1
|
Ortlieb C, Labrosse A, Ruess L, Steinert M. Biotic interactions between the human pathogen Legionella pneumophila and nematode grazers in cooling tower biofilms. PLoS One 2024; 19:e0309820. [PMID: 39453963 PMCID: PMC11508163 DOI: 10.1371/journal.pone.0309820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/19/2024] [Indexed: 10/27/2024] Open
Abstract
Biofilms in cooling towers represent a common habitat for the human pathogen Legionella pneumophila. Within the biofilm consortium, frequent interactions with protozoa, i.e. amoebae and ciliates, were reported, while nematodes have only recently been considered as potential environmental reservoir for the pathogenic bacteria. This study is the first approach to investigate the biotic interactions between L. pneumophila and bacterial-feeding nematodes in a semi-natural biofilm model. The species were Diploscapter coronatus, Diploscapter pachys, Plectus similis and Plectus sp., which all co-occur with L. pneumophila in the environment. Biofilms derived from cooling towers were either inoculated with mCherry-labeled L. pneumophila solely or in combination with GFP-labeled Escherichia coli. All experiments were conducted in single-species set-ups and multi-species (D. coronatus and P. similis) set-ups, to account for interspecific competition. Bacterial ingestion was assessed after 24 and 96 h as fluorescence patterns in the digestive tract of the nematodes using confocal laser scanning microscopy. L. pneumophila cells were ingested by all nematode species, with D. coronatus having the highest pathogen load. The fluorescence intensity (i.e. bacterial load) varied between compartments within the digestive tract and was independent of incubation time. Bacterial cells accumulated mostly around the cardia and in the intestine, while less cells were found within stoma and pharynx. Interspecific competition changed the pattern, i.e. with incubation of D. coronatus and P. similis in the same biofilm a significantly higher pathogen load occurred in the intestine of D. coronatus than P. similis after 24 h and 96 h. Remarkably, when given a choice between L. pneumophila and E. coli, P. similis was the only nematode species containing both bacteria after incubation for 24 h. None of the other nematode species contained E. coli after 24 h and 96 h incubation, while L. pneumophila was present. This study thus provides the first evidence, that under environmental conditions L. pneumophila is a frequent diet of bacterial-feeding nematodes, highlighting their potential as pathogen vectors or even host in cooling tower habitats.
Collapse
Affiliation(s)
- Christin Ortlieb
- Institute of Biology, Ecology, Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Aurélie Labrosse
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Liliane Ruess
- Institute of Biology, Ecology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Steinert
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
2
|
Ding M, Yan J, Chen Y, Liu J, Chao G, Zhang S. Changes in M6A methylation: A key factor in the vicious cycle of flora -gut aging. Ageing Res Rev 2024; 98:102351. [PMID: 38820855 DOI: 10.1016/j.arr.2024.102351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
The aging process significantly impacts the gastrointestinal tract and various bodily systems, exacerbating age-related diseases. Research suggests a correlation between an imbalance in intestinal flora and gut aging, yet the precise mechanism remains incompletely elucidated. Epigenetic modifications, particularly m6A methylation, play a pivotal role in driving aging and are closely associated with gut aging. Maintaining a healthy balance of intestinal microbes is contingent upon m6A methylation, which is believed to be crucial in the vicious cycle of gut aging and intestinal flora. This article highlights the importance of m6A methylation in the nexus between gut aging and flora. It proposes the potential for targeted m6A methylation to break the vicious cycle of gut aging and flora imbalance, offering novel perspectives on attenuating or reversing gut aging.
Collapse
Affiliation(s)
- Menglu Ding
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), Hangzhou, PR China; Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310000, PR China
| | - Junbin Yan
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), Hangzhou, PR China; Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310000, PR China
| | - Yuxuan Chen
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), Hangzhou, PR China; Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310000, PR China
| | - Jinguo Liu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), Hangzhou, PR China; Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310000, PR China
| | - Guanqun Chao
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), Hangzhou, PR China; Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310000, PR China.
| | - Shuo Zhang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), Hangzhou, PR China; Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310000, PR China.
| |
Collapse
|
3
|
Kingsley SF, Seo Y, Wood A, Wani KA, Gonzalez X, Irazoqui J, Finkel SE, Tissenbaum HA. Glucose-fed microbiota alters C. elegans intestinal epithelium and increases susceptibility to multiple bacterial pathogens. Sci Rep 2024; 14:13177. [PMID: 38849503 PMCID: PMC11161463 DOI: 10.1038/s41598-024-63514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
Overconsumption of dietary sugar can lead to many negative health effects including the development of Type 2 diabetes, metabolic syndrome, cardiovascular disease, and neurodegenerative disorders. Recently, the human intestinal microbiota, strongly associated with our overall health, has also been known to be affected by diet. However, mechanistic insight into the importance of the human intestinal microbiota and the effects of chronic sugar ingestion has not been possible largely due to the complexity of the human microbiome which contains hundreds of types of organisms. Here, we use an interspecies C. elegans/E. coli system, where E. coli are subjected to high sugar, then consumed by the bacterivore host C. elegans to become the microbiota. This glucose-fed microbiota results in a significant lifespan reduction accompanied by reduced healthspan (locomotion), reduced stress resistance, and changes in behavior and feeding. Lifespan reduction is also accompanied by two potential major contributors: increased intestinal bacterial density and increased concentration of reactive oxygen species. The glucose-fed microbiota accelerated the age-related development of intestinal cell permeability, intestinal distention, and dysregulation of immune effectors. Ultimately, the changes in the intestinal epithelium due to aging with the glucose-fed microbiota results in increased susceptibility to multiple bacterial pathogens. Taken together, our data reveal that chronic ingestion of sugar, such as a Western diet, has profound health effects on the host due to changes in the microbiota and may contribute to the current increased incidence of ailments including inflammatory bowel diseases as well as multiple age-related diseases.
Collapse
Affiliation(s)
- Samuel F Kingsley
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Yonghak Seo
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Alicia Wood
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Khursheed A Wani
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Xavier Gonzalez
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Javier Irazoqui
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Steven E Finkel
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-2910, USA
| | - Heidi A Tissenbaum
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA.
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
4
|
Sharma SA, Oladejo SO, Kuang Z. Chemical interplay between gut microbiota and epigenetics: Implications in circadian biology. Cell Chem Biol 2024:S2451-9456(24)00178-8. [PMID: 38776923 DOI: 10.1016/j.chembiol.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/22/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Circadian rhythms are intrinsic molecular mechanisms that synchronize biological functions with the day/night cycle. The mammalian gut is colonized by a myriad of microbes, collectively named the gut microbiota. The microbiota impacts host physiology via metabolites and structural components. A key mechanism is the modulation of host epigenetic pathways, especially histone modifications. An increasing number of studies indicate the role of the microbiota in regulating host circadian rhythms. However, the mechanisms remain largely unknown. Here, we summarize studies on microbial regulation of host circadian rhythms and epigenetic pathways, highlight recent findings on how the microbiota employs host epigenetic machinery to regulate circadian rhythms, and discuss its impacts on host physiology, particularly immune and metabolic functions. We further describe current challenges and resources that could facilitate research on microbiota-epigenetic-circadian rhythm interactions to advance our knowledge of circadian disorders and possible therapeutic avenues.
Collapse
Affiliation(s)
- Samskrathi Aravinda Sharma
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Sarah Olanrewaju Oladejo
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Zheng Kuang
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
5
|
Bhat A, Cox RL, Hendrickson BG, Das NK, Schaller ML, Tuckowski AM, Wang E, Shah YM, Leiser SF. A diet of oxidative stress-adapted bacteria improves stress resistance and lifespan in C. elegans via p38-MAPK. SCIENCE ADVANCES 2024; 10:eadk8823. [PMID: 38569037 PMCID: PMC10990273 DOI: 10.1126/sciadv.adk8823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
Organisms across taxa face stresses including variable temperature, redox imbalance, and xenobiotics. Successfully responding to stress and restoring homeostasis are crucial for survival. Aging is associated with a decreased stress response and alterations in the microbiome, which contribute to disease development. Animals and their microbiota share their environment; however, microbes have short generation time and can rapidly evolve and potentially affect host physiology during stress. Here, we leverage Caenorhabditis elegans and its simplified bacterial diet to demonstrate how microbial adaptation to oxidative stress affects the host's lifespan and stress response. We find that worms fed stress-evolved bacteria exhibit enhanced stress resistance and an extended lifespan. Through comprehensive genetic and metabolic analysis, we find that iron in stress-evolved bacteria enhances worm stress resistance and lifespan via activation of the mitogen-activated protein kinase pathway. In conclusion, our study provides evidence that understanding microbial stress-mediated adaptations could be used to slow aging and alleviate age-related health decline.
Collapse
Affiliation(s)
- Ajay Bhat
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rebecca L. Cox
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Nupur K. Das
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI 48109, USA
| | - Megan L. Schaller
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI 48109, USA
| | - Angela M. Tuckowski
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily Wang
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yatrik M. Shah
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Scott F. Leiser
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
DuMez-Kornegay RN, Baker LS, Morris AJ, DeLoach WLM, Dowen RH. Kombucha Tea-associated microbes remodel host metabolic pathways to suppress lipid accumulation. PLoS Genet 2024; 20:e1011003. [PMID: 38547054 PMCID: PMC10977768 DOI: 10.1371/journal.pgen.1011003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/22/2024] [Indexed: 04/02/2024] Open
Abstract
The popularity of the ancient, probiotic-rich beverage Kombucha Tea (KT) has surged in part due to its purported health benefits, which include protection against metabolic diseases; however, these claims have not been rigorously tested and the mechanisms underlying host response to the probiotics in KT are unknown. Here, we establish a reproducible method to maintain C. elegans on a diet exclusively consisting of Kombucha Tea-associated microbes (KTM), which mirrors the microbial community found in the fermenting culture. KT microbes robustly colonize the gut of KTM-fed animals and confer normal development and fecundity. Intriguingly, animals consuming KTMs display a marked reduction in total lipid stores and lipid droplet size. We find that the reduced fat accumulation phenotype is not due to impaired nutrient absorption, but rather it is sustained by a programed metabolic response in the intestine of the host. KTM consumption triggers widespread transcriptional changes within core lipid metabolism pathways, including upregulation of a suite of lysosomal lipase genes that are induced during lipophagy. The elevated lysosomal lipase activity, coupled with a decrease in lipid droplet biogenesis, is partially required for the reduction in host lipid content. We propose that KTM consumption stimulates a fasting-like response in the C. elegans intestine by rewiring transcriptional programs to promote lipid utilization. Our results provide mechanistic insight into how the probiotics in Kombucha Tea reshape host metabolism and how this popular beverage may impact human metabolism.
