1
|
Parkerton TF, Redman AD, Letinski DJ, Rakowska MI, Reible DD. Integrating ex situ biomimetic extraction analyses into contaminated sediment assessment and management decisions. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2025; 21:195-207. [PMID: 39879213 DOI: 10.1093/inteam/vjae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/31/2024] [Accepted: 09/12/2024] [Indexed: 01/31/2025]
Abstract
This study evaluated a novel ex situ passive sampling biomimetic extraction (BE) method to estimate toxic potency in sediments. Gas chromatography with flame ionization detection (GC-FID) analysis of polydimethylsiloxane fibers equilibrated with field sediments was used to quantify bioavailable polyaromatic hydrocarbons (PAHs) and other unresolved, site-specific contaminant mixtures. This method is biomimetic because contaminants partition to the fiber based on hydrophobicity and abundance, and GC-FID quantification accounts for all constituents absorbed to the fiber that may contribute to toxicity. This measurement was compared with conventional approaches that rely on bulk sediment or porewater measurements of a targeted suite of PAHs. The specific objectives of the study were to (1) describe the BE method and explain measurement translation into toxic units (TUs); (2) report sediment BE data collected across 17 diverse field sites; (3) compare TUs predicted from (i) equilibrium partitioning (EqP) calculations based on sediment total organic carbon and bulk PAH chemistry, (ii) PAH porewater concentrations derived using ex situ passive sampling, and (iii) BE concentrations; and (4) discuss implications of this analysis for benthic toxicity assessment. Results showed that TUs obtained from EqP calculations were typically 10× higher than TUs derived from measured porewater PAH concentrations, indicating reduced PAH bioavailability in field sediments. Toxic units derived using the new BE method were more conservative than EqP in one-third of the sediments investigated, which was attributed to unquantified sediment contaminants, possible fiber fouling in the more contaminated sediments, and potential background interferences in less contaminated sediments. Preliminary data are also presented, showing that fluorometric analysis provides a simpler, promising alternative for estimating sediment BE concentrations. Based on this analysis, a decision-support framework is proposed using EqP and BE based TU metrics. Future research priorities are described for supporting framework implementation and extending use of BE analyses to remedial design and monitoring.
Collapse
Affiliation(s)
| | - Aaron D Redman
- ExxonMobil Biomedical Sciences, Annandale, NJ, United States
| | | | | | - Danny D Reible
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
2
|
French-McCay DP, Robinson HJ, Adams JE, Frediani MA, Murphy MJ, Morse C, Gloekler M, Parkerton TF. Parsing the toxicity paradox: Composition and duration of exposure alter predicted oil spill effects by orders of magnitude. MARINE POLLUTION BULLETIN 2024; 202:116285. [PMID: 38555802 DOI: 10.1016/j.marpolbul.2024.116285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/13/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
Oil spilled into an aquatic environment produces oil droplet and dissolved component concentrations and compositions that are highly variable in space and time. Toxic effects on aquatic biota vary with sensitivity of the organism, concentration, composition, environmental conditions, and frequency and duration of exposure to the mixture of oil-derived dissolved compounds. For a range of spill (surface, subsea, blowout) and oil types under different environmental conditions, modeling of oil transport, fate, and organism behavior was used to quantify expected exposures over time for planktonic, motile, and stationary organisms. Different toxicity models were applied to these exposure time histories to characterize the influential roles of composition, concentration, and duration of exposure on aquatic toxicity. Misrepresenting these roles and exposures can affect results by orders of magnitude. Well-characterized laboratory studies for <24-hour exposures are needed to improve toxicity predictions of the typically short-term exposures that characterize spills.
Collapse
Affiliation(s)
| | | | - Julie E Adams
- School of Environmental Studies, Queen's University, Kingston, ON, Canada.
| | | | | | | | | | | |
Collapse
|
3
|
Loughery JR, Coelho GM, Lee K, de Jourdan B. Setting the stage to advance oil toxicity testing: Overview of knowledge gaps, and recommendations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106581. [PMID: 37285785 DOI: 10.1016/j.aquatox.2023.106581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 06/09/2023]
Abstract
The Chemical Response to Oil Spills: Ecological Effects Research Forum created a standardized protocol for comparing the in vivo toxicity of physically dispersed oil to chemically dispersed oil to support science-based decision making on the use of dispersants in the early 2000s. Since then, the protocol has been frequently modified to incorporate advances in technology; enable the study of unconventional and heavier oils; and provide data for use in a more diverse manner to cover the growing needs of the oil spill science community. Unfortunately, for many of these lab-based oil toxicity studies consideration was not given to the influence of modifications to the protocol on media chemistry, resulting toxicity and limitations for the use of resulting data in other contexts (e.g., risk assessments, models). To address these issues, a working group of international oil spill experts from academia, industry, government, and private organizations was convened under the Multi-Partner Research Initiative of Canada's Oceans Protection Plan to review publications using the CROSERF protocol since its inception to support their goal of coming to consensus on the key elements required within a "modernized CROSERF protocol".
Collapse
Affiliation(s)
- Jennifer R Loughery
- Department of Aquatic Science, Huntsman Marine Science Center, St. Andrews, NB, Canada.
| | - Gina M Coelho
- Oil Spill Preparedness Division, Response Research Branch, Bureau of Safety and Environmental Enforcement, Sterling, VA, United States
| | - Kenneth Lee
- Ecosystem Science, Fisheries and Oceans Canada, Ottawa, ON, Canada
| | - Benjamin de Jourdan
- Department of Aquatic Science, Huntsman Marine Science Center, St. Andrews, NB, Canada
| |
Collapse
|
4
|
Bejarano AC, Adams JE, McDowell J, Parkerton TF, Hanson ML. Recommendations for improving the reporting and communication of aquatic toxicity studies for oil spill planning, response, and environmental assessment. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 255:106391. [PMID: 36641886 DOI: 10.1016/j.aquatox.2022.106391] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Standardized oil toxicity testing is important to ensure comparability of study results, and to generate information to support oil spill planning, response, and environmental assessments. Outcomes from toxicity tests are useful in the development, improvement and validation of effects models, and new or revised knowledge could be integrated into existing databases and related tools. To foster transparency, facilitate repeatability and maximize use and impact, outcomes from toxicity tests need to be clearly reported and communicated. This work is part of a series of reviews to support the modernization of the "Chemical Response to Oil Spills: Ecological Effects Research Forum" protocols focusing on technological advances and best toxicity testing practices. Thus, the primary motivation of the present work is to provide guidance and encourage detailed documentation of aquatic toxicity studies. Specific recommendations are provided regarding key reporting elements (i.e., experimental design, test substance and properties, test species and response endpoints, media preparation, exposure conditions, chemical characterization, reporting metric corresponding to the response endpoint, data quality standards, and statistical methods, and raw data), which along with a proposed checklist can be used to assess the completeness of reporting elements or to guide study conduct. When preparing journal publications, authors are encouraged to take advantage of the Supplementary Material section to enhance dissemination and access to key data and information that can be used by multiple end-users, including decision-makers, scientific support staff and modelers. Improving reporting, science communication, and access to critical information enable users to assess the reliability and relevance of study outcomes and increase incorporation of results gleaned from toxicity testing into tools and applications that support oil spill response decisions. Furthermore, improved reporting could be beneficial for audiences outside the oil spill response community, including peer reviewers, journal editors, aquatic toxicologists, researchers in other disciplines, and the public.
Collapse
Affiliation(s)
- Adriana C Bejarano
- Shell Global Solutions US Inc., 150 North Dairy Ashford Road, Houston, TX 77079, USA.
| | - Julie E Adams
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
5
|
Parkerton TF, French-McCay D, de Jourdan B, Lee K, Coelho G. Adopting a toxic unit model paradigm in design, analysis and interpretation of oil toxicity testing. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 255:106392. [PMID: 36638632 DOI: 10.1016/j.aquatox.2022.106392] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The lack of a conceptual understanding and unifying quantitative framework to guide conduct and interpretation of laboratory oil toxicity tests, has led investigators to divergent conclusions that can confuse stakeholders and impede sound decision-making. While a plethora of oil toxicity studies are available and continue to be published, due to differences in experimental design, results between studies often cannot be compared. Furthermore, much resulting data fails to advance quantitative effect models that are critically needed for oil spill risk and impact assessments. This paper discusses the challenges posed when evaluating oil toxicity test data based on traditional, total concentration-based exposure metrics and offers solutions for improving the state of practice by adopting a unifying toxic unit (TU) model framework. Key advantages of a TU framework is that differences in test oil composition, sensitivity of the test organism/endpoint, and toxicity test design (i.e., type of test) can be taken into quantitative account in predicting aquatic toxicity. This paradigm shift is intended to bridge the utility of laboratory oil toxicity tests with improved assessment of effects in the field. To illustrate these advantages, results from literature studies are reassessed and contrasted with conclusions obtained based on past practice. Using instructive examples, model results are presented to explain how dissolved oil composition and concentrations and resulting TUs vary in WAFs prepared using variable loading or dilution test designs and the important role that unmeasured oil components contribute to predicted oil toxicity. Model results are used to highlight how the TU framework can serve as a valuable aid in designing and interpreting empirical toxicity tests and provide the data required to validate/refine predictive toxicity models. To further promote consistent exposure and hazard assessment of physically and chemically dispersed oil toxicity tests recommendations for advancing the TU framework are presented.
