and in neuronal and astrocytic malfunction. The major risk factor for late-onset AD is aging, which increases APP processing in both neurons and astrocytes, and consequently increases Aβ production. This focused review covers the subjects of how aging and AD affect APP dynamics within the both cell types and how astrocytes dysfunction can enhance neuroinflammation and neuronal dysfunction and injury. We discuss the interplay between neurons and astrocytes in aging and AD brains, where bi-directional cellular interactions accelerate neurodegeneration.
Collapse
Affiliation(s)
- Gretsen Velezmoro Jáuregui
- International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Vladimir Parpura
- International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
3
|
Honda K, Takahashi H, Hata S, Abe R, Saito T, Saido TC, Taru H, Sobu Y, Ando K, Yamamoto T, Suzuki T. Suppression of the amyloidogenic metabolism of APP and the accumulation of Aβ by alcadein α in the brain during aging. Sci Rep 2024; 14:18471. [PMID: 39122814 PMCID: PMC11316129 DOI: 10.1038/s41598-024-69400-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
Generation and accumulation of amyloid-β (Aβ) protein in the brain are the primary causes of Alzheimer's disease (AD). Alcadeins (Alcs composed of Alcα, Alcβ and Alcγ family) are a neuronal membrane protein that is subject to proteolytic processing, as is Aβ protein precursor (APP), by APP secretases. Previous observations suggest that Alcs are involved in the pathophysiology of Alzheimer's disease (AD). Here, we generated new mouse AppNL-F (APP-KI) lines with either Alcα- or Alcβ-deficient background and analyzed APP processing and Aβ accumulation through the aging process. The Alcα-deficient APP-KI (APP-KI/Alcα-KO) mice enhanced brain Aβ accumulation along with increased amyloidogenic β-site cleavage of APP through the aging process whereas Alcβ-deficient APP-KI (APP-KI/Alcβ-KO) mice neither affected APP metabolism nor Aβ accumulation at any age. More colocalization of APP and BACE1 was observed in the endolysosomal pathway in neurons of APP-KI/Alcα-KO mice compared to APP-KI and APP-KI/Alcβ-KO mice. These results indicate that Alcα plays an important role in the neuroprotective function by suppressing the amyloidogenic cleavage of APP by BACE1 in the brain, which is distinct from the neuroprotective function of Alcβ, in which p3-Alcβ peptides derived from Alcβ restores the viability in neurons impaired by toxic Aβ.
Collapse
Affiliation(s)
- Keiko Honda
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
- Advanced Prevention and Research Laboratory for Dementia, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Hiroo Takahashi
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, 761-0793, Japan
| | - Saori Hata
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
- Advanced Prevention and Research Laboratory for Dementia, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, 062-8517, Japan
| | - Ruriko Abe
- Advanced Prevention and Research Laboratory for Dementia, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, 062-8517, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science Institute, Wako, 351-0198, Japan
| | - Hidenori Taru
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
- Advanced Prevention and Research Laboratory for Dementia, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Yuriko Sobu
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
- Laboratory of Neuronal Regeneration, Graduate School of Brain Science, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Kanae Ando
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Tohru Yamamoto
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, 761-0793, Japan.
| | - Toshiharu Suzuki
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan.
- Advanced Prevention and Research Laboratory for Dementia, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan.
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan.
| |
Collapse
|
4
|
Alsenani F. Unraveling potential neuroprotective mechanisms of herbal medicine for Alzheimer's diseases through comprehensive molecular docking analyses. Saudi J Biol Sci 2024; 31:103998. [PMID: 38681227 PMCID: PMC11053229 DOI: 10.1016/j.sjbs.2024.103998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/02/2024] [Accepted: 04/14/2024] [Indexed: 05/01/2024] Open
Abstract
Alzheimer's disease (AD) continues to be a worldwide health concern, demanding innovative therapeutic approaches. This study investigates the neuroprotective potential of herbal compounds by scrutinizing their interactions with Beta-Secretase-1 (BACE1). Through comprehensive molecular docking analyses, three compounds, Masticadienonic acid (ΔG: -9.6 kcal/mol), Hederagenin (ΔG: -9.3 kcal/mol), and Anthocyanins (ΔG: -8.1 kcal/mol), emerge as promising BACE1 ligands, displaying low binding energies and strong affinities. ADME parameter predictions, drug-likeness assessments, and toxicity analyses reveal favorable pharmacokinetic profiles for these compounds. Notably, Masticadienonic Acid exhibits optimal drug-likeness (-3.3736) and negligible toxicity concerns. Hederagenin (drug-likeness: -5.3272) and Anthocyanins (drug-likeness: -6.2041) also demonstrate promising safety profiles. Furthermore, pharmacophore modeling elucidates the compounds' unique interaction landscapes within BACE1's active site. Masticadienonic acid showcases seven hydrophobic interactions and a hydrogen bond acceptor interaction with Thr232. Hederagenin exhibits a specific hydrogen bond acceptor interaction with Trp76, emphasizing its selective binding. Anthocyanins reveal a multifaceted engagement, combining hydrophobic contacts and hydrogen bond interactions with key residues. In conclusion, Masticadienonic acid, Hederagenin, and Anthocyanins stand out as promising candidates for further experimental validation, presenting a synergistic balance of efficacy and safety in combating AD through BACE1 inhibition.
Collapse
Affiliation(s)
- Faisal Alsenani
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| |
Collapse
|
5
|
Ye Z, Liu Y, Jin X, Wu Y, Zhao H, Gao T, Deng Q, Cheng J, Lin J, Tong Z. Aβ-binding with alcohol dehydrogenase drives Alzheimer's disease pathogenesis: A review. Int J Biol Macromol 2024; 264:130580. [PMID: 38432266 DOI: 10.1016/j.ijbiomac.2024.130580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/17/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Although Alzheimer's disease (AD) characterized with senile plaques and neurofibrillary tangles has been found for over 100 years, its molecular mechanisms are ambiguous. More worsely, the developed medicines targeting amyloid-beta (Aβ) and/or tau hyperphosphorylation did not approach the clinical expectations in patients with moderate or severe AD until now. This review unveils the role of a vicious cycle between Aβ-derived formaldehyde (FA) and FA-induced Aβ aggregation in the onset course of AD. Document evidence has shown that Aβ can bind with alcohol dehydrogenase (ADH) to form the complex of Aβ/ADH (ABAD) and result in the generation of reactive oxygen species (ROS) and aldehydes including malondialdehyde, hydroxynonenal and FA; in turn, ROS-derived H2O2 and FA promotes Aβ self-aggregation; subsequently, this vicious cycle accelerates neuron death and AD occurrence. Especially, FA can directly induce neuron death by stimulating ROS generation and tau hyper hyperphosphorylation, and impair memory by inhibiting NMDA-receptor. Recently, some new therapeutical methods including inhibition of ABAD activity by small molecules/synthetic polypeptides, degradation of FA by phototherapy or FA scavengers, have been developed and achieved positive effects in AD transgenic models. Thus, breaking the vicious loop may be promising interventions for halting AD progression.
Collapse
Affiliation(s)
- Zuting Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanming Liu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xingjiang Jin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiqing Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hang Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tingting Gao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiangfeng Deng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianhua Cheng
- Department of neurology, the first affiliated hospital of Wenzhou medical University, Wenzhou 325035. China
| | - Jing Lin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Zhiqian Tong
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
6
|
Area-Gomez E, Schon EA. Towards a Unitary Hypothesis of Alzheimer's Disease Pathogenesis. J Alzheimers Dis 2024; 98:1243-1275. [PMID: 38578892 DOI: 10.3233/jad-231318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
The "amyloid cascade" hypothesis of Alzheimer's disease (AD) pathogenesis invokes the accumulation in the brain of plaques (containing the amyloid-β protein precursor [AβPP] cleavage product amyloid-β [Aβ]) and tangles (containing hyperphosphorylated tau) as drivers of pathogenesis. However, the poor track record of clinical trials based on this hypothesis suggests that the accumulation of these peptides is not the only cause of AD. Here, an alternative hypothesis is proposed in which the AβPP cleavage product C99, not Aβ, is the main culprit, via its role as a regulator of cholesterol metabolism. C99, which is a cholesterol sensor, promotes the formation of mitochondria-associated endoplasmic reticulum (ER) membranes (MAM), a cholesterol-rich lipid raft-like subdomain of the ER that communicates, both physically and biochemically, with mitochondria. We propose that in early-onset AD (EOAD), MAM-localized C99 is elevated above normal levels, resulting in increased transport of cholesterol from the plasma membrane to membranes of intracellular organelles, such as ER/endosomes, thereby upregulating MAM function and driving pathology. By the same token, late-onset AD (LOAD) is triggered by any genetic variant that increases the accumulation of intracellular cholesterol that, in turn, boosts the levels of C99 and again upregulates MAM function. Thus, the functional cause of AD is upregulated MAM function that, in turn, causes the hallmark disease phenotypes, including the plaques and tangles. Accordingly, the MAM hypothesis invokes two key interrelated elements, C99 and cholesterol, that converge at the MAM to drive AD pathogenesis. From this perspective, AD is, at bottom, a lipid disorder.
Collapse
Affiliation(s)
- Estela Area-Gomez
- Department of Neurology, Columbia University, New York, NY, USA
- Centro de Investigaciones Biológicas "Margarita Salas", Spanish National Research Council, Madrid, Spain
| | - Eric A Schon
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Genetics and Development>, Columbia University, New York, NY, USA
| |
Collapse
|
7
|
Silvaieh S, König T, Wurm R, Parvizi T, Berger-Sieczkowski E, Goeschl S, Hotzy C, Wagner M, Berutti R, Sammler E, Stögmann E, Zimprich A. Comprehensive genetic screening of early-onset dementia patients in an Austrian cohort-suggesting new disease-contributing genes. Hum Genomics 2023; 17:55. [PMID: 37330543 PMCID: PMC10276391 DOI: 10.1186/s40246-023-00499-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/31/2023] [Indexed: 06/19/2023] Open
Abstract
Early-onset dementia (EOD), with symptom onset before age 65, has a strong genetic burden. Due to genetic and clinical overlaps between different types of dementia, whole-exome sequencing (WES) has emerged as an appropriate screening method for diagnostic testing and novel gene-finding approaches. We performed WES and C9orf72 repeat testing in 60 well-defined Austrian EOD patients. Seven patients (12%) carried likely disease-causing variants in monogenic genes, PSEN1, MAPT, APP, and GRN. Five patients (8%) were APOE4 homozygote carriers. Definite and possible risk variants were detected in the genes TREM2, SORL1, ABCA7 and TBK1. In an explorative approach, we cross-checked rare gene variants in our cohort with a curated neurodegeneration candidate gene list and identified DCTN1, MAPK8IP3, LRRK2, VPS13C and BACE1 as promising candidate genes. Conclusively, 12 cases (20%) carried variants relevant to patient counseling, comparable to previously reported studies, and can thus be considered genetically resolved. Reduced penetrance, oligogenic inheritance and not yet identified high-risk genes might explain the high number of unresolved cases. To address this issue, we provide complete genetic and phenotypic information (uploaded to the European Genome-phenome Archive), enabling other researchers to cross-check variants. Thereby, we hope to increase the chance of independently finding the same gene/variant-hit in other well-defined EOD patient cohorts, thus confirming new genetic risk variants or variant combinations.
