1
|
Yang B, Lin Y, Huang Y, Shen YQ, Chen Q. Thioredoxin (Trx): A redox target and modulator of cellular senescence and aging-related diseases. Redox Biol 2024; 70:103032. [PMID: 38232457 PMCID: PMC10827563 DOI: 10.1016/j.redox.2024.103032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/03/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
Thioredoxin (Trx) is a compact redox-regulatory protein that modulates cellular redox state by reducing oxidized proteins. Trx exhibits dual functionality as an antioxidant and a cofactor for diverse enzymes and transcription factors, thereby exerting influence over their activity and function. Trx has emerged as a pivotal biomarker for various diseases, particularly those associated with oxidative stress, inflammation, and aging. Recent clinical investigations have underscored the significance of Trx in disease diagnosis, treatment, and mechanistic elucidation. Despite its paramount importance, the intricate interplay between Trx and cellular senescence-a condition characterized by irreversible growth arrest induced by multiple aging stimuli-remains inadequately understood. In this review, our objective is to present a comprehensive and up-to-date overview of the structure and function of Trx, its involvement in redox signaling pathways and cellular senescence, its association with aging and age-related diseases, as well as its potential as a therapeutic target. Our review aims to elucidate the novel and extensive role of Trx in senescence while highlighting its implications for aging and age-related diseases.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yumeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yibo Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
2
|
Medali T, Couchie D, Mougenot N, Mihoc M, Bergmann O, Derks W, Szweda LI, Yacoub M, Soliman S, Aguib Y, Wagdy K, Ibrahim AM, Friguet B, Rouis M. Thioredoxin-1 and its mimetic peptide improve systolic cardiac function and remodeling after myocardial infarction. FASEB J 2024; 38:e23291. [PMID: 38095283 DOI: 10.1096/fj.202300792rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/14/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023]
Abstract
Myocardial infarction (MI) is characterized by a significant loss of cardiomyocytes (CMs), and it is suggested that reactive oxygen species (ROS) are involved in cell cycle arrest, leading to impaired CM renewal. Thioredoxin-1 (Trx-1) scavenges ROS and may play a role in restoring CM renewal. However, the truncated form of Trx-1, Trx-80, can compromise its efficacy by exerting antagonistic effects. Therefore, a Trx-1 mimetic peptide called CB3 was tested as an alternative way to restore CMs. This study aimed to investigate the effects of Trx-1, Trx-80, and CB3 on mice with experimental MI and study the underlying mechanism of CB3 on CMs. Mouse cardiac parameters were quantified by echocardiography, and infarction size and fibrosis determined using Trichrome and Picro-Sirius Red staining. The study found that Trx-1 and CB3 improved mouse cardiac function, reduced the size of cardiac infarct and fibrosis, and decreased the expression of cardiac inflammatory markers. Furthermore, CB3 polarized macrophages into M2 phenotype, reduced apoptosis and oxidative stress after MI, and increased CM proliferation in cell culture and in vivo. CB3 effectively protected against myocardial infarction and could represent a new class of compounds for treating MI.
Collapse
Affiliation(s)
- Tania Medali
- CNRS, INSERM, Institut de Biologie Paris Seine, Biological Adaptation and Ageing (B2A-IBPS), Sorbonne Université, Paris, France
| | - Dominique Couchie
- CNRS, INSERM, Institut de Biologie Paris Seine, Biological Adaptation and Ageing (B2A-IBPS), Sorbonne Université, Paris, France
| | - Nathalie Mougenot
- Faculté de Médecine, INSERM, Plateforme PECMV, UMS28, Sorbonne Université, Paris, France
| | - Maria Mihoc
- Faculté de Médecine, INSERM, Plateforme PECMV, UMS28, Sorbonne Université, Paris, France
| | - Olaf Bergmann
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
- CRTD, TU Dresden, Dresden, Germany
| | - Wouter Derks
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
- CRTD, TU Dresden, Dresden, Germany
| | - Luke I Szweda
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | | | | - Bertrand Friguet
- CNRS, INSERM, Institut de Biologie Paris Seine, Biological Adaptation and Ageing (B2A-IBPS), Sorbonne Université, Paris, France
| | - Mustapha Rouis
- CNRS, INSERM, Institut de Biologie Paris Seine, Biological Adaptation and Ageing (B2A-IBPS), Sorbonne Université, Paris, France
| |
Collapse
|
3
|
Qaiser H, Uzair M, Al-Regaiey K, Rafiq S, Arshad M, Yoo WK, Arain OZ, Kaleem I, Abualait T, Wang L, Wang R, Bashir S. Role of Thioredoxin System in Regulating Cellular Redox Status in Alzheimer's Disease. J Alzheimers Dis 2024; 99:S97-S108. [PMID: 37545242 DOI: 10.3233/jad-230394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and a public health problem. It exhibits significant oxidative stress and redox alterations. The antioxidant enzyme systems defend the cellular environment from oxidative stress. One of the redox systems is the thioredoxin system (TS), which exerts decisive control over the cellular redox environment. We aimed to review the protective effects of TS, which include thioredoxin (Trx), thioredoxin reductase (TrxR), and NADPH. In the following, we discussed the physiological functioning and the role of the TS in maintaining the cellular redox-homeostasis in the AD-damaged brain. Trx protects the cellular environment from oxidative stress, while TrxR is crucial for the cellular detoxification of reactive oxygen species in the brain. However, TS dysregulation increases the susceptibility to cellular death. The changes in Trx and TrxR levels are significantly associated with AD progression. Though the data from human, animal, and cellular models support the neuroprotective role of TS in the brain of AD patients, the translational potential of these findings to clinical settings is not yet applied. This review summarizes the current knowledge on the emerging role of the TrxR-Trx system in AD.
Collapse
Affiliation(s)
- Hammad Qaiser
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
| | - Khalid Al-Regaiey
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Shafia Rafiq
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
| | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
| | - Woo-Kyoung Yoo
- Department of Physical Medicine and Rehabilitation, Hallym University College of Medicine, Anyang, Gyeonggi-do, Republic of Korea
| | - Osama Zahid Arain
- Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Imdad Kaleem
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Turki Abualait
- College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province, Saudi Arabia
| | - Lan Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Mental Health Institute of Hebei Medical University, Shijiazhuang, China
| | - Ran Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Mental Health Institute of Hebei Medical University, Shijiazhuang, China
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| |
Collapse
|
4
|
Daniilidou M, Eroli F, Alanko V, Goikolea J, Latorre-Leal M, Rodriguez-Rodriguez P, Griffiths WJ, Wang Y, Pacciarini M, Brinkmalm A, Zetterberg H, Blennow K, Rosenberg A, Bogdanovic N, Winblad B, Kivipelto M, Ibghi D, Cedazo-Minguez A, Maioli S, Matton A. Alzheimer's disease biomarker profiling in a memory clinic cohort without common comorbidities. Brain Commun 2023; 5:fcad228. [PMID: 37680670 PMCID: PMC10481253 DOI: 10.1093/braincomms/fcad228] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/17/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
Alzheimer's disease is a multifactorial disorder with large heterogeneity. Comorbidities such as hypertension, hypercholesterolaemia and diabetes are known contributors to disease progression. However, less is known about their mechanistic contribution to Alzheimer's pathology and neurodegeneration. The aim of this study was to investigate the relationship of several biomarkers related to risk mechanisms in Alzheimer's disease with the well-established Alzheimer's disease markers in a memory clinic population without common comorbidities. We investigated 13 molecular markers representing key mechanisms underlying Alzheimer's disease pathogenesis in CSF from memory clinic patients without diagnosed hypertension, hypercholesterolaemia or diabetes nor other neurodegenerative disorders. An analysis of covariance was used to compare biomarker levels between clinical groups. Associations were analysed by linear regression. Two-step cluster analysis was used to determine patient clusters. Two key markers were analysed by immunofluorescence staining in the hippocampus of non-demented control and Alzheimer's disease individuals. CSF samples from a total of 90 participants were included in this study: 30 from patients with subjective cognitive decline (age 62.4 ± 4.38, female 60%), 30 with mild cognitive impairment (age 65.6 ± 7.48, female 50%) and 30 with Alzheimer's disease (age 68.2 ± 7.86, female 50%). Angiotensinogen, thioredoxin-1 and interleukin-15 had the most prominent associations with Alzheimer's disease pathology, synaptic and axonal damage markers. Synaptosomal-associated protein 25 kDa and neurofilament light chain were increased in mild cognitive impairment and Alzheimer's disease patients. Grouping biomarkers by biological function showed that inflammatory and survival components were associated with Alzheimer's disease pathology, synaptic dysfunction and axonal damage. Moreover, a vascular/metabolic component was associated with synaptic dysfunction. In the data-driven analysis, two patient clusters were identified: Cluster 1 had increased CSF markers of oxidative stress, vascular pathology and neuroinflammation and was characterized by elevated synaptic and axonal damage, compared with Cluster 2. Clinical groups were evenly distributed between the clusters. An analysis of post-mortem hippocampal tissue showed that compared with non-demented controls, angiotensinogen staining was higher in Alzheimer's disease and co-localized with phosphorylated-tau. The identification of biomarker-driven endophenotypes in cognitive disorder patients further highlights the biological heterogeneity of Alzheimer's disease and the importance of tailored prevention and treatment strategies.