Collapse
Affiliation(s)
- Thomas F Parkerton
- EnviSci Consulting, LLC, 5900 Balcones Dr, Suite 100, Austin, TX 78731, United States.
| | - Deborah French-McCay
- RPS Ocean Science, 55 Village Square Drive, South Kingstown, RI 02879, United States
| | - Benjamin de Jourdan
- Huntsman Marine Science Centre, 1 Lower Campus Rd, St. Andrews, St. Andrews, New Brunswick E5B 2L7, Canada
| | - Kenneth Lee
- Department of Fisheries and Oceans, Bedford Institute of Oceanography, Dartmouth B3B 1Y9, Canada
| | - Gina Coelho
- Department of Interior, Bureau of Safety and Environmental Enforcement, Oil Spill Preparedness Division, Response Research Branch,45600 Woodland Road, Sterling, VA 20166, United States
| |
Collapse
|
6
|
Wang J, Smit MGD, Verhaegen Y, Nolte TM, Redman AD, Hendriks AJ, Hjort M. Petroleum refinery effluent contribution to chemical mixture toxic pressure in the environment. CHEMOSPHERE 2023; 311:137127. [PMID: 36334744 DOI: 10.1016/j.chemosphere.2022.137127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Petroleum refinery effluents (PRE) are wastewaters from industries associated with oil refining. Within Europe, PREs are regulated through local discharge permits and receive substantial treatment before emission. After treatment, PREs can still contain low levels of various pollutants potentially toxic to organisms. Earlier work, including whole-effluent toxicity assessments, has shown that the toxicity of permitted PREs is often limited. However, the extent to which PREs contribute to chemical pollution already present in the receiving environment is unknown. Therefore, our study aimed to assess the contribution of PREs to mixture toxic pressure in the environment, using the multi-substance potentially affected fraction of species (msPAF) as an indicator. Based on measured chemical concentrations, compiled species sensitivity distributions (SSD) and a mechanistic solubility model, msPAF levels were estimated for undiluted effluents at discharge points and diluted effluents downstream in receiving waters. Median msPAF-chronic and msPAF-acute levels of PREs at discharge points were 74% (P50) and 40% (P95), respectively. The calculated msPAF levels were reduced substantially to <5% downstream for most effluents (82%), indicating low to negligible toxicity of PREs in receiving environments beyond the initial mixing zone. Regardless of differences in endpoints and locations, hydrocarbons (mainly total petroleum hydrocarbons) and inorganics (mainly ammonia) explained at least 85% of the mixture toxic pressure. The msPAF levels of PREs were on average 2.5-4.5 orders of magnitude lower than msPAF levels derived from background pollution levels, suggesting that PREs were minor contributors to the toxic pressure in the environment. This study presents a generic methodology for quantifying the potential toxic pressure of PREs in the environment, identifying hotspots where more effective wastewater treatment could be needed. We explicitly discuss the uncertainties for further refinement and development of the method.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Mathijs G D Smit
- Shell Global Solutions International BV, The Hague, the Netherlands; Concawe, Boulevard du Souverain 165, 1160, Brussels, Belgium
| | - Yves Verhaegen
- Concawe, Boulevard du Souverain 165, 1160, Brussels, Belgium
| | - Tom M Nolte
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Aaron D Redman
- Concawe, Boulevard du Souverain 165, 1160, Brussels, Belgium; ExxonMobil Biomedical Sciences, Inc, Annandale, NJ, United States
| | - A Jan Hendriks
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Markus Hjort
- Concawe, Boulevard du Souverain 165, 1160, Brussels, Belgium.
| |
Collapse
|
7
|
Letinski DJ, Bekele A, Connelly MJ. Interlaboratory Comparison of a Biomimetic Extraction Method Applied to Oil Sands Process-Affected Waters. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1613-1622. [PMID: 35394645 PMCID: PMC9328283 DOI: 10.1002/etc.5340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 06/09/2023]
Abstract
Biomimetic extraction using solid-phase microextraction is a passive sampling analytical method that can predict the aquatic toxicity of complex petroleum substances. The method provides a nonanimal alternative to traditional bioassays with the potential to reduce both vertebrate and invertebrate aquatic toxicity testing. The technique uses commercially available polydimethylsiloxane-coated fibers that, following nondepletive extraction of water samples, are injected into a gas chromatograph with flame ionization detection. As the predictive nature of the method is operationally defined, it is critical that its application be harmonized with regard to extraction, analysis, and standardization parameters. Results are presented from a round robin program comparing the results from 10 laboratories analyzing four different sample sets of dissolved organics in water. Samples included two incurred oil sands process-affected waters and a cracked gas oil water accommodated fraction. A fourth sample of cracked gas oil blended in an oil sands process-affected water was analyzed to demonstrate the method's ability to differentiate between neutral and ionizable dissolved hydrocarbons. Six of the 10 laboratories applied an automated version of the method using a robotic autosampler where the critical extraction steps are precisely controlled and which permits batch screening of water samples for aquatic toxicity potential. The remaining four laboratories performed the solid-phase microextraction manually. The automated method demonstrated good reproducibility with between-laboratory variability across the six laboratories and four samples yielding a mean relative standard deviation of 14%. The corresponding between-laboratory variability across the four laboratories applying the manual extraction was 53%, demonstrating the importance of precisely controlling the extraction procedure. Environ Toxicol Chem 2022;41:1613-1622. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Daniel J. Letinski
- Health & Environmental Applications Division, ExxonMobil Biomedical SciencesAnnandaleNew JerseyUSA
| | | | - Martin J. Connelly
- Health & Environmental Applications Division, ExxonMobil Biomedical SciencesAnnandaleNew JerseyUSA
| |
Collapse
|
8
|
Chand P, Dutta S, Mukherji S. Characterization and biodegradability assessment of water-soluble fraction of oily sludge using stir bar sorptive extraction and GCxGC-TOF MS. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119177. [PMID: 35346777 DOI: 10.1016/j.envpol.2022.119177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Percolation of water through oily sludge during storage and handling of the sludge can cause soil and groundwater contamination. In this study, oily sludge from a refinery was equilibrated with water to obtain the water-soluble fraction (WSF) of oily sludge. The WSF had dissolved organic carbon (DOC) of 166 mg/L. Human cell line-based toxicity assay revealed IC50 of 41 mg/L indicating its toxic nature. The predominant compounds in WSF of oily sludge included isomers of methyl, dimethyl and trimethyl quinolines and naphthalenes along with phenol derivatives and other polynuclear aromatic hydrocarbons (PAHs). Biodegradation of WSF of oily sludge was studied using a consortium of Rhodococcus ruber, Bacillus sp. and Bacillus cereus isolated from the refinery sludge. The consortium of the three strains resulted in 70% degradation over 15 days with a first-order degradation rate of 0.161 day-1. Further analysis of the WSF was performed using the stir-bar sorptive extraction (SBSE) followed by GCxGC-TOF MS employing a PDMS Twister. The GCxGC analysis showed that Bacillus cereus was capable of degrading the quinoline, phenol and naphthalene derivatives in WSF of oily sludge at a faster rate compared to pyridine and benzoquinoline derivatives. Quinoline, phenol, biphenyl, naphthalene, pyridine and benzoquinolines derivatives in the WSF of oily sludge were reduced by 87%, 92%, 88%, 77%, 40% and 62%, respectively with respect to the controls. The WSF of oily sludge contained, n-alkanes, ranging from n-C12 to n-C18 which were removed within 2 days of biodegradation.