Collapse
Affiliation(s)
- Rachel N. DuMez-Kornegay
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lillian S. Baker
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Alexis J. Morris
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Whitney L. M. DeLoach
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robert H. Dowen
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
7
|
Ye C, Li Z, Ye C, Yuan L, Wu K, Zhu C. Association between Gut Microbiota and Biological Aging: A Two-Sample Mendelian Randomization Study. Microorganisms 2024; 12:370. [PMID: 38399774 PMCID: PMC10891714 DOI: 10.3390/microorganisms12020370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Recent observational studies revealed an association between gut microbiota and aging, but whether gut microbiota are causally associated with the aging process remains unknown. We used a two-sample Mendelian randomization approach to investigate the causal association between gut microbiota and biological age acceleration using the largest available gut microbiota GWAS summary data from the MiBioGen consortium and GWAS data on biological age acceleration. We further conducted sensitivity analysis using MR-PRESSO, MR-Egger regression, Cochran Q test, and reverse MR analysis. Streptococcus (IVW, β = 0.16, p = 0.0001) was causally associated with Bioage acceleration. Eubacterium (rectale group) (IVW, β = 0.20, p = 0.0190), Sellimonas (IVW, β = 0.06, p = 0.019), and Lachnospira (IVW, β = -0.18, p = 0.01) were suggestive of causal associations with Bioage acceleration, with the latter being protective. Actinomyces (IVW, β = 0.26, p = 0.0083), Butyricimonas (IVW, β = 0.21, p = 0.0184), and Lachnospiraceae (FCS020 group) (IVW, β = 0.24, p = 0.0194) were suggestive of causal associations with Phenoage acceleration. This Mendelian randomization study found that Streptococcus was causally associated with Bioage acceleration. Further randomized controlled trials are needed to investigate its role in the aging process.
Collapse
Affiliation(s)
- Chenglin Ye
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China; (C.Y.)
| | - Zhiqiang Li
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China; (C.Y.)
| | - Chun Ye
- Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Li Yuan
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430060, China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chengliang Zhu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China; (C.Y.)
| |
Collapse
|
8
|
González R, Félix MA. Naturally-associated bacteria modulate Orsay virus infection of Caenorhabditis elegans. PLoS Pathog 2024; 20:e1011947. [PMID: 38232128 PMCID: PMC10824439 DOI: 10.1371/journal.ppat.1011947] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/29/2024] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
Microbes associated with an organism can significantly modulate its susceptibility to viral infections, but our understanding of the influence of individual microbes remains limited. The nematode Caenorhabditis elegans is a model organism that in nature inhabits environments rich in bacteria. Here, we examine the impact of 71 naturally associated bacteria on C. elegans susceptibility to its only known natural virus, the Orsay virus. Our findings reveal that viral infection of C. elegans is significantly influenced by monobacterial environments. Compared to an Escherichia coli environmental reference, the majority of tested bacteria reduced C. elegans susceptibility to viral infection. This reduction is not caused by virion degradation or poor animal nutrition by the bacteria. The repression of viral infection by the bacterial strains Chryseobacterium JUb44 and Sphingobacterium BIGb0172 does not require the RIG-I homolog DRH-1, which is known to activate antiviral responses such as RNA interference and transcriptional regulation. Our research highlights the necessity of considering natural biotic environments in viral infection studies and opens the way future research on host-microbe-virus interactions.
Collapse
Affiliation(s)
- Rubén González
- Institut de Biologie de l’École Normale Supérieure, CNRS, INSERM, Paris, France
| | - Marie-Anne Félix
- Institut de Biologie de l’École Normale Supérieure, CNRS, INSERM, Paris, France
| |
Collapse
|
9
|
Yang RQ, Chen YH, Wu QY, Tang J, Niu SZ, Zhao Q, Ma YC, Zou CG. Indole produced during dysbiosis mediates host-microorganism chemical communication. eLife 2023; 12:e85362. [PMID: 37987602 PMCID: PMC10691800 DOI: 10.7554/elife.85362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 11/03/2023] [Indexed: 11/22/2023] Open
Abstract
An imbalance of the gut microbiota, termed dysbiosis, has a substantial impact on host physiology. However, the mechanism by which host deals with gut dysbiosis to maintain fitness remains largely unknown. In Caenorhabditis elegans, Escherichia coli, which is its bacterial diet, proliferates in its intestinal lumen during aging. Here, we demonstrate that progressive intestinal proliferation of E. coli activates the transcription factor DAF-16, which is required for maintenance of longevity and organismal fitness in worms with age. DAF-16 up-regulates two lysozymes lys-7 and lys-8, thus limiting the bacterial accumulation in the gut of worms during aging. During dysbiosis, the levels of indole produced by E. coli are increased in worms. Indole is involved in the activation of DAF-16 by TRPA-1 in neurons of worms. Our finding demonstrates that indole functions as a microbial signal of gut dysbiosis to promote fitness of the host.
Collapse
Affiliation(s)
- Rui-Qiu Yang
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan UniversityKunmingChina
| | - Yong-Hong Chen
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan UniversityKunmingChina
| | - Qin-yi Wu
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Traditional Chinese MedicineKunmingChina
| | - Jie Tang
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan UniversityKunmingChina
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Chinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
| | - Shan-Zhuang Niu
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan UniversityKunmingChina
| | - Qiu Zhao
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan UniversityKunmingChina
| | - Yi-Cheng Ma
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan UniversityKunmingChina
| | - Cheng-Gang Zou
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan UniversityKunmingChina
| |
Collapse
|
10
|
Fatemi E, Jung C. Pathogenicity of the root lesion nematode Pratylenchus neglectus depends on pre-culture conditions. Sci Rep 2023; 13:19642. [PMID: 37949971 PMCID: PMC10638436 DOI: 10.1038/s41598-023-46551-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
The ability of a plant parasitic nematode to infect and reproduce within a host plant depends on its genotype and the environmental conditions before and during infection. We studied the culturing conditions of the root lesion nematode Pratylenchus neglectus to produce inoculum for plant infection tests. Nematodes were either cultivated on carrot calli for different periods or directly isolated from the roots of the host plants. After infection of wheat and barley plants in the greenhouse, nematodes were quantified by RT-qPCR and by visual counting of the nematodes. We observed drastically reduced infection rates after long-term (> 96 weeks) cultivation on carrot callus. In contrast, fresh isolates from cereal roots displayed much higher pathogenicity. We recommend using root lesion nematodes cultivated on carrot calli no longer than 48 weeks to guarantee uniform infection rates.
Collapse
Affiliation(s)
- Ehsan Fatemi
- Plant Breeding Institute, Christian-Albrechts University, Kiel, Germany
| | - Christian Jung
- Plant Breeding Institute, Christian-Albrechts University, Kiel, Germany.
| |
Collapse
|
11
|
Stover MA, Tinoco-Bravo B, Shults CA, Marouk S, Deole R, Manjarrez JR. Probiotic effects of Lactococcus lactis and Leuconostoc mesenteroides on stress and longevity in Caenorhabditis elegans. Front Physiol 2023; 14:1207705. [PMID: 37772058 PMCID: PMC10522913 DOI: 10.3389/fphys.2023.1207705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023] Open
Abstract
The short lifespan of Caenorhabditis elegans enables the efficient investigation of probiotic interventions affecting stress and longevity involving the potential therapeutic value of Lactococcus lactis and Leuconostoc mesenteroides isolated from organic basil. The lactic acid bacteria were cultured from the produce collected from a local grocery store in Tulsa, Oklahoma, and then identified through 16S rDNA sequencing and biochemical tests. To dive deep into this analysis for potential probiotic therapy, we used fluorescent reporters that allow us to assess the differential induction of multiple stress pathways such as oxidative stress and the cytoplasmic, endoplasmic reticulum, and the mitochondrial unfolded protein response. This is combined with the classic health span measurements of survival, development, and fecundity, allowing a wide range of organismal observations of the different communities of microbes supported by probiotic supplementation with Lactococcus lactis and Leuconostoc mesenteroides. These strains were initially assessed in relation to the Escherichia coli feeding strain OP50 and the C. elegans microbiome. The supplementation showed a reduction in the median lifespan of the worms colonized within the microbiome. This was unsurprising, as negative results are common when probiotics are introduced into healthy microbiomes. To further assess the supplementation potential of these strains on an unhealthy (undifferentiated) microbiome, the typical axenic C. elegans diet, OP50, was used to simulate this single-species biome. The addition of lactic acid bacteria to OP50 led to a significant improvement in the median and overall survival in simulated biomes, indicating their potential in probiotic therapy. The study analyzed the supplemented cultures in terms of C. elegans' morphology, locomotor behavior, reproduction, and stress responses, revealing unique characteristics and stress response patterns for each group. As the microbiome's influence on the health span gains interest, the study aims to understand the microbiome relationships that result in differential stress resistance and lifespans by supplementing microbiomes with Lactococcus lactis and Leuconostoc mesenteroides isolated from organic basil in C. elegans.
Collapse
Affiliation(s)
| | | | | | | | | | - Jacob R. Manjarrez
- Biochemistry and Microbiology Department, Oklahoma State University Center for Health Sciences, Tulsa, OK, United States
| |
Collapse
|
12
|
Abstract
A massive number of microorganisms, belonging to different species, continuously divide inside the guts of animals and humans. The large size of these communities and their rapid division times imply that we should be able to watch microbial evolution in the gut in real time, in a similar manner to what has been done in vitro. Here, we review recent findings on how natural selection shapes intrahost evolution (also known as within-host evolution), with a focus on the intestines of mice and humans. The microbiota of a healthy host is not as static as initially thought from the information measured at only one genomic marker. Rather, the genomes of each gut-colonizing species can be highly dynamic, and such dynamism seems to be related to the microbiota species diversity. Genetic and bioinformatic tools, and analysis of time series data, allow quantification of the selection strength on emerging mutations and horizontal transfer events in gut ecosystems. The drivers and functional consequences of gut evolution can now begin to be grasped. The rules of this intrahost microbiota evolution, and how they depend on the biology of each species, need to be understood for more effective development of microbiota therapies to help maintain or restore host health.