Collapse
Affiliation(s)
- Makrina Daniilidou
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 64 Solna, Sweden
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - Francesca Eroli
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 64 Solna, Sweden
| | - Vilma Alanko
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 64 Solna, Sweden
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - Julen Goikolea
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 64 Solna, Sweden
| | - Maria Latorre-Leal
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 64 Solna, Sweden
| | - Patricia Rodriguez-Rodriguez
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 64 Solna, Sweden
| | | | - Yuqin Wang
- Swansea University Medical School, Swansea SA2 8PP, UK
| | | | - Ann Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 413 90 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 413 90 Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 413 90 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 413 90 Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N3AR, UK
- UK Dementia Research Institute at UCL, London WC1N3AR, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 413 90 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 413 90 Mölndal, Sweden
| | - Anna Rosenberg
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, FI-70029 Kuopio, Finland
| | - Nenad Bogdanovic
- Theme Inflammation and Aging, Karolinska University Hospital, 141 83 Huddinge, Sweden
| | - Bengt Winblad
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 64 Solna, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, 141 83 Huddinge, Sweden
| | - Miia Kivipelto
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 83 Huddinge, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, 141 83 Huddinge, Sweden
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London SW7 2AZ, UK
| | - Delphine Ibghi
- Neurodegeneration Cluster, Rare and Neurologic Disease Research Sanofi R&D, F-91380 Chilly-Mazarin, France
| | - Angel Cedazo-Minguez
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 64 Solna, Sweden
- Neurodegeneration Cluster, Rare and Neurologic Disease Research Sanofi R&D, F-91380 Chilly-Mazarin, France
| | - Silvia Maioli
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 64 Solna, Sweden
| | - Anna Matton
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 64 Solna, Sweden
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 83 Huddinge, Sweden
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
5
|
Jia J, Xu G, Zhu D, Liu H, Zeng X, Li L. Advances in the Functions of Thioredoxin System in Central Nervous System Diseases. Antioxid Redox Signal 2023; 38:425-441. [PMID: 35761787 DOI: 10.1089/ars.2022.0079] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: The thioredoxin system comprises thioredoxin (Trx), thioredoxin reductase (TrxR), and nicotinamide adenine dinucleotide phosphate, besides an endogenous Trx inhibitor, the thioredoxin-interacting protein (TXNIP). The Trx system plays critical roles in maintaining the redox homeostasis in the central nervous system (CNS), in which oxidative stress damage is prone to occurrence due to its high-energy demand. Recent Advances: Increasing studies have demonstrated that the expression or activity of Trx/TrxR is usually decreased and that TXNIP expression is increased in patients with CNS diseases, including neurodegenerative diseases, cerebral ischemia, traumatic brain injury, and depression, as well as in their cellular and animal models. The compromise of Trx/TrxR enhances the susceptibility of neurons to related pathological state. Increased TXNIP not only enhances the inhibition of Trx activity, but also activates the NOD-like receptor protein 3 inflammasome, resulting in neuroinflammation in the brain. Critical Issues: In this review, we highlight the sources of oxidative stress in the CNS. The expression and function of the Trx system are summarized in different CNS diseases. This review also mentions that some inducers of Trx show neuroprotection in CNS diseases. Future Directions: Accumulating evidence has demonstrated the important roles of the Trx system in CNS diseases, suggesting that the Trx system may be a promising therapeutic target for CNS diseases. Further study should aim to develop the most effective inducers of Trx and specific inhibitors of TXNIP and to apply them in the clinical trials for the treatment of CNS diseases. Antioxid. Redox Signal. 38, 425-441.
Collapse
Affiliation(s)
- Jinjing Jia
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China.,Department of Physiology, Jiaxing University Medical College, Jiaxing, China
| | - Guangtao Xu
- Department of Forensic and Pathology, Jiaxing University Medical College, Jiaxing, China
| | - Dongsheng Zhu
- Department of Neurology, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Hongjun Liu
- Department of Neurology, Affiliated Xin'an International Hospital, Jiaxing University, Jiaxing, China
| | - Xiansi Zeng
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China.,Department of Biochemistry, Jiaxing University Medical College, Jiaxing, China
| | - Li Li
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China.,Department of Physiology, Jiaxing University Medical College, Jiaxing, China
| |
Collapse
|
6
|
Xinastle-Castillo LO, Landa A. Physiological and modulatory role of thioredoxins in the cellular function. Open Med (Wars) 2022; 17:2021-2035. [PMID: 36568514 PMCID: PMC9746700 DOI: 10.1515/med-2022-0596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 12/15/2022] Open
Abstract
Thioredoxins (TRXs) are a class of ubiquitous and multifunctional protein. Mammal cells present three isoforms: a cytosolic and extracellular called thioredoxin 1 (TRX1), a mitochondrial (TRX2), and one specific in spermatozoids (TRX3). Besides, a truncated form called TRX80 exists, which results from the post-translational cleavage performed on TRX1. TRXs' main function is to maintain the reduction-oxidation homeostasis of the cell, reducing the proteins through a thiol-disulfide exchange that depends on two cysteines located in the active site of the protein (Cys32-X-X-Cys35 in humans). In addition, TRX1 performs S-nitrosylation, a post-translational modification of proteins that depends on cysteines of its C-terminal region (Cys62, Cys69, and Cys73 in human TRX1). These modifications allow the TRXs to modulate the protein function and participate in regulating diverse cellular processes, such as oxidative stress, transcription, signaling cascades, apoptosis, inflammation, and immunologic response. This points out the crucial relevance of TRXs for cell function, signaling it as a strategic target for the treatment of many diseases and its possible use as a therapeutic factor.
Collapse
Affiliation(s)
- Luis Omar Xinastle-Castillo
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Edificio A, 2o Piso. Ciudad Universitaria, Ciudad de México, 04510, México
| | - Abraham Landa
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Edificio A, 2o Piso. Ciudad Universitaria, Ciudad de México, 04510, México
| |
Collapse
|
7
|
Holubiec MI, Gellert M, Hanschmann EM. Redox signaling and metabolism in Alzheimer's disease. Front Aging Neurosci 2022; 14:1003721. [PMID: 36408110 PMCID: PMC9670316 DOI: 10.3389/fnagi.2022.1003721] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/14/2022] [Indexed: 08/11/2023] Open
Abstract
Reduction and oxidation reactions are essential for biochemical processes. They are part of metabolic pathways and signal transduction. Reactive oxygen species (ROS) as second messengers and oxidative modifications of cysteinyl (Cys) residues are key to transduce and translate intracellular and intercellular signals. Dysregulation of cellular redox signaling is known as oxidative distress, which has been linked to various pathologies, including neurodegeneration. Alzheimer's disease (AD) is a neurodegenerative pathology linked to both, abnormal amyloid precursor protein (APP) processing, generating Aβ peptide, and Tau hyperphosphorylation and aggregation. Signs of oxidative distress in AD include: increase of ROS (H2O2, O2 •-), decrease of the levels or activities of antioxidant enzymes, abnormal oxidation of macromolecules related to elevated Aβ production, and changes in mitochondrial homeostasis linked to Tau phosphorylation. Interestingly, Cys residues present in APP form disulfide bonds that are important for intermolecular interactions and might be involved in the aggregation of Aβ. Moreover, two Cys residues in some Tau isoforms have been shown to be essential for Tau stabilization and its interaction with microtubules. Future research will show the complexities of Tau, its interactome, and the role that Cys residues play in the progression of AD. The specific modification of cysteinyl residues in redox signaling is also tightly connected to the regulation of various metabolic pathways. Many of these pathways have been found to be altered in AD, even at very early stages. In order to analyze the complex changes and underlying mechanisms, several AD models have been developed, including animal models, 2D and 3D cell culture, and ex-vivo studies of patient samples. The use of these models along with innovative, new redox analysis techniques are key to further understand the importance of the redox component in Alzheimer's disease and the identification of new therapeutic targets in the future.