Collapse
Affiliation(s)
- Sara Silvaieh
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Theresa König
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Raphael Wurm
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Tandis Parvizi
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Evelyn Berger-Sieczkowski
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Stella Goeschl
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Christoph Hotzy
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Matias Wagner
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Centrum, Munich, Germany
| | - Riccardo Berutti
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Esther Sammler
- Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Elisabeth Stögmann
- Department of Neurology, Medical University of Vienna, Vienna, Austria.
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria.
| | - Alexander Zimprich
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Zhaoxia W, Chenyu W, ZhuangZhuang Y, Liangliang F, Xue L, Tieyu T. Whole-exome sequencing detected a novel APP variant in a Han-Chinese family with Alzheimer's disease. Mol Biol Rep 2023; 50:5267-5271. [PMID: 37145212 DOI: 10.1007/s11033-023-08400-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/23/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is an incurable and debilitating neurodegenerative disease that results in the progressive degeneration and death of nerve cells. Mutations in the APP gene, which encodes an amyloid precursor protein, is the strongest genetic risk factor for sporadic AD. METHODS AND RESULTS We studied the APP gene (NM_000484.3: c.2045A > T; p.E682V) variants carried by members of a family suffering from AD using whole-exome sequencing and Sanger sequencing. CONCLUSION In this study, we identified a new variant of the APP gene (NM_000484.3: c.2045A > T; p.E682V) in members of a family with AD. This provides potential targets for subsequent studies and information that can be used in genetic counselling.
Collapse
Affiliation(s)
- Wang Zhaoxia
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Wang Chenyu
- Department of Cell Biology, The School of Life Sciences, Central South University, Changsha, 410013, China
| | - Yuan ZhuangZhuang
- Department of Cell Biology, The School of Life Sciences, Central South University, Changsha, 410013, China
| | - Fan Liangliang
- Department of Cell Biology, The School of Life Sciences, Central South University, Changsha, 410013, China
| | - Lin Xue
- Department of Neurology, Yangzhou Oriental Hospital, Yangzhou, 225001, Jiangsu, China.
| | - Tang Tieyu
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, 225001, Jiangsu, China.
| |
Collapse
|
9
|
Accumulation of amyloid-β in the brain of mouse models of Alzheimer's disease is modified by altered gene expression in the presence of human apoE isoforms during aging. Neurobiol Aging 2023; 123:63-74. [PMID: 36638682 DOI: 10.1016/j.neurobiolaging.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
Apolipoprotein E4 (apoE4) is a risk factor for Alzheimer's disease (AD). Here, we investigated brain amyloid-β (Aβ) accumulation throughout the aging process in an amyloid precursor protein (APP) knock-in (KI) mouse model of AD that expresses human APPNL-G-F with or without human apoE4 or apoE3. Brain Aβ42 levels were significantly lower in 9-month-old mice that express human isoforms of apoE than in age-matched APP-KI control mice. Linear accumulation of Aβ42 began in 5-month-old apoE4 mice, and a strong increase in Aβ42 levels was observed in 21-month-old apoE3 mice. Aβ42 levels in cerebroventricular fluid were higher in apoE3 than in apoE4 mice at 6-7 months of age, suggesting that apoE3 is more efficient at clearing Aβ42 than apoE4 at these ages. However, apoE3 protein levels were lower than apoE4 protein levels in the brains of 21-month-old apoE3 and apoE4 mice, respectively, which may explain the rapid increase in brain Aβ42 burden in apoE3 mice. We identified genes that were downregulated in a human apoE-dependent (apoE4 > apoE3) and age-dependent (apoE3 = apoE4) manner, which may regulate brain Aβ burden and/or AD progression. Analysis of gene expression in AD mouse models helps identify molecular mechanisms of pleiotropy by the human APOE gene during aging.
Collapse
|
10
|
Abstract
Probabilistic and parsimony-based arguments regarding available genetics data are used to propose that Hardy and Higgin's amyloid cascade hypothesis is valid but is commonly interpreted too narrowly to support, incorrectly, the primacy of the amyloid-β peptide (Aβ) in driving Alzheimer's disease pathogenesis. Instead, increased activity of the βCTF (C99) fragment of AβPP is the critical pathogenic determinant altered by mutations in the APP gene. This model is consistent with the regulation of APP mRNA translation via its 5' iron responsive element. Similar arguments support that the pathological effects of familial Alzheimer's disease mutations in the genes PSEN1 and PSEN2 are not exerted directly via changes in AβPP cleavage to produce different ratios of Aβ length. Rather, these mutations likely act through effects on presenilin holoprotein conformation and function, and possibly the formation and stability of multimers of presenilin holoprotein and/or of the γ-secretase complex. All fAD mutations in APP, PSEN1, and PSEN2 likely find unity of pathological mechanism in their actions on endolysosomal acidification and mitochondrial function, with detrimental effects on iron homeostasis and promotion of "pseudo-hypoxia" being of central importance. Aβ production is enhanced and distorted by oxidative stress and accumulates due to decreased lysosomal function. It may act as a disease-associated molecular pattern enhancing oxidative stress-driven neuroinflammation during the cognitive phase of the disease.
Collapse
Affiliation(s)
- Michael Lardelli
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
11
|
Hampel H, Caruso G, Nisticò R, Piccioni G, Mercuri NB, Giorgi FS, Ferrarelli F, Lemercier P, Caraci F, Lista S, Vergallo A. Biological Mechanism-based Neurology and Psychiatry: A BACE1/2 and Downstream Pathway Model. Curr Neuropharmacol 2023; 21:31-53. [PMID: 34852743 PMCID: PMC10193755 DOI: 10.2174/1570159x19666211201095701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 02/04/2023] Open
Abstract
In oncology, comprehensive omics and functional enrichment studies have led to an extensive profiling of (epi)genetic and neurobiological alterations that can be mapped onto a single tumor's clinical phenotype and divergent clinical phenotypes expressing common pathophysiological pathways. Consequently, molecular pathway-based therapeutic interventions for different cancer typologies, namely tumor type- and site-agnostic treatments, have been developed, encouraging the real-world implementation of a paradigm shift in medicine. Given the breakthrough nature of the new-generation translational research and drug development in oncology, there is an increasing rationale to transfertilize this blueprint to other medical fields, including psychiatry and neurology. In order to illustrate the emerging paradigm shift in neuroscience, we provide a state-of-the-art review of translational studies on the β-site amyloid precursor protein cleaving enzyme (BACE) and its most studied downstream effector, neuregulin, which are molecular orchestrators of distinct biological pathways involved in several neurological and psychiatric diseases. This body of data aligns with the evidence of a shared genetic/biological architecture among Alzheimer's disease, schizoaffective disorder, and autism spectrum disorders. To facilitate a forward-looking discussion about a potential first step towards the adoption of biological pathway-based, clinical symptom-agnostic, categorization models in clinical neurology and psychiatry for precision medicine solutions, we engage in a speculative intellectual exercise gravitating around BACE-related science, which is used as a paradigmatic case here. We draw a perspective whereby pathway-based therapeutic strategies could be catalyzed by highthroughput techniques embedded in systems-scaled biology, neuroscience, and pharmacology approaches that will help overcome the constraints of traditional descriptive clinical symptom and syndrome-focused constructs in neurology and psychiatry.
Collapse
Affiliation(s)
- Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| | | | - Robert Nisticò
- Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, Rome, Italy
- School of Pharmacy, University of Rome “Tor Vergata”, Rome, Italy
| | - Gaia Piccioni
- Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, Rome, Italy
- Department of Physiology and Pharmacology “V.Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Nicola B. Mercuri
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
- IRCCS Santa Lucia Foundation, Rome, Italy
| | - Filippo Sean Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Pablo Lemercier
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| | - Filippo Caraci
- Oasi Research Institute-IRCCS, Troina, Italy
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Simone Lista
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
- Memory Resources and Research Center (CMRR), Neurology Department, Gui de Chauliac University Hospital, Montpellier, France
| | - Andrea Vergallo
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| |
Collapse
|
12
|
Pan AL, Audrain M, Sakakibara E, Joshi R, Zhu X, Wang Q, Wang M, Beckmann ND, Schadt EE, Gandy S, Zhang B, Ehrlich ME, Salton SR. Dual-Specificity Protein Phosphatase 4 (DUSP4) Overexpression Improves Learning Behavior Selectively in Female 5xFAD Mice, and Reduces β-Amyloid Load in Males and Females. Cells 2022; 11:3880. [PMID: 36497141 PMCID: PMC9737364 DOI: 10.3390/cells11233880] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Recent multiscale network analyses of banked brains from subjects who died of late-onset sporadic Alzheimer's disease converged on VGF (non-acronymic) as a key hub or driver. Within this computational VGF network, we identified the dual-specificity protein phosphatase 4 (DUSP4) [also known as mitogen-activated protein kinase (MAPK) phosphatase 2] as an important node. Importantly, DUSP4 gene expression, like that of VGF, is downregulated in postmortem Alzheimer's disease (AD) brains. We investigated the roles that this VGF/DUSP4 network plays in the development of learning behavior impairment and neuropathology in the 5xFAD amyloidopathy mouse model. We found reductions in DUSP4 expression in the hippocampi of male AD subjects, correlating with increased CDR scores, and in 4-month-old female and 12-18-month-old male 5xFAD hippocampi. Adeno-associated virus (AAV5)-mediated overexpression of DUSP4 in 5xFAD mouse dorsal hippocampi (dHc) rescued impaired Barnes maze performance in females but not in males, while amyloid loads were reduced in both females and males. Bulk RNA sequencing of the dHc from 5-month-old mice overexpressing DUSP4, and Ingenuity Pathway and Enrichr analyses of differentially expressed genes (DEGs), revealed that DUSP4 reduced gene expression in female 5xFAD mice in neuroinflammatory, interferon-gamma (IFNγ), programmed cell death protein-ligand 1/programmed cell death protein 1 (PD-L1/PD-1), and extracellular signal-regulated kinase (ERK)/MAPK pathways, via which DUSP4 may modulate AD phenotype with gender-specificity.