Collapse
Affiliation(s)
| | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| |
Collapse
|
13
|
Rezaeianaran F, Gijs MAM. Difference in Intestine Content of Caenorhabditis elegans When Fed on Non-Pathogenic or Pathogenic Bacteria. MICROMACHINES 2023; 14:1386. [PMID: 37512697 PMCID: PMC10384281 DOI: 10.3390/mi14071386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
We investigated the bacterial food digestion and accumulation in wild-type adult Caenorhabditis elegans (C. elegans) worms that have fed on either non-pathogenic RFP-expressing Escherichia coli (E. coli) OP50 or pathogenic-RFP-expressing Pseudomonas aeruginosa (P. aeruginosa) PAO1 during the first 4 days of adulthood. Once the worms had completed their planned feeding cycles, they were loaded on microfluidic chips, where they were fixed to allow high-resolution z-stack fluorescence imaging of their intestines utilizing a Spinning Disk Confocal Microscope (SDCM) equipped with a high-resolution oil-immersion objective (60×). IMARIS software was used to visualize and analyze the obtained images, resulting in the production of three-dimensional constructs of the intestinal bacterial load. We discovered two distinct patterns for the bacteria-derived fluorescence signal in the intestine: (i) individual fluorescent spots, originating from intact bacteria, were present in the fluorescent E. coli-OP50-fed worms, and (ii) individual fluorescent spots (originating from intact bacteria) were dispersed in large regions of diffuse fluorescence (RDF), originating from disrupted bacteria, in fluorescent P. aeruginosa-PAO1-fed worms. We performed a semi-automated single-worm-resolution quantitative analysis of the intestinal bacterial load, which showed that the intestinal bacterial load generally increases with age of the worms, but more rapidly for the fluorescent P. aeruginosa-PAO1-fed worms.
Collapse
Affiliation(s)
- Farzad Rezaeianaran
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Martin A M Gijs
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
14
|
Rezaeianaran F, Gijs MAM. High-resolution imaging and analysis of the intestinal bacterial load of Caenorhabditis elegans during early adulthood. RSC Adv 2023; 13:17230-17243. [PMID: 37304789 PMCID: PMC10248764 DOI: 10.1039/d3ra02934d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023] Open
Abstract
We study the presence within the worm Caenorhabditis elegans (C. elegans) of a fluorescent strain of the worm's bacterial food (Escherichia coli (E. coli) OP50) during early adulthood. Use of a microfluidic chip based on a thin glass coverslip substrate allows investigation of the intestinal bacterial load using a Spinning Disk Confocal Microscope (SDCM) equipped with a high-resolution objective (60×). High-resolution z-stack fluorescence images of the gut bacteria in adult worms, which were loaded in the microfluidic chip and subsequently fixed, were analyzed using IMARIS software and 3D reconstructions of the intestinal bacterial load in the worms were obtained. We present an automated bivariate histogram analysis of the volumes and intensities of the bacterial spots for each worm and find that, as the worms age, the bacterial load in their hindguts increases. We show the advantage of single-worm resolution automated analysis for bacterial load studies and anticipate that the methods described in our work can be easily implemented in existing microfluidic solutions to enable thorough studies of bacterial proliferation.
Collapse
Affiliation(s)
- Farzad Rezaeianaran
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne CH-1015 Lausanne Switzerland
| | - Martin A M Gijs
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne CH-1015 Lausanne Switzerland
| |
Collapse
|
15
|
Higurashi S, Tsukada S, Aleogho BM, Park JH, Al-Hebri Y, Tanaka M, Nakano S, Mori I, Noma K. Bacterial diet affects the age-dependent decline of associative learning in Caenorhabditis elegans. eLife 2023; 12:81418. [PMID: 37252859 DOI: 10.7554/elife.81418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
The causality and mechanism of dietary effects on brain aging are still unclear due to the long time scales of aging. The nematode Caenorhabditis elegans has contributed to aging research because of its short lifespan and easy genetic manipulation. When fed the standard laboratory diet, Escherichia coli, C. elegans experiences an age-dependent decline in temperature-food associative learning, called thermotaxis. To address if diet affects this decline, we screened 35 lactic acid bacteria as alternative diet and found that animals maintained high thermotaxis ability when fed a clade of Lactobacilli enriched with heterofermentative bacteria. Among them, Lactobacillus reuteri maintained the thermotaxis of aged animals without affecting their lifespan and motility. The effect of Lb. reuteri depends on the DAF-16 transcription factor functioning in neurons. Furthermore, RNA sequencing analysis revealed that differentially expressed genes between aged animals fed different bacteria were enriched with DAF-16 targets. Our results demonstrate that diet can impact brain aging in a daf-16-dependent manner without changing the lifespan.
Collapse
Affiliation(s)
- Satoshi Higurashi
- Milk Science Research Institute, Megmilk Snow Brand Co. Ltd., Saitama, Japan
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Sachio Tsukada
- Milk Science Research Institute, Megmilk Snow Brand Co. Ltd., Saitama, Japan
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Binta Maria Aleogho
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
- Group of Microbial Motility, Department of Biological Science, Division of Natural Science, Graduate school of Science, Nagoya University, Nagoya, Japan
| | - Joo Hyun Park
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yana Al-Hebri
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Masaru Tanaka
- Milk Science Research Institute, Megmilk Snow Brand Co. Ltd., Saitama, Japan
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Shunji Nakano
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Ikue Mori
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Kentaro Noma
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
- Group of Microbial Motility, Department of Biological Science, Division of Natural Science, Graduate school of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
16
|
Zhang A, Hsiung KC, Kern CC, Wang Y, Girtle AL, Xu N, Gems D. Unraveling effects of anti-aging drugs on C. elegans using liposomes. GeroScience 2023:10.1007/s11357-023-00800-x. [PMID: 37140725 PMCID: PMC10158714 DOI: 10.1007/s11357-023-00800-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/15/2023] [Indexed: 05/05/2023] Open
Abstract
Liposome-mediated delivery is a possible means to overcome several shortcomings with C. elegans as a model for identifying and testing drugs that retard aging. These include confounding interactions between drugs and the nematodes' bacterial food source and failure of drugs to be taken up into nematode tissues. To explore this, we have tested liposome-mediated delivery of a range of fluorescent dyes and drugs in C. elegans. Liposome encapsulation led to enhanced effects on lifespan, requiring smaller quantities of compounds, and enhanced uptake of several dyes into the gut lumen. However, one dye (Texas red) did not cross into nematode tissues, showing that liposomes cannot ensure the uptake of all compounds. Of six compounds previously reported to extend lifespan (vitamin C, N-acetylcysteine, glutathione (GSH), trimethadione, thioflavin T (ThT), and rapamycin), this effect was reproduced for the latter four in a condition-dependent manner. For GSH and ThT, antibiotics abrogated life extension, implying a bacterially mediated effect. With GSH, this was attributable to reduced early death from pharyngeal infection and associated with alterations of mitochondrial morphology in a manner suggesting a possible innate immune training effect. By contrast, ThT itself exhibited antibiotic effects. For rapamycin, significant increases in lifespan were only seen when bacterial proliferation was prevented. These results document the utility and limitations of liposome-mediated drug delivery for C. elegans. They also illustrate how nematode-bacteria interactions can determine the effects of compounds on C. elegans lifespan in a variety of ways.
Collapse
Affiliation(s)
- Aihan Zhang
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Kuei Ching Hsiung
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Carina C Kern
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Yuting Wang
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Anna L Girtle
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Nuo Xu
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
17
|
Ford SA, Drew GC, King KC. Immune-mediated competition benefits protective microbes over pathogens in a novel host species. Heredity (Edinb) 2022; 129:327-335. [PMID: 36352206 PMCID: PMC9708653 DOI: 10.1038/s41437-022-00569-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022] Open
Abstract
Microbes that protect against infection inhabit hosts across the tree of life. It is unclear whether and how the host immune system may affect the formation of new protective symbioses. We investigated the transcriptomic response of Caenorhabditis elegans following novel interactions with a protective microbe (Enterococcus faecalis) able to defend against infection by pathogenic Staphylococcus aureus. We have previously shown that E. faecalis can directly limit pathogen growth within hosts. In this study, we show that colonisation by protective E. faecalis caused the differential expression of 1,557 genes in pathogen infected hosts, including the upregulation of immune genes such as lysozymes and C-type lectins. The most significantly upregulated host lysozyme gene, lys-7, impacted the competitive abilities of E. faecalis and S. aureus when knocked out. E. faecalis has an increased ability to resist lysozyme activity compared to S. aureus, suggesting that the protective microbe could gain a competitive advantage from this host response. Our finding that protective microbes can benefit from immune-mediated competition after introduction opens up new possibilities for biocontrol design and our understanding of symbiosis evolution. Crosstalk between the host immune response and microbe-mediated protection should favour the continued investment in host immunity and avoid the potentially risky evolution of host dependence.
Collapse
Affiliation(s)
- Suzanne A Ford
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Georgia C Drew
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Kayla C King
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
| |
Collapse
|
18
|
Meng X, Zheng J, Wang F, Zheng J, Yang D. Dietary fiber chemical structure determined gut microbiota dynamics. IMETA 2022; 1:e64. [PMID: 38867894 PMCID: PMC10989905 DOI: 10.1002/imt2.64] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/13/2022] [Accepted: 11/06/2022] [Indexed: 06/14/2024]
Abstract
Precision modulation of gut microbiota requires elucidation of the relation between dietary fiber intake and gut microbe dynamics. However, current studies on this aspect are few due to many technical limitations. Here, we used Caenorhabditis elegans to minimize the complicated host-microbial factors and to find the relation between dietary fiber chemical structures and gut microbiota dynamics. The Allium schoenoprasum polysaccharide (AssP) structure was elucidated and used as the complex dietary fiber against the simple fiber inulin. In vitro bacterial growth and genome analysis indicated that AssP supports bacterial growth better than inulin, while in vivo gut microbiota analysis of C. elegans fed with AssP showed that microbiota richness increased significantly compared with those fed with inulin. It is concluded that the more complex the dietary fiber chemical structure, the more gut bacteria growth it supports. Together with the community bacterial interactions that alter their abundances in vivo, these factors regulate gut microbiota synergistically.
Collapse
Affiliation(s)
- Xin Meng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Jun Zheng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Fengqiao Wang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Jie Zheng
- Center for Food Safety and Applied NutritionU.S. Food and Drug AdministrationCollege ParkMarylandUSA
| | - Dong Yang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
| |
Collapse
|
19
|
Wang Y, Guo K, Wang Q, Zhong G, Zhang W, Jiang Y, Mao X, Li X, Huang Z. Caenorhabditis elegans as an emerging model in food and nutrition research: importance of standardizing base diet. Crit Rev Food Sci Nutr 2022; 64:3167-3185. [PMID: 36200941 DOI: 10.1080/10408398.2022.2130875] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As a model organism that has helped revolutionize life sciences, Caenorhabditis elegans has been increasingly used in nutrition research. Here we explore the tradeoffs between pros and cons of its use as a dietary model based primarily on literature review from the past decade. We first provide an overview of its experimental strengths as an animal model, focusing on lifespan and healthspan, behavioral and physiological phenotypes, and conservation of key nutritional pathways. We then summarize recent advances of its use in nutritional studies, e.g. food preference and feeding behavior, sugar status and metabolic reprogramming, lifetime and transgenerational nutrition tracking, and diet-microbiota-host interactions, highlighting cutting-edge technologies originated from or developed in C. elegans. We further review current challenges of using C. elegans as a nutritional model, followed by in-depth discussions on potential solutions. In particular, growth scales and throughputs, food uptake mode, and axenic culture of C. elegans are appraised in the context of food research. We also provide perspectives for future development of chemically defined nematode food ("NemaFood") for C. elegans, which is now widely accepted as a versatile and affordable in vivo model and has begun to show transformative potential to pioneer nutrition science.