Collapse
Affiliation(s)
- M. I. Holubiec
- IBioBA-MPSP Instituto de Investigación en Biomedicina de Buenos Aires, Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - M. Gellert
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifwald, University Greifswald, Greifswald, Germany
| | | |
Collapse
|
8
|
Bjørklund G, Zou L, Peana M, Chasapis CT, Hangan T, Lu J, Maes M. The Role of the Thioredoxin System in Brain Diseases. Antioxidants (Basel) 2022; 11:2161. [PMID: 36358532 PMCID: PMC9686621 DOI: 10.3390/antiox11112161] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 08/08/2023] Open
Abstract
The thioredoxin system, consisting of thioredoxin (Trx), thioredoxin reductase (TrxR), and NADPH, plays a fundamental role in the control of antioxidant defenses, cell proliferation, redox states, and apoptosis. Aberrations in the Trx system may lead to increased oxidative stress toxicity and neurodegenerative processes. This study reviews the role of the Trx system in the pathophysiology and treatment of Alzheimer's, Parkinson's and Huntington's diseases, brain stroke, and multiple sclerosis. Trx system plays an important role in the pathophysiology of those disorders via multiple interactions through oxidative stress, apoptotic, neuro-immune, and pro-survival pathways. Multiple aberrations in Trx and TrxR systems related to other redox systems and their multiple reciprocal relationships with the neurodegenerative, neuro-inflammatory, and neuro-oxidative pathways are here analyzed. Genetic and environmental factors (nutrition, metals, and toxins) may impact the function of the Trx system, thereby contributing to neuropsychiatric disease. Aberrations in the Trx and TrxR systems could be a promising drug target to prevent and treat neurodegenerative, neuro-inflammatory, neuro-oxidative stress processes, and related brain disorders.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610 Mo i Rana, Norway
| | - Lili Zou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, China
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Tony Hangan
- Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania
| | - Jun Lu
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
9
|
Österlund N, Vosselman T, Leppert A, Gräslund A, Jörnvall H, Ilag LL, Marklund EG, Elofsson A, Johansson J, Sahin C, Landreh M. Mass Spectrometry and Machine Learning Reveal Determinants of Client Recognition by Antiamyloid Chaperones. Mol Cell Proteomics 2022; 21:100413. [PMID: 36115577 PMCID: PMC9563204 DOI: 10.1016/j.mcpro.2022.100413] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 01/18/2023] Open
Abstract
The assembly of proteins and peptides into amyloid fibrils is causally linked to serious disorders such as Alzheimer's disease. Multiple proteins have been shown to prevent amyloid formation in vitro and in vivo, ranging from highly specific chaperone-client pairs to completely nonspecific binding of aggregation-prone peptides. The underlying interactions remain elusive. Here, we turn to the machine learning-based structure prediction algorithm AlphaFold2 to obtain models for the nonspecific interactions of β-lactoglobulin, transthyretin, or thioredoxin 80 with the model amyloid peptide amyloid β and the highly specific complex between the BRICHOS chaperone domain of C-terminal region of lung surfactant protein C and its polyvaline target. Using a combination of native mass spectrometry (MS) and ion mobility MS, we show that nonspecific chaperoning is driven predominantly by hydrophobic interactions of amyloid β with hydrophobic surfaces in β-lactoglobulin, transthyretin, and thioredoxin 80, and in part regulated by oligomer stability. For C-terminal region of lung surfactant protein C, native MS and hydrogen-deuterium exchange MS reveal that a disordered region recognizes the polyvaline target by forming a complementary β-strand. Hence, we show that AlphaFold2 and MS can yield atomistic models of hard-to-capture protein interactions that reveal different chaperoning mechanisms based on separate ligand properties and may provide possible clues for specific therapeutic intervention.
Collapse
Affiliation(s)
- Nicklas Österlund
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Thibault Vosselman
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Axel Leppert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Hans Jörnvall
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Leopold L. Ilag
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Erik G. Marklund
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Arne Elofsson
- Science for Life Laboratory and Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Huddinge, Sweden
| | - Cagla Sahin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden,Department of Biology, University of Copenhagen, Denmark,For correspondence: Michael Landreh; Cagla Sahin
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden,For correspondence: Michael Landreh; Cagla Sahin
| |
Collapse
|
10
|
Changing Perspectives from Oxidative Stress to Redox Signaling-Extracellular Redox Control in Translational Medicine. Antioxidants (Basel) 2022; 11:antiox11061181. [PMID: 35740078 PMCID: PMC9228063 DOI: 10.3390/antiox11061181] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/07/2022] Open
Abstract
Extensive research has changed the understanding of oxidative stress that has been linked to every major disease. Today we distinguish oxidative eu- and distress, acknowledging that redox modifications are crucial for signal transduction in the form of specific thiol switches. Long underestimated, reactive species and redox proteins of the Thioredoxin (Trx) family are indeed essential for physiological processes. Moreover, extracellular redox proteins, low molecular weight thiols and thiol switches affect signal transduction and cell–cell communication. Here, we highlight the impact of extracellular redox regulation for health, intermediate pathophenotypes and disease. Of note, recent advances allow the analysis of redox changes in body fluids without using invasive and expensive techniques. With this new knowledge in redox biochemistry, translational strategies can lead to innovative new preventive and diagnostic tools and treatments in life sciences and medicine.
Collapse
|
11
|
Thomas C, Wurzer L, Malle E, Ristow M, Madreiter-Sokolowski CT. Modulation of Reactive Oxygen Species Homeostasis as a Pleiotropic Effect of Commonly Used Drugs. FRONTIERS IN AGING 2022; 3:905261. [PMID: 35821802 PMCID: PMC9261327 DOI: 10.3389/fragi.2022.905261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/18/2022] [Indexed: 01/17/2023]
Abstract
Age-associated diseases represent a growing burden for global health systems in our aging society. Consequently, we urgently need innovative strategies to counteract these pathological disturbances. Overwhelming generation of reactive oxygen species (ROS) is associated with age-related damage, leading to cellular dysfunction and, ultimately, diseases. However, low-dose ROS act as crucial signaling molecules and inducers of a vaccination-like response to boost antioxidant defense mechanisms, known as mitohormesis. Consequently, modulation of ROS homeostasis by nutrition, exercise, or pharmacological interventions is critical in aging. Numerous nutrients and approved drugs exhibit pleiotropic effects on ROS homeostasis. In the current review, we provide an overview of drugs affecting ROS generation and ROS detoxification and evaluate the potential of these effects to counteract the development and progression of age-related diseases. In case of inflammation-related dysfunctions, cardiovascular- and neurodegenerative diseases, it might be essential to strengthen antioxidant defense mechanisms in advance by low ROS level rises to boost the individual ROS defense mechanisms. In contrast, induction of overwhelming ROS production might be helpful to fight pathogens and kill cancer cells. While we outline the potential of ROS manipulation to counteract age-related dysfunction and diseases, we also raise the question about the proper intervention time and dosage.
Collapse
Affiliation(s)
- Carolin Thomas
- Laboratory of Energy Metabolism Institute of Translational Medicine Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Lia Wurzer
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Ernst Malle
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Michael Ristow
- Laboratory of Energy Metabolism Institute of Translational Medicine Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | | |
Collapse
|
12
|
Demethyleneberberine, a potential therapeutic agent in neurodegenerative disorders: a proposed mechanistic insight. Mol Biol Rep 2022; 49:10101-10113. [PMID: 35657450 DOI: 10.1007/s11033-022-07594-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 05/11/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Neurodegenerative disorders are a diverse variety of diseases that can be distinguished from developing degeneration of neurons in the CNS. Several alkaloids have shown mounting effects in neurodegenerative disorders, and berberine is one of them. Demethyleneberberine is a metabolite of berberine that has better blood-brain barrier crossing capacity. Demethyleneberberine possesses anti-inflammatory, anti-oxidant, and mitochondrial targeting properties. However, neither the pharmacological action nor the molecular mechanism of action of demethyleneberberine on neurodegenerative disorders has been explored yet. MATERIALS AND METHODS A systematic literature review of PubMed, Medline, Bentham, Scopus, and EMBASE (Elseveier) databases was carried out with the help of keywords like "Demethyleneberberine; neuroinflammation; oxidative stress; Neuroprotective; Neurodegenerative disorders" till date. CONCLUSION This review focus on the neuroprotective potential of demethyleneberberine in neurodegenerative disorders by attenuating different pathways, i.e., NF-κB, MAPK, and AMPK signalling.
Collapse
|
13
|
Awan MUN, Yan F, Mahmood F, Bai L, Liu J, Bai J. The Functions of Thioredoxin 1 in Neurodegeneration. Antioxid Redox Signal 2022; 36:1023-1036. [PMID: 34465198 DOI: 10.1089/ars.2021.0186] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Significance: Thioredoxin 1 (Trx1) is a ubiquitous protein that is found in organisms ranging from prokaryotes to eukaryotes. Trx1 acts as reductases in redox regulation and protects proteins from oxidative aggregation and inactivation. Trx1 helps the cells to cope with various environmental stresses and inhibits programmed cell death. It is beneficial to neuroregeneration and resistance against oxidative stress-associated neuron damage. Trx1 also plays important roles in suppressing neurodegenerative disorders. Recent Advances: Trx1 is a redox regulating protein involved in neuronal protection. According to a previous study, Trx1 expression is increased by nerve growth factor (NGF) and necessary for neurite outgrowth of PC12 cells. Trx1 has been shown to promote the growth of neurons. Trx1 knockout or knockdown has the worse impact on cell viability and survival. Critical Issues: Trx1 has functions in central nervous system. Trx1 plays the defensive roles against oxidative stress in neurodegenerative diseases. Future Directions: In this review, we focus on the structure of Trx1 and basic functions of Trx1. Trx1 plays a neuroprotective role by suppressing endoplasmic reticulum stress in Parkinson's disease. Neurodegenerative diseases have no cure and carry a high cost to the health care system and patient's families. Trx1 may be taken as a new target for neurodegenerative disorder therapy. Further studies of the Trx1 roles and mechanisms on neurodegenerative diseases are needed. Antioxid. Redox Signal. 36, 1023-1036.