Collapse
Affiliation(s)
- Priyankar Chand
- Environmental Science and Engineering Department, IIT Bombay, Powai, Mumbai, India
| | - Suryendu Dutta
- Department of Earth Sciences, IIT Bombay, Powai, Mumbai, India
| | - Suparna Mukherji
- Environmental Science and Engineering Department, IIT Bombay, Powai, Mumbai, India.
| |
Collapse
|
9
|
Katz SD, Chen H, Fields DM, Beirne EC, Keyes P, Drozd GT, Aeppli C. Changes in Chemical Composition and Copepod Toxicity during Petroleum Photo-oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5552-5562. [PMID: 35435676 DOI: 10.1021/acs.est.2c00251] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photoproducts can be formed rapidly in the initial phase of a marine oil spill. However, their toxicity is not well understood. In this study, oil was irradiated, chemically characterized, and tested for toxicity in three copepod species (Acartia tonsa, Temora longicornis, and Calanus finmarchicus). Irradiation led to a depletion of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes in oil residues, along with an enrichment in aromatic and aliphatic oil photoproducts. Target lipid model-based calculations of PAH toxicity units predicted that PAH toxicities were lower in water-accommodated fractions (WAFs) of irradiated oil residues ("irradiated WAFs") than in WAFs of dark-control samples ("dark WAFs"). In contrast, biomimetic extraction (BE) measurements showed increased bioaccumulation potential of dissolved constituents of irradiated WAFs compared to dark WAFs, mainly driven by photoproducts present in irradiated oil. In line with the BE results, copepod mortality increased in irradiated WAFs compared to dark WAFs. However, low copepod toxicities were observed for WAFs produced with photo-oxidized oil slicks collected during the Deepwater Horizon oil spill. The results of this study suggest that while oil photoproducts have the potential to be a significant source of copepod toxicity, dilution and dispersion of these higher solubility products appear to help mitigate their toxicity at sea.
Collapse
Affiliation(s)
- Samuel D Katz
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine 04544, United States
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island 02882, United States
| | - Haining Chen
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine 04544, United States
| | - David M Fields
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine 04544, United States
- Colby College, Waterville, Maine 04901, United States
| | - Erin C Beirne
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine 04544, United States
| | - Phoebe Keyes
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine 04544, United States
| | - Greg T Drozd
- Colby College, Waterville, Maine 04901, United States
| | - Christoph Aeppli
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine 04544, United States
- Colby College, Waterville, Maine 04901, United States
| |
Collapse
|
10
|
Whale GF, Hjort M, Di Paolo C, Redman AD, Postma JF, Legradi J, Leonards PEG. Assessment of oil refinery wastewater and effluent integrating bioassays, mechanistic modelling and bioavailability evaluation. CHEMOSPHERE 2022; 287:132146. [PMID: 34537454 DOI: 10.1016/j.chemosphere.2021.132146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Water is used in petroleum oil refineries in significant volumes for cooling, steam generation and processing of raw materials. Effective water management is required at refineries to ensure their efficient and responsible operation with respect to the water environment. However, ascertaining the potential environmental risks associated with discharge of refinery effluents to receiving waters is challenging because of their compositional complexity. Recent European research and regulatory initiatives propose a more holistic approach including biological effect methods to assess complex effluents and surface water quality. The study presented here investigated potential effects of effluent composition, particularly hydrocarbons, on aquatic toxicity and was a component of a larger study assessing contaminant removal during refinery wastewater treatment (Hjort et al 2021). The evaluation of effects utilised a novel combination of mechanistic toxicity modelling based on the exposure composition, measured bioavailable hydrocarbons using biomimetic solid phase microextraction (BE-SPME), and bioassays. The results indicate that in the refinery effluent assessments measured bioavailable hydrocarbons using BE-SPME was correlated with the responses in standard bioassays. It confirms that bioassays are providing relevant data and that BE-SPME measurement, combined with knowledge of other known non-hydrocarbon toxic constituents, provide key tools for toxicity identification. Overall, the results indicate that oil refinery effluents treated in accordance to the EU Industrial Emissions Directive requirements have low to negligible toxicity to aquatic organisms and their receiving environments. Low-cost, animal-free BE-SPME represents a compelling tool for rapid effluent characterization.
Collapse
Affiliation(s)
- G F Whale
- Whale Environmental Consultancy Limited, 55 Earlsway, Curzon Park, Chester, CH48AZ, United Kingdom
| | - M Hjort
- Concawe, Boulevard du Souverain 165, 1160, Brussels, Belgium.
| | - C Di Paolo
- Concawe, Boulevard du Souverain 165, 1160, Brussels, Belgium; Shell International, Shell Health Risk Science Team, The Hague, the Netherlands
| | - A D Redman
- Concawe, Boulevard du Souverain 165, 1160, Brussels, Belgium; ExxonMobil Petroleum and Chemical, Machelen, Belgium
| | - J F Postma
- Ecofide, Singel 105, 1381 AT, Weesp, the Netherlands
| | - J Legradi
- Department of Environment & Health, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, the Netherlands
| | - P E G Leonards
- Department of Environment & Health, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, the Netherlands
| |
Collapse
|
11
|
Yordanova DG, Patterson TJ, North CM, Camenzuli L, Chapkanov AS, Pavlov TS, Mekenyan OG. Selection of Representative Constituents for Unknown, Variable, Complex, or Biological Origin Substance Assessment Based on Hierarchical Clustering. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:3205-3218. [PMID: 34499773 DOI: 10.1002/etc.5206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/28/2021] [Accepted: 09/06/2021] [Indexed: 05/20/2023]
Abstract
Many of the newly produced and registered substances are complex mixtures or substances of unknown or variable composition, complex reaction products, and biological materials (UVCBs). The latter often consist of a large number of constituents, some of them difficult-to-identify constituents, which complicates their (eco)toxicological assessment. In the present study, through a series of examples, different scenarios for selection of representatives via hierarchical clustering of UVCB constituents are exemplified. Hierarchical clustering allows grouping of the individual chemicals into small sets, where the constituents are similar to each other with respect to more than one criterion. To this end, various similarity criteria and approaches for selection of representatives are developed and analyzed. Two types of selection are addressed: (1) selection of the most "conservative" constituents, which could be also used to support prioritization of UVCBs for evaluation, and (2) obtaining of a small set of chemical representatives that covers the structural and metabolic diversity of the whole target UVCBs or a mixture that can then be evaluated for their environmental and (eco)toxicological properties. The first step is to generate all plausible UVCB or mixture constituents. It was found that the appropriate approach for selecting representative constituents depends on the target endpoint and physicochemical parameters affecting the endpoint of interest. Environ Toxicol Chem 2021;40:3205-3218. © 2021 SETAC.