Collapse
Affiliation(s)
- Allen L. Pan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Mickael Audrain
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Emmy Sakakibara
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Rajeev Joshi
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Xiaodong Zhu
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Qian Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Noam D. Beckmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Eric E. Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Sam Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Psychiatry and Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stephen R. Salton
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Brookdale Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
13
|
Liu Y, Xiao X, Liu H, Liao X, Zhou Y, Weng L, Zhou L, Liu X, Bi XY, Xu T, Zhu Y, Yang Q, Zhang S, Hao X, Zhang W, Wang J, Jiao B, Shen L. Clinical characteristics and genotype-phenotype correlation analysis of familial Alzheimer’s disease patients with pathogenic/likely pathogenic amyloid protein precursor mutations. Front Aging Neurosci 2022; 14:1013295. [PMID: 36313020 PMCID: PMC9616047 DOI: 10.3389/fnagi.2022.1013295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease associated with aging, environmental, and genetic factors. Amyloid protein precursor (APP) is a known pathogenic gene for familial Alzheimer’s disease (FAD), and now more than 70 APP mutations have been reported, but the genotype-phenotype correlation remains unclear. In this study, we collected clinical data from patients carrying APP mutations defined as pathogenic/likely pathogenic according to the American college of medical genetics and genomics (ACMG) guidelines. Then, we reanalyzed the clinical characteristics and identified genotype-phenotype correlations in APP mutations. Our results indicated that the clinical phenotypes of APP mutations are generally consistent with typical AD despite the fact that they show more non-demented symptoms and neurological symptoms. We also performed genotype-phenotype analysis according to the difference in APP processing caused by the mutations, and we found that there were indeed differences in onset age, behavioral and psychological disorders of dementia (BPSD) and myoclonus.
Collapse
Affiliation(s)
- Yingzi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xuewen Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxin Liao
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Yafang Zhou
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Ling Weng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Lu Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xixi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang-yun Bi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Tianyan Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qijie Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Sizhe Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoli Hao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Weiwei Zhang
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- *Correspondence: Bin Jiao,
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Lu Shen,
| |
Collapse
|
14
|
Kou Y, Zhao H, Cui D, Han H, Tong Z. Formaldehyde toxicity in age-related neurological dementia. Ageing Res Rev 2022; 73:101512. [PMID: 34798299 DOI: 10.1016/j.arr.2021.101512] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 02/02/2023]
Abstract
The primordial small gaseous molecules, such as: NO, CO, H2S and formaldehyde (FA) are present in the brains. Whether FA as well as the other molecules participates in brain functions is unclear. Recently, its pathophysiological functions have been investigated. Notably, under physiological conditions, learning activity induces a transient generation of hippocampal FA, which promotes memory formation by enhancing N-methyl-D-aspartate (NMDA)-currents. However, ageing leads to FA accumulation in brain for the dysregulation of FA metabolism; and excessive FA directly impairs memory by inhibiting NMDA-receptor. Especially, in Alzheimer's disease (AD), amyloid-beta (Aβ) accelerates FA accumulation by inactivating alcohol dehydrogenase-5; in turn, FA promotes Aβ oligomerization, fibrillation and tau hyperphosphorylation. Hence, there is a vicious circle encompassing Aβ assembly and FA generation. Even worse, FA induces Aβ deposition in the extracellular space (ECS), which blocks the medicines (dissolved in the interstitial fluid) flowing into the damaged neurons in the deep cortex. However, phototherapy destroys Aβ deposits in the ECS and restores ISF flow. Coenzyme Q10, which scavenges FA, was shown to ameliorate Aβ-induced AD pathological phenotypes, thus suggesting a causative relation between FA toxicity and AD. These findings suggest that the combination of these two methods is a promising strategy for treating AD.
Collapse
|
15
|
JNJ-67569762, A 2-Aminotetrahydropyridine-Based Selective BACE1 Inhibitor Targeting the S3 Pocket: From Discovery to Clinical Candidate. J Med Chem 2021; 64:14175-14191. [PMID: 34553934 DOI: 10.1021/acs.jmedchem.1c00935] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The discovery of a novel 2-aminotetrahydropyridine class of BACE1 inhibitors is described. Their pKa and lipophilicity were modulated by a pending sulfonyl group, while good permeability and brain penetration were achieved via intramolecular hydrogen bonding. BACE1 selectivity over BACE2 was achieved in the S3 pocket by a novel bicyclic ring system. An optimization addressing reactive metabolite formation, cardiovascular safety, and CNS toxicity is described, leading to the clinical candidate JNJ-67569762 (12), which gave robust dose-dependent BACE1-mediated amyloid β lowering without showing BACE2-dependent hair depigmentation in preclinical models. We show that 12 has a favorable projected human dose and PK and hence presented us with an opportunity to test a highly selective BACE1 inhibitor in humans. However, 12 was found to have a QT effect upon repeat dosing in dogs and its development was halted in favor of other selective leads, which will be reported in the future.
Collapse
|
16
|
Zhao H, Huang X, Tong Z. Formaldehyde-Crosslinked Nontoxic Aβ Monomers to Form Toxic Aβ Dimers and Aggregates: Pathogenicity and Therapeutic Perspectives. ChemMedChem 2021; 16:3376-3390. [PMID: 34396700 DOI: 10.1002/cmdc.202100428] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/14/2021] [Indexed: 01/02/2023]
Abstract
Alzheimer's disease (AD) is characterized by the presence of senile plaques in the brain. However, medicines targeting amyloid-beta (Aβ) have not achieved the expected clinical effects. This review focuses on the formation mechanism of the Aβ dimer (the basic unit of oligomers and fibrils) and its tremendous potential as a drug target. Recently, age-associated formaldehyde and Aβ-derived formaldehyde have been found to crosslink the nontoxic Aβ monomer to form the toxic dimers, oligomers and fibrils. Particularly, Aβ-induced formaldehyde accumulation and formaldehyde-promoted Aβ aggregation form a vicious cycle. Subsequently, formaldehyde initiates Aβ toxicity in both the early-and late-onset AD. These facts also explain why AD drugs targeting only Aβ do not have the desired therapeutic effects. Development of the nanoparticle-based medicines targeting both formaldehyde and Aβ dimer is a promising strategy for improving the drug efficacy by penetrating blood-brain barrier and extracellular space into the cortical neurons in AD patients.
Collapse
Affiliation(s)
- Hang Zhao
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xuerong Huang
- Wenzhou Medical University Affiliated Hospital 3, Department of Neurology, Wenzhou, 325200, China
| | - Zhiqian Tong
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
17
|
Illes-Toth E, Meisl G, Rempel DL, Knowles TPJ, Gross ML. Pulsed Hydrogen-Deuterium Exchange Reveals Altered Structures and Mechanisms in the Aggregation of Familial Alzheimer's Disease Mutants. ACS Chem Neurosci 2021; 12:1972-1982. [PMID: 33988976 DOI: 10.1021/acschemneuro.1c00072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Mutations of the Amyloid Precursor Protein, from which the amyloid β peptide Aβ42 is cleaved, are associated with familial Alzheimer's disease. The disease-relevant familial mutations include the Arctic (E22G), Iowa (D23N), Italian (E22K), Dutch (E22Q), Japanese (D7N), English (D6R), and Flemish (A21G) variants. A detailed mechanistic understanding of the aggregation behavior of the mutant peptides at the residue level is, however, still lacking. We report here a study of the aggregation kinetics of these mutants in vitro by pulsed hydrogen-deuterium exchange mass spectrometry (HDX-MS) to obtain a temporally and sequence resolved picture of their self-assembly. For all variants, HDX occurs to give a bimodal distribution representing two soluble classes of aggregates, one protected and one solvent-exposed. There is no evidence of other classes of structural intermediates within the detection limits of the HDX approach. The fractional changes in the bimodal exchange profiles for several regions of Aβ42 reveal that the central and C-terminal peptides gain protection upon fibril formation, whereas the N-terminal regions remain largely solvent-accessible. For these mutants, all peptide fragments follow the same kinetics, acquiring solvent protection at the same time, further supporting that there are no significant populations of intermediate species under our experimental conditions. The results demonstrate the potential of pulsed HDX-MS for resolving the region-specific aggregation behavior of Aβ42 isoforms in solution where X-ray crystallography and solid-state NMR (ssNMR) are challenged.
Collapse
Affiliation(s)
- Eva Illes-Toth
- Washington University in St. Louis, Department of Chemistry, St. Louis, Missouri 63130, United States
| | - Georg Meisl
- University of Cambridge, Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, UK
| | - Don L. Rempel
- Washington University in St. Louis, Department of Chemistry, St. Louis, Missouri 63130, United States
| | - Tuomas P. J. Knowles
- University of Cambridge, Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, UK
| | - Michael L. Gross
- Washington University in St. Louis, Department of Chemistry, St. Louis, Missouri 63130, United States
| |
Collapse
|
18
|
Is γ-secretase a beneficial inactivating enzyme of the toxic APP C-terminal fragment C99? J Biol Chem 2021; 296:100489. [PMID: 33662398 PMCID: PMC8027268 DOI: 10.1016/j.jbc.2021.100489] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Genetic, biochemical, and anatomical grounds led to the proposal of the amyloid cascade hypothesis centered on the accumulation of amyloid beta peptides (Aβ) to explain Alzheimer's disease (AD) etiology. In this context, a bulk of efforts have aimed at developing therapeutic strategies seeking to reduce Aβ levels, either by blocking its production (γ- and β-secretase inhibitors) or by neutralizing it once formed (Aβ-directed immunotherapies). However, so far the vast majority of, if not all, clinical trials based on these strategies have failed, since they have not been able to restore cognitive function in AD patients, and even in many cases, they have worsened the clinical picture. We here propose that AD could be more complex than a simple Aβ-linked pathology and discuss the possibility that a way to reconcile undoubted genetic evidences linking processing of APP to AD and a consistent failure of Aβ-based clinical trials could be to envision the pathological contribution of the direct precursor of Aβ, the β-secretase-derived C-terminal fragment of APP, βCTF, also referred to as C99. In this review, we summarize scientific evidences pointing to C99 as an early contributor to AD and postulate that γ-secretase should be considered as not only an Aβ-generating protease, but also a beneficial C99-inactivating enzyme. In that sense, we discuss the limitations of molecules targeting γ-secretase and propose alternative strategies seeking to reduce C99 levels by other means and notably by enhancing its lysosomal degradation.