Collapse
Affiliation(s)
- Maher Un Nisa Awan
- Laboratory of Molecular Neurobiology, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.,Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Fang Yan
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Faisal Mahmood
- Laboratory of Molecular Neurobiology, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Liping Bai
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Jingyu Liu
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Jie Bai
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
14
|
Goikolea J, Gerenu G, Daniilidou M, Mangialasche F, Mecocci P, Ngandu T, Rinne J, Solomon A, Kivipelto M, Cedazo-Minguez A, Sandebring-Matton A, Maioli S. Serum Thioredoxin-80 is associated with age, ApoE4, and neuropathological biomarkers in Alzheimer's disease: a potential early sign of AD. Alzheimers Res Ther 2022; 14:37. [PMID: 35209952 PMCID: PMC8876266 DOI: 10.1186/s13195-022-00979-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/16/2022] [Indexed: 12/12/2022]
Abstract
Background Thioredoxin-80 (Trx80) is a cleavage product from the redox-active protein Thioredoxin-1 and has been previously described as a pro-inflammatory cytokine secreted by immune cells. Previous studies in our group reported that Trx80 levels are depleted in Alzheimer’s disease (AD) brains. However, no studies so far have investigated peripheral Trx80 levels in the context of AD pathology and whether could be associated with the main known AD risk factors and biomarkers. Methods Trx80 was measured in serum samples from participants from two different cohorts: the observational memory clinic biobank (GEDOC) (N = 99) with AD CSF biomarker data was available and the population-based lifestyle multidomain intervention trial Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER) (N = 47), with neuroimaging data and blood markers of inflammation available. The GEDOC cohort consists of participants diagnosed with subjective cognitive impairment (SCI), mild cognitive impairment (MCI), and AD, whereas the FINGER participants are older adults at-risk of dementia, but without substantial cognitive impairment. One-way ANOVA and multiple comparison tests were used to assess the levels of Trx80 between groups. Linear regression models were used to explore associations of Trx80 with cognition, AD CSF biomarkers (Aβ42, t-tau, p-tau and p-tau/t-tau ratio), inflammatory cytokines, and neuroimaging markers. Results In the GEDOC cohort, Trx80 was associated to p-tau/t-tau ratio in the MCI group. In the FINGER cohort, serum Trx80 levels correlated with lower hippocampal volume and higher pro-inflammatory cytokine levels. In both GEDOC and FINGER cohorts, ApoE4 carriers had significantly higher serum Trx80 levels compared to non-ApoE4 carriers. However, Trx80 levels in the brain were further decreased in AD patients with ApoE4 genotype. Conclusion We report that serum Trx80 levels are associated to AD disease stage as well as to several risk factors for AD such as age and ApoE4 genotype, which suggests that Trx80 could have potential as serum AD biomarker. Increased serum Trx80 and decreased brain Trx80 levels was particularly seen in ApoE4 carriers. Whether this could contribute to the mechanism by which ApoE4 show increased vulnerability to develop AD would need to be further investigated. Trial registration ClinicalTrials.govNCT01041989. Registered on 4 January 2010—retrospectively registered Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-00979-9.
Collapse
Affiliation(s)
- Julen Goikolea
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.
| | - Gorka Gerenu
- Biodonostia Health Research Institute, Neuroscience Area, 20014, Donostia-San Sebastián, Gipuzkoa, Spain.,CIBERNED (Network Center for Biomedical Research in Neurodegenerative Diseases), Carlos III Institute, Madrid, Spain.,Department of Physiology, Medicine and Nursing School, University of Basque Country UPV/EHU, Leioa, Spain
| | - Makrina Daniilidou
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.,Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Francesca Mangialasche
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Patrizia Mecocci
- Department of Medicine and Surgery, Santa Maria della Misericordia Hospital, Section of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Tiia Ngandu
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.,Department of Public Health Solutions, Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Juha Rinne
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Alina Solomon
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.,Institute of Clinical Medicine/Neurology, University of Eastern Finland, Kuopio, Finland.,Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK
| | - Miia Kivipelto
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.,Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.,Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Angel Cedazo-Minguez
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Anna Sandebring-Matton
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.,Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.,Institute of Clinical Medicine/Neurology, University of Eastern Finland, Kuopio, Finland
| | - Silvia Maioli
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
El Hadri K, Smith R, Duplus E, El Amri C. Inflammation, Oxidative Stress, Senescence in Atherosclerosis: Thioredoxine-1 as an Emerging Therapeutic Target. Int J Mol Sci 2021; 23:ijms23010077. [PMID: 35008500 PMCID: PMC8744732 DOI: 10.3390/ijms23010077] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/19/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a leading cause of cardiovascular diseases (CVD) worldwide and intimately linked to aging. This pathology is characterized by chronic inflammation, oxidative stress, gradual accumulation of low-density lipoproteins (LDL) particles and fibrous elements in focal areas of large and medium arteries. These fibrofatty lesions in the artery wall become progressively unstable and thrombogenic leading to heart attack, stroke or other severe heart ischemic syndromes. Elevated blood levels of LDL are major triggering events for atherosclerosis. A cascade of molecular and cellular events results in the atherosclerotic plaque formation, evolution, and rupture. Moreover, the senescence of multiple cell types present in the vasculature were reported to contribute to atherosclerotic plaque progression and destabilization. Classical therapeutic interventions consist of lipid-lowering drugs, anti-inflammatory and life style dispositions. Moreover, targeting oxidative stress by developing innovative antioxidant agents or boosting antioxidant systems is also a well-established strategy. Accumulation of senescent cells (SC) is also another important feature of atherosclerosis and was detected in various models. Hence, targeting SCs appears as an emerging therapeutic option, since senolytic agents favorably disturb atherosclerotic plaques. In this review, we propose a survey of the impact of inflammation, oxidative stress, and senescence in atherosclerosis; and the emerging therapeutic options, including thioredoxin-based approaches such as anti-oxidant, anti-inflammatory, and anti-atherogenic strategy with promising potential of senomodulation.
Collapse
|
16
|
Idebenone Decreases Aβ Pathology by Modulating RAGE/Caspase-3 Signaling and the Aβ Degradation Enzyme NEP in a Mouse Model of AD. BIOLOGY 2021; 10:biology10090938. [PMID: 34571815 PMCID: PMC8471964 DOI: 10.3390/biology10090938] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022]
Abstract
Simple Summary The present study reveals that the FDA-approved drug idebenone has therapeutic effects on the pathology of Alzheimer’s disease (AD) in a mouse model. In particular, idebenone regulates pathological progression associated with Aβ by downregulating the non-amyloidogenic pathway, inhibiting RAGE/caspase-3 signaling, and enhancing Aβ catabolism. In addition, idebenone modulates tauopathy by reducing levels of the tau kinase p-GSK3β, thereby suppressing tau hyperphosphorylation at Thr231. These data suggest that idebenone modulates Aβ and tau pathology in a mouse model of AD. Abstract The coenzyme Q10 analogue idebenone is an FDA-approved antioxidant that can cross the blood–brain barrier (BBB). The effects of idebenone on the pathology of Alzheimer’s disease (AD) and the underlying molecular mechanisms have not been comprehensively investigated. Here, we examined the impact of idebenone treatment on AD pathology in 5xFAD mice, a model of AD. Idebenone significantly downregulated Aβ plaque number via multi-directional pathways in this model. Specifically, idebenone reduced the RAGE/caspase-3 signaling pathway and increased levels of the Aβ degradation enzyme NEP and α-secretase ADAM17 in 5xFAD mice. Importantly, idebenone significantly suppressed tau kinase p-GSK3βY216 levels, thereby inhibiting tau hyperphosphorylation at Thr231 and total tau levels in 5xFAD mice. Taken together, the present study indicates that idebenone modulates amyloidopathy and tauopathy in 5xFAD mice, suggesting therapeutic potential for AD.
Collapse
|
17
|
Thioredoxin-80 protects against amyloid-beta pathology through autophagic-lysosomal pathway regulation. Mol Psychiatry 2021; 26:1410-1423. [PMID: 31520067 DOI: 10.1038/s41380-019-0521-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/02/2019] [Accepted: 08/02/2019] [Indexed: 12/15/2022]
Abstract
Aggregation and accumulation of amyloid beta (Aβ) are believed to play a key role in the pathogenesis of Alzheimer's disease (AD). We previously reported that Thioredoxin-80 (Trx80), a truncated form of Thioredoxin-1, prevents the toxic effects of Aβ and inhibits its aggregation in vitro. Trx80 levels were found to be dramatically reduced both in the human brain and cerebrospinal fluid of AD patients. In this study, we investigated the effect of Trx80 expression using in vivo and in vitro models of Aβ pathology. We developed Drosophila melanogaster models overexpressing either human Trx80, human Aβ42, or both Aβ42/Trx80 in the central nervous system. We found that Trx80 expression prevents Aβ42 accumulation in the brain and rescues the reduction in life span and locomotor impairments seen in Aβ42 expressing flies. Also, we show that Trx80 induces autophagosome formation and reverses the inhibition of Atg4b-Atg8a/b autophagosome formation pathway caused by Aβ42. These effects were also confirmed in human neuroblastoma cells. These results give insight into Trx80 function in vivo, suggesting its role in the autophagosome biogenesis and thus in Aβ42 degradation. Our findings put Trx80 on the spotlight as an endogenous agent against Aβ42-induced toxicity in the brain suggesting that strategies to enhance Trx80 levels in neurons could potentially be beneficial against AD pathology in humans.