Collapse
Affiliation(s)
- Darina G Yordanova
- Laboratory of Mathematical Chemistry, Prof. As. Zlatarov University, Bourgas, Bulgaria
| | | | - Colin M North
- ExxonMobil Biomedical Sciences, Annandale, New Jersey, USA
| | | | - Atanas S Chapkanov
- Laboratory of Mathematical Chemistry, Prof. As. Zlatarov University, Bourgas, Bulgaria
| | - Todor S Pavlov
- Laboratory of Mathematical Chemistry, Prof. As. Zlatarov University, Bourgas, Bulgaria
| | - Ovanes G Mekenyan
- Laboratory of Mathematical Chemistry, Prof. As. Zlatarov University, Bourgas, Bulgaria
| |
Collapse
|
12
|
Worden JR, Di Paolo C, Whale GF, Eadsforth CV, Michie E, Lindgren A, Smit MGD. Application of screening tools for environmental hazard and risk to support assessment and subsequent prioritization of effluent discharges from the oil and gas industry. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2021; 17:1025-1036. [PMID: 33615680 DOI: 10.1002/ieam.4400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/02/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Assessment and management of effluent discharges are key to avoiding environmental deterioration. Often compliance with discharge regulations and permits is based on a limited set of chemical parameters, while information on whole effluent hazardous properties (toxicity, bioaccumulation potential, persistence) and environmental risks is lacking. The need to collect those data and to become more effective in quickly identifying high-risk activities, without extensive laboratory testing, has led to the development of screening tools to complement information on chemical composition. A simple, Tier 1 screening "toolbox" is proposed which is comprised of solid-phase microextraction with gas chromatographic (SPME-GC) analysis, the in-vitro ecotoxicity assay Microtox, and a simple weathering assay. When combined with dilution modeling, screening-level risk assessments can be performed, providing additional lines of evidence to support a weight of evidence type of analysis. Application of the toolbox enables prioritization of discharges that may be deemed to require higher tier assessment. The toolbox was trialed on a number of produced water samples collected from offshore oil and gas facilities and effluents from petroleum processing and manufacturing sites. In contrast to what has been reported for petroleum products, results showed only moderate correlation between bioavailable hydrocarbons (bHCs) and toxicity, which might be related to the possible presence of toxic contaminants from other chemical classes or to methodological issues such as suboptimal conditions during transport. The methods employed were quick, inexpensive, and simple to conduct. They require relatively small volumes of sample, which is especially advantageous when evaluating discharges from remote offshore facilities. The toolbox adds valuable information on whole effluent properties to existing data, for example, on chemical composition, which can improve understanding of which discharges are more likely to pose a risk to the environment and so require further investigation or risk management. Integr Environ Assess Manag 2021;17:1025-1036. © 2021 Shell International B.V. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Joy R Worden
- Shell Health Risk Science Team, Manchester, United Kingdom
- QP Consulting (Chester) Limited, Chester, United Kingdom
| | | | - Graham F Whale
- Shell Health Risk Science Team, Manchester, United Kingdom
- Whale Environmental Consultancy Limited, Chester, United Kingdom
| | - Charles V Eadsforth
- Shell Health Risk Science Team, Manchester, United Kingdom
- CVE Consultancy Limited, Merseyside, United Kingdom
| | - Eleanor Michie
- Shell Health Risk Science Team, Manchester, United Kingdom
- Kalibrate, Manchester, United Kingdom
| | - Avila Lindgren
- Shell Health Risk Science Team, The Hague, the Netherlands
- Present Address: CaribAlgae, The Hague, the Netherlands
| | | |
Collapse
|
13
|
Trac LN, Sjo Holm KK, Birch H, Mayer P. Passive Dosing of Petroleum and Essential Oil UVCBs-Whole Mixture Toxicity Testing at Controlled Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6150-6159. [PMID: 33829772 DOI: 10.1021/acs.est.1c00343] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Petroleum products and essential oils are produced and used in large amounts and are categorized as "Substances of Unknown or Variable composition, Complex reaction products or Biological materials (UVCBs)." These UVCBs are notorious difficult-to-test substances, since they are complex mixtures of hydrophobic and volatile compounds. This study introduces two passive dosing (PD) approaches for whole UVCB toxicity testing: (1) headspace PD applies the UVCB and purified lipid oil as a donor to control exposure via the headspace and (2) silicone rod PD applies UVCB-loaded silicone rods to control exposure via an aqueous test medium and headspace. Headspace gas chromatography-mass spectrometry measurements were used to cross-validate the approaches at the saturation level and to confirm exposure and maintain mixture composition at varying donor concentration levels. Both approaches were applied to whole-mixture toxicity tests of petroleum and essential oil UVCBs with daphnia and algae. Finally, the observed toxicity was linked to concentrations in the donor and in lipid membranes at equilibrium with the donors. Dose-response curves were similar across the dosing approaches and tested species for petroleum products but differed by an order of magnitude between essential oils and PD systems. All observed toxic effects were consistent with baseline toxicity, and no excess mixture toxicity was observed.
Collapse
Affiliation(s)
- Lam Ngoc Trac
- Department of Environmental Engineering, Technical University of Denmark, Lyngby DK-2800 Kgs, Denmark
| | - Karina Knudsmark Sjo Holm
- Department of Environmental Engineering, Technical University of Denmark, Lyngby DK-2800 Kgs, Denmark
| | - Heidi Birch
- Department of Environmental Engineering, Technical University of Denmark, Lyngby DK-2800 Kgs, Denmark
| | - Philipp Mayer
- Department of Environmental Engineering, Technical University of Denmark, Lyngby DK-2800 Kgs, Denmark
| |
Collapse
|
14
|
Huang R, Yang L, How ZT, Fang Z, Bekele A, Letinski DJ, Redman AD, Gamal El-Din M. Characterization of raw and ozonated oil sands process water utilizing atmospheric pressure gas chromatography time-of-flight mass spectrometry combined with solid phase microextractionun. CHEMOSPHERE 2021; 266:129017. [PMID: 33261842 DOI: 10.1016/j.chemosphere.2020.129017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/09/2020] [Accepted: 11/14/2020] [Indexed: 06/12/2023]
Abstract
This work describes a novel application of atmospheric pressure gas chromatography time-of-flight mass spectrometry (APGC-TOF-MS) combined with solid-phase microextraction (SPME) for the simultaneous analysis of hydrocarbons and naphthenic acids (NAs) species in raw and ozone-treated oil sands process water (OSPW). SPME method using polydimethylsiloxane (PDMS)-coated fibers was validated using gas chromatography with flame ionization detector (GC-FID) to ensure the SPME extractions were operated appropriately. The ionization pathways of the hydrocarbon species in OSPW in the APGC source were verified by analyzing a mixture of eight polyaromatic hydrocarbons which were ionized primarily via charge transfer to produce [M+] while NAs in OSPW were found to be ionized through protonation to generate [MH+] in the wet APGC source. SPME/APGC-TOF-MS analysis demonstrated a different composition profile in OSPW #1, with 74.5% of hydrocarbon species, 23.4% of O2-NAs, and 2.1% of the oxidized NA species at extraction pH 2.0 compared with that obtained by UPLC-TOF-MS analysis (36.9% of O2-NAs, 26.8% of O3-NAs, 24.9% of O4-NAs, 9.1% of O5-NAs, 2.3% of O6-NAs). Moreover, the peak areas of the total NAs and the total peak areas of NAs + hydrocarbons measured by SPME/APGC-TOF-MS correlated excellently with the total NA concentration determined by UPLC-TOF-MS (R2 = 0.90) and the concentrations of the total acid-extractable organics determined by SPME/GC-FID (R2 = 0.98), respectively. APGC-TOF-MS integrated with the SPME techniques could extend the range of target compounds and be a promising alternative to evaluate and characterize NAs and hydrocarbon in different water types.
Collapse
Affiliation(s)
- Rongfu Huang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Lingling Yang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Zuo Tong How
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Zhi Fang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada; State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China
| | - Asfaw Bekele
- Upstream Research, Imperial Oil Resources Limited, Calgary, Alberta, T2C 5R2, Canada
| | | | - Aaron D Redman
- ExxonMobil Biomedical Sciences, Inc., Annandale, NJ, 08801, USA
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
15
|
Everitt S, MacPherson S, Brinkmann M, Wiseman S, Pyle G. Effects of weathered sediment-bound dilbit on freshwater amphipods (Hyalella azteca). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 228:105630. [PMID: 32971354 DOI: 10.1016/j.aquatox.2020.105630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/27/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Bitumen mined in the oil sands region of Northern Alberta, Canada, is diluted with natural gas condensates to form dilbit, which is transported through pipelines. Sections of these pipelines come close to freshwater ecosystems. If dilbit is spilled into or near an aquatic environment, environmental weathering processes, such as evaporation and sediment interaction, influence the fate and toxicity of dilbit to aquatic organisms. To date, most studies of the effects of dilbit on the health of aquatic organisms have not considered weathering processes. Thus, the goal of this study was to assess the toxicity of weathered sediment-bound dilbit (WSD) to an aquatic organism. Adult freshwater amphipods (Hyalella azteca) were exposed directly to WSD or the water-soluble fraction (WSF) of WSD. Direct exposure to WSD resulted in oil-mineral aggregates adhering to the appendages and gas exchange structures of amphipods, causing acute lethality. After a 10-min exposure to WSD, amphipods consumed half as much oxygen and their appendage movement was impaired. Exposure to the WSF, which contained a total PAH concentration of 1.08 μg/L, did not result in acute lethality, or significantly affect respiration, activity or acetylcholinesterase activity. Results of the present study indicate that physical interaction with oil-mineral aggregates after a spill of dilbit is a threat to benthic invertebrates, whereas the WSF does not cause acute adverse effects. As the transport of dilbit through pipelines increases in North America, studies must incorporate environmental weathering processes when determining the effects of dilbit on aquatic organisms.