Collapse
Affiliation(s)
- Yuqing Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
| | - Kaixin Guo
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qiangqiang Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
| | - Guohuan Zhong
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenjun Zhang
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yiyi Jiang
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Perfect Life & Health Institute, Zhongshan, Guangdong, China
| | - Xinliang Mao
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Perfect Life & Health Institute, Zhongshan, Guangdong, China
| | - Xiaomin Li
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Perfect Life & Health Institute, Zhongshan, Guangdong, China
| | - Zebo Huang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
20
|
Matthewman C, Narin A, Huston H, Hopkins CE. Systems to model the personalized aspects of microbiome health and gut dysbiosis. Mol Aspects Med 2022; 91:101115. [PMID: 36104261 DOI: 10.1016/j.mam.2022.101115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/03/2022] [Indexed: 01/17/2023]
Abstract
The human gut microbiome is a complex and dynamic microbial entity that interacts with the environment and other parts of the body including the brain, heart, liver, and immune system. These multisystem interactions are highly conserved from invertebrates to humans, however the complexity and diversity of human microbiota compositions often yield a context that is unique to each individual. Yet commonalities remain across species, where a healthy gut microbiome will be rich in symbiotic commensal biota while an unhealthy gut microbiota will be experiencing abnormal blooms of pathobiont bacteria. In this review we discuss how omics technologies can be applied in a personalized approach to understand the microbial crosstalk and microbial-host interactions that affect the delicate balance between eubiosis and dysbiosis in an individual gut microbiome. We further highlight the strengths of model organisms in identifying and characterizing these conserved synergistic and/or pathogenic host-microbe interactions. And finally, we touch upon the growing area of personalized therapeutic interventions targeting gut microbiome.
Collapse
|
21
|
Prolonged Lifespan, Improved Perception, and Enhanced Host Defense of Caenorhabditis elegans by Lactococcus cremoris subsp. cremoris. Microbiol Spectr 2022; 10:e0045421. [PMID: 35575499 PMCID: PMC9241934 DOI: 10.1128/spectrum.00454-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Lactic acid bacteria are beneficial to Caenorhabditis elegans; however, bacteria acting as probiotics in nematodes may not necessarily have probiotic functions in humans. Lactococcus cremoris subsp. cremoris reportedly has probiotic functions in humans. Therefore, we determined whether the strain FC could exert probiotic effects in C. elegans in terms of improving host defenses and extending life span. Live FC successfully extended the life span and enhanced host defense compared to Escherichia coli OP50 (OP50), a standard food source for C. elegans. The FC-fed worms were tolerant to Salmonella enterica subsp. enterica serovar Enteritidis or Staphylococcus aureus infection and had better survival than the OP50-fed control worms. Further, the chemotaxis index, an indicator of perception ability, was more stable and significantly higher in FC-fed worms than in the control worms. The increase in autofluorescence from advanced glycation end products (AGEs) with aging was also ameliorated in FC-fed worms. FC showed beneficial effects in daf-16 and pmk-1 mutants, but not in skn-1 mutants. Since SKN-1 is the C. elegans ortholog of Nrf2, we measured the transcription of heme oxygenase-1 (HO-1), which is regulated by Nrf2, in murine macrophages and found that HO-1 mRNA expression was increased >5 times by inoculation with FC cells. Thus, FC could exert antisenescence effects via the SKN-1/Nrf2 pathway. This study showed for the first time that FC supported perceptive function and suppressed AGEs in nematodes as probiotic bacteria. Therefore, C. elegans can be an alternative model to screen for probiotic bacteria that can be used for antisenescence effects in humans. IMPORTANCE Aging is one of our greatest challenges. The World Health Organization proposed that “active aging” might encourage people to continue to work according to their capacities and preferences as they grow old and would prevent or delay disabilities and chronic diseases that are costly to both individuals and the society, considering that disease prevention is more economical than treatment. Probiotic bacteria, such as lactobacilli, are live microorganisms that exert beneficial effects on human health when ingested in sufficient amounts and can promote longevity. The significance of this study is that it revealed the antisenescence and various beneficial effects of the representative probiotic bacterium Lactococcus cremoris subsp. cremoris strain FC exerted via the SKN-1/Nrf2 pathway in the nematode Caenorhabditis elegans.
Collapse
|
22
|
Arias-Rojas A, Iatsenko I. The Role of Microbiota in Drosophila melanogaster Aging. FRONTIERS IN AGING 2022; 3:909509. [PMID: 35821860 PMCID: PMC9261426 DOI: 10.3389/fragi.2022.909509] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/22/2022] [Indexed: 12/24/2022]
Abstract
Intestinal microbial communities participate in essential aspects of host biology, including nutrient acquisition, development, immunity, and metabolism. During host aging, dramatic shifts occur in the composition, abundance, and function of the gut microbiota. Although such changes in the microbiota are conserved across species, most studies remain descriptive and at most suggest a correlation between age-related pathology and particular microbes. Therefore, the causal role of the microbiota in host aging has remained a challenging question, in part due to the complexity of the mammalian intestinal microbiota, most of which is not cultivable or genetically amenable. Here, we summarize recent studies in the fruit fly Drosophila melanogaster that have substantially progressed our understanding at the mechanistic level of how gut microbes can modulate host aging.
Collapse
Affiliation(s)
| | - Igor Iatsenko
- Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
23
|
Trujillo-Del Río C, Tortajada-Pérez J, Gómez-Escribano AP, Casterá F, Peiró C, Millán JM, Herrero MJ, Vázquez-Manrique RP. Metformin to treat Huntington disease: a pleiotropic drug against a multi-system disorder. Mech Ageing Dev 2022; 204:111670. [DOI: 10.1016/j.mad.2022.111670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/17/2022]
|
24
|
Zhou GW, Zheng F, Fan XT, Li MJ, Sun QY, Zhu YG, Yang XR. Host age increased conjugal plasmid transfer in gut microbiota of the soil invertebrate Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127525. [PMID: 34879519 DOI: 10.1016/j.jhazmat.2021.127525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/03/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Plasmid conjugation contributes greatly to the spread of antibiotic resistance genes (ARGs) in soils. However, the spread potential in the gut of soil fauna remains poorly studied, and little was known about the impact of host age on ARGs dissemination in the gut microbiota of soil animals. Here, the typical nematode-Caenorhabditis elegans was employed as the model soil animal, aiming to investigate transfer of broad-host-range IncP-1ɛ from Escherichia coli MG1655 to gut microbiota within 6 days under varied temperature gradients (15, 20 and 25 °C) using qPCR combined with plate screening. Results showed that conjugation rates increased with incubation time and rising temperature in the gut of C. elegans, sharing a similar trend with abundances of plasmid conjugation relevant genes such as trbBp (mating pair formation) and trfAp (plasmid replication). Incubation time and temperature significantly shaped the gut microbial community of C. elegans. Core microbiota in the gut of C. elegans, including Enterobacteriaceae, Lactobacillaceae and Leuconostocaceae, constituted a large part of transconjugal pool for plasmid IncP-1ɛ. Our results highlight an important sink of gut microbiota for ARGs dissemination and upregulation of ARGs transfer in the gut microbiota with host age, further potentially stimulating evolution of ARGs in terrestrial environments.
Collapse
Affiliation(s)
- Guo-Wei Zhou
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Fei Zheng
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; School of Life Sciences, Hebei University, Baoding 071002, China
| | - Xiao-Ting Fan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-Jun Li
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Qing-Ye Sun
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Ru Yang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
25
|
Yun B, Ryu S, Kang M, Lee J, Yoo J, Kim Y, Oh S. Probiotic Lacticaseibacillus rhamnosus GG Increased Longevity and Resistance Against Foodborne Pathogens in Caenorhabditis elegans by Regulating MicroRNA miR-34. Front Cell Infect Microbiol 2022; 11:819328. [PMID: 35127565 PMCID: PMC8807481 DOI: 10.3389/fcimb.2021.819328] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
In this study, we investigated the relation of probiotic activity of Lacticaseibacillus rhamnosus strain GG (LGG) and expression of microRNA to immune response and longevity in Caenorhabditis elegans host model. First, we evaluated the survival rate of C. elegans due to LGG exposure and bacterial colonization in the intestine. Next, the expression of mRNA and miRNA was analyzed in C. elegans exposure to LGG for 24 h using microarray. After exposure to LGG to C. elegans, colonized LGG was observed in the intestines of C. elegans and induced to extend lifespan. Moreover, persistent LGG in the intestine significantly enhanced the resistance of C. elegans exposed to both pathogenic bacteria and prolonged the lifespan of C. elegans. Transcriptome analysis indicated that LGG affected the expression levels of genes related to the innate immune response and upregulated the abundance of genes in multiple pathways of C. elegans, including Wnt signaling, TGF-beta signaling and mitogen-activated protein kinase (MAPK) pathways. In addition, qRT-PCR analysis confirmed that the expression of antibacterial genes was increased by LGG. Moreover, as the expression of microRNA miR-34 and immune-related pathways increased by exposure to LGG, the lifespan of C. elegans increased. However, in the miR-34 mutant C. elegans, the lifespan by LGG did not increase, so it was determined that miR-34 indirectly affects immune-related pathways. There was no significant difference in the expression of PMK-1 for LGG exposure in miR-34 mutants, suggesting that miR-34 may regulate PMK-1. In conclusion, we suggest that exposure of LGG to C. elegans enhances lifespan and resistance to food-borne pathogen infection by stimulating miR-34 and indirectly promoting PMK-1 activity.