Collapse
|
18
|
Chatterji A, Sengupta R. Cellular S-denitrosylases: Potential role and interplay of Thioredoxin, TRP14, and Glutaredoxin systems in thiol-dependent protein denitrosylation. Int J Biochem Cell Biol 2021; 131:105904. [DOI: 10.1016/j.biocel.2020.105904] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
|
19
|
Jastrząb A, Skrzydlewska E. Regulacja układu zależnego od tioredoksyny jako element farmakoterapii w chorobach z zaburzeniami równowagi redoks. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.6952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Streszczenie
Działanie wielu czynników egzogennych, a także zaburzone procesy metaboliczne komórek przyczyniają się do nasilonego wytwarzania oksydantów, a to zaburza równowagę redoks, wywołując zmiany metaboliczne, w tym śmierci lub transformacji nowotworowej komórek. Jednak każda komórka zawiera antyoksydanty, które mają zapobiegać tego typu sytuacjom. Jednym z układów antyoksydacyjnych, funkcjonujących w komórkach, jest układ zależny od tioredoksyny, w skład którego wchodzą: tioredoksyna (Trx), reduktaza tioredoksyny (TrxR) oraz peroksydaza tioredoksyny (TPx), które mogą redukować utlenione składniki komórek kosztem fosforanu dinukleotydu nikotynoamidoadeninowego (NADPH). Działanie takie wynika z budowy przestrzennej Trx oraz TrxR, która umożliwia wytworzenie wewnątrzcząsteczkowego mostka disulfidowego w obrębie cząsteczki tioredoksyny oraz dwóch międzycząsteczkowych mostków selenosulfidowych w obrębie dimeru reduktazy tioredoksyny. Inną, równie istotną funkcją układu zależnego od tioredoksyny jest regulowanie ekspresji wielu białek za pośrednictwem takich czynników jak czynnik transkrypcyjnego NF-κB oraz kinaza regulująca apoptozę (ASK-1), które uruchamiają kaskady przemian metabolicznych prowadzących ostatecznie do proliferacji lub apoptozy komórek. Wzrost ekspresji/aktywności składników systemu zależnego od Trx obserwuje się w rozwoju wielu nowotworów. Dlatego też poszukiwanie selektywnych inhibitorów tioredoksyny lub reduktazy tioredoksyny jest obecnie jednym z głównych kierunków badań w farmakoterapii nowotworów. Wykazano, że wiele naturalnie występujących związków polifenolowych pochodzenia naturalnego o działaniu antyoksydacyjnym (np. kwercetyna czy kurkumina) powoduje inaktywację układu Trx-TrxR. Jednocześnie wiele syntetycznych związków, w tym związki kompleksowe, które stosowane są w terapii przeciwnowotworowej (np. cisplatyna, auranofina, moteksafina gadolinu), również hamują działanie układu zależnego od Trx.
Collapse
Affiliation(s)
- Anna Jastrząb
- Zakład Chemii Nieorganicznej i Analitycznej , Uniwersytet Medyczny w Białymstoku
| | | |
Collapse
|
20
|
Jia J, Zeng X, Xu G, Wang Z. The Potential Roles of Redox Enzymes in Alzheimer's Disease: Focus on Thioredoxin. ASN Neuro 2021; 13:1759091421994351. [PMID: 33557592 PMCID: PMC7876756 DOI: 10.1177/1759091421994351] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative diseases. Increasing studies have demonstrated the critical importance for redox proteins mediating neuronal protection in models of AD. This review briefly describes some of the risk factors contributing to AD, specifically highlighting the important roles of oxidative stress in the pathology of AD. Then this article concisely introduces the dysregulation and functions of two main redox enzymes, peroxiredoxins and glutaredoxins, in AD models. This review emphasizes the neuroprotective role of the third redox enzyme thioredoxin (Trx), an important multifunctional protein regulating cellular redox status. This commentary not only summarizes the alterations of Trx expression in AD patients and models, but also reviews the potential effects and mechanisms of Trx, Trx-related molecules and Trx-inducing compounds against AD. In conclusion, Trx has a potential neuroprotection in AD and may be very promising for clinical therapy of AD in the future.
Collapse
Affiliation(s)
- Jinjing Jia
- Department of Physiology, Jiaxing University Medical
College, Jiaxing, China
- Forensic and Pathology Laboratory, Jiaxing University
Medical College, Jiaxing, China
| | - Xiansi Zeng
- Forensic and Pathology Laboratory, Jiaxing University
Medical College, Jiaxing, China
- Department of Biochemistry, Jiaxing University Medical
College, Jiaxing, China
| | - Guangtao Xu
- Forensic and Pathology Laboratory, Jiaxing University
Medical College, Jiaxing, China
| | - Zhanqi Wang
- College of Life Sciences, Huzhou University, Huzhou,
China
| |
Collapse
|
21
|
Foley TD. Reductive Reprogramming: A Not-So-Radical Hypothesis of Neurodegeneration Linking Redox Perturbations to Neuroinflammation and Excitotoxicity. Cell Mol Neurobiol 2019; 39:577-590. [PMID: 30904976 DOI: 10.1007/s10571-019-00672-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022]
Abstract
Free radical-mediated oxidative stress, neuroinflammation, and excitotoxicity have long been considered insults relevant to the progression of Alzheimer's disease and other aging-related neurodegenerative disorders (NDD). Among these phenomena, the significance of oxidative stress and, more generally, redox perturbations, for NDD remain ill-defined and unsubstantiated. Here, I argue that (i) free radical-mediated oxidations of biomolecules can be dissociated from the progression of NDD, (ii) oxidative stress fails as a descriptor of cellular redox states under conditions relevant to disease, and (iii) aberrant upregulation of compensatory reducing activities in neural cells, resulting in reductive shifts in thiol-based redox potentials, may be an overlooked and paradoxical contributor to disease progression. In particular, I summarize evidence which supports the view that reductive shifts in the extracellular space can occur in response to oxidant and inflammatory signals and that these have the potential to reduce putative regulatory disulfide bonds in exofacial domains of the N-methyl-D-aspartate receptor, leading potentially to aberrant increases in neuronal excitability and, if sustained, excitotoxicity. The novel reductive reprogramming hypothesis of neurodegeneration presented here provides an alternative view of redox perturbations in NDD and links these to both neuroinflammation and excitotoxicity.
Collapse
Affiliation(s)
- Timothy D Foley
- Department of Chemistry and Neuroscience Program, University of Scranton, Scranton, PA, 18510, USA.
| |
Collapse
|
22
|
Kuo YC, Rajesh R. Challenges in the treatment of Alzheimer’s disease: recent progress and treatment strategies of pharmaceuticals targeting notable pathological factors. Expert Rev Neurother 2019; 19:623-652. [DOI: 10.1080/14737175.2019.1621750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan, Republic of China
| | - Rajendiran Rajesh
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan, Republic of China
| |
Collapse
|
23
|
Oxidative Stress in Neurodegenerative Diseases: From a Mitochondrial Point of View. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2105607. [PMID: 31210837 PMCID: PMC6532273 DOI: 10.1155/2019/2105607] [Citation(s) in RCA: 295] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 04/15/2019] [Indexed: 12/12/2022]
Abstract
Age is the main risk factor for a number of human diseases, including neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, which increasing numbers of elderly individuals suffer. These pathological conditions are characterized by progressive loss of neuron cells, compromised motor or cognitive functions, and accumulation of abnormally aggregated proteins. Mitochondrial dysfunction is one of the main features of the aging process, particularly in organs requiring a high-energy source such as the heart, muscles, brain, or liver. Neurons rely almost exclusively on the mitochondria, which produce the energy required for most of the cellular processes, including synaptic plasticity and neurotransmitter synthesis. The brain is particularly vulnerable to oxidative stress and damage, because of its high oxygen consumption, low antioxidant defenses, and high content of polyunsaturated fats very prone to be oxidized. Thus, it is not surprising the importance of protecting systems, including antioxidant defenses, to maintain neuronal integrity and survival. Here, we review the role of mitochondrial oxidative stress in the aging process, with a specific focus on neurodegenerative diseases. Understanding the molecular mechanisms involving mitochondria and oxidative stress in the aging and neurodegeneration may help to identify new strategies for improving the health and extending lifespan.
Collapse
|
24
|
Tinkov AA, Bjørklund G, Skalny AV, Holmgren A, Skalnaya MG, Chirumbolo S, Aaseth J. The role of the thioredoxin/thioredoxin reductase system in the metabolic syndrome: towards a possible prognostic marker? Cell Mol Life Sci 2018; 75:1567-1586. [PMID: 29327078 PMCID: PMC11105605 DOI: 10.1007/s00018-018-2745-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/13/2017] [Accepted: 01/03/2018] [Indexed: 12/12/2022]
Abstract
Mammalian thioredoxin reductase (TrxR) is a selenoprotein with three existing isoenzymes (TrxR1, TrxR2, and TrxR3), which is found primarily intracellularly but also in extracellular fluids. The main substrate thioredoxin (Trx) is similarly found (as Trx1 and Trx2) in various intracellular compartments, in blood plasma, and is the cell's major disulfide reductase. Thioredoxin reductase is necessary as a NADPH-dependent reducing agent in biochemical reactions involving Trx. Genetic and environmental factors like selenium status influence the activity of TrxR. Research shows that the Trx/TrxR system plays a significant role in the physiology of the adipose tissue, in carbohydrate metabolism, insulin production and sensitivity, blood pressure regulation, inflammation, chemotactic activity of macrophages, and atherogenesis. Based on recent research, it has been reported that the modulation of the Trx/TrxR system may be considered as a new target in the management of the metabolic syndrome, insulin resistance, and type 2 diabetes, as well as in the treatment of hypertension and atherosclerosis. In this review evidence about a possible role of this system as a marker of the metabolic syndrome is reported.