Collapse
Affiliation(s)
- Sean Everitt
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada.
| | | | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Steve Wiseman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Gregory Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
16
|
Hedgpeth BM, Redman AD, Alyea RA, Letinski DJ, Connelly MJ, Butler JD, Zhou H, Lampi MA. Analysis of Sublethal Toxicity in Developing Zebrafish Embryos Exposed to a Range of Petroleum Substances. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1302-1312. [PMID: 30919522 PMCID: PMC6849576 DOI: 10.1002/etc.4428] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/19/2019] [Accepted: 03/23/2019] [Indexed: 05/31/2023]
Abstract
The Organisation for Economic Co-operation and Development (OECD) test guideline 236 (fish embryo acute toxicity test; 2013) relies on 4 endpoints to describe exposure-related effects (coagulation, lack of somite formation, tail-bud detachment from the yolk sac, and the presence of a heartbeat). Danio rerio (zebrafish) embryos were used to investigate these endpoints along with a number of additional sublethal effects (cardiac dysfunction, pericardial edema, yolk sac edema, tail curvature, hatch success, pericardial edema area, craniofacial malformation, swim bladder development, fin development, and heart rate) following 5-d exposures to 7 petroleum substances. The substances investigated included 2 crude oils, 3 gas oils, a diluted bitumen, and a petrochemical containing a mixture of branched alcohols. Biomimetic extraction-solid-phase microextraction (BE-SPME) was used to quantify freely dissolved concentrations of test substances as the exposure metric. The results indicated that the most prevalent effects observed were pericardial and yolk sac edema, tail curvature, and lack of embryo viability. A BE-SPME threshold was determined to characterize sublethal morphological alterations that preceded embryo mortality. Our results aid in the understanding of aquatic hazards of petroleum substances to developing zebrafish beyond traditional OECD test guideline 236 endpoints and show the applicability of BE-SPME as a simple analytical tool that can be used to predict sublethal embryo toxicity. Environ Toxicol Chem 2019;38:1302-1312. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Bryan M. Hedgpeth
- ExxonMobil Biomedical ScienceAnnandaleNew JerseyUSA
- Seton Hall University, South OrangeNew JerseyUSA
| | | | | | | | | | | | - Heping Zhou
- Seton Hall University, South OrangeNew JerseyUSA
| | | |
Collapse
|
17
|
Cailleaud K, Bassères A, Gelber C, Postma JF, Ter Schure ATM, Leonards PEG, Redman AD, Whale GF, Spence MJ, Hjort M. Investigating predictive tools for refinery effluent hazard assessment using stream mesocosms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:650-659. [PMID: 30569466 DOI: 10.1002/etc.4338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/08/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Hazard assessment of refinery effluents is challenging because of their compositional complexity. Therefore, a weight-of-evidence approach using a combination of tools is often required. Previous research has focused on several predictive tools for sophisticated chemical analyses: biomimetic extraction to quantify the potentially bioaccumulative substances, 2-dimensional gas chromatography, modeling approaches to link oil composition to toxicity (PETROTOX), and whole-effluent toxicity assessments using bioassays. The present study investigated the value of these tools by comparing predicted effects to actual effects observed in stream mesocosm toxicity studies with refinery effluents. Three different effluent samples, with and without fortification by neat petroleum substances, were tested in experimental freshwater streams. The results indicate that the biological community shifted at higher exposure levels, consistent with chronic toxicity effects predicted by both modeled toxic units and potentially bioaccumulative substance measurements. The present study has demonstrated the potential of the predictive tools and the robustness of the stream mesocosm design to improve our understanding of the environmental hazards posed by refinery effluents. Environ Toxicol Chem 2019;38:650-659. © 2018 SETAC.
Collapse
Affiliation(s)
| | - Anne Bassères
- Pôle d'études et de Recherche de Lacq, TOTAL, Lacq, France
| | | | | | | | - Pim E G Leonards
- Department of Environment and Health, VU University Amsterdam, Amsterdam, The Netherlands
| | - Aaron D Redman
- ExxonMobil Biomedical Sciences, Annandale, New Jersey, USA
| | - Graham F Whale
- Shell International, Shell Health Risk Science Team, Shell Centre, London, United Kingdom
| | - Mike J Spence
- Concawe, The European Oil Companies' Association for Environment, Health and Safety in Refining and Distribution, Brussels, Belgium
| | - Markus Hjort
- Concawe, The European Oil Companies' Association for Environment, Health and Safety in Refining and Distribution, Brussels, Belgium
| |
Collapse
|
18
|
Hansen BH, Parkerton T, Nordtug T, Størseth TR, Redman A. Modeling the toxicity of dissolved crude oil exposures to characterize the sensitivity of cod (Gadus morhua) larvae and role of individual and unresolved hydrocarbons. MARINE POLLUTION BULLETIN 2019; 138:286-294. [PMID: 30660275 DOI: 10.1016/j.marpolbul.2018.10.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/03/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
Toxicity of weathered oil was investigated using Atlantic cod (Gadus morhua) larvae. A novel exposure system was applied to differentiate effects associated with dissolved and droplet oil with and without dispersant. After a 4-day exposure and subsequent 4-day recovery period, survival and growth were determined. Analytical data characterizing test oil composition included polyaromatic hydrocarbons (PAH) based on GC/MS and unresolved hydrocarbon classes obtained by two-dimensional chromatography coupled with flame ionization detection was used as input to an oil solubility model to calculate toxic units (TUs) of dissolved PAHs and whole oil, respectively. Critical target lipid body burdens derived from modeling characterizing the sensitivity of effect endpoints investigated were consistent across treatments and within the range previously reported for pelagic species. Individually measured PAHs captured only 3-11% of the TUs associated with the whole oil highlighting the limitations of traditional total PAH exposure metrics for expressing oil toxicity data.
Collapse
Affiliation(s)
| | | | - Trond Nordtug
- SINTEF Ocean AS, Environment and New Resources, Trondheim, Norway
| | - Trond R Størseth
- SINTEF Ocean AS, Environment and New Resources, Trondheim, Norway
| | - Aaron Redman
- ExxonMobil Petroleum and Chemical, Machelen, Belgium
| |
Collapse
|
19
|
Redman AD, Parkerton TF, Butler JD, Letinski DJ, Frank RA, Hewitt LM, Bartlett AJ, Gillis PL, Marentette JR, Parrott JL, Hughes SA, Guest R, Bekele A, Zhang K, Morandi G, Wiseman S, Giesy JP. Application of the Target Lipid Model and Passive Samplers to Characterize the Toxicity of Bioavailable Organics in Oil Sands Process-Affected Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8039-8049. [PMID: 29902380 DOI: 10.1021/acs.est.8b00614] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Oil sand operations in Alberta, Canada will eventually include returning treated process-affected waters to the environment. Organic constituents in oil sand process-affected water (OSPW) represent complex mixtures of nonionic and ionic (e.g., naphthenic acids) compounds, and compositions can vary spatially and temporally, which has impeded development of water quality benchmarks. To address this challenge, it was hypothesized that solid phase microextraction fibers coated with polydimethylsiloxane (PDMS) could be used as a biomimetic extraction (BE) to measure bioavailable organics in OSPW. Organic constituents of OSPW were assumed to contribute additively to toxicity, and partitioning to PDMS was assumed to be predictive of accumulation in target lipids, which were the presumed site of action. This method was tested using toxicity data for individual model compounds, defined mixtures, and organic mixtures extracted from OSPW. Toxicity was correlated with BE data, which supports the use of this method in hazard assessments of acute lethality to aquatic organisms. A species sensitivity distribution (SSD), based on target lipid model and BE values, was similar to SSDs based on residues in tissues for both nonionic and ionic organics. BE was shown to be an analytical tool that accounts for bioaccumulation of organic compound mixtures from which toxicity can be predicted, with the potential to aid in the development of water quality guidelines.