Collapse
Affiliation(s)
- Bohyun Yun
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju, South Korea
| | - Sangdon Ryu
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Minkyoung Kang
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju, South Korea
| | - Juyeon Lee
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju, South Korea
| | - Jiseon Yoo
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju, South Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
- *Correspondence: Younghoon Kim, ; Sangnam Oh,
| | - Sangnam Oh
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju, South Korea
- *Correspondence: Younghoon Kim, ; Sangnam Oh,
| |
Collapse
|
26
|
Niu Q, Liu S, Yin M, Lei S, Rezzonico F, Zhang L. Phytobacter diazotrophicus from Intestine of Caenorhabditis elegans Confers Colonization-Resistance against Bacillus nematocida Using Flagellin (FliC) as an Inhibition Factor. Pathogens 2022; 11:pathogens11010082. [PMID: 35056030 PMCID: PMC8778419 DOI: 10.3390/pathogens11010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/04/2022] Open
Abstract
Symbiotic microorganisms in the intestinal tract can influence the general fitness of their hosts and contribute to protecting them against invading pathogens. In this study, we obtained isolate Phytobacter diazotrophicus SCO41 from the gut of free-living nematode Caenorhabditis elegans that displayed strong colonization-resistance against invading biocontrol bacterium Bacillus nematocida B16. The colonization-resistance phenotype was found to be mediated by a 37-kDa extracellular protein that was identified as flagellin (FliC). With the help of genome information, the fliC gene was cloned and heterologously expressed in E. coli. It could be shown that the B. nematocida B16 grows in chains rather than in planktonic form in the presence of FliC. Scanning Electronic Microscopy results showed that protein FliC-treated B16 bacterial cells are thinner and longer than normal cells. Localization experiments confirmed that the protein FliC is localized in both the cytoplasm and the cell membrane of B16 strain, in the latter especially at the position of cell division. ZDOCK analysis showed that FliC could bind with serine/threonine protein kinase, membrane protein insertase YidC and redox membrane protein CydB. It was inferred that FliC interferes with cell division of B. nematocidal B16, therefore inhibiting its colonization of C. elegans intestines in vivo. The isolation of P. diazotrophicus as part of the gut microbiome of C. elegans not only provides interesting insights about the lifestyle of this nitrogen-fixing bacterium, but also reveals how the composition of the natural gut microbiota of nematodes can affect biological control efforts by protecting the host from its natural enemies.
Collapse
Affiliation(s)
- Qiuhong Niu
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China
| | - Suyao Liu
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China
| | - Mingshen Yin
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China
| | - Shengwei Lei
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China
| | - Fabio Rezzonico
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), 8820 Wädenswil, Switzerland
| | - Lin Zhang
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China
| |
Collapse
|
27
|
Biodistribution of Quantum Dots-Labelled Halloysite Nanotubes: A Caenorhabditis elegans In Vivo Study. MATERIALS 2021; 14:ma14195469. [PMID: 34639868 PMCID: PMC8509283 DOI: 10.3390/ma14195469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 01/25/2023]
Abstract
Halloysite is a promising building block in nanoarchitectonics of functional materials, especially in the development of novel biomaterials and smart coatings. Understanding the behavior of materials produced using halloysite nanotubes within living organisms is essential for their safe applications. In this study, quantum dots of different compositions were synthesized on the surface of modified clay nanotubes, and the biodistribution of this hybrid material was monitored within Caenorhabditis elegans nematodes. The influence of the modification agent as well as the particles’ composition on physicochemical properties of hybrid nanomaterials was investigated. Several microscopy techniques, such as fluorescence and dark-field microscopy, were compared in monitoring the distribution of nanomaterials in nematodes’ organisms. The effects of QDs-halloysite composites on the nematodes’ life cycle were investigated in vivo. Our fluorescent hybrid probes induced no acute toxic effects in model organisms. The stable fluorescence and low toxicity towards the organisms suggest that the proposed synthesis procedure yields safe nanoarchitectonic materials that will be helpful in monitoring the behavior of nanomaterials inside living cells and organisms.
Collapse
|
28
|
Abstract
Accumulating evidence links the gut microbiome to neuronal functions in the brain. Given the increasing prevalence of brain disorders, there is a critical need to understand how gut microbes impact neuronal functions so that targeted therapeutic interventions can be developed. In this commentary, we discuss what makes the nematode Caenorhabditiselegans a valuable model for dissecting the molecular basis of gut microbiome-brain interactions. With a fully mapped neuronal circuitry, C. elegans is an effective model for studying signaling of the nervous system in a context that bears translational relevance to human disease. We highlight C. elegans as a potent but underexploited tool to interrogate the influence of the bacterial variable on the complex equation of the nervous system. We envision that routine use of gnotobiotic C. elegans to examine the gut–brain axis will be an enabling technology for the development of novel therapeutic interventions for brain diseases.
Collapse
|
29
|
Abstract
A sparse number of available antifungal drugs, therapeutic side effects, and drug resistance are major challenges in current antifungal therapy to treat Candida albicans-associated infections. Here, we describe two food-derived yeasts, Saccharomyces cerevisiae and Issatchenkia occidentalis, that inhibit virulence traits of C. albicans, including hyphal morphogenesis, biofilm formation, and adhesion to intestinal epithelial cells. These yeasts also protect the model host Caenorhabditis elegans from C. albicans infection. We demonstrate that the protective activity is primarily retained in the secretome of the beneficial yeasts, and the protection they provide as a physical barrier is negligible. S. cerevisiae aro8 aro9 mutant analysis demonstrate that phenylethanol and tryptophol are necessary for protection, and experiments with commercially procured compounds indicate that they are sufficient to inhibit C. albicans virulence. We propose food-derived yeasts as an alternative or combination therapy to conventional antifungal therapy for C. albicans infection. IMPORTANCE The gut microbiome, primarily established by food, is complex and contributes to the health of the host. Molecular mechanisms that regulate microbial interactions and host health remain unclear. Here, we show that the pathogen C. albicans interacts with food-derived beneficial yeasts in the gut of the microscopic worm, C. elegans, forming a simple microbiome. C. albicans can colonize the worm gut, compromising the worm's health, and exposure to the food-derived yeasts ameliorates this effect protecting the nematode host. We identify small molecules from food-derived yeasts that are necessary and sufficient to inhibit multiple virulence traits of C. albicans and protect the nematode host. The nematode gut faithfully recapitulates a mammalian intestine. This could be an effective alternative or combination therapy for C. albicans infection.
Collapse
|
30
|
Ortiz A, Vega NM, Ratzke C, Gore J. Interspecies bacterial competition regulates community assembly in the C. elegans intestine. THE ISME JOURNAL 2021; 15:2131-2145. [PMID: 33589765 PMCID: PMC8245486 DOI: 10.1038/s41396-021-00910-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 01/31/2023]
Abstract
From insects to mammals, a large variety of animals hold in their intestines complex bacterial communities that play an important role in health and disease. To further our understanding of how intestinal bacterial communities assemble and function, we study the C. elegans microbiota with a bottom-up approach by feeding this nematode with bacterial monocultures as well as mixtures of two to eight bacterial species. We find that bacteria colonizing well in monoculture do not always do well in co-cultures due to interspecies bacterial interactions. Moreover, as community diversity increases, the ability to colonize the worm gut in monoculture becomes less important than interspecies interactions for determining community assembly. To explore the role of host-microbe adaptation, we compare bacteria isolated from C. elegans intestines and non-native isolates, and we find that the success of colonization is determined more by a species' taxonomy than by the isolation source. Lastly, by comparing the assembled microbiotas in two C. elegans mutants, we find that innate immunity via the p38 MAPK pathway decreases bacterial abundances yet has little influence on microbiota composition. These results highlight that bacterial interspecies interactions, more so than host-microbe adaptation or gut environmental filtering, play a dominant role in the assembly of the C. elegans microbiota.
Collapse
Affiliation(s)
- Anthony Ortiz
- grid.116068.80000 0001 2341 2786Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.116068.80000 0001 2341 2786Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Nicole M. Vega
- grid.116068.80000 0001 2341 2786Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.189967.80000 0001 0941 6502Present Address: Department of Biology, Emory University, Atlanta, GA USA
| | - Christoph Ratzke
- grid.116068.80000 0001 2341 2786Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.10392.390000 0001 2190 1447Present Address: Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Cluster of Excellence ‘CMFI’, University of Tübingen, Tübingen, Germany
| | - Jeff Gore
- grid.116068.80000 0001 2341 2786Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.116068.80000 0001 2341 2786Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA USA
| |
Collapse
|
31
|
Poll BG, Cheema MU, Pluznick JL. Gut Microbial Metabolites and Blood Pressure Regulation: Focus on SCFAs and TMAO. Physiology (Bethesda) 2021; 35:275-284. [PMID: 32490748 DOI: 10.1152/physiol.00004.2020] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Shifts in the gut microbiome play a key role in blood pressure regulation, and changes in the production of gut microbial metabolites are likely to be a key mechanism. Known gut microbial metabolites include short-chain fatty acids, which can signal via G-protein-coupled receptors, and trimethylamine-N oxide. In this review, we provide an overview of gut microbial metabolites documented thus far to play a role in blood pressure regulation.
Collapse
Affiliation(s)
- Brian G Poll
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Muhammad Umar Cheema
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jennifer L Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
32
|
Topalović O, Vestergård M. Can microorganisms assist the survival and parasitism of plant-parasitic nematodes? Trends Parasitol 2021; 37:947-958. [PMID: 34162521 DOI: 10.1016/j.pt.2021.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022]
Abstract
Plant-parasitic nematodes (PPNs) remain a hardly treatable problem in many crops worldwide. Low efficacy of many biocontrol agents may be due to negligence of the native microbiota that is naturally associated with nematodes in soil, and which may protect nematodes against microbial antagonists. This phenomenon is more extensively studied for other nematode parasites, so we compiled these studies and drew parallels to the existing knowledge on PPN. We describe how microbial-mediated modulation of host immune responses facilitate nematode parasitism and discuss the role of Caenorhabditis elegans-protective microbiota to get an insight into the microbial protection of PPNs in soil. Molecular mechanisms of PPN-microbial interactions are also discussed. An understanding of microbial-aided PPN performance is thus pivotal for efficient management of PPNs.
Collapse
Affiliation(s)
- Olivera Topalović
- Aarhus University, Institute for Agroecology, Faculty of Technical Sciences, Aarhus University, 4200, Slagelse, Denmark.
| | - Mette Vestergård
- Aarhus University, Institute for Agroecology, Faculty of Technical Sciences, Aarhus University, 4200, Slagelse, Denmark.
| |
Collapse
|
33
|
Komura T, Yamanaka M, Nishimura K, Hara K, Nishikawa Y. Autofluorescence as a noninvasive biomarker of senescence and advanced glycation end products in Caenorhabditis elegans. NPJ Aging Mech Dis 2021; 7:12. [PMID: 34099724 PMCID: PMC8184826 DOI: 10.1038/s41514-021-00061-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/17/2021] [Indexed: 12/18/2022] Open
Abstract
To assess the utility of autofluorescence as a noninvasive biomarker of senescence in Caenorhabditis elegans, we measured the autofluorescence of individual nematodes using spectrofluorometry. The fluorescence of each worm increased with age. Animals with lower fluorescence intensity exhibited longer life expectancy. When proteins extracted from worms were incubated with sugars, the fluorescence intensity and the concentration of advanced glycation end products (AGEs) increased over time. Ribose enhanced these changes not only in vitro but also in vivo. The glycation blocker rifampicin suppressed this rise in fluorescence. High-resolution mass spectrometry revealed that vitellogenins accumulated in old worms, and glycated vitellogenins emitted six-fold higher fluorescence than naive vitellogenins. The increase in fluorescence with ageing originates from glycated substances, and therefore could serve as a useful noninvasive biomarker of AGEs. C. elegans can serve as a new model to look for anti-AGE factors and to study the relationship between AGEs and senescence.