Collapse
|
19
|
Uddin MS, Hasana S, Hossain MF, Islam MS, Behl T, Perveen A, Hafeez A, Ashraf GM. Molecular Genetics of Early- and Late-Onset Alzheimer's Disease. Curr Gene Ther 2021; 21:43-52. [PMID: 33231156 DOI: 10.2174/1566523220666201123112822] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly and this complex disorder is associated with environmental as well as genetic factors. Early-onset AD (EOAD) and late-onset AD (LOAD, more common) are major identified types of AD. The genetics of EOAD is extensively understood, with three gene variants such as APP, PSEN1, and PSEN2 leading to the disease. Some common alleles, including APOE, are effectively associated with LOAD identified, but the genetics of LOAD is not clear to date. It has been accounted that about 5-10% of EOAD patients can be explained through mutations in the three familiar genes of EOAD. The APOE ε4 allele augmented the severity of EOAD risk in carriers, and the APOE ε4 allele was considered as a hallmark of EOAD. A great number of EOAD patients, who are not genetically explained, indicate that it is not possible to identify disease-triggering genes yet. Although several genes have been identified by using the technology of next-generation sequencing in EOAD families, including SORL1, TYROBP, and NOTCH3. A number of TYROBP variants are identified through exome sequencing in EOAD patients and these TYROBP variants may increase the pathogenesis of EOAD. The existence of the ε4 allele is responsible for increasing the severity of EOAD. However, several ε4 allele carriers propose the presence of other LOAD genetic as well as environmental risk factors that are not identified yet. It is urgent to find out missing genetics of EOAD and LOAD etiology to discover new potential genetic facets which will assist in understanding the pathological mechanism of AD. These investigations should contribute to developing a new therapeutic candidate for alleviating, reversing and preventing AD. This article, based on current knowledge, represents the overview of the susceptible genes of EOAD, and LOAD. Next, we represent the probable molecular mechanism that might elucidate the genetic etiology of AD and highlight the role of massively parallel sequencing technologies for novel gene discoveries.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Sharifa Hasana
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | | | | | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, India
| | - Asma Perveen
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Abdul Hafeez
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
20
|
Mahmoudinobar F, Nilsson BL, Dias CL. Effects of Ions and Small Compounds on the Structure of Aβ 42 Monomers. J Phys Chem B 2021; 125:1085-1097. [PMID: 33481611 DOI: 10.1021/acs.jpcb.0c09617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aggregation of amyloid-β (Aβ) proteins in the brain is a hallmark of Alzheimer's disease. This phenomenon can be promoted or inhibited by adding small molecules to the solution where Aβ is embedded. These molecules affect the ensemble of conformations sampled by Aβ monomers even before aggregation starts. Here, we perform extensive all-atom replica exchange molecular dynamics (REMD) simulations to provide a comparative study of the ensemble of conformations sampled by Aβ42 monomers in solutions that promote (i.e., aqueous solution containing NaCl) and inhibit (i.e., aqueous solutions containing scyllo-inositol or 4-aminophenol) aggregation. Simulations performed in pure water are used as our reference. We find that secondary-structure content is only affected in an antagonistic manner by promoters and inhibitors at the C-terminus and the central hydrophilic core. Moreover, the end of the C-terminus binds more favorably to the central hydrophobic core region of Aβ42 in NaCl adopting a type of strand-loop-strand structure that is disfavored by inhibitors. Nonpolar residues that form the dry core of larger aggregates of Aβ42 (e.g., PDB ID 2BEG) are found at close proximity in these strand-loop-strand structures, suggesting that their formation could play an important role in initiating nucleation. In the presence of inhibitors, the C-terminus binds the central hydrophilic core with a higher probability than in our reference simulation. This sensitivity of the C-terminus, which is affected in an antagonistic manner by inhibitors and promoters, provides evidence for its critical role in accounting for aggregation.
Collapse
Affiliation(s)
- Farbod Mahmoudinobar
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Cristiano L Dias
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| |
Collapse
|
21
|
Single Point Mutation from E22-to-K in A β Initiates Early-Onset Alzheimer's Disease by Binding with Catalase. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2020:4981204. [PMID: 33425208 PMCID: PMC7775154 DOI: 10.1155/2020/4981204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/31/2020] [Accepted: 12/05/2020] [Indexed: 11/18/2022]
Abstract
Amyloid-beta (Aβ) is a critical etiological factor for late-onset familial Alzheimer's disease (AD). However, an early-onset AD has been found to be related with an Aβ mutation in glutamic acid 22-to-lysine (Italian type E22K). Why only one single point mutation at E22 residue induces AD remains unclear. Here, we report that a Chinese familial AD pedigree with E22K mutation was associated with higher levels of serum hydrogen peroxide (H2O2) and lower activity of catalase (a H2O2 degrading enzyme) than controls. Further, we found that E22K binding with catalase caused more severe H2O2 accumulation in the brains of E22K-injected rats than Aβ-injected rats. Unexpectedly, H2O2 bound with the mutation site 22K residue of E22K and elicited more rapid aggregation of E22K than Aβ in vitro. Moreover, H2O2 acted with E22K synergistically to induce higher cellular toxicity than with Aβ. Notably, intrahippocampal infusion of E22K led to more severe plaque deposition, neuron death, and more rapid memory decline than Aβ-injected rats. However, L-cysteine, a H2O2 scavenger, not only prevented self-aggregation of E22K but also reduced H2O2-promoted E22K assembly in vitro; subsequently, it alleviated Alzheimer-related phenotypes. Hence, E22K binding with catalase promotes the early onset of familial AD, and L-cys may reverse this disease.
Collapse
|
22
|
Rombouts F, Kusakabe KI, Hsiao CC, Gijsen HJM. Small-molecule BACE1 inhibitors: a patent literature review (2011 to 2020). Expert Opin Ther Pat 2020; 31:25-52. [PMID: 33006491 DOI: 10.1080/13543776.2021.1832463] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Inhibition of β-site amyloid precursor protein cleaving enzyme 1 (BACE1) has been extensively pursued as potential disease-modifying treatment for Alzheimer's disease (AD). Clinical failures with BACE inhibitors have progressively raised the bar forever cleaner candidates with reduced cardiovascular liability, toxicity risk, and increased selectivity over cathepsin D (CatD) and BACE2. AREAS COVERED This review provides an overview of patented BACE1 inhibitors between 2011 and 2020 per pharmaceutical company or research group and highlights the progress that was made in dialing out toxicity liabilities. EXPERT OPINION Despite an increasingly crowded IP situation, significant progress was made using highly complex chemistry in avoiding toxicity liabilities, with BACE1/BACE2 selectivity being the most remarkable achievement. However, clinical trial data suggest on-target toxicity is likely a contributing factor, which implies the only potential future of BACE1 inhibitors lies in careful titration of highly selective compounds in early populations where the amyloid burden is still minimal as prophylactic therapy, or as an affordable oral maintenance therapy following amyloid-clearing therapies.
Collapse
Affiliation(s)
- Frederik Rombouts
- Medicinal Chemistry, Janssen Research & Development , Beerse, Belgium
| | - Ken-Ichi Kusakabe
- Laboratory for Medicinal Chemistry Research, Shionogi & Co., Ltd ., Toyonaka, Osaka, Japan
| | - Chien-Chi Hsiao
- Medicinal Chemistry, Janssen Research & Development , Beerse, Belgium
| | - Harrie J M Gijsen
- Medicinal Chemistry, Janssen Research & Development , Beerse, Belgium
| |
Collapse
|
23
|
Imbimbo BP, Lucca U, Watling M. Can Anti-β-amyloid Monoclonal Antibodies Work in Autosomal Dominant Alzheimer Disease? NEUROLOGY-GENETICS 2020; 7:e535. [PMID: 33575481 PMCID: PMC7862085 DOI: 10.1212/nxg.0000000000000535] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022]
Abstract
The dominant theory of Alzheimer disease (AD) has been that amyloid-β (Aβ) accumulation in the brain is the initial cause of the degeneration leading to cognitive and functional deficits. Autosomal dominant Alzheimer disease (ADAD), in which pathologic mutations of the amyloid precursor protein (APP) or presenilins (PSENs) genes are known to cause abnormalities of Aβ metabolism, should thus offer perhaps the best opportunity to test anti-Aβ drugs. Two long-term preventive studies (Dominantly Inherited Alzheimer Network Trials Unit Adaptive Prevention Trial [DIAN-TU-APT] and Alzheimer Preventive Initiative-ADAD) were set up to evaluate the efficacy of monoclonal anti-Aβ antibodies (solanezumab, gantenerumab, and crenezumab) in carriers of ADAD, but the results of the DIAN-TU-APT study have shown that neither solanezumab nor gantenerumab slowed cognitive decline in 144 subjects with ADAD followed for 4 years, despite one of the drugs (gantenerumab) significantly affected biomarkers relevant to their intended mechanism of action. Surprisingly, solanezumab significantly accelerated cognitive decline of both asymptomatic and symptomatic subjects. These failures further undermine the Aβ hypothesis and could support the suggestion that ADAD is triggered by accumulation of other APP metabolites, rather than Aβ.
Collapse
Affiliation(s)
- Bruno P Imbimbo
- Department of Research & Development (B.P.I.), Chiesi Farmaceutici, Parma, Italy; Laboratory of Geriatric Neuropsychiatry (U.L.), Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy; and CNS & Pain Department (M.W.), TranScrip Partners, Reading, United Kingdom
| | - Ugo Lucca
- Department of Research & Development (B.P.I.), Chiesi Farmaceutici, Parma, Italy; Laboratory of Geriatric Neuropsychiatry (U.L.), Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy; and CNS & Pain Department (M.W.), TranScrip Partners, Reading, United Kingdom
| | - Mark Watling
- Department of Research & Development (B.P.I.), Chiesi Farmaceutici, Parma, Italy; Laboratory of Geriatric Neuropsychiatry (U.L.), Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy; and CNS & Pain Department (M.W.), TranScrip Partners, Reading, United Kingdom
| |
Collapse
|
24
|
Das S, Sengupta S, Chakraborty S. Scope of β-Secretase (BACE1)-Targeted Therapy in Alzheimer's Disease: Emphasizing the Flavonoid Based Natural Scaffold for BACE1 Inhibition. ACS Chem Neurosci 2020; 11:3510-3522. [PMID: 33073981 DOI: 10.1021/acschemneuro.0c00579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most common form of dementia in the world. Studies report the presence of extracellular amyloid plaques consisting of β-amyloid peptide and intracellular tangles consisting of hyperphosphorylated tau proteins as the histopathological indicators of AD. The process of β-amyloid peptide generation by sequential cleavage of amyloid precursor protein by β-secretase (BACE1) and γ-secretase, followed by its aggregation to form amyloid plaques, is the mechanistic basis of the amyloid hypothesis. Other popular hypotheses related to the pathogenesis of AD include the tau hypothesis and the oxidative stress hypothesis. Various targets of the amyloid cascade are now in prime focus to develop drugs for AD. Many BACE1 inhibitors, β-amyloid aggregation inhibitors, and Aβ clearance strategies using monoclonal antibodies are in various stages of clinical trials. This review provides an in-depth evaluation of the role of BACE1 in disease pathogenesis and also highlights the therapeutic approaches developed to find more potent but less toxic inhibitors for BACE1, particularly emphasizing the natural scaffold as a nontoxic lead for BACE1 inhibition. Cellular targets and signaling cascades involving BACE1 have been highlighted to understand the physiological role of BACE1. This knowledge is extremely crucial to understand the toxicity evaluations for BACE1-targeted therapy. We have particularly highlighted the scope of flavonoids as a new generation of nontoxic BACE1 inhibitory scaffolds. The structure-activity relationship of BACE1 inhibition for this group of compounds has been highlighted to provide a guideline to design more selective highly potent inhibitors. The review aims to provide a holistic overview of BACE1-targeted therapy for AD that paves the way for future drug development.