Collapse
Affiliation(s)
- A D Redman
- ExxonMobil Biomedical Sciences, Inc. , Annandale , New Jersey 08801 , United States
| | - T F Parkerton
- ExxonMobil Biomedical Sciences, Inc. , Spring , Texas 77339 , United States
| | - J D Butler
- ExxonMobil Biomedical Sciences, Inc. , Annandale , New Jersey 08801 , United States
| | - D J Letinski
- ExxonMobil Biomedical Sciences, Inc. , Annandale , New Jersey 08801 , United States
| | - R A Frank
- Environment and Climate Change Canada , Burlington , Ontario L7S 1A1 , Canada
| | - L M Hewitt
- Environment and Climate Change Canada , Burlington , Ontario L7S 1A1 , Canada
| | - A J Bartlett
- Environment and Climate Change Canada , Burlington , Ontario L7S 1A1 , Canada
| | - P L Gillis
- Environment and Climate Change Canada , Burlington , Ontario L7S 1A1 , Canada
| | - J R Marentette
- Environment and Climate Change Canada , Burlington , Ontario L7S 1A1 , Canada
| | - J L Parrott
- Environment and Climate Change Canada , Burlington , Ontario L7S 1A1 , Canada
| | - S A Hughes
- Shell Health-Americas , Houston , Texas 77002 , United States
- Department of Biological Sciences , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
- Department of Forestry and Environmental Conservation , Clemson University , Clemson , South Carolina 29634 , United States
| | - R Guest
- Suncor Energy , Calgary , Alberta T2P 3E3 , Canada
| | - A Bekele
- Imperial, Heavy Oil Mining Research , Calgary , Alberta T2C 4P3 , Canada
| | - K Zhang
- Division of Cardiovascular Medicine , Brigham and Women's Hospital , Boston , Massachusetts 02115 , United States
| | - G Morandi
- Toxicology Centre , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5A2 , Canada
| | - S Wiseman
- Department of Veterinary Biomedical Sciences and Toxicology Centre , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5B3 , Canada
| | - J P Giesy
- Toxicology Centre , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5A2 , Canada
- Department of Veterinary Biomedical Sciences and Toxicology Centre , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5B3 , Canada
- Department of Zoology, and Center for Integrative Toxicology , Michigan State University , East Lansing , Michigan 48824 , United States
- School of Biological Sciences , University of Hong Kong , Hong Kong SAR 999077 , China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , People's Republic of China
| |
Collapse
|
20
|
Redman AD, Butler JD, Letinski DJ, Di Toro DM, Leon Paumen M, Parkerton TF. Technical basis for using passive sampling as a biomimetic extraction procedure to assess bioavailability and predict toxicity of petroleum substances. CHEMOSPHERE 2018; 199:585-594. [PMID: 29455127 DOI: 10.1016/j.chemosphere.2018.02.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/22/2018] [Accepted: 02/04/2018] [Indexed: 06/08/2023]
Abstract
Solid-phase microextraction fibers coated with polydimethylsiloxane (PDMS) provide a convenient passive sampling format to characterize bioavailability of petroleum substances. Hydrocarbons absorb onto PDMS in proportion to both freely dissolved concentrations and partitioning properties of the individual constituents, which parallels the mechanistic basis used to predict aquatic toxicity in the PETROTOX model. When deployed in a non-depletive manner, combining SPME with thermal desorption and quantification using gas chromatography-flame ionization creates a biomimetic extraction (BE) procedure that has the potential to simplify aquatic hazard assessments of petroleum substances since the total moles of all hydrocarbons sorbed to the fiber can be related to toxic thresholds in target lipid of aquatic organisms. The objective of this work is to describe the technical basis for applying BE measurements to predict toxicity of petroleum substances. Critical BE-based PDMS concentrations corresponding to adverse effects were empirically derived from toxicity tests on different petroleum substances with multiple test species. The resulting species sensitivity distribution (SSD) of PDMS effect concentrations was then compared and found consistent with the previously reported target lipid-based SSD. Further, BE data collected on samples of aqueous media dosed with a wide range of petroleum substances were highly correlated to predicted toxic units derived using the PETROTOX model. These findings provide justification for applying BE in environmental hazard and risk evaluations of petroleum substances and related mixtures.
Collapse
Affiliation(s)
- A D Redman
- ExxonMobil Biomedical Science, Inc. Annandale, NJ, USA.
| | - J D Butler
- ExxonMobil Biomedical Science, Inc. Annandale, NJ, USA
| | - D J Letinski
- ExxonMobil Biomedical Science, Inc. Annandale, NJ, USA
| | | | - M Leon Paumen
- ExxonMobil Petroleum and Chemical, Machelen, Belgium
| | - T F Parkerton
- ExxonMobil Biomedical Sciences, Inc. Spring, TX, USA
| |
Collapse
|
21
|
Brown DM, Okoro S, van Gils J, van Spanning R, Bonte M, Hutchings T, Linden O, Egbuche U, Bruun KB, Smith JWN. Comparison of landfarming amendments to improve bioremediation of petroleum hydrocarbons in Niger Delta soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 596-597:284-292. [PMID: 28437647 DOI: 10.1016/j.scitotenv.2017.04.072] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/07/2017] [Accepted: 04/09/2017] [Indexed: 06/07/2023]
Abstract
Large scale landfarming experiments, using an extensive range of treatments, were conducted in the Niger-Delta, Nigeria to study the degradation of oil in contaminated soils. In this work the effect of nutrient addition, biosurfactant, Eisenia fetida (earthworm) enzyme extract, bulking and sorption agents and soil neutralization were tested. It was found that these treatments were successful in removing up to 53% of the total petroleum hydrocarbon in the soil within 16 weeks. A comparison between treatments demonstrated that most were no more effective than agricultural fertilizer addition alone. One strategy that did show better performance was a combination of nutrients, biochar and biosurfactant, which was found to remove 23% more Total Petroleum Hydrocarbons (TPH) than fertilizer alone. However, when performance normalized costs were considered, this treatment became less attractive as a remedial option. Based on this same analysis it was concluded that fertilizer only was the most cost effective treatment. As a consequence, it is recommended that fertilizer is used to enhance the landfarming of hydrocarbon contaminated soils in the Niger Delta. The attenuation rates of both bulk TPH and Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG) fractions are also provided. These values represent one of the first large scale and scientifically tested datasets for treatment of contaminated soil in the Niger Delta region. An inverse correlation between attenuation rates and hydrocarbon molecular weight was observed with heavy fractions showing much slower degradation rates than lighter fractions. Despite this difference, the bioremediation process resulted in significant removal of all TPH compounds independent of carbon number.
Collapse
Affiliation(s)
- David M Brown
- Shell Global Solutions International BV, Lange Kleiweg 40, 2288 GK Rijswijk, The Netherlands.
| | - Samson Okoro
- The Shell Petroleum Development Company of Nigeria Limited, Shell Industrial Area Rumuobiakani, Port Harcourt, Nigeria
| | - Juami van Gils
- Molecular Cell Biology, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Rob van Spanning
- Molecular Cell Biology, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Matthijs Bonte
- Shell Global Solutions International BV, Lange Kleiweg 40, 2288 GK Rijswijk, The Netherlands
| | - Tony Hutchings
- C-Cure Solutions Ltd, Alice Holt Lodge, Wrecclesham, Farnham, United Kingdom
| | - Olof Linden
- IUCN-NDP member, World Maritime University, Fiskehamnsgatan 1, 211 18 Malmö, Sweden
| | - Uzoamaka Egbuche
- IUCN-NDP Chair, Centre for Environmental Resources and Sustainable Ecosystems, Lagos, Nigeria
| | - Kim Bye Bruun
- The Shell Petroleum Development Company of Nigeria Limited, Shell Industrial Area Rumuobiakani, Port Harcourt, Nigeria
| | - Jonathan W N Smith
- Shell Global Solutions International BV, Lange Kleiweg 40, 2288 GK Rijswijk, The Netherlands; Sheffield University, Groundwater Protection & Restoration Group, Sheffield S3 7HQ, United Kingdom
| |
Collapse
|
22
|
Redman AD, Parkerton TF, Leon Paumen M, Butler JD, Letinski DJ, den Haan K. A re-evaluation of PETROTOX for predicting acute and chronic toxicity of petroleum substances. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:2245-2252. [PMID: 28106281 DOI: 10.1002/etc.3744] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/11/2016] [Accepted: 01/17/2017] [Indexed: 06/06/2023]
Abstract
The PETROTOX model was developed to perform aquatic hazard assessment of petroleum substances based on substance composition. The model relies on the hydrocarbon block method, which is widely used for conducting petroleum substance risk assessments providing further justification for evaluating model performance. Previous work described this model and provided a preliminary calibration and validation using acute toxicity data for limited petroleum substance. The objective of the present study was to re-evaluate PETROTOX using expanded data covering both acute and chronic toxicity endpoints on invertebrates, algae, and fish for a wider range of petroleum substances. The results indicated that recalibration of 2 model parameters was required, namely, the algal critical target lipid body burden and the log octanol-water partition coefficient (KOW ) limit, used to account for reduced bioavailability of hydrophobic constituents. Acute predictions from the updated model were compared with observed toxicity data and found to generally be within a factor of 3 for algae and invertebrates but overestimated fish toxicity. Chronic predictions were generally within a factor of 5 of empirical data. Furthermore, PETROTOX predicted acute and chronic hazard classifications that were consistent or conservative in 93 and 84% of comparisons, respectively. The PETROTOX model is considered suitable for the purpose of characterizing petroleum substance hazard in substance classification and risk assessments. Environ Toxicol Chem 2017;36:2245-2252. © 2017 SETAC.