Collapse
Affiliation(s)
- Tomomi Komura
- Faculty of Human Life and Environment, Nara Women's University, Nara, Japan
- Graduate School of Human Life Science, Osaka City University, Osaka, Japan
| | - Mikihiro Yamanaka
- Department of Bioscience, School of Agriculture, Tokai University, Kumamoto, Japan
| | - Kohji Nishimura
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Organization of Research, Shimane University, Shimane, Japan
- Faculty of Life and Environmental Science, Shimane University, Shimane, Japan
| | | | - Yoshikazu Nishikawa
- Graduate School of Human Life Science, Osaka City University, Osaka, Japan.
- Faculty of Human Sciences, Tezukayamagakuin University, Osaka, Japan.
| |
Collapse
|
34
|
McIntyre G, Wright J, Wong HT, Lamendella R, Chan J. Effects of FUdR on gene expression in the C. elegans bacterial diet OP50. BMC Res Notes 2021; 14:207. [PMID: 34103088 PMCID: PMC8186096 DOI: 10.1186/s13104-021-05624-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 05/19/2021] [Indexed: 11/23/2022] Open
Abstract
Objective Many C. elegans aging studies use the compound 5-fluro-2ʹ-deoxyuridine (FUdR) to produce a synchronous population of worms. However, the effects of FUdR on the bacterial gene expression of OP50 E. coli, the primary laboratory C. elegans food source, is not fully understood. This is particularly relevant as studies suggest that intestinal microbes can affect C. elegans physiology. Therefore, it is imperative that we understand how exposure to FUdR can affect gene expression changes in OP50 E. coli. Results An RNAseq dataset comprised of expression patterns of 2900 E. coli genes in the strain OP50, which were seeded on either nematode growth media (NGM) plates or on FUdR (50 µM) supplemented NGM plates, was analyzed. Analysis showed differential gene expression in genes involved in general transport, amino acid biosynthesis, transcription, iron transport, and antibiotic resistance. We specifically highlight metabolic enzymes in the l-histidine biosynthesis pathway as differentially expressed between NGM and FUdR exposed OP50. We conclude that OP50 exposed to FUdR results in differential expression of many genes, including those in amino acid biosynthetic pathways. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05624-6.
Collapse
Affiliation(s)
- Grace McIntyre
- Department of Biology, Marian University, 3200 Cold Spring Rd, Indianapolis, IN, 46222, USA
| | - Justin Wright
- Department of Biology, Juniata College, 1700 Moore St, Huntingdon, PA, 16652, USA
| | - Hoi Tong Wong
- Department of Biology, Juniata College, 1700 Moore St, Huntingdon, PA, 16652, USA
| | - Regina Lamendella
- Department of Biology, Juniata College, 1700 Moore St, Huntingdon, PA, 16652, USA
| | - Jason Chan
- Department of Biology, Marian University, 3200 Cold Spring Rd, Indianapolis, IN, 46222, USA.
| |
Collapse
|
35
|
Mørch MGM, Møller KV, Hesselager MO, Harders RH, Kidmose CL, Buhl T, Fuursted K, Bendixen E, Shen C, Christensen LG, Poulsen CH, Olsen A. The TGF-β ligand DBL-1 is a key player in a multifaceted probiotic protection against MRSA in C. elegans. Sci Rep 2021; 11:10717. [PMID: 34021197 PMCID: PMC8139972 DOI: 10.1038/s41598-021-89831-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/30/2021] [Indexed: 02/04/2023] Open
Abstract
Worldwide the increase in multi-resistant bacteria due to misuse of traditional antibiotics is a growing threat for our health. Finding alternatives to traditional antibiotics is thus timely. Probiotic bacteria have numerous beneficial effects and could offer safer alternatives to traditional antibiotics. Here, we use the nematode Caenorhabditis elegans (C. elegans) to screen a library of different lactobacilli to identify potential probiotic bacteria and characterize their mechanisms of action. We show that pretreatment with the Lactobacillus spp. Lb21 increases lifespan of C. elegans and results in resistance towards pathogenic methicillin-resistant Staphylococcus aureus (MRSA). Using genetic analysis, we find that Lb21-mediated MRSA resistance is dependent on the DBL-1 ligand of the TGF-β signaling pathway in C. elegans. This response is evolutionarily conserved as we find that Lb21 also induces the TGF-β pathway in porcine epithelial cells. We further characterize the host responses in an unbiased proteome analysis and identify 474 proteins regulated in worms fed Lb21 compared to control food. These include fatty acid CoA synthetase ACS-22, aspartic protease ASP-6 and vitellogenin VIT-2 which are important for Lb21-mediated MRSA resistance. Thus, Lb21 exerts its probiotic effect on C. elegans in a multifactorial manner. In summary, our study establishes a mechanistic basis for the antimicrobial potential of lactobacilli.
Collapse
Affiliation(s)
- Maria G M Mørch
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Katrine V Møller
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | - Rikke H Harders
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Caroline L Kidmose
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Therese Buhl
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | - Emøke Bendixen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Chong Shen
- Gut Immunology Lab, Health & Biosciences , IFF , Brabrand , Denmark
| | | | | | - Anders Olsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
36
|
Radeke LJ, Herman MA. Take a Walk to the Wild Side of Caenorhabditis elegans-Pathogen Interactions. Microbiol Mol Biol Rev 2021; 85:e00146-20. [PMID: 33731489 PMCID: PMC8139523 DOI: 10.1128/mmbr.00146-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Microbiomes form intimate functional associations with their hosts. Much has been learned from correlating changes in microbiome composition to host organismal functions. However, in-depth functional studies require the manipulation of microbiome composition coupled with the precise interrogation of organismal physiology-features available in few host study systems. Caenorhabditis elegans has proven to be an excellent genetic model organism to study innate immunity and, more recently, microbiome interactions. The study of C. elegans-pathogen interactions has provided in depth understanding of innate immune pathways, many of which are conserved in other animals. However, many bacteria were chosen for these studies because of their convenience in the lab setting or their implication in human health rather than their native interactions with C. elegans In their natural environment, C. elegans feed on a variety of bacteria found in rotting organic matter, such as rotting fruits, flowers, and stems. Recent work has begun to characterize the native microbiome and has identified a common set of bacteria found in the microbiome of C. elegans While some of these bacteria are beneficial to C. elegans health, others are detrimental, leading to a complex, multifaceted understanding of bacterium-nematode interactions. Current research on nematode-bacterium interactions is focused on these native microbiome components, both their interactions with each other and with C. elegans We will summarize our knowledge of bacterial pathogen-host interactions in C. elegans, as well as recent work on the native microbiome, and explore the incorporation of these bacterium-nematode interactions into studies of innate immunity and pathogenesis.
Collapse
Affiliation(s)
- Leah J Radeke
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Michael A Herman
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
37
|
DeJong EN, Surette MG, Bowdish DME. The Gut Microbiota and Unhealthy Aging: Disentangling Cause from Consequence. Cell Host Microbe 2021; 28:180-189. [PMID: 32791111 DOI: 10.1016/j.chom.2020.07.013] [Citation(s) in RCA: 187] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/03/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022]
Abstract
The gut microbiota changes with age, but it is not clear to what degree these changes are due to physiologic changes, age-associated inflammation or immunosenescence, diet, medications, or chronic health conditions. Observational studies in humans find that there are profound differences between the microbiomes of long-lived and frail individuals, but the degree to which these differences promote or prevent late-life health is unclear. Studies in model organisms demonstrate that age-related microbial dysbiosis causes intestinal permeability, systemic inflammation, and premature mortality, but identifying causal relationships have been challenging. Herein, we review how physiological and immune changes contribute to microbial dysbiosis and the degree to which microbial dysbiosis contributes to late-life health conditions. We discuss the features of the aging microbiota that make it more amenable to diet and pre- and probiotic interventions. Health interventions that promote a diverse microbiome could influence the health of older adults.
Collapse
Affiliation(s)
- Erica N DeJong
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8N 3Z5, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Michael G Surette
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8N 3Z5, Canada; Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Dawn M E Bowdish
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8N 3Z5, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8N 3Z5, Canada.
| |
Collapse
|
38
|
Giunti S, Andersen N, Rayes D, De Rosa MJ. Drug discovery: Insights from the invertebrate Caenorhabditis elegans. Pharmacol Res Perspect 2021; 9:e00721. [PMID: 33641258 PMCID: PMC7916527 DOI: 10.1002/prp2.721] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/06/2021] [Indexed: 12/18/2022] Open
Abstract
Therapeutic drug development is a long, expensive, and complex process that usually takes 12-15 years. In the early phases of drug discovery, in particular, there is a growing need for animal models that ensure the reduction in both cost and time. Caenorhabditis elegans has been traditionally used to address fundamental aspects of key biological processes, such as apoptosis, aging, and gene expression regulation. During the last decade, with the advent of large-scale platforms for screenings, this invertebrate has also emerged as an essential tool in the pharmaceutical research industry to identify novel drugs and drug targets. In this review, we discuss the reasons why C. elegans has been positioned as an outstanding cost-effective option for drug discovery, highlighting both the advantages and drawbacks of this model. Particular attention is paid to the suitability of this nematode in large-scale genetic and pharmacological screenings. High-throughput screenings in C. elegans have indeed contributed to the breakthrough of a wide variety of candidate compounds involved in extensive fields including neurodegeneration, pathogen infections and metabolic disorders. The versatility of this nematode, which enables its instrumentation as a model of human diseases, is another attribute also herein underscored. As illustrative examples, we discuss the utility of C. elegans models of both human neurodegenerative diseases and parasitic nematodes in the drug discovery industry. Summing up, this review aims to demonstrate the impact of C. elegans models on the drug discovery pipeline.