Collapse
Affiliation(s)
- Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610, Mo i Rana, Norway.
| | - Anatoly V Skalny
- Yaroslavl State University, Yaroslavl, Russia
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
- Trace Element Institute for UNESCO, Lyon, France
- Orenburg State University, Orenburg, Russia
| | - Arne Holmgren
- Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institute, Stockholm, Sweden
| | | | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway
- Inland Norway University of Applied Sciences, Elverum, Norway
| |
Collapse
|
25
|
Reinhardt S, Stoye N, Luderer M, Kiefer F, Schmitt U, Lieb K, Endres K. Identification of disulfiram as a secretase-modulating compound with beneficial effects on Alzheimer's disease hallmarks. Sci Rep 2018; 8:1329. [PMID: 29358714 PMCID: PMC5778060 DOI: 10.1038/s41598-018-19577-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/04/2018] [Indexed: 12/14/2022] Open
Abstract
ADAM10 is a metalloproteinase acting on the amyloid precursor protein (APP) as an alpha-secretase in neurons. Its enzymatic activity results in secretion of a neuroprotective APP cleavage product (sAPP-alpha) and prevents formation of the amyloidogenic A-beta peptides, major hallmarks of Alzheimer’s disease (AD). Elevated ADAM10 levels appeared to contribute to attenuation of A-beta-plaque formation and learning and memory deficits in AD mouse models. Therefore, it has been assumed that ADAM10 might represent a valuable target in AD therapy. Here we screened a FDA-approved drug library and identified disulfiram as a novel ADAM10 gene expression enhancer. Disulfiram increased ADAM10 production as well as sAPP-alpha in SH-SY5Y human neuronal cells and additionally prevented A-beta aggregation in an in vitro assay in a dose-dependent fashion. In addition, acute disulfiram treatment of Alzheimer model mice induced ADAM10 expression in peripheral blood cells, reduced plaque-burden in the dentate gyrus and ameliorated behavioral deficits. Alcohol-dependent patients are subjected to disulfiram-treatment to discourage alcohol-consumption. In such patients, enhancement of ADAM10 by disulfiram-treatment was demonstrated in peripheral blood cells. Our data suggest that disulfiram could be repurposed as an ADAM10 enhancer and AD therapeutic. However, efficacy and safety has to be analyzed in Alzheimer patients in the future.
Collapse
Affiliation(s)
- Sven Reinhardt
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Nicolai Stoye
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Mathias Luderer
- Central Institute of Mental Health (CIMH), Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Falk Kiefer
- Central Institute of Mental Health (CIMH), Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ulrich Schmitt
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Klaus Lieb
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
26
|
Cell Signaling with Extracellular Thioredoxin and Thioredoxin-Like Proteins: Insight into Their Mechanisms of Action. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8475125. [PMID: 29138681 PMCID: PMC5613632 DOI: 10.1155/2017/8475125] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/06/2017] [Accepted: 07/17/2017] [Indexed: 12/17/2022]
Abstract
Thioredoxins are small thiol-oxidoreductase enzymes that control cellular redox homeostasis. Paradoxically, human thioredoxin (TXN1) was first identified as the adult T cell leukemia-derived factor (ADF), a secreted protein. ADF has been implicated in a wide variety of cell-to-cell communication systems acting as a cytokine or a chemokine. TRX80 is a truncated TXN1 protein with cytokine activity. The unconventional secretion mechanism of these extracellular thioredoxins is unknown. The thioredoxin system is relying on glucose metabolism through the pentose phosphate pathway that provides reducing power in the form of NADPH, the cofactor of thioredoxin reductase (TXNRD). While a complete extracellular TXN system is present in the blood in the form of circulating TXN1 and TXNDR1, the source of extracellular NADPH remains a mystery. In the absence of redox regenerating capacity, extracellular thioredoxins may rather be prooxidant agents. Rod-derived cone viability factor (RdCVF) is the product of intron retention of the nucleoredoxin-like 1 (NXNL1) gene, a secreted truncated thioredoxin-like protein. The other product encoded by the gene, RdCVFL, is an enzymatically active thioredoxin. This is a very singular example of positive feedback of a superthioredoxin system encoded by a single gene likely emerging during evolution from metabolic constraints on redox signaling.
Collapse
|
27
|
Kulak K, Westermark GT, Papac-Milicevic N, Renström E, Blom AM, King BC. The human serum protein C4b-binding protein inhibits pancreatic IAPP-induced inflammasome activation. Diabetologia 2017; 60:1522-1533. [PMID: 28500395 PMCID: PMC5491568 DOI: 10.1007/s00125-017-4286-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 03/13/2017] [Indexed: 01/08/2023]
Abstract
AIMS/HYPOTHESIS Inflammasome activation and subsequent IL-1β production is a driver of islet pathology in type 2 diabetes. Oligomers, but not mature amyloid fibrils, of human islet amyloid polypeptide (IAPP), which is co-secreted with insulin, trigger NOD-like receptor pyrin domain containing-3 (NLRP3) inflammasome activation. C4b-binding protein (C4BP), present in serum, binds to IAPP and affects transition of IAPP monomers and oligomers to amyloid fibrils. We therefore hypothesised that C4BP inhibits IAPP-mediated inflammasome activation and IL-1β production. METHODS Macrophages were exposed to IAPP in the presence or absence of plasma-purified human C4BP, and inflammasome activation was assessed by IL-1β secretion as detected by ELISA and reporter cell lines. IAPP fibrillation was assessed by thioflavin T assay. Uptake of IAPP-C4BP complexes and their effects on phagolysosomal stability were assessed by flow cytometry and confocal microscopy. The effect of C4BP regulation of IAPP-mediated inflammasome activation on beta cell function was assessed using a clonal rat beta cell line. Immunohistochemistry was used to examine the association of IAPP amyloid deposits and macrophage infiltration in isolated human and mouse pancreatic islets, and expression of C4BP from isolated human pancreatic islets was assessed by quantitative PCR, immunohistochemistry and western blot. RESULTS C4BP significantly inhibited IAPP-mediated IL-1β secretion from primed macrophages at physiological concentrations in a dose-dependent manner. C4BP bound to and was internalised together with IAPP. C4BP did not affect IAPP uptake into phagolysosomal compartments, although it did inhibit its formation into amyloid fibrils. The loss of macrophage phagolysosomal integrity induced by IAPP incubation was inhibited by co-incubation with C4BP. Supernatant fractions from macrophages activated with IAPP inhibited both insulin secretion and viability of clonal beta cells in an IL-1β-dependent manner but the presence of C4BP during macrophage IAPP incubation rescued beta cell function and viability. In human and mouse islets, the presence of amyloid deposits correlated with higher numbers of infiltrating macrophages. Isolated human islets expressed and secreted C4BP, which increased with addition of IL-1β. CONCLUSIONS/INTERPRETATION IAPP deposition is associated with inflammatory cell infiltrates in pancreatic islets. C4BP blocks IAPP-induced inflammasome activation by preventing the loss of macrophage phagolysosomal integrity required for NLRP3 activation. The consequence of this is the preservation of beta cell function and viability. C4BP is secreted directly from human pancreatic islets and this increases in response to inflammatory cytokines. We therefore propose that C4BP acts as an extracellular chaperone protein that limits the proinflammatory effects of IAPP.
Collapse
Affiliation(s)
- Klaudia Kulak
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Inga Marie Nilssons Gata 53, Skåne University Hospital, S20502, Malmö, Sweden
| | | | | | - Erik Renström
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Anna M Blom
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Inga Marie Nilssons Gata 53, Skåne University Hospital, S20502, Malmö, Sweden
| | - Ben C King
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Inga Marie Nilssons Gata 53, Skåne University Hospital, S20502, Malmö, Sweden.