Collapse
Affiliation(s)
- Aaron D Redman
- ExxonMobil Biomedical Sciences, Annandale, New Jersey, USA
| | | | | | - Josh D Butler
- ExxonMobil Biomedical Sciences, Annandale, New Jersey, USA
| | | | | |
Collapse
|
23
|
Forth HP, Mitchelmore CL, Morris JM, Lay CR, Lipton J. Characterization of dissolved and particulate phases of water accommodated fractions used to conduct aquatic toxicity testing in support of the Deepwater Horizon natural resource damage assessment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:1460-1472. [PMID: 28328044 DOI: 10.1002/etc.3803] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/09/2017] [Accepted: 03/21/2017] [Indexed: 06/06/2023]
Abstract
In response to the Deepwater Horizon oil spill, the Natural Resource Trustees implemented a toxicity testing program that included 4 different Deepwater Horizon oils that ranged from fresh to weathered, and 3 different oil-in-water preparation methods (including one that used the chemical dispersant Corexit 9500) to prepare a total of 12 chemically unique water accommodated fractions (WAFs). We determined how the different WAF preparation methods, WAF concentrations, and oil types influenced the chemical composition and concentration of polycyclic aromatic hydrocarbons (PAHs) in the dissolved and particulate phases over time periods used in standard toxicity tests. In WAFs prepared with the same starting oil and oil-to-water ratio, the composition and concentration of the dissolved fractions were similar across all preparation methods. However, these similarities diverged when dilutions of the 3 WAF methods were compared. In WAFs containing oil droplets, we found that the dissolved phase was a small fraction of the total PAH concentration for the high-concentration stock WAFs; however, the dissolved phase became the dominant fraction when it was diluted to lower concentrations. Furthermore, decreases in concentration over time were mainly related to surfacing of the larger oil droplets. The initial mean diameters of the droplets were approximately 5 to 10 μm, with a few droplets larger than 30 μm. After 96 h, the mean droplet size decreased to 3 to 5 μm, with generally all droplets larger than 10 μm resurfacing. These data provide a detailed assessment of the concentration and form (dissolved vs particulate) of the PAHs in our WAF exposures, measurements that are important for determining the effects of oil on aquatic species. Environ Toxicol Chem 2017;36:1460-1472. © 2017 SETAC.
Collapse
Affiliation(s)
| | - Carys L Mitchelmore
- University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, Solomons, Maryland, USA
| | - Jeffrey M Morris
- University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, Solomons, Maryland, USA
| | - Claire R Lay
- University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, Solomons, Maryland, USA
| | - Joshua Lipton
- University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, Solomons, Maryland, USA
| |
Collapse
|
24
|
Redman AD, Butler JD, Letinski DJ, Parkerton TF. Investigating the role of dissolved and droplet oil in aquatic toxicity using dispersed and passive dosing systems. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:1020-1028. [PMID: 27653742 DOI: 10.1002/etc.3624] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/26/2016] [Accepted: 09/15/2016] [Indexed: 06/06/2023]
Abstract
Characterization of the aquatic toxicity of oil is needed to support hazard assessment and inform spill response. Natural processes and mitigation strategies involving dispersant use can result in exposures to both dissolved and droplet oil that are not typically differentiated when oil exposures are characterized in toxicity tests. Thus, the impact of droplets on aquatic toxicity is largely uncharacterized. To improve the understanding of the role of droplets, acute toxicity tests with Daphnia magna and Americamysis bahia were performed with Endicott crude oil in low-energy mixing systems with and without Corexit 9500 dispersant. Exposures were also prepared by placing crude oil in silicone tubing and passively dosing test media to provide dissolved oil exposures without droplets. A framework is described for characterizing dissolved phase exposures using both mechanistic modeling and passive sampling measurements. The approach is then illustrated by application to data from the present study. Expression of toxicity in terms of toxic units calculated from modeled dissolved oil concentrations or passive sampling measurements showed similar dose responses between exposure systems and organisms, despite the gradient in droplet oil. These results indicate that droplets do not appreciably contribute to toxicity for the 2 species investigated and further support hazard evaluation of dispersed oil on the basis of dissolved exposure metrics. Environ Toxicol Chem 2017;36:1020-1028. © 2016 SETAC.
Collapse
Affiliation(s)
- Aaron D Redman
- ExxonMobil Biomedical Sciences, Annandale, New Jersey, USA
| | - Josh D Butler
- ExxonMobil Biomedical Sciences, Annandale, New Jersey, USA
| | | | | |
Collapse
|
25
|
Prince RC, Butler JD, Redman AD. The Rate of Crude Oil Biodegradation in the Sea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:1278-1284. [PMID: 27700058 DOI: 10.1021/acs.est.6b03207] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Various groups have studied the rate of oil biodegradation in the sea over many years, but with no consensus on results. This can be attributed to many factors, but we show here that the principal confounding influence is the concentration of oil used in different experiments. Because of dilution, measured concentrations of dispersed oil in the sea are sub-parts-per-million within a day of dispersal, and at such concentrations the rate of biodegradation of detectable oil hydrocarbons has an apparent half-life of 7-14 days. This can be contrasted with the rate of degradation at the higher concentrations found in oil slicks or when stranded on a shoreline; there the apparent half-life varies from many months to many years.
Collapse
Affiliation(s)
- Roger C Prince
- ExxonMobil Biomedical Sciences, Inc. Annandale, New Jersey 08801, United States
| | - Josh D Butler
- ExxonMobil Biomedical Sciences, Inc. Annandale, New Jersey 08801, United States
| | - Aaron D Redman
- ExxonMobil Biomedical Sciences, Inc. Annandale, New Jersey 08801, United States
| |
Collapse
|
26
|
Morandi GD, Zhang K, Wiseman SB, Pereira ADS, Martin JW, Giesy JP. Effect of Lipid Partitioning on Predictions of Acute Toxicity of Oil Sands Process Affected Water to Embryos of Fathead Minnow (Pimephales promelas). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:8858-8866. [PMID: 27420640 DOI: 10.1021/acs.est.6b01481] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Dissolved organic compounds in oil sands process affected water (OSPW) are known to be responsible for most of its toxicity to aquatic organisms, but the complexity of this mixture prevents use of traditional bottom-up approaches for predicting toxicities of mixtures. Therefore, a top-down approach to predict toxicity of the dissolved organic fraction of OSPW was developed and tested. Accurate masses (i.e., m/z) determined by ultrahigh resolution mass spectrometry in negative and positive ionization modes were used to assign empirical chemical formulas to each chemical species in the mixture. For each chemical species, a predictive measure of lipid accumulation was estimated by stir-bar sorptive extraction (SBSE) to poly(dimethyl)siloxane, or by partitioning to solid-supported lipid membranes (SSLM). A narcosis mode of action was assumed and the target-lipid model was used to estimate potencies of mixtures by assuming strict additivity. A model developed using a combination of the SBSE and SSLM lipid partitioning estimates, whereby the accumulation of chemicals to neutral and polar lipids was explicitly considered, was best for predicting empirical values of LC50 in 96-h acute toxicity tests with embryos of fathead minnow (Pimephales promelas). Model predictions were within 4-fold of observed toxicity for 75% of OSPW samples, and within 8.5-fold for all samples tested, which is comparable to the range of interlaboratory variability for in vivo toxicity testing.
Collapse
Affiliation(s)
- Garrett D Morandi
- Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5A2, Canada
| | - Kun Zhang
- Division of Analytical and Environmental Toxicology, University of Alberta , Edmonton, Alberta Canada
| | - Steve B Wiseman
- Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5A2, Canada
| | | | - Jonathan W Martin
- Division of Analytical and Environmental Toxicology, University of Alberta , Edmonton, Alberta Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5A2, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5A2, Canada
- Department of Zoology, and Center for Integrative Toxicology, Michigan State University , East Lansing, Michigan 48823, United States
- School of Biological Sciences, University of Hong Kong , Hong Kong, SAR China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, People's Republic of China
| |
Collapse
|
27
|
De Hoop L, Broch OJ, Hendriks AJ, De Laender F. Crude oil affecting the biomass of the marine copepod Calanus finmarchicus: Comparing a simple and complex population model. MARINE ENVIRONMENTAL RESEARCH 2016; 119:197-206. [PMID: 27326463 DOI: 10.1016/j.marenvres.2016.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 06/06/2023]
Abstract
In the current study differences were evaluated between a complex 3D multistage population model (SINMOD) and a simpler consumer-resource population model for estimating the effects of crude oil on the marine copepod Calanus finmarchicus. The SINTEF OSCAR model was used to simulate hypothetical oil spills in the Lofoten area in 1995, 1997, and 2001. Both population models simulated a negligible effect of crude oil on the Calanus' biomass when assuming low species sensitivity. The simple model estimated a larger effect on the biomass (up to a 100% decline) compared to the complex model (maximum decline of 60-80%) at high species sensitivity to crude oil. These differences may be related to the inclusion of copepod advection in the complex model. Our study showed that if little data is available to parameterize a model, or if computational resources are scarce, the simple model could be used for risk screening. Nevertheless, the possibility of including a dilution factor for time-varying biomass should be examined to improve the estimations of the simple model. The complex model should be used for a more in depth risk analysis, as it includes physical processes such as the drift of organisms and differentiation between developmental stages.