Collapse
Affiliation(s)
- Sebastián Giunti
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS‐CONICETBahía BlancaArgentina
- Dpto de Biología, Bioquímica y FarmaciaUniversidad Nacional del SurBahía BlancaArgentina
| | - Natalia Andersen
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS‐CONICETBahía BlancaArgentina
- Dpto de Biología, Bioquímica y FarmaciaUniversidad Nacional del SurBahía BlancaArgentina
| | - Diego Rayes
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS‐CONICETBahía BlancaArgentina
- Dpto de Biología, Bioquímica y FarmaciaUniversidad Nacional del SurBahía BlancaArgentina
| | - María José De Rosa
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS‐CONICETBahía BlancaArgentina
- Dpto de Biología, Bioquímica y FarmaciaUniversidad Nacional del SurBahía BlancaArgentina
| |
Collapse
|
39
|
Hoang KL, Gerardo NM, Morran LT. Association with a novel protective microbe facilitates host adaptation to a stressful environment. Evol Lett 2021; 5:118-129. [PMID: 33868708 PMCID: PMC8045907 DOI: 10.1002/evl3.223] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 02/02/2021] [Accepted: 02/18/2021] [Indexed: 01/19/2023] Open
Abstract
Protective symbionts can allow hosts to occupy otherwise uninhabitable niches. Despite the importance of symbionts in host evolution, we know little about how these associations arise. Encountering a microbe that can improve host fitness in a stressful environment may favor persistent interactions with that microbe, potentially facilitating a long-term association. The bacterium Bacillus subtilis protects Caenorhabditis elegans nematodes from heat shock by increasing host fecundity compared to the nonprotective Escherichia coli. In this study, we ask how the protection provided by the bacterium affects the host's evolutionary trajectory. Because of the stark fitness contrast between hosts heat shocked on B. subtilis versus E. coli, we tested whether the protection conferred by the bacteria could increase the rate of host adaptation to a stressful environment. We passaged nematodes on B. subtilis or E. coli, under heat stress or standard conditions for 20 host generations of selection. When assayed under heat stress, we found that hosts exhibited the greatest fitness increase when evolved with B. subtilis under stress compared to when evolved with E. coli or under standard (nonstressful) conditions. Furthermore, despite not directly selecting for increased B. subtilis fitness, we found that hosts evolved to harbor more B. subtilis as they adapted to heat stress. Our findings demonstrate that the context under which hosts evolve is important for the evolution of beneficial associations and that protective microbes can facilitate host adaptation to stress. In turn, such host adaptation can benefit the microbe.
Collapse
Affiliation(s)
- Kim L. Hoang
- Department of BiologyEmory UniversityAtlantaGeorgia30322USA
- Department of ZoologyUniversity of OxfordOxfordOX1 3SZUnited Kingdom
| | | | - Levi T. Morran
- Department of BiologyEmory UniversityAtlantaGeorgia30322USA
| |
Collapse
|
40
|
Mazorra-Alonso M, Tomás G, Soler JJ. Microbially Mediated Chemical Ecology of Animals: A Review of Its Role in Conspecific Communication, Parasitism and Predation. BIOLOGY 2021; 10:274. [PMID: 33801728 PMCID: PMC8065758 DOI: 10.3390/biology10040274] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023]
Abstract
Microbial symbionts are nowadays considered of pivotal importance for animal life. Among the many processes where microorganisms are involved, an emerging research avenue focuses on their major role in driving the evolution of chemical communication in their hosts. Volatiles of bacterial origin may underlie chemical communication and the transfer of social information through signals, as well as inadvertent social information. We reviewed the role of microorganisms in animal communication between conspecifics, and, because the microbiome may cause beneficial as well as deleterious effects on their animal hosts, we also reviewed its role in determining the outcome of the interactions with parasites and predators. Finally, we paid special attention to the hypothetical role of predation and parasitism in driving the evolution of the animal microbiome. We highlighted the novelty of the theoretical framework derived from considering the microbiota of animals in scenarios of communication, parasitism, and predation. We aimed to encourage research in these areas, suggesting key predictions that need to be tested to better understand what is one of the main roles of bacteria in animal biology.
Collapse
Affiliation(s)
- Mónica Mazorra-Alonso
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, 04120 Almería, Spain
| | - Gustavo Tomás
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, 04120 Almería, Spain
- Unidad Asociada (Consejo Superior de Investigaciones Científicas): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, 18071 Granada, Spain
| | - Juan José Soler
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, 04120 Almería, Spain
- Unidad Asociada (Consejo Superior de Investigaciones Científicas): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
41
|
Shaikhulova S, Fakhrullina G, Nigamatzyanova L, Akhatova F, Fakhrullin R. Worms eat oil: Alcanivorax borkumensis hydrocarbonoclastic bacteria colonise Caenorhabditis elegans nematodes intestines as a first step towards oil spills zooremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143209. [PMID: 33160671 DOI: 10.1016/j.scitotenv.2020.143209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/09/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
The environmental hazards of oil spills cannot be underestimated. Bioremediation holds promise among various approaches to tackle oil spills in soils and sediments. In particular, using oil-degrading bacteria is an efficient and self-regulating way to remove oil spills. Using animals for oil spills remediation is in its infancy, mostly due to the lack of efficient oil-degrading capabilities in eukaryotes. Here we show that Caenorhabditis elegans nematodes survive for extended periods (up to 22 days) on pure crude oil diet. Moreover, we report for the first time the use of Alcanivorax borkumensis hydrocarbonoclastic bacteria for colonisation of C. elegans intestines, which allows for effective digestion of crude oil by the nematodes. The worms fed and colonised by A. borkumensis demonstrated the similar or even better longevity, resistance against oxidative and thermal stress and reproductivity as those animals fed with Escherichia coli bacteria (normal food). Importantly, A. borkumensis-carrying nematodes were able to accumulate oil droplet from oil-contaminated soils. Artificial colonisation of soil invertebrates with oil-degrading bacteria will be an efficient way to distribute microorganisms in polluted soil, thus opening new avenues for oil spills zooremediation.
Collapse
Affiliation(s)
- Särbinaz Shaikhulova
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan 420008, Republic of Tatarstan, Russian Federation
| | - Gӧlnur Fakhrullina
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan 420008, Republic of Tatarstan, Russian Federation
| | - Läysän Nigamatzyanova
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan 420008, Republic of Tatarstan, Russian Federation
| | - Farida Akhatova
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan 420008, Republic of Tatarstan, Russian Federation
| | - Rawil Fakhrullin
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan 420008, Republic of Tatarstan, Russian Federation.
| |
Collapse
|
42
|
Kingsley SF, Seo Y, Allen C, Ghanta KS, Finkel S, Tissenbaum HA. Bacterial processing of glucose modulates C. elegans lifespan and healthspan. Sci Rep 2021; 11:5931. [PMID: 33723307 PMCID: PMC7971010 DOI: 10.1038/s41598-021-85046-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/17/2021] [Indexed: 01/08/2023] Open
Abstract
Intestinal microbiota play an essential role in the health of a host organism. Here, we define how commensal Escherichia coli (E. coli) alters its host after long term exposure to glucose using a Caenorhabditis elegans-E. coli system where only the bacteria have direct contact with glucose. Our data reveal that bacterial processing of glucose results in reduced lifespan and healthspan including reduced locomotion, oxidative stress resistance, and heat stress resistance in C. elegans. With chronic exposure to glucose, E. coli exhibits growth defects and increased advanced glycation end products. These negative effects are abrogated when the E. coli is not able to process the additional glucose and by the addition of the anti-glycation compound carnosine. Physiological changes of the host C. elegans are accompanied by dysregulation of detoxifying genes including glyoxalase, glutathione-S-transferase, and superoxide dismutase. Loss of the glutathione-S-transferase, gst-4 shortens C. elegans lifespan and blunts the animal's response to a glucose fed bacterial diet. Taken together, we reveal that added dietary sugar may alter intestinal microbial E. coli to decrease lifespan and healthspan of the host and define a critical role of detoxification genes in maintaining health during a chronic high-sugar diet.
Collapse
Affiliation(s)
- Samuel F Kingsley
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Yonghak Seo
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Calista Allen
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Krishna S Ghanta
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Steven Finkel
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Heidi A Tissenbaum
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
43
|
Health and longevity studies in C. elegans: the "healthy worm database" reveals strengths, weaknesses and gaps of test compound-based studies. Biogerontology 2021; 22:215-236. [PMID: 33683565 PMCID: PMC7973913 DOI: 10.1007/s10522-021-09913-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/20/2021] [Indexed: 12/11/2022]
Abstract
Several biogerontology databases exist that focus on genetic or gene expression data linked to health as well as survival, subsequent to compound treatments or genetic manipulations in animal models. However, none of these has yet collected experimental results of compound-related health changes. Since quality of life is often regarded as more valuable than length of life, we aim to fill this gap with the “Healthy Worm Database” (http://healthy-worm-database.eu). Literature describing health-related compound studies in the aging model Caenorhabditis elegans was screened, and data for 440 compounds collected. The database considers 189 publications describing 89 different phenotypes measured in 2995 different conditions. Besides enabling a targeted search for promising compounds for further investigations, this database also offers insights into the research field of studies on healthy aging based on a frequently used model organism. Some weaknesses of C. elegans-based aging studies, like underrepresented phenotypes, especially concerning cognitive functions, as well as the convenience-based use of young worms as the starting point for compound treatment or phenotype measurement are discussed. In conclusion, the database provides an anchor for the search for compounds affecting health, with a link to public databases, and it further highlights some potential shortcomings in current aging research.
Collapse
|
44
|
Hartman JH, Widmayer SJ, Bergemann CM, King DE, Morton KS, Romersi RF, Jameson LE, Leung MCK, Andersen EC, Taubert S, Meyer JN. Xenobiotic metabolism and transport in Caenorhabditis elegans. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2021; 24:51-94. [PMID: 33616007 PMCID: PMC7958427 DOI: 10.1080/10937404.2021.1884921] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Caenorhabditis elegans has emerged as a major model in biomedical and environmental toxicology. Numerous papers on toxicology and pharmacology in C. elegans have been published, and this species has now been adopted by investigators in academic toxicology, pharmacology, and drug discovery labs. C. elegans has also attracted the interest of governmental regulatory agencies charged with evaluating the safety of chemicals. However, a major, fundamental aspect of toxicological science remains underdeveloped in C. elegans: xenobiotic metabolism and transport processes that are critical to understanding toxicokinetics and toxicodynamics, and extrapolation to other species. The aim of this review was to initially briefly describe the history and trajectory of the use of C. elegans in toxicological and pharmacological studies. Subsequently, physical barriers to chemical uptake and the role of the worm microbiome in xenobiotic transformation were described. Then a review of what is and is not known regarding the classic Phase I, Phase II, and Phase III processes was performed. In addition, the following were discussed (1) regulation of xenobiotic metabolism; (2) review of published toxicokinetics for specific chemicals; and (3) genetic diversity of these processes in C. elegans. Finally, worm xenobiotic transport and metabolism was placed in an evolutionary context; key areas for future research highlighted; and implications for extrapolating C. elegans toxicity results to other species discussed.