Collapse
Affiliation(s)
- Sucharita Das
- Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Swaha Sengupta
- Amity Institute of Biotechnology, Amity University, Kolkata 700135, India
| | | |
Collapse
|
25
|
Peng Y, Gao P, Shi L, Chen L, Liu J, Long J. Central and Peripheral Metabolic Defects Contribute to the Pathogenesis of Alzheimer's Disease: Targeting Mitochondria for Diagnosis and Prevention. Antioxid Redox Signal 2020; 32:1188-1236. [PMID: 32050773 PMCID: PMC7196371 DOI: 10.1089/ars.2019.7763] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/20/2022]
Abstract
Significance: Epidemiological studies indicate that metabolic disorders are associated with an increased risk for Alzheimer's disease (AD). Metabolic remodeling occurs in the central nervous system (CNS) and periphery, even in the early stages of AD. Mitochondrial dysfunction has been widely accepted as a molecular mechanism underlying metabolic disorders. Therefore, focusing on early metabolic changes, especially from the perspective of mitochondria, could be of interest for early AD diagnosis and intervention. Recent Advances: We and others have identified that the levels of several metabolites are fluctuated in the periphery before their accumulation in the CNS, which plays an important role in the pathogenesis of AD. Mitochondrial remodeling is likely one of the earliest signs of AD, linking nutritional imbalance to cognitive deficits. Notably, by improving mitochondrial function, mitochondrial nutrients efficiently rescue cellular metabolic dysfunction in the CNS and periphery in individuals with AD. Critical Issues: Peripheral metabolic disorders should be intensively explored and evaluated for the early diagnosis of AD. The circulating metabolites derived from mitochondrial remodeling represent novel potential diagnostic biomarkers for AD that are more readily detected than CNS-oriented biomarkers. Moreover, mitochondrial nutrients provide a promising approach to preventing and delaying AD progression. Future Directions: Abnormal mitochondrial metabolism in the CNS and periphery is involved in AD pathogenesis. More clinical studies provide evidence for the suitability and reliability of circulating metabolites and cytokines for the early diagnosis of AD. Targeting mitochondria to rewire cellular metabolism is a promising approach to preventing AD and ameliorating AD-related metabolic disorders.
Collapse
Affiliation(s)
- Yunhua Peng
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Peipei Gao
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Le Shi
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Lei Chen
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiankang Liu
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiangang Long
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
26
|
Chávez-Gutiérrez L, Szaruga M. Mechanisms of neurodegeneration - Insights from familial Alzheimer's disease. Semin Cell Dev Biol 2020; 105:75-85. [PMID: 32418657 DOI: 10.1016/j.semcdb.2020.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/18/2022]
Abstract
The rising prevalence of Alzheimer's disease (AD), together with the lack of effective treatments, portray it as one of the major health challenges of our times. Untangling AD implies advancing the knowledge of the biology that gets disrupted during the disease while deciphering the molecular and cellular mechanisms leading to AD-related neurodegeneration. In fact, a solid mechanistic understanding of the disease processes stands as an essential prerequisite for the development of safe and effective treatments. Genetics has provided invaluable clues to the genesis of the disease by revealing deterministic genes - Presenilins (PSENs) and the Amyloid Precursor Protein (APP) - that, when affected, lead in an autosomal dominant manner to early-onset, familial AD (FAD). PSEN is the catalytic subunit of the membrane-embedded γ-secretase complexes, which act as proteolytic switches regulating key cell signalling cascades. Importantly, these intramembrane proteases are responsible for the production of Amyloid β (Aβ) peptides from APP. The convergence of pathogenic mutations on one functional pathway, the amyloidogenic cleavage of APP, strongly supports the significance of this process in AD pathogenesis. Here, we review and discuss the state-of-the-art knowledge of the molecular mechanisms underlying FAD, their implications for the sporadic form of the disease and for the development of safe AD therapeutics.
Collapse
Affiliation(s)
- Lucía Chávez-Gutiérrez
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium.
| | - Maria Szaruga
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Kennedy-Britten OD, Al-Shammari N, Platts JA. Molecular dynamics simulations of copper binding to N-terminus mutants of amyloid-β. J Biomol Struct Dyn 2020; 39:2003-2013. [PMID: 32189584 DOI: 10.1080/07391102.2020.1745692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We report results of molecular dynamic (MD) simulations on N-terminus mutants of the copper-bound, amyloid-β (Aβ) peptide. Eight structures of Aβ were modelled, including seven mutant peptides in addition to the unaltered wild-type (WT). Trajectories analysed for each individual system were all approximately 1.4 μs in length, yielding a total of over 11 μs in total. The impact of these mutations are marked and varied compared to the wild-type peptide, including effects on secondary structure, stability and conformational changes. Each system showed differing levels of stability with some showing consistent, compact conformations whereas others displayed more flexible structures. Contrasts between comparable mutations at similar sites, such as A2T/A2V and D7H/D7N, show the location as well as the type of mutation have effects on protein structure observed in Ramachandran plots. We also report notable changes in peptide structure at residues remote to the site of substitution showing these mutations influence the entirety of Aβ. Salt-bridge profiles show this most clearly: addition or removal of charged residues affecting all salt-bridge interactions present in WT, even those remote from the site of mutation. Effects on secondary structure differ between mutations, most notably a change in incidence of β-strand, which has been linked to enhanced aggregational properties for the peptide. GFN2-xTB semi-empirical calculations show clear differences in binding energies of the copper-centre for each system.Communicated by Ramaswamy H. Sarma.
Collapse
|
28
|
Liu Y, Wang M, Marcora EM, Zhang B, Goate AM. Promoter DNA hypermethylation - Implications for Alzheimer's disease. Neurosci Lett 2019; 711:134403. [PMID: 31351091 PMCID: PMC6759378 DOI: 10.1016/j.neulet.2019.134403] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 07/12/2019] [Accepted: 07/23/2019] [Indexed: 12/31/2022]
Abstract
Recent methylome-wide association studies (MWAS) in humans have solidified the concept that aberrant DNA methylation is associated with Alzheimer's disease (AD). We summarize these findings to improve the understanding of mechanisms governing DNA methylation pertinent to transcriptional regulation, with an emphasis of AD-associated promoter DNA hypermethylation, which establishes an epigenetic barrier for transcriptional activation. By considering brain cell type specific expression profiles that have been published only for non-demented individuals, we detail functional activities of selected neuron, microglia, and astrocyte-enriched genes (AGAP2, DUSP6 and GPR37L1, respectively), which are DNA hypermethylated at promoters in AD. We highlight future directions in MWAS including experimental confirmation, functional relevance to AD, cell type-specific temporal characterization, and mechanism investigation.
Collapse
Affiliation(s)
- Yiyuan Liu
- Department of Neuroscience and Department of Genetics and Genomic Sciences, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.
| | - Edoardo M Marcora
- Department of Neuroscience and Department of Genetics and Genomic Sciences, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
| | - Alison M Goate
- Department of Neuroscience and Department of Genetics and Genomic Sciences, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| |
Collapse
|
29
|
Penke B, Bogár F, Paragi G, Gera J, Fülöp L. Key Peptides and Proteins in Alzheimer's Disease. Curr Protein Pept Sci 2019; 20:577-599. [PMID: 30605056 DOI: 10.2174/1389203720666190103123434] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/03/2018] [Accepted: 12/27/2018] [Indexed: 02/02/2023]
Abstract
Alzheimer's Disease (AD) is a form of progressive dementia involving cognitive impairment, loss of learning and memory. Different proteins (such as amyloid precursor protein (APP), β- amyloid (Aβ) and tau protein) play a key role in the initiation and progression of AD. We review the role of the most important proteins and peptides in AD pathogenesis. The structure, biosynthesis and physiological role of APP are shortly summarized. The details of trafficking and processing of APP to Aβ, the cytosolic intracellular Aβ domain (AICD) and small soluble proteins are shown, together with other amyloid-forming proteins such as tau and α-synuclein (α-syn). Hypothetic physiological functions of Aβ are summarized. The mechanism of conformational change, the formation and the role of neurotoxic amyloid oligomeric (oAβ) are shown. The fibril formation process and the co-existence of different steric structures (U-shaped and S-shaped) of Aβ monomers in mature fibrils are demonstrated. We summarize the known pathogenic and non-pathogenic mutations and show the toxic interactions of Aβ species after binding to cellular receptors. Tau phosphorylation, fibrillation, the molecular structure of tau filaments and their toxic effect on microtubules are shown. Development of Aβ and tau imaging in AD brain and CSF as well as blood biomarkers is shortly summarized. The most probable pathomechanisms of AD including the toxic effects of oAβ and tau; the three (biochemical, cellular and clinical) phases of AD are shown. Finally, the last section summarizes the present state of Aβ- and tau-directed therapies and future directions of AD research and drug development.
Collapse
Affiliation(s)
- Botond Penke
- Department of Medical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dom square 8, Szeged, H-6720, Hungary
| | - Ferenc Bogár
- Department of Medical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dom square 8, Szeged, H-6720, Hungary.,MTA-SZTE Biomimetic Systems Research Group, University of Szeged, H-6720 Szeged, Dom square 8, Hungary
| | - Gábor Paragi
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged, H-6720 Szeged, Dom square 8, Hungary.,Institute of Physics, University of Pécs, H-7624 Pecs, Ifjusag utja 6, Hungary
| | - János Gera
- Department of Medical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dom square 8, Szeged, H-6720, Hungary
| | - Lívia Fülöp
- Department of Medical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dom square 8, Szeged, H-6720, Hungary
| |
Collapse
|
30
|
Castro MA, Hadziselimovic A, Sanders CR. The vexing complexity of the amyloidogenic pathway. Protein Sci 2019; 28:1177-1193. [PMID: 30897251 PMCID: PMC6566549 DOI: 10.1002/pro.3606] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
Abstract
The role of the amyloidogenic pathway in the etiology of Alzheimer's disease (AD), particularly the common sporadic late onset forms of the disease, is controversial. To some degree, this is a consequence of the failure of drug and therapeutic antibody trials based either on targeting the proteases in this pathway or its amyloid end products. Here, we explore the formidable complexity of the biochemistry and cell biology associated with this pathway. For example, we review evidence that the immediate precursor of amyloid-β, the C99 domain of the amyloid precursor protein (APP), may itself be toxic. We also review important new results that appear to finally establish a direct genetic link between mutations in APP and the sporadic forms of AD. Based on the complexity of amyloidogenesis, it seems possible that a major contributor to the failure of related drug trials is that we have an incomplete understanding of this pathway and how it is linked to Alzheimer's pathogenesis. If so, this highlights a need for further characterization of this pathway, not its abandonment.