Collapse
Affiliation(s)
- Lisette De Hoop
- Institute for Water and Wetland Research, Department of Environmental Science, Radboud University Nijmegen, The Netherlands.
| | - Ole Jacob Broch
- SINTEF Fisheries and Aquaculture, Postboks 4762 Sluppen, 7465 Trondheim, Norway
| | - A Jan Hendriks
- Institute for Water and Wetland Research, Department of Environmental Science, Radboud University Nijmegen, The Netherlands
| | - Frederik De Laender
- Research Unit of Environmental and Evolutionary Biology, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| |
Collapse
|
28
|
Dasgupta S, DiGiulio RT, Drollette BD, L Plata D, Brownawell BJ, McElroy AE. Hypoxia depresses CYP1A induction and enhances DNA damage, but has minimal effects on antioxidant responses in sheepshead minnow (Cyprinodon variegatus) larvae exposed to dispersed crude oil. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:250-60. [PMID: 27315012 DOI: 10.1016/j.aquatox.2016.05.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 05/14/2016] [Accepted: 05/22/2016] [Indexed: 05/26/2023]
Abstract
The growing incidence of hypoxic regions in coastal areas receiving high volumes of anthropogenic discharges requires more focused risk assessment of multiple stressors. One area needing further study is the combined effect of hypoxia and oil exposure. This study examined the short-term sublethal effects of co-exposure to hypoxia and water accommodated fractions (WAF) and chemically enhanced WAFs (CEWAFs) of Southern Louisiana Crude oil on detoxification, antioxidant defenses and genotoxicity in early life stage sheepshead minnow (Cyprinodon variegatus). CYP1A induction (evaluated by measuring EROD activity), activity of a number of key antioxidant enzymes (GST, GR, GPx, SOD, CAT, and GCL), levels of antioxidants (tGSH, GSH, and GSSG), evidence of lipid peroxidation (evaluated using the TBARS assay), and DNA damage (evaluated using the comet assay) provided a broad assessment of responses. Contaminant detoxification pathways induced by oil exposure were inhibited by co-exposure to hypoxia, indicating a maladaptive response. The interactive effects of oil and hypoxia on antioxidant defenses were mixed, but generally indicated less pronounced alterations, with significant increases in lipid peroxidation not observed. Hypoxia significantly enhanced DNA damage induced by oil exposure indicating the potential for significant deleterious effects post exposure. This study demonstrates the importance of considering hypoxia as an enhanced risk factor in assessing the effects of contaminants in areas where seasonal hypoxia may be prevalent.
Collapse
Affiliation(s)
- Subham Dasgupta
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, 11790, New York, United States
| | - Richard T DiGiulio
- Nicholas School of Environment, Duke University, Durham, NC 27708, United States
| | - Brian D Drollette
- School of Engineering & Applied Science, Yale University, New Haven, CT 06520, United States
| | - Desire L Plata
- School of Engineering & Applied Science, Yale University, New Haven, CT 06520, United States
| | - Bruce J Brownawell
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, 11790, New York, United States
| | - Anne E McElroy
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, 11790, New York, United States.
| |
Collapse
|
29
|
Redman AD, Parkerton TF. Guidance for improving comparability and relevance of oil toxicity tests. MARINE POLLUTION BULLETIN 2015; 98:156-70. [PMID: 26162510 DOI: 10.1016/j.marpolbul.2015.06.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 05/22/2015] [Accepted: 06/28/2015] [Indexed: 05/25/2023]
Abstract
The complex nature and limited aqueous solubility of petroleum substances pose challenges for consistently characterizing exposures in aquatic life hazard assessments. This paper reviews important considerations for the design, conduct and interpretation of laboratory toxicity tests with physically and chemically dispersed oils based on an understanding of the behavior and toxicity of the hydrocarbons that comprise these substances. Guiding principles are provided that emphasize the critical need to understand and, when possible, characterize dissolved hydrocarbon exposures that dictate observed toxicity in these tests. These principles provide a consistent framework for interpreting toxicity studies performed using different substances and test methods by allowing varying dissolved exposures to be expressed in terms of a common metric based on toxic units (TUs). The use of passive sampling methods is also advocated since such analyses provide an analytical surrogate for TUs. The proposed guidance is translated into a series of questions that can be used in evaluating existing data and in guiding design of future studies. Application of these questions to a number of recent publications indicates such considerations are often ignored, thus perpetuating the difficulty of interpreting and comparing results between studies and limiting data use in objective hazard assessment. Greater attention to these principles will increase the comparability and utility of oil toxicity data in decision-making.
Collapse
Affiliation(s)
- Aaron D Redman
- ExxonMobil Biomedical Sciences, Inc., 1545 US Highway 22 East, Annandale, NJ 08801, USA.
| | - Thomas F Parkerton
- ExxonMobil Biomedical Sciences, Inc., 22777 Springwood Village Parkway, Spring, TX 77339, USA
| |
Collapse
|
30
|
Redman AD. Role of entrained droplet oil on the bioavailability of petroleum substances in aqueous exposures. MARINE POLLUTION BULLETIN 2015; 97:342-348. [PMID: 26072047 DOI: 10.1016/j.marpolbul.2015.05.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/22/2015] [Accepted: 05/29/2015] [Indexed: 06/04/2023]
Abstract
Bioavailability of petroleum substances is a complex issue that is affected by substance composition, the physicochemical properties of the individual constituents, and the exposure preparation system. The present study applies mechanistic fate and effects models to characterize the role of droplet oil on dissolved exposure and predicted effects from both neat and weathered crude oils, and refined fuel oils. The main effect from droplet oil is input of additional dissolved hydrocarbons to the exposure system following preparation of the initial stock solution. Toxicity was characterized using toxic units (TU) and shows that replenishment of bioavailable hydrocarbons by droplets in toxicity tests with low droplet content (e.g., <1mg/L) is negligible, consistent with typical exposure conditions following open ocean oil spills. Further, the use of volumetric exposure metrics (e.g., mg/L) introduces considerable variability and the bioavailability-based metrics (e.g., TUs) provide a more consistent basis for understanding oil toxicity data.
Collapse
Affiliation(s)
- A D Redman
- ExxonMobil Biomedical Sciences, Inc., Annandale, NJ 08801, USA.
| |
Collapse
|
31
|
Letinski D, Parkerton T, Redman A, Manning R, Bragin G, Febbo E, Palandro D, Nedwed T. Use of passive samplers for improving oil toxicity and spill effects assessment. MARINE POLLUTION BULLETIN 2014; 86:274-282. [PMID: 25096583 DOI: 10.1016/j.marpolbul.2014.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 06/29/2014] [Accepted: 07/06/2014] [Indexed: 06/03/2023]
Abstract
Methods that quantify dissolved hydrocarbons are needed to link oil exposures to toxicity. Solid phase microextraction (SPME) fibers can serve this purpose. If fibers are equilibrated with oiled water, dissolved hydrocarbons partition to and are concentrated on the fiber. The absorbed concentration (Cpolymer) can be quantified by thermal desorption using GC/FID. Further, given that the site of toxic action is hypothesized as biota lipid and partitioning of hydrocarbons to lipid and fibers is well correlated, Cpolymer is hypothesized to be a surrogate for toxicity prediction. To test this method, toxicity data for physically and chemically dispersed oils were generated for shrimp, Americamysis bahia, and compared to test exposures characterized by Cpolymer. Results indicated that Cpolymer reliably predicted toxicity across oils and dispersions. To illustrate field application, SPME results are reported for oil spills at the Ohmsett facility. SPME fibers provide a practical tool to improve characterization of oil exposures and predict effects in future lab and field studies.
Collapse
Affiliation(s)
- Daniel Letinski
- ExxonMobil Biomedical Sciences, Inc., 1545 US Highway 22 East, Annandale, NJ 08801, USA
| | - Thomas Parkerton
- ExxonMobil Biomedical Sciences, Inc., 800 Bell Street, Houston, TX 77002, USA.
| | - Aaron Redman
- ExxonMobil Biomedical Sciences, Inc., 1545 US Highway 22 East, Annandale, NJ 08801, USA
| | - Ryan Manning
- ExxonMobil Biomedical Sciences, Inc., 1545 US Highway 22 East, Annandale, NJ 08801, USA
| | - Gail Bragin
- ExxonMobil Biomedical Sciences, Inc., 1545 US Highway 22 East, Annandale, NJ 08801, USA
| | - Eric Febbo
- ExxonMobil Research Qatar, Maysaloum Street, Doha, Ad Dawhah, Qatar
| | - David Palandro
- ExxonMobil Upstream Research Company, 3120 Buffalo Speedway, Houston, TX 77098, USA
| | - Tim Nedwed
- ExxonMobil Upstream Research Company, 3120 Buffalo Speedway, Houston, TX 77098, USA
| |
Collapse
|