Collapse
Affiliation(s)
- Jessica H Hartman
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Samuel J Widmayer
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States
| | | | - Dillon E King
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Katherine S Morton
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Riccardo F Romersi
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Laura E Jameson
- School of Mathematical and Natural Sciences, Arizona State University - West Campus, Glendale, Arizona, United States
| | - Maxwell C K Leung
- School of Mathematical and Natural Sciences, Arizona State University - West Campus, Glendale, Arizona, United States
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States
| | - Stefan Taubert
- Dept. Of Medical Genetics, Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, the University of British Colombia, Vancouver, BC, Canada
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| |
Collapse
|
45
|
Coscia A, Bardanzellu F, Caboni E, Fanos V, Peroni DG. When a Neonate Is Born, So Is a Microbiota. Life (Basel) 2021; 11:life11020148. [PMID: 33669262 PMCID: PMC7920069 DOI: 10.3390/life11020148] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
In recent years, the role of human microbiota as a short- and long-term health promoter and modulator has been affirmed and progressively strengthened. In the course of one’s life, each subject is colonized by a great number of bacteria, which constitute its specific and individual microbiota. Human bacterial colonization starts during fetal life, in opposition to the previous paradigm of the “sterile womb”. Placenta, amniotic fluid, cord blood and fetal tissues each have their own specific microbiota, influenced by maternal health and habits and having a decisive influence on pregnancy outcome and offspring outcome. The maternal microbiota, especially that colonizing the genital system, starts to influence the outcome of pregnancy already before conception, modulating fertility and the success rate of fertilization, even in the case of assisted reproduction techniques. During the perinatal period, neonatal microbiota seems influenced by delivery mode, drug administration and many other conditions. Special attention must be reserved for early neonatal nutrition, because breastfeeding allows the transmission of a specific and unique lactobiome able to modulate and positively affect the neonatal gut microbiota. Our narrative review aims to investigate the currently identified pre- and peri-natal factors influencing neonatal microbiota, before conception, during pregnancy, pre- and post-delivery, since the early microbiota influences the whole life of each subject.
Collapse
Affiliation(s)
- Alessandra Coscia
- Neonatology Unit, Department of Public Health and Pediatrics, Università degli Studi di Torino, 10124 Turin, Italy;
| | - Flaminia Bardanzellu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari, SS 554 km 4,500, 09042 Monserrato, Italy; (E.C.); (V.F.)
- Correspondence:
| | - Elisa Caboni
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari, SS 554 km 4,500, 09042 Monserrato, Italy; (E.C.); (V.F.)
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari, SS 554 km 4,500, 09042 Monserrato, Italy; (E.C.); (V.F.)
| | - Diego Giampietro Peroni
- Clinical and Experimental Medicine Department, Section of Pediatrics, University of Pisa, Via Roma, 55, 56126 Pisa PI, Italy;
| |
Collapse
|
46
|
Abstract
Persistent infection of the bacterivore nematode C. elegans with bacteria such as P. aeruginosa and S. enterica makes the worm diapause or hibernate. By doing this, the worm closes its mouth, avoiding infection. This response takes two generations to be implemented. In this work, we looked for genes expressed upon infection that could mediate the worm diapause triggered by pathogens. We identify mir-243-3p as the only transcript commonly upregulated when animals feed on P. aeruginosa and S. enterica for two consecutive generations. Moreover, we demonstrate that mir-243-3p is required for pathogen-induced dauer formation, a new function that has not been previously described for this microRNA (miRNA). We also find that the transcriptional activators DAF-16, PQM-1, and CRH-2 are necessary for the expression of mir-243 under pathogenesis. Here we establish a relationship between a small RNA and a developmental change that ensures the survival of a percentage of the progeny. The interaction and communication between bacteria and their hosts modulate many aspects of animal physiology and behavior. Dauer entry as a response to chronic exposure to pathogenic bacteria in Caenorhabditis elegans is an example of a dramatic survival response. This response is dependent on the RNA interference (RNAi) machinery, suggesting the involvement of small RNAs (sRNAs) as effectors. Interestingly, dauer formation occurs after two generations of interaction with two unrelated moderately pathogenic bacteria. Therefore, we sought to discover the identity of C. elegans RNAs involved in pathogen-induced diapause. Using transcriptomics and differential expression analysis of coding and long and small noncoding RNAs, we found that mir-243-3p (the mature form of mir-243) is the only transcript continuously upregulated in animals exposed to both Pseudomonas aeruginosa and Salmonella enterica for two generations. Phenotypic analysis of mutants showed that mir-243 is required for dauer formation under pathogenesis but not under starvation. Moreover, DAF-16, a master regulator of defensive responses in the animal and required for dauer formation was found to be necessary for mir-243 expression. This work highlights the role of a small noncoding RNA in the intergenerational defensive response against pathogenic bacteria and interkingdom communication.
Collapse
|
47
|
Viri V, Cornaglia M, Atakan HB, Lehnert T, Gijs MAM. An in vivo microfluidic study of bacterial transit in C. elegans nematodes. LAB ON A CHIP 2020; 20:2696-2708. [PMID: 32633746 DOI: 10.1039/d0lc00064g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Caenorhabditis elegans (C. elegans) constitutes an important model organism for use in nutrition and aging studies. We report a novel method for studying the dynamics of Escherichia coli (E. coli) bacterial transit through the worms' intestine. A microfluidic chip was designed for alternating C. elegans on-chip culture and immobilization, thereby enabling periodic high-resolution time-lapse imaging at single-worm resolution over several days. Immobilization was achieved in a reversible way using arrays of tapered channels suitable for assay parallelization. Dedicated C. elegans feeding protocols were applied. Two E. coli bacterial strains, HT115 and OP50, respectively labeled with green fluorescent protein (GFP) and red fluorescent protein (RFP), were used as food source and imaged with fluorescence microscopy techniques to measure relevant parameters of the bacterial transit process. Feeding behavior and E. coli transit dynamics in the whole intestinal tract of the worms were characterized in an automated way over the first 3 days of adulthood, revealing both fast transit phenomena and variations in microbial accumulation. In particular, we studied the bacterial food transit periodicity in wild-type and eat-2 (ad465) mutant C. elegans strains in both trapped and free-swimming conditions. In order to further demonstrate the versatility of our microfluidic platform, we also studied drug-induced modifications of the bacterial transit by measuring the response of the worms' intestine to exposure to the neurotransmitter serotonin.
Collapse
Affiliation(s)
- Vittorio Viri
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
48
|
Kloock A, Bonsall MB, King KC. Evolution and maintenance of microbe-mediated protection under occasional pathogen infection. Ecol Evol 2020; 10:8634-8642. [PMID: 32884646 PMCID: PMC7452762 DOI: 10.1002/ece3.6555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 01/03/2023] Open
Abstract
Every host is colonized by a variety of microbes, some of which can protect their hosts from pathogen infection. However, pathogen presence naturally varies over time in nature, such as in the case of seasonal epidemics. We experimentally coevolved populations of Caenorhabditis elegans worm hosts with bacteria possessing protective traits (Enterococcus faecalis), in treatments varying the infection frequency with pathogenic Staphylococcus aureus every host generation, alternating host generations, every fifth host generation, or never. We additionally investigated the effect of initial pathogen presence at the formation of the defensive symbiosis. Our results show that enhanced microbe-mediated protection evolved during host-protective microbe coevolution when faced with rare infections by a pathogen. Initial pathogen presence had no effect on the evolutionary outcome of microbe-mediated protection. We also found that protection was only effective at preventing mortality during the time of pathogen infection. Overall, our results suggest that resident microbes can be a form of transgenerational immunity against rare pathogen infection.
Collapse
Affiliation(s)
- Anke Kloock
- Department of ZoologyUniversity of OxfordOxfordUK
| | | | | |
Collapse
|
49
|
Kim M, Benayoun BA. The microbiome: an emerging key player in aging and longevity. TRANSLATIONAL MEDICINE OF AGING 2020; 4:103-116. [PMID: 32832742 PMCID: PMC7437988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023] Open
Abstract
Revolutionary advancements of high-throughput sequencing and metagenomic tools have provided new insights to microbiome function, including a bidirectional relationship between the microbiome and host aging. The intestinal tract is the largest surface in the human body that directly interacts with foreign antigens - it is covered with extremely complex and diverse community of microorganisms, known as the gut microbiome. In a healthy gut, microbial communities maintain a homeostatic metabolism and reside within the host in a state of immune tolerance. Abnormal shifts in the gut microbiome, however, have been implicated in the pathogenesis of age-related chronic diseases, including obesity, cardiovascular diseases and neurodegenerative diseases. The gut microbiome is emerging as a key factor in the aging process. In this review, we describe studies of humans and model organisms that suggest a direct causal role of the gut microbiome on host aging. Additionally, we also discuss sex-dimorphism in the gut microbiome and its possible roles in age-related sex-dimorphic phenotypes. We also provide an overview of widely used microbiome analysis methods and tools which could be used to explore the impact of microbiome remodeling on aging.
Collapse
Affiliation(s)
- Minhoo Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Bérénice A. Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA 90089, USA
- Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, CA 90089, USA
- USC Stem Cell Initiative, Los Angeles, CA 90089, USA
| |
Collapse
|
50
|
Radeke LJ, Herman MA. Identification and characterization of differentially expressed genes in Caenorhabditis elegans in response to pathogenic and nonpathogenic Stenotrophomonas maltophilia. BMC Microbiol 2020; 20:170. [PMID: 32560629 PMCID: PMC7304212 DOI: 10.1186/s12866-020-01771-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 03/29/2020] [Indexed: 12/27/2022] Open
Abstract
Background Stenotrophomonas maltophilia is an emerging nosocomial pathogen that causes infection in immunocompromised patients. S. maltophilia isolates are genetically diverse, contain diverse virulence factors, and are variably pathogenic within several host species. Members of the Stenotrophomonas genus are part of the native microbiome of C. elegans, being found in greater relative abundance within the worm than its environment, suggesting that these bacteria accumulate within C. elegans. Thus, study of the C. elegans-Stenotrophomonas interaction is of both medical and ecological significance. To identify host defense mechanisms, we analyzed the C. elegans transcriptomic response to S. maltophilia strains of varying pathogenicity: K279a, an avirulent clinical isolate, JCMS, a virulent strain isolated in association with soil nematodes near Manhattan, KS, and JV3, an even more virulent environmental isolate. Results Overall, we found 145 genes that are commonly differentially expressed in response to pathogenic S. maltophilia strains, 89% of which are upregulated, with many even further upregulated in response to JV3 as compared to JCMS. There are many more JV3-specific differentially expressed genes (225, 11% upregulated) than JCMS-specific differentially expressed genes (14, 86% upregulated), suggesting JV3 has unique pathogenic mechanisms that could explain its increased virulence. We used connectivity within a gene network model to choose pathogen-specific and strain-specific differentially expressed candidate genes for functional analysis. Mutations in 13 of 22 candidate genes caused significant differences in C. elegans survival in response to at least one S. maltophilia strain, although not always the strain that induced differential expression, suggesting a dynamic response to varying levels of pathogenicity. Conclusions Variation in observed pathogenicity and differences in host transcriptional responses to S. maltophilia strains reveal that strain-specific mechanisms play important roles in S. maltophilia pathogenesis. Furthermore, utilizing bacteria closely related to strains found in C. elegans natural environment provides a more realistic interaction for understanding host-pathogen response.
Collapse
Affiliation(s)
- Leah J Radeke
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Michael A Herman
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| |
Collapse
|