| |
Collapse
|
28
|
Couchie D, Vaisman B, Abderrazak A, Mahmood DFD, Hamza MM, Canesi F, Diderot V, El Hadri K, Nègre-Salvayre A, Le Page A, Fulop T, Remaley AT, Rouis M. Human Plasma Thioredoxin-80 Increases With Age and in ApoE -/- Mice Induces Inflammation, Angiogenesis, and Atherosclerosis. Circulation 2017; 136:464-475. [PMID: 28473446 DOI: 10.1161/circulationaha.117.027612] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 04/26/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND Thioredoxin (TRX)-1, a ubiquitous 12-kDa protein, exerts antioxidant and anti-inflammatory effects. In contrast, the truncated form, called TRX80, produced by macrophages induces upregulation of proinflammatory cytokines. TRX80 also promotes the differentiation of mouse peritoneal and human macrophages toward a proinflammatory M1 phenotype. METHODS TRX1 and TRX80 plasma levels were determined with a specific ELISA. A disintegrin and metalloproteinase domain-containing protein (ADAM)-10, ADAM-17, and ADAM-10 activities were measured with SensoLyte 520 ADAM10 Activity Assay Kit, Fluorimetric, and InnoZyme TACE Activity Kit, respectively. Western immunoblots were performed with specific antibodies to ADAM-10 or ADAM-17. Angiogenesis study was evaluated in vitro with human microvascular endothelial cells-1 and in vivo with the Matrigel plug angiogenesis assay in mice. The expression of macrophage phenotype markers was investigated with real-time polymerase chain reaction. Phosphorylation of Akt, mechanistic target of rapamycin, and 70S6K was determined with specific antibodies. The effect of TRX80 on NLRP3 inflammasome activity was evaluated by measuring the level of interleukin-1β and -18 in the supernatants of activated macrophages with ELISA. Hearts were used for lesion surface evaluation and immunohistochemical studies, and whole descending aorta were stained with Oil Red O. For transgenic mice generation, the human scavenger receptor (SR-A) promoter/enhancer was used to drive macrophage-specific expression of human TRX80 in mice. RESULTS In this study, we observed a significant increase of plasma levels of TRX80 in old subjects compared with healthy young subjects. In parallel, an increase in expression and activity of ADAM-10 and ADAM-17 in old peripheral blood mononuclear cells compared with those of young subjects was observed. Furthermore, TRX80 was found to colocalize with tumor necrosis factor-α, a macrophage M1 marker, in human atherosclerotic plaque. In addition, TRX80 induced the expression of murine M1 macrophage markers through Akt2/mechanistic target of rapamycin-C1/70S6K pathway and activated the inflammasome NLRP3, leading to the release of interleukin-1β and -18, potent atherogenic cytokines. Moreover, TRX80 exerts a powerful angiogenic effect in both in vitro and in vivo mouse studies. Finally, transgenic mice that overexpress human TRX80 specifically in macrophages of apoE-/- mice have a significant increase of aortic atherosclerotic lesions. CONCLUSIONS TRX80 showed an age-dependent increase in human plasma. In mouse models, TRX80 was associated with a proinflammatory status and increased atherosclerosis.
Collapse
Affiliation(s)
- Dominique Couchie
- From Biological Adaptation and Ageing (B2A), CNRS UMR-8256/INSERM ERL U-1164, Biological Institute Paris-Seine, Sorbonne University, Paris, France (D.C., A.A., D.F.D.M., M.M.H., F.C., V.D., K.E.H., M.R.); Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (B.V., A.T.R.): Institut des Maladies Métaboliques et Cardiovasculaires (12 MC), INSERM UMR 1048, Toulouse, France (A.N.-S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Quebec, Canada (A.L.P., T.F.)
| | - Boris Vaisman
- From Biological Adaptation and Ageing (B2A), CNRS UMR-8256/INSERM ERL U-1164, Biological Institute Paris-Seine, Sorbonne University, Paris, France (D.C., A.A., D.F.D.M., M.M.H., F.C., V.D., K.E.H., M.R.); Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (B.V., A.T.R.): Institut des Maladies Métaboliques et Cardiovasculaires (12 MC), INSERM UMR 1048, Toulouse, France (A.N.-S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Quebec, Canada (A.L.P., T.F.)
| | - Amna Abderrazak
- From Biological Adaptation and Ageing (B2A), CNRS UMR-8256/INSERM ERL U-1164, Biological Institute Paris-Seine, Sorbonne University, Paris, France (D.C., A.A., D.F.D.M., M.M.H., F.C., V.D., K.E.H., M.R.); Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (B.V., A.T.R.): Institut des Maladies Métaboliques et Cardiovasculaires (12 MC), INSERM UMR 1048, Toulouse, France (A.N.-S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Quebec, Canada (A.L.P., T.F.)
| | - Dler Faieeq Darweesh Mahmood
- From Biological Adaptation and Ageing (B2A), CNRS UMR-8256/INSERM ERL U-1164, Biological Institute Paris-Seine, Sorbonne University, Paris, France (D.C., A.A., D.F.D.M., M.M.H., F.C., V.D., K.E.H., M.R.); Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (B.V., A.T.R.): Institut des Maladies Métaboliques et Cardiovasculaires (12 MC), INSERM UMR 1048, Toulouse, France (A.N.-S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Quebec, Canada (A.L.P., T.F.)
| | - Magda M Hamza
- From Biological Adaptation and Ageing (B2A), CNRS UMR-8256/INSERM ERL U-1164, Biological Institute Paris-Seine, Sorbonne University, Paris, France (D.C., A.A., D.F.D.M., M.M.H., F.C., V.D., K.E.H., M.R.); Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (B.V., A.T.R.): Institut des Maladies Métaboliques et Cardiovasculaires (12 MC), INSERM UMR 1048, Toulouse, France (A.N.-S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Quebec, Canada (A.L.P., T.F.)
| | - Fanny Canesi
- From Biological Adaptation and Ageing (B2A), CNRS UMR-8256/INSERM ERL U-1164, Biological Institute Paris-Seine, Sorbonne University, Paris, France (D.C., A.A., D.F.D.M., M.M.H., F.C., V.D., K.E.H., M.R.); Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (B.V., A.T.R.): Institut des Maladies Métaboliques et Cardiovasculaires (12 MC), INSERM UMR 1048, Toulouse, France (A.N.-S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Quebec, Canada (A.L.P., T.F.)
| | - Vimala Diderot
- From Biological Adaptation and Ageing (B2A), CNRS UMR-8256/INSERM ERL U-1164, Biological Institute Paris-Seine, Sorbonne University, Paris, France (D.C., A.A., D.F.D.M., M.M.H., F.C., V.D., K.E.H., M.R.); Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (B.V., A.T.R.): Institut des Maladies Métaboliques et Cardiovasculaires (12 MC), INSERM UMR 1048, Toulouse, France (A.N.-S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Quebec, Canada (A.L.P., T.F.)
| | - Khadija El Hadri
- From Biological Adaptation and Ageing (B2A), CNRS UMR-8256/INSERM ERL U-1164, Biological Institute Paris-Seine, Sorbonne University, Paris, France (D.C., A.A., D.F.D.M., M.M.H., F.C., V.D., K.E.H., M.R.); Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (B.V., A.T.R.): Institut des Maladies Métaboliques et Cardiovasculaires (12 MC), INSERM UMR 1048, Toulouse, France (A.N.-S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Quebec, Canada (A.L.P., T.F.)
| | - Anne Nègre-Salvayre
- From Biological Adaptation and Ageing (B2A), CNRS UMR-8256/INSERM ERL U-1164, Biological Institute Paris-Seine, Sorbonne University, Paris, France (D.C., A.A., D.F.D.M., M.M.H., F.C., V.D., K.E.H., M.R.); Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (B.V., A.T.R.): Institut des Maladies Métaboliques et Cardiovasculaires (12 MC), INSERM UMR 1048, Toulouse, France (A.N.-S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Quebec, Canada (A.L.P., T.F.)
| | - Aurélie Le Page
- From Biological Adaptation and Ageing (B2A), CNRS UMR-8256/INSERM ERL U-1164, Biological Institute Paris-Seine, Sorbonne University, Paris, France (D.C., A.A., D.F.D.M., M.M.H., F.C., V.D., K.E.H., M.R.); Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (B.V., A.T.R.): Institut des Maladies Métaboliques et Cardiovasculaires (12 MC), INSERM UMR 1048, Toulouse, France (A.N.-S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Quebec, Canada (A.L.P., T.F.)
| | - Tamas Fulop
- From Biological Adaptation and Ageing (B2A), CNRS UMR-8256/INSERM ERL U-1164, Biological Institute Paris-Seine, Sorbonne University, Paris, France (D.C., A.A., D.F.D.M., M.M.H., F.C., V.D., K.E.H., M.R.); Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (B.V., A.T.R.): Institut des Maladies Métaboliques et Cardiovasculaires (12 MC), INSERM UMR 1048, Toulouse, France (A.N.-S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Quebec, Canada (A.L.P., T.F.)
| | - Alan T Remaley
- From Biological Adaptation and Ageing (B2A), CNRS UMR-8256/INSERM ERL U-1164, Biological Institute Paris-Seine, Sorbonne University, Paris, France (D.C., A.A., D.F.D.M., M.M.H., F.C., V.D., K.E.H., M.R.); Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (B.V., A.T.R.): Institut des Maladies Métaboliques et Cardiovasculaires (12 MC), INSERM UMR 1048, Toulouse, France (A.N.-S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Quebec, Canada (A.L.P., T.F.)
| | - Mustapha Rouis
- From Biological Adaptation and Ageing (B2A), CNRS UMR-8256/INSERM ERL U-1164, Biological Institute Paris-Seine, Sorbonne University, Paris, France (D.C., A.A., D.F.D.M., M.M.H., F.C., V.D., K.E.H., M.R.); Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (B.V., A.T.R.): Institut des Maladies Métaboliques et Cardiovasculaires (12 MC), INSERM UMR 1048, Toulouse, France (A.N.-S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Quebec, Canada (A.L.P., T.F.).