Collapse
Affiliation(s)
- Manuel A. Castro
- Departments of Biochemistry and MedicineVanderbilt University School of MedicineNashvilleTennessee 37240
| | - Arina Hadziselimovic
- Departments of Biochemistry and MedicineVanderbilt University School of MedicineNashvilleTennessee 37240
| | - Charles R. Sanders
- Departments of Biochemistry and MedicineVanderbilt University School of MedicineNashvilleTennessee 37240
| |
Collapse
|
31
|
Molecular dynamics of C99-bound γ-secretase reveal two binding modes with distinct compactness, stability, and active-site retention: implications for Aβ production. Biochem J 2019; 476:1173-1189. [PMID: 30910800 DOI: 10.1042/bcj20190023] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 12/11/2022]
Abstract
The membrane protease γ-secretase cleaves the C99 fragment of the amyloid precursor protein, thus producing the Aβ peptides central to Alzheimer's disease. Cryo-electron microscopy has provided the topology but misses the membrane and loop parts that contribute to substrate binding. We report here an essentially complete atomic model of C99 within wild-type γ-secretase that respects all the experimental constraints and additionally describes loop, helix, and C99 substrate dynamics in a realistic all-atom membrane. Our model represents the matured auto-cleaved state required for catalysis. From two independent 500-ns molecular dynamic simulations, we identify two conformation states of C99 in equilibrium, a compact and a loose state. Our simulations provide a basis for C99 processing and Aβ formation and explain the production of longer and shorter Aβ, as the compact state retains C99 for longer and thus probably trims to shorter Aβ peptides. We expect pathogenic presenilin mutations to stabilize the loose over the compact state. The simulations detail the role of the Lys53-Lys54-Lys55 anchor for C99 binding, a loss of helicity of bound C99, and positioning of Thr48 and Leu49 leading to alternative trimming pathways on opposite sides of the C99 helix in three amino acid steps. The C99 binding topology resembles that of C83-bound γ-secretase without membrane but lacks a presenilin 1-C99 β-sheet, which could be induced by C83's stronger binding. The loose state should be selectively disfavored by γ-secretase modulators to increase C99 trimming and reduce the formation of longer Aβ, a strategy that is currently much explored but has lacked a structural basis.
Collapse
|
32
|
Bi C, Bi S, Li B. Processing of Mutant β-Amyloid Precursor Protein and the Clinicopathological Features of Familial Alzheimer's Disease. Aging Dis 2019; 10:383-403. [PMID: 31011484 PMCID: PMC6457050 DOI: 10.14336/ad.2018.0425] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 04/25/2018] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is a complex, multifactorial disease involving many pathological mechanisms. Nonetheless, single pathogenic mutations in amyloid precursor protein (APP) or presenilin 1 or 2 can cause AD with almost all of the clinical and neuropathological features, and therefore, we believe an important mechanism of pathogenesis in AD could be revealed from examining pathogenic APP missense mutations. A comprehensive review of the literature, including clinical, neuropathological, cellular and animal model data, was conducted through PubMed and the databases of Alzforum mutations, HGMD, UniProt, and AD&FTDMDB. Pearson correlation analysis combining the clinical and neuropathological data and aspects of mutant APP processing in cellular models was performed. We find that an increase in Aβ42 has a significant positive correlation with the appearance of neurofibrillary tangles (NFTs) and tends to cause an earlier age of AD onset, while an increase in Aβ40 significantly increases the age at death. The increase in the α-carboxyl terminal fragment (CTF) has a significantly negative correlation with the age of AD onset, and β-CTF has a similar effect without statistical significance. Animal models show that intracellular Aβ is critical for memory defects. Based on these results and the fact that amyloid plaque burden correlates much less well with cognitive impairment than do NFT counts, we propose a "snowball hypothesis": the accumulation of intraneuronal NFTs caused by extracellular Aβ42 and the increase in intraneuronal APP proteolytic products (CTFs and Aβs) could cause cellular organelle stress that leads to neurodegeneration in AD, which then resembles the formation of abnormal protein "snowballs" both inside and outside of neurons.
Collapse
Affiliation(s)
- Christopher Bi
- Washington Institute for Health Sciences, Arlington, VA 22203, USA
| | - Stephanie Bi
- Washington Institute for Health Sciences, Arlington, VA 22203, USA
| | - Bin Li
- Washington Institute for Health Sciences, Arlington, VA 22203, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington DC 20057, USA
| |
Collapse
|
33
|
Amyloid PET pattern with dementia and amyloid angiopathy in Taiwan familial AD with D678H APP mutation. J Neurol Sci 2019; 398:107-116. [DOI: 10.1016/j.jns.2018.12.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/26/2018] [Accepted: 12/31/2018] [Indexed: 11/21/2022]
|
34
|
New evolutions in the BACE1 inhibitor field from 2014 to 2018. Bioorg Med Chem Lett 2019; 29:761-777. [DOI: 10.1016/j.bmcl.2018.12.049] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 11/24/2022]
|
35
|
Abstract
Plasma membrane proteins organize into structures named compartments, microdomains, rafts, phases, crowds, or clusters. These structures are often smaller than 100 nm in diameter. Despite their importance in many cellular functions, little is known about their inner organization. For instance, how densely are molecules packed? Being aware of the protein compaction may contribute to our general understanding of why such structures exist and how they execute their functions. In this study, we have investigated plasma membrane crowds formed by the amyloid precursor protein (APP), a protein well known for its involvement in Alzheimer's disease. By combining biochemical experiments with conventional and super-resolution stimulated emission depletion microscopy, we quantitatively determined the protein packing density within APP crowds. We found that crowds occurring with reasonable frequency contain between 20 and 30 molecules occupying a spherical area with a diameter between 65 and 85 nm. Additionally, we found the vast majority of plasmalemmal APP residing in these crowds. The model suggests a high molecular density of protein material within plasmalemmal APP crowds. This should affect the protein's biochemical accessibility and processing by nonpathological α-secretases. As clustering of APP is a prerequisite for endocytic entry into the pathological processing pathway, elucidation of the packing density also provides a deeper understanding of this part of APP's life cycle.
Collapse
|
36
|
Law BM, Guest AL, Pullen MWJ, Perkinton MS, Williams RJ. Increased Foxo3a Nuclear Translocation and Activity is an Early Neuronal Response to βγ-Secretase-Mediated Processing of the Amyloid-β Protein Precursor: Utility of an AβPP-GAL4 Reporter Assay. J Alzheimers Dis 2019; 61:673-688. [PMID: 29254083 DOI: 10.3233/jad-170393] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sequential cleavage of the amyloid-β protein precursor (AβPP) by BACE1 (β-secretase) followed by theγ-secretase complex, is strongly implicated in Alzheimer's disease (AD) but the initial cellular responses to these cleavage events are not fully defined. β-secretase-mediated AβPP processing yields an extracellular domain (sAβPPβ) and a C-terminal fragment of AβPP of 99 amino acids (C99). Subsequent cleavage by γ-secretase produces amyloid-β (Aβ) and an AβPP intracellular domain (AICD). A cellular screen based on the generation of AICD from an AβPP-Gal4 fusion protein was adapted by introducing familial AD (FAD) mutations into the AβPP sequence and linking the assay to Gal4-UAS driven luciferase and GFP expression, to identify responses immediately downstream of AβPP processing in neurons with a focus on the transcription factor Foxo3a which has been implicated in neurodegeneration. The K670N/M671L, E682K, E693G, and V717I FAD mutations and the A673T protective mutation, were introduced into the AβPP sequence by site directed mutagenesis. When expressed in mouse cortical neurons, AβPP-Gal4-UAS driven luciferase and GFP expression was substantially reduced by γ-secretase inhibitors, lowered by β-secretase inhibitors, and enhanced by α-secretase inhibitors suggesting that AICD is a product of the βγ-secretase pathway. AβPP-Gal4-UAS driven GFP expression was exploited to identify individual neurons undergoing amyloidogenic AβPP processing, revealing increased nuclear localization of Foxo3a and enhanced Foxo3a-mediated transcription downstream of AICD production. Foxo3a translocation was not driven by AICD directly but correlated with reduced Akt phosphorylation. Collectively this suggests that βγ-secretase-mediated AβPP processing couples to Foxo3a which could be an early neuronal signaling response in AD.
Collapse
Affiliation(s)
- Bernard M Law
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Amy L Guest
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | | | | | - Robert J Williams
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| |
Collapse
|
37
|
Li NM, Liu KF, Qiu YJ, Zhang HH, Nakanishi H, Qing H. Mutations of beta-amyloid precursor protein alter the consequence of Alzheimer's disease pathogenesis. Neural Regen Res 2019; 14:658-665. [PMID: 30632506 PMCID: PMC6352587 DOI: 10.4103/1673-5374.247469] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alzheimer’s disease is pathologically defined by accumulation of extracellular amyloid-β (Aβ). Approximately 25 mutations in β-amyloid precursor protein (APP) are pathogenic and cause autosomal dominant Alzheimer’s disease. To date, the mechanism underlying the effect of APP mutation on Aβ generation is unclear. Therefore, investigating the mechanism of APP mutation on Alzheimer’s disease may help understanding of disease pathogenesis. Thus, APP mutations (A673T, A673V, E682K, E693G, and E693Q) were transiently co-transfected into human embryonic kidney cells. Western blot assay was used to detect expression levels of APP, beta-secretase 1, and presenilin 1 in cells. Enzyme-linked immunosorbent assay was performed to determine Aβ1–40 and Aβ1–42 levels. Liquid chromatography-tandem mass chromatography was used to examine VVIAT, FLF, ITL, VIV, IAT, VIT, TVI, and VVIA peptide levels. Immunofluorescence staining was performed to measure APP and early endosome antigen 1 immunoreactivity. Our results show that the protective A673T mutation decreases Aβ42/Aβ40 rate by downregulating IAT and upregulating VVIA levels. Pathogenic A673V, E682K, and E693Q mutations promote Aβ42/Aβ40 rate by increasing levels of CTF99, Aβ42, Aβ40, and IAT, and decreasing VVIA levels. Pathogenic E693G mutation shows no significant change in Aβ42/Aβ40 ratio because of inhibition of γ-secretase activity. APP mutations can change location from the cell surface to early endosomes. Our findings confirm that certain APP mutations accelerate Aβ generation by affecting the long Aβ cleavage pathway and increasing Aβ42/40 rate, thereby resulting in Alzheimer’s disease.
Collapse
Affiliation(s)
- Nuo-Min Li
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Ke-Fu Liu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yun-Jie Qiu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Huan-Huan Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Hiroshi Nakanishi
- Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Hong Qing
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
38
|
Hunter S, Smailagic N, Brayne C. Aβ and the dementia syndrome: Simple versus complex perspectives. Eur J Clin Invest 2018; 48:e13025. [PMID: 30246866 DOI: 10.1111/eci.13025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 08/15/2018] [Accepted: 09/06/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND The amyloid cascade hypothesis (ACH) has dominated strategy in dementia research for decades despite evidence of its limitations including known heterogeneity of the dementia syndrome in the population and the narrow focus on a single molecule - the amyloid beta protein (Aβ) as causal for all Alzheimer-type dementia. Other hypotheses relevant to Aβ are the presenilin (PS) hypothesis (PSH) relating to the involvement of PS in the generation of Aβ, and the amyloid precursor protein (APP) matrix approach (AMA), relating to the complex and dynamic breakdown of APP, from which Aβ derives. MATERIALS AND METHODS In this article we explore perspectives relating to complex disorders occurring mainly in older populations through a detailed case study of the role of Aβ in AD. RESULTS Scrutiny of the evidence generated so far reveals and a lack of understanding of the wider APP proteolytic system and how narrow research into the dementia syndrome has been to date. Confounding factors add significant limitations to the understanding of the current evidence base. CONCLUSIONS A better characterisation of the entire APP proteolytic system in the human brain is urgently required to place Aβ in its complex physiological context. From a molecular perspective, a combination of the alternative hypotheses, the PSH and the AMA may better describe the complexity of the APP proteolytic system leading to new therapeutic approaches. The reductionist approach is widespread throughout biomedical research and this example highlights how neglect of complexity can undermine investigations of complex disorders, particularly those arising in the oldest in our populations.
Collapse
Affiliation(s)
- Sally Hunter
- Department of Public Health and Primary Care, Institute of Public Health, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Nadja Smailagic
- Department of Public Health and Primary Care, Institute of Public Health, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Carol Brayne
- Department of Public Health and Primary Care, Institute of Public Health, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
39
|
Wang X, Pei G. Visualization of Alzheimer's Disease Related α-/β-/γ-Secretase Ternary Complex by Bimolecular Fluorescence Complementation Based Fluorescence Resonance Energy Transfer. Front Mol Neurosci 2018; 11:431. [PMID: 30538620 PMCID: PMC6277482 DOI: 10.3389/fnmol.2018.00431] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/05/2018] [Indexed: 11/13/2022] Open
Abstract
The competitive ectodomain shedding of amyloid-β precursor protein (APP) by α-secretase and β-secretase, and the subsequent regulated intramembrane proteolysis by γ-secretase are the key processes in amyloid-β peptides (Aβ) generation. Previous studies indicate that secretases form binary complex and the interactions between secretases take part in substrates processing. However, whether α-, β- and γ-secretase could form ternary complex remains to be explored. Here, we adopted bimolecular fluorescence complementation in combination with fluorescence resonance energy transfer (BiFC-FRET) to visualize the formation of triple secretase complex. We show that the interaction between α-secretase ADAM10 and β-secretase BACE1 could be monitored by BiFC assay and the binding of APP to α-/β-secretase binary complex was revealed by BiFC-FRET. Further, we observed that γ-secretase interacts with α-/β-secretase binary complex, providing evidence that α-, β- and γ-secretase might form a ternary complex. Thus our study extends the interplay among Alzheimer's disease (AD) related α-/β-/γ-secretase.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Gang Pei
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, and The Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
| |
Collapse
|
40
|
An in-silico method for identifying aggregation rate enhancer and mitigator mutations in proteins. Int J Biol Macromol 2018; 118:1157-1167. [DOI: 10.1016/j.ijbiomac.2018.06.102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 12/27/2022]
|
41
|
Inoue K, Oliveira LMA, Abeliovich A. CRISPR Transcriptional Activation Analysis Unmasks an Occult γ-Secretase Processivity Defect in Familial Alzheimer's Disease Skin Fibroblasts. Cell Rep 2018; 21:1727-1736. [PMID: 29141208 DOI: 10.1016/j.celrep.2017.10.075] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/10/2017] [Accepted: 10/17/2017] [Indexed: 12/31/2022] Open
Abstract
Mutations in presenilin (PSEN) 1 and 2, which encode components of the γ-secretase (GS) complex, cause familial Alzheimer's disease (FAD). It is hypothesized that altered GS-mediated processing of the amyloid precursor protein (APP) to the Aβ42 fragment, which is accumulated in diseased brain, may be pathogenic. Here, we describe an in vitro model system that enables the facile analysis of neuronal disease mechanisms in non-neuronal patient cells using CRISPR gene activation of endogenous disease-relevant genes. In FAD patient-derived fibroblast cultures, CRISPR activation of APP or BACE unmasked an occult processivity defect in downstream GS-mediated carboxypeptidase cleavage of APP, ultimately leading to higher Aβ42 levels. These data suggest that, selectively in neurons, relatively high levels of BACE1 activity lead to substrate pressure on FAD-mutant GS complexes, promoting CNS Aβ42 accumulation. Our results introduce an additional platform for analysis of neurological disease.
Collapse
Affiliation(s)
- Keiichi Inoue
- Department of Pathology, Cell Biology and Neurology, Taub Institute, Columbia University Medical Center, 650 West 168th St., New York, NY 10032, USA.
| | - Luis M A Oliveira
- Department of Pathology, Cell Biology and Neurology, Taub Institute, Columbia University Medical Center, 650 West 168th St., New York, NY 10032, USA
| | - Asa Abeliovich
- Department of Pathology, Cell Biology and Neurology, Taub Institute, Columbia University Medical Center, 650 West 168th St., New York, NY 10032, USA.
| |
Collapse
|
42
|
Pantelopulos GA, Straub JE, Thirumalai D, Sugita Y. Structure of APP-C99 1-99 and implications for role of extra-membrane domains in function and oligomerization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1698-1708. [PMID: 29702072 DOI: 10.1016/j.bbamem.2018.04.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 01/30/2023]
Abstract
The 99 amino acid C-terminal fragment of Amyloid Precursor Protein APP-C99 (C99) is cleaved by γ-secretase to form Aβ peptide, which plays a critical role in the etiology of Alzheimer's Disease (AD). The structure of C99 consists of a single transmembrane domain flanked by intra and intercellular domains. While the structure of the transmembrane domain has been well characterized, little is known about the structure of the flanking domains and their role in C99 processing by γ-secretase. To gain insight into the structure of full-length C99, REMD simulations were performed for monomeric C99 in model membranes of varying thickness. We find equilibrium ensembles of C99 from simulation agree with experimentally-inferred residue insertion depths and protein backbone chemical shifts. In thin membranes, the transmembrane domain structure is correlated with extra-membrane structural states and the extra-membrane domain structural states become less correlated to each other. Mean and variance of the transmembrane and G37G38 hinge angles are found to increase with thinning membrane. The N-terminus of C99 forms β-strands that may seed aggregation of Aβ on the membrane surface, promoting amyloid formation. In thicker membranes the N-terminus forms α-helices that interact with the nicastrin domain of γ-secretase. The C-terminus of C99 becomes more α-helical as the membrane thickens, forming structures that may be suitable for binding by cytoplasmic proteins, while C-terminal residues essential to cytotoxic function become α-helical as the membrane thins. The heterogeneous but discrete extra-membrane domain states analyzed here open the path to new investigations of the role of C99 structure and membrane in amyloidogenesis. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.
Collapse
Affiliation(s)
- George A Pantelopulos
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215-2521, USA
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215-2521, USA.
| | - D Thirumalai
- Department of Chemistry, The University of Texas, Austin, TX 78712-1224, USA
| | - Yuji Sugita
- Theoretical Molecular Science Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
43
|
Dai MH, Zheng H, Zeng LD, Zhang Y. The genes associated with early-onset Alzheimer's disease. Oncotarget 2018; 9:15132-15143. [PMID: 29599933 PMCID: PMC5871104 DOI: 10.18632/oncotarget.23738] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/14/2017] [Indexed: 01/31/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that accounts for the most cases of dementia, which is characterized by the deposition of dense plaques of amyloid beta (Aβ) plaques and neurofibrillary tangles consisting of hyperphosphorylated tau. The two main types of AD can be classified as early-onset AD (EOAD, onset < 65 years) and late-onset AD (LOAD, onset ≥ 65 years). Evidence from family and twin studies indicate that genetic factors are estimated to play a role in at least 80% of AD cases. The first milestone with linkage analysis revealed the mutations in APP, PSEN1, and PSEN2 genes that cause EOAD. But pathogenic mutations in these three genes can only explain a small fraction of EOAD families. The additional disease-causing genes have not yet been identified. This review provides an overview of the genetic basis of EOAD and the relationship between the functions of these risk genes and the neuropathologic features of AD. A better understanding of genetic mechanisms underlying EOAD pathogenesis and the potentially molecular mechanisms of neurodegeneration will lead to the development of effective diagnosis and treatment strategies for this devastating disease.
Collapse
Affiliation(s)
- Meng-Hui Dai
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ling-Dan Zeng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
44
|
Siegel G, Gerber H, Koch P, Bruestle O, Fraering PC, Rajendran L. The Alzheimer's Disease γ-Secretase Generates Higher 42:40 Ratios for β-Amyloid Than for p3 Peptides. Cell Rep 2018; 19:1967-1976. [PMID: 28591569 DOI: 10.1016/j.celrep.2017.05.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/12/2017] [Accepted: 05/09/2017] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease is characterized by intracerebral deposition of β-amyloid (Aβ). While Aβ40 is the most abundant form, neurotoxicity is mainly mediated by Aβ42. Sequential cleavage of amyloid precursor protein (APP) by β- and γ-secretases gives rise to full-length Aβ (Aβ1-x) and N-terminally truncated Aβ' (Aβ11-x) whereas cleavage by α- and γ-secretases leads to the shorter p3 peptides (Aβ17-x). We uncovered significantly higher ratios of 42- versus 40-ending variants for Aβ and Aβ' than for p3 secreted by mouse neurons and human induced pluripotent stem cell (iPSC)-derived neurons or produced in a cell-free γ-secretase assay with recombinant APP-CTFs. The 42:40 ratio was highest for Aβ', followed by Aβ and then p3. Mass spectrometry analysis of APP intracellular domains revealed differential processing of APP-C83, APP-C89, and APP-C99 by γ-secretase already at the ε-cleavage stage. This mechanistic insight could aid in developing substrate-targeted modulators of APP-C99 processing to specifically lower the Aβ42:Aβ40 ratio without compromising γ-secretase function.