| |
Collapse
|
29
|
Liu SY, Liu IC, Lin TY. Truncated Escherichia coli thioredoxin induces proliferation of human blood mononuclear cells and production of reactive oxygen species as well as proinflammatory cytokines. Cell Biochem Funct 2016; 34:226-32. [PMID: 27029462 DOI: 10.1002/cbf.3180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/25/2016] [Accepted: 02/28/2016] [Indexed: 11/07/2022]
Abstract
UNLABELLED Thioredoxin (Trx) is a redox protein characterized by a Trx fold. A naturally occurring truncated human Trx, Trx 80, which lacks the C-terminal strand-helix of the Trx fold, stimulates proliferation of peripheral blood mononuclear cells (PBMCs). It has not been clear how Trx80 gains this function. This study investigates whether a peptide with substantial sequence difference from Trx80, but retaining an abridged Trx fold can elicit PBMC proliferation. We genetically truncated a carboxy-terminal β-α motif of Escherichia coli Trx to produce a peptide, Trx83, which shares low sequence identity with human Trx80. Addition of reduced-form Trx83 to resting human PBMCs promoted cell proliferation, while oxidized-form Trx83 lacked the function. By contrast, oxidized-form Trx80 exhibited a high activity in promoting PBMC proliferation, indicating the importance of sequence context of an abridged thioredoxin in influencing PBMC proliferation. Trx83 increases cellular reactive oxygen species and proinflammatory cytokines TNF-α and IL-1β, suggesting that Trx83 modulates inflammatory pathways. This notion is supported by the observation that cystine or cysteine abolishes the Trx83 induced PBMC proliferation. The PBMC stimulatory activity of Trx83 may have potential for pharmacological developments. SIGNIFICANCE OF THE STUDY Elicitation of primary proliferative responses of PBMCs by a protein is generally difficult. We show that Escherichia coli Trx83 with a truncated Trx fold induces PBMC proliferation, but only in the disulfide-reduced form. In contrast, oxidized-form human Trx80 is a potent stimulator. These results demonstrate that the sequence context of an abridged Trx fold is influential in inducing PBMC proliferation. The stimulatory effect of Trx83 is associated with an increase of inflammatory response. The possibility of eliciting PBMC proliferation and switching this activity on/off by redox control provides a perspective for developing Trx83 as a PBMC stimulatory agent. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Si-Yen Liu
- Department of Biological Science and Technology, National Chiao-Tung University, Hsin Chu, Taiwan
| | - I-Chung Liu
- Department of Biological Science and Technology, National Chiao-Tung University, Hsin Chu, Taiwan
| | - Tiao-Yin Lin
- Department of Biological Science and Technology, National Chiao-Tung University, Hsin Chu, Taiwan.,Institute of Molecular Medicine and Bioengineering, National Chiao-Tung University, Hsin Chu, Taiwan
| |
Collapse
|
30
|
Lei XG, Zhu JH, Cheng WH, Bao Y, Ho YS, Reddi AR, Holmgren A, Arnér ESJ. Paradoxical Roles of Antioxidant Enzymes: Basic Mechanisms and Health Implications. Physiol Rev 2016; 96:307-64. [PMID: 26681794 DOI: 10.1152/physrev.00010.2014] [Citation(s) in RCA: 262] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from aerobic metabolism, as a result of accidental electron leakage as well as regulated enzymatic processes. Because ROS/RNS can induce oxidative injury and act in redox signaling, enzymes metabolizing them will inherently promote either health or disease, depending on the physiological context. It is thus misleading to consider conventionally called antioxidant enzymes to be largely, if not exclusively, health protective. Because such a notion is nonetheless common, we herein attempt to rationalize why this simplistic view should be avoided. First we give an updated summary of physiological phenotypes triggered in mouse models of overexpression or knockout of major antioxidant enzymes. Subsequently, we focus on a series of striking cases that demonstrate "paradoxical" outcomes, i.e., increased fitness upon deletion of antioxidant enzymes or disease triggered by their overexpression. We elaborate mechanisms by which these phenotypes are mediated via chemical, biological, and metabolic interactions of the antioxidant enzymes with their substrates, downstream events, and cellular context. Furthermore, we propose that novel treatments of antioxidant enzyme-related human diseases may be enabled by deliberate targeting of dual roles of the pertaining enzymes. We also discuss the potential of "antioxidant" nutrients and phytochemicals, via regulating the expression or function of antioxidant enzymes, in preventing, treating, or aggravating chronic diseases. We conclude that "paradoxical" roles of antioxidant enzymes in physiology, health, and disease derive from sophisticated molecular mechanisms of redox biology and metabolic homeostasis. Simply viewing antioxidant enzymes as always being beneficial is not only conceptually misleading but also clinically hazardous if such notions underpin medical treatment protocols based on modulation of redox pathways.
Collapse
Affiliation(s)
- Xin Gen Lei
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jian-Hong Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Wen-Hsing Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yongping Bao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ye-Shih Ho
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Amit R Reddi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Arne Holmgren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Elias S J Arnér
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
31
|
Abstract
Thioredoxin (Trx) is an inflammation-inducible small oxidoreductase protein ubiquitously expressed in all organisms. Trx acts both intracellularly and extracellularly and is involved in a wide range of physiological cellular responses. Inside the cell, Trx alleviates oxidative stress by scavenging reactive oxygen species (ROS), regulates a variety of redox-sensitive signaling pathways as well as ROS-independent genes, and exerts cytoprotective effects. Outside the cell, Trx acts as growth factors or cytokines and promotes cell growth and many other cellular responses. Trx is also implicated in tumorigenesis. Trx is a proto-oncogene and is overexpressed in many cancers and correlates with poor prognosis. Trx stimulates cancer cell survival, promotes tumor angiogenesis, and inhibits both spontaneous apoptosis and drug-induced apoptosis. Inhibitors targeting Trx pathway provide a promising therapeutic strategy for cancer prevention and intervention. More recently, data from our laboratory demonstrate an important role of Trx in expanding long-term repopulating hematopoietic stem cells. In this chapter, we first provide an overview of Trx including its isoforms, compartmentation, and functions. We then discuss the roles of Trx in hematologic malignancies. Finally, we summarize the most recent findings from our lab on the use of Trx to enhance hematopoietic reconstitution following hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Ningfei An
- Division of Hematology and Oncology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Yubin Kang
- Division of Hematology and Oncology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; Current address: Division of Hematologic Malignancy and Cellular Therapy/Adult BMT, Department of Medicine, Duke University Medical Center, North Carolina, USA.
| |
Collapse
|
32
|
Thioredoxin system regulation in the central nervous system: experimental models and clinical evidence. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:590808. [PMID: 24723994 PMCID: PMC3958682 DOI: 10.1155/2014/590808] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/21/2014] [Accepted: 01/23/2014] [Indexed: 02/07/2023]
Abstract
The reactive oxygen species produced continuously during oxidative metabolism are generated at very high rates in the brain. Therefore, defending against oxidative stress is an essential task within the brain. An important cellular system against oxidative stress is the thioredoxin system (TS). TS is composed of thioredoxin, thioredoxin reductase, and NADPH. This review focuses on the evidence gathered in recent investigations into the central nervous system, specifically the different brain regions in which the TS is expressed. Furthermore, we address the conditions that modulate the thioredoxin system in both, animal models and the postmortem brains of human patients associated with the most common neurodegenerative disorders, in which the thioredoxin system could play an important part.
Collapse
|
33
|
Oxidative stress in Alzheimer's disease: why did antioxidant therapy fail? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:427318. [PMID: 24669288 PMCID: PMC3941783 DOI: 10.1155/2014/427318] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 12/06/2013] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly, with increasing prevalence and no disease-modifying treatment available yet. A remarkable amount of data supports the hypothesis that oxidative stress is an early and important pathogenic operator in AD. However, all clinical studies conducted to date did not prove a clear beneficial effect of antioxidant treatment in AD patients. In the current work, we review the current knowledge about oxidative stress in AD pathogeny and we suggest future paths that are worth to be explored in animal models and clinical studies, in order to get a better approach of oxidative imbalance in this inexorable neurodegenerative disease.
Collapse
|
34
|
Mahmood DFD, Abderrazak A, El Hadri K, Simmet T, Rouis M. The thioredoxin system as a therapeutic target in human health and disease. Antioxid Redox Signal 2013; 19:1266-303. [PMID: 23244617 DOI: 10.1089/ars.2012.4757] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The thioredoxin (Trx) system comprises Trx, truncated Trx (Trx-80), Trx reductase, and NADPH, besides a natural Trx inhibitor, the thioredoxin-interacting protein (TXNIP). This system is essential for maintaining the balance of the cellular redox status, and it is involved in the regulation of redox signaling. It is also pivotal for growth promotion, neuroprotection, inflammatory modulation, antiapoptosis, immune function, and atherosclerosis. As an ubiquitous and multifunctional protein, Trx is expressed in all forms of life, executing its function through its antioxidative, protein-reducing, and signal-transducing activities. In this review, the biological properties of the Trx system are highlighted, and its implications in several human diseases are discussed, including cardiovascular diseases, heart failure, stroke, inflammation, metabolic syndrome, neurodegenerative diseases, arthritis, and cancer. The last chapter addresses the emerging therapeutic approaches targeting the Trx system in human diseases.
Collapse
|
35
|
Matsuo Y, Yodoi J. Extracellular thioredoxin: A therapeutic tool to combat inflammation. Cytokine Growth Factor Rev 2013; 24:345-53. [DOI: 10.1016/j.cytogfr.2013.01.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 01/09/2013] [Indexed: 12/19/2022]
|
36
|
Affiliation(s)
- Dave C. Anderson
- Center for Advanced Drug Research; SRI International; 140 Research Drive; Harrisonburg; Virginia; 22802; USA
| |
Collapse
|