Collapse
Affiliation(s)
- Gabriele Siegel
- Systems and Cell Biology of Neurodegeneration, IREM, University of Zurich, Schlieren Campus, 8952 Schlieren, Switzerland.
| | - Hermeto Gerber
- Foundation Eclosion, 1228 Plan-les-Ouates & Campus Biotech Innovation Park, 1202 Geneva, Switzerland; Brain Mind Institute and School of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland; Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Philipp Koch
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty, 53127 Bonn, Germany; LIFE & BRAIN GmbH, 53127 Bonn, Germany
| | - Oliver Bruestle
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty, 53127 Bonn, Germany; LIFE & BRAIN GmbH, 53127 Bonn, Germany
| | - Patrick C Fraering
- Foundation Eclosion, 1228 Plan-les-Ouates & Campus Biotech Innovation Park, 1202 Geneva, Switzerland; Brain Mind Institute and School of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
| | - Lawrence Rajendran
- Systems and Cell Biology of Neurodegeneration, IREM, University of Zurich, Schlieren Campus, 8952 Schlieren, Switzerland.
| |
Collapse
|
45
|
Pimenova AA, Raj T, Goate AM. Untangling Genetic Risk for Alzheimer's Disease. Biol Psychiatry 2018; 83:300-310. [PMID: 28666525 PMCID: PMC5699970 DOI: 10.1016/j.biopsych.2017.05.014] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is a genetically heterogeneous neurodegenerative disorder caused by fully penetrant single gene mutations in a minority of cases, while the majority of cases are sporadic or show modest familial clustering. These cases are of late onset and likely result from the interaction of many genes and the environment. More than 30 loci have been implicated in AD by a combination of linkage, genome-wide association, and whole genome/exome sequencing. We have learned from these studies that perturbations in endolysosomal, lipid metabolism, and immune response pathways substantially contribute to sporadic AD pathogenesis. We review here current knowledge about functions of AD susceptibility genes, highlighting cells of the myeloid lineage as drivers of at least part of the genetic component in late-onset AD. Although targeted resequencing utilized for the identification of causal variants has discovered coding mutations in some AD-associated genes, a lot of risk variants lie in noncoding regions. Here we discuss the use of functional genomics approaches that integrate transcriptomic, epigenetic, and endophenotype traits with systems biology to annotate genetic variants, and to facilitate discovery of AD risk genes. Further validation in cell culture and mouse models will be necessary to establish causality for these genes. This knowledge will allow mechanism-based design of novel therapeutic interventions in AD and promises coherent implementation of treatment in a personalized manner.
Collapse
Affiliation(s)
- Anna A Pimenova
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Towfique Raj
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alison M Goate
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
46
|
Salas IH, Weerasekera A, Ahmed T, Callaerts-Vegh Z, Himmelreich U, D'Hooge R, Balschun D, Saido TC, De Strooper B, Dotti CG. High fat diet treatment impairs hippocampal long-term potentiation without alterations of the core neuropathological features of Alzheimer disease. Neurobiol Dis 2018; 113:82-96. [PMID: 29427755 DOI: 10.1016/j.nbd.2018.02.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/04/2018] [Indexed: 01/25/2023] Open
Abstract
Type 2 diabetes (T2DM) and obesity might increase the risk for AD by 2-fold. Different attempts to model the effect of diet-induced diabetes on AD pathology in transgenic animal models, resulted in opposite conclusions. Here, we used a novel knock-in mouse model for AD, which, differently from other models, does not overexpress any proteins. Long-term high fat diet treatment triggers a reduction in hippocampal N-acetyl-aspartate/myo-inositol metabolites ratio and impairs long term potentiation in hippocampal acute slices. Interestingly, these alterations do not correlate with changes in the core neuropathological features of AD, i.e. amyloidosis and Tau hyperphosphorylation. The data suggest that AD phenotypes associated with high fat diet treatment seen in other models for AD might be exacerbated because of the overexpressing systems used to study the effects of familial AD mutations. Our work supports the increasing insight that knock-in mice might be more relevant models to study the link between metabolic disorders and AD.
Collapse
Affiliation(s)
- Isabel H Salas
- VIB Center for Brain and Disease Research, Leuven, Belgium; KU Leuven Department for Neurosciences, Leuven Institute for Neurodegenerative Disorders (LIND), KU Leuven, Leuven, Belgium
| | - Akila Weerasekera
- Biomedical MRI-Unit/MoSAIC, KU Leuven Campus Gasthuisberg, Leuven, Belgium
| | - Tariq Ahmed
- Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium; Neurological Disorders Research Center, Doha, Qatar
| | | | - Uwe Himmelreich
- Biomedical MRI-Unit/MoSAIC, KU Leuven Campus Gasthuisberg, Leuven, Belgium
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium
| | - Detlef Balschun
- Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan
| | - Bart De Strooper
- VIB Center for Brain and Disease Research, Leuven, Belgium; KU Leuven Department for Neurosciences, Leuven Institute for Neurodegenerative Disorders (LIND), KU Leuven, Leuven, Belgium; UK Dementia Research Institute (DRI-UK), ION UCL, London, UK.
| | - Carlos G Dotti
- Centro de Biologıa Molecular 'Severo Ochoa' (CSIC/UAM), Madrid, Spain.
| |
Collapse
|
47
|
Role of Amyloid Precursor Protein (APP) and Its Derivatives in the Biology and Cell Fate Specification of Neural Stem Cells. Mol Neurobiol 2018; 55:7107-7117. [DOI: 10.1007/s12035-018-0914-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/18/2018] [Indexed: 01/31/2023]
|
48
|
Hunter S, Brayne C. Understanding the roles of mutations in the amyloid precursor protein in Alzheimer disease. Mol Psychiatry 2018; 23:81-93. [PMID: 29112196 DOI: 10.1038/mp.2017.218] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 12/16/2022]
Abstract
Many models of disease progression in Alzheimer's disease (AD) have been proposed to help guide experimental design and aid the interpretation of results. Models focussing on the genetic evidence include the amyloid cascade (ACH) and presenilin (PSH) hypotheses and the amyloid precursor protein (APP) matrix approach (AMA), of which the ACH has held a dominant position for over two decades. However, the ACH has never been fully accepted and has not yet delivered on its therapeutic promise. We review the ACH, PSH and AMA in relation to levels of APP proteolytic fragments reported from AD-associated mutations in APP. Different APP mutations have diverse effects on the levels of APP proteolytic fragments. This evidence is consistent with at least three disease pathways that can differ between familial and sporadic AD and two pathways associated with cerebral amyloid angiopathy. We cannot fully evaluate the ACH, PSH and AMA in relation to the effects of mutations in APP as the APP proteolytic system has not been investigated systematically. The confounding effects of sequence homology, complexity of competing cleavages and antibody cross reactivities all illustrate limitations in our understanding of the roles these fragments and the APP proteolytic system as a whole in normal aging and disease play. Current experimental design should be refined to generate clearer evidence, addressing both aging and complex disorders with standardised reporting formats. A more flexible theoretical framework capable of accommodating the complexity of the APP proteolytic system is required to integrate available evidence.
Collapse
Affiliation(s)
- S Hunter
- Department of Public Health and Primary Care, Institute of Public Health, Forvie Site University of Cambridge, School of Clinical Medicine, Cambridge, UK
| | - C Brayne
- Department of Public Health and Primary Care, Institute of Public Health, Forvie Site University of Cambridge, School of Clinical Medicine, Cambridge, UK
| |
Collapse
|
49
|
|
50
|
Ochalek A, Mihalik B, Avci HX, Chandrasekaran A, Téglási A, Bock I, Giudice ML, Táncos Z, Molnár K, László L, Nielsen JE, Holst B, Freude K, Hyttel P, Kobolák J, Dinnyés A. Neurons derived from sporadic Alzheimer's disease iPSCs reveal elevated TAU hyperphosphorylation, increased amyloid levels, and GSK3B activation. ALZHEIMERS RESEARCH & THERAPY 2017; 9:90. [PMID: 29191219 PMCID: PMC5709977 DOI: 10.1186/s13195-017-0317-z] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/27/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common type of dementia, affecting one in eight adults over 65 years of age. The majority of AD cases are sporadic, with unknown etiology, and only 5% of all patients with AD present the familial monogenic form of the disease. In the present study, our aim was to establish an in vitro cell model based on patient-specific human neurons to study the pathomechanism of sporadic AD. METHODS We compared neurons derived from induced pluripotent stem cell (iPSC) lines of patients with early-onset familial Alzheimer's disease (fAD), all caused by mutations in the PSEN1 gene; patients with late-onset sporadic Alzheimer's disease (sAD); and three control individuals without dementia. The iPSC lines were differentiated toward mature cortical neurons, and AD pathological hallmarks were analyzed by RT-qPCR, enzyme-linked immunosorbent assay, and Western blotting methods. RESULTS Neurons from patients with fAD and patients with sAD showed increased phosphorylation of TAU protein at all investigated phosphorylation sites. Relative to the control neurons, neurons derived from patients with fAD and patients with sAD exhibited higher levels of extracellular amyloid-β 1-40 (Aβ1-40) and amyloid-β 1-42 (Aβ1-42). However, significantly increased Aβ1-42/Aβ1-40 ratios, which is one of the pathological markers of fAD, were observed only in samples of patients with fAD. Additionally, we detected increased levels of active glycogen synthase kinase 3 β, a physiological kinase of TAU, in neurons derived from AD iPSCs, as well as significant upregulation of amyloid precursor protein (APP) synthesis and APP carboxy-terminal fragment cleavage. Moreover, elevated sensitivity to oxidative stress, as induced by amyloid oligomers or peroxide, was detected in both fAD- and sAD-derived neurons. CONCLUSIONS On the basis of the experiments we performed, we can conclude there is no evident difference except secreted Aβ1-40 levels in phenotype between fAD and sAD samples. To our knowledge, this is the first study in which the hyperphosphorylation of TAU protein has been compared in fAD and sAD iPSC-derived neurons. Our findings demonstrate that iPSC technology is suitable to model both fAD and sAD and may provide a platform for developing new treatment strategies for these conditions.
Collapse
Affiliation(s)
- Anna Ochalek
- Molecular Animal Biotechnology Laboratory, Szent István University, H-2100, Gödöllő, Hungary.,BioTalentum Ltd., Aulich Lajos Street 26, H-2100, Gödöllő, Hungary
| | - Balázs Mihalik
- BioTalentum Ltd., Aulich Lajos Street 26, H-2100, Gödöllő, Hungary
| | - Hasan X Avci
- BioTalentum Ltd., Aulich Lajos Street 26, H-2100, Gödöllő, Hungary.,Department of Anatomy, Embryology and Histology, Faculty of Medicine, University of Szeged, H-6700, Szeged, Hungary.,Present address: University Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, 72076, Tübingen, Germany
| | | | | | - István Bock
- BioTalentum Ltd., Aulich Lajos Street 26, H-2100, Gödöllő, Hungary
| | - Maria Lo Giudice
- BioTalentum Ltd., Aulich Lajos Street 26, H-2100, Gödöllő, Hungary
| | - Zsuzsanna Táncos
- BioTalentum Ltd., Aulich Lajos Street 26, H-2100, Gödöllő, Hungary
| | - Kinga Molnár
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, H-1117, Budapest, Hungary
| | - Lajos László
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, H-1117, Budapest, Hungary
| | - Jørgen E Nielsen
- Neurogenetics Clinic & Research Laboratory, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Kristine Freude
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870, Copenhagen, Denmark
| | - Poul Hyttel
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870, Copenhagen, Denmark
| | - Julianna Kobolák
- BioTalentum Ltd., Aulich Lajos Street 26, H-2100, Gödöllő, Hungary
| | - András Dinnyés
- Molecular Animal Biotechnology Laboratory, Szent István University, H-2100, Gödöllő, Hungary. .,BioTalentum Ltd., Aulich Lajos Street 26, H-2100, Gödöllő, Hungary.
| |
Collapse
|