1
|
Ács A, Schmidt J, Németh Z, Fodor I, Farkas A. Elevated temperature increases the susceptibility of D. magna to environmental mixtures of carbamazepine, tramadol and citalopram. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110052. [PMID: 39437871 DOI: 10.1016/j.cbpc.2024.110052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
The joint risks assessment of thermal stress and rising loads of pharmaceuticals (PhACs) in surface waters is a relevant topic in aquatic ecotoxicology. This study investigated the relevance of increased water temperature to alter the acute toxicity of environmentally relevant carbamazepine (CBZ), citalopram (CIT) and tramadol (TRA) concentrations as mixtures (ECs) and delayed outcomes in Daphnia magna. Responses of detoxification and antioxidant pathways in premature daphnids post an acute 24 h (pulsed) exposure to the PhACs mixtures and delayed responses as the reproductive output over 14 days recovery were investigated under 21- and 26 °C incubation. Biphasic modulation in glutathione S-transferase (GST) activity and significant inhibition of superoxide dismutase (SOD) activity were observed in both thermal regimes with significant shift in effective thresholds from 10-fold ECs at 21 °C to ECs at 26 °C incubation. Significant induction in catalase (CAT) activity and oxidative stress development were recorded at elevated temperatures from the 10-fold ECs dose onward. Pulsed exposures at 26 °C also led to significant decrease in the reproduction of daphnids above the 10-fold ECs of PhACs. The Integrated Biomarker Response scoring (IBRv2) approach outlined a 1.8-fold increase in alterations of daphnids exposed to 100-fold ECs of PhACs at 26 °C.
Collapse
Affiliation(s)
- András Ács
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute (HUN-REN), 8237 Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary.
| | - János Schmidt
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Zoltán Németh
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute (HUN-REN), 8237 Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - István Fodor
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute (HUN-REN), 8237 Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - Anna Farkas
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute (HUN-REN), 8237 Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| |
Collapse
|
2
|
Obanya HE, Khan FR, Carrasco-Navarro V, Rødland ES, Walker-Franklin I, Thomas J, Cooper A, Molden N, Amaeze NH, Patil RS, Kukkola A, Michie L, Green-Ojo B, Rauert C, Couceiro F, Hutchison GR, Tang J, Ugor J, Lee S, Hofmann T, Ford AT. Priorities to inform research on tire particles and their chemical leachates: A collective perspective. ENVIRONMENTAL RESEARCH 2024; 263:120222. [PMID: 39490547 DOI: 10.1016/j.envres.2024.120222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/04/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Concerns over the ecological impacts of urban road runoff have increased, partly due to recent research into the harmful impacts of tire particles and their chemical leachates. This study aimed to help the community of researchers, regulators and policy advisers in scoping out the priority areas for further study. To improve our understanding of these issues an interdisciplinary, international network consisting of experts (United Kingdom, Norway, United States, Australia, South Korea, Finland, Austria, China and Canada) was formed. We synthesised the current state of the knowledge and highlighted priority research areas for tire particles (in their different forms) and their leachates. Ten priority research questions with high importance were identified under four themes (environmental presence and detection; chemicals of concern; biotic impacts; mitigation and regulation). The priority research questions include the importance of increasing the understanding of the fate and transport of these contaminants; better alignment of toxicity studies; obtaining the holistic understanding of the impacts; and risks they pose across different ecosystem services. These issues have to be addressed globally for a sustainable solution. We highlight how the establishment of the intergovernmental science-policy panel on chemicals, waste, and pollution prevention could further address these issues on a global level through coordinated knowledge transfer of car tire research and regulation. We hope that the outputs from this research paper will reduce scientific uncertainty in assessing and managing environmental risks from TP and their leachates and aid any potential future policy and regulatory development.
Collapse
Affiliation(s)
- Henry E Obanya
- School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire, PO1 2DY, UK
| | - Farhan R Khan
- Norwegian Research Centre (NORCE), Nygårdsporten 112, NO-5008, Bergen, Norway
| | - Victor Carrasco-Navarro
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, PO Box 1627, 70211, Kuopio, Finland
| | | | | | - Jomin Thomas
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA
| | - Adam Cooper
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nick Molden
- Emissions Analytics, Unit 2 CR Bates Industrial Estate, Stokenchurch, High Wycombe, Buckinghamshire, HP14 3PD, UK
| | - Nnamdi H Amaeze
- School of the Environment, Memorial Hall, University of Windsor, 401 Sunset Avenue Windsor, Ontario, N9B 3P4, Canada
| | - Renuka S Patil
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA
| | - Anna Kukkola
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Laura Michie
- School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire, PO1 2DY, UK
| | - Bidemi Green-Ojo
- School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire, PO1 2DY, UK
| | - Cassandra Rauert
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, QLD, Australia
| | - Fay Couceiro
- School of Civil Engineering and Surveying at the University of Portsmouth, Hampshire, PO1 3AH, UK
| | - Gary R Hutchison
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, EH11 4BN, UK
| | - Jinglong Tang
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Joshua Ugor
- School of the Environment, Geography and Geosciences, University of Portsmouth, UK
| | - Seokhwan Lee
- Environment System Research Division, Korea Institute of Machinery and Materials, 156, Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea
| | - Thilo Hofmann
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department for Environmental Geosciences, Josef-Holaubek-Platz 2, 1090, Vienna, Austria; University of Vienna, Research Platform Plastics in the Environment and Society (Plenty), Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Alex T Ford
- School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire, PO1 2DY, UK.
| |
Collapse
|
3
|
Kristiansen SM, Leinaas HP, van Gestel CAM, Borgå K. Thermal adaptation affects the temperature-dependent toxicity of the insecticide imidacloprid to soil invertebrates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173845. [PMID: 38871314 DOI: 10.1016/j.scitotenv.2024.173845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Terrestrial ectotherms are vulnerable to climate change since their biological rates depend on the ambient temperature. As temperature may interact with toxicant exposure, climate change may cause unpredictable responses to toxic stress. A population's thermal adaptation will impact its response to temperature change, but also to interactive effects from temperature and toxicants, but these effects are still not fully understood. Here, we assessed the combined effects of exposure to the insecticide imidacloprid across the temperatures 10-25 °C of two populations of the Collembola Hypogastrura viatica (Tullberg, 1872), by determining their responses in multiple life history traits. The con-specific populations differ considerably in thermal adaptations; one (arctic) is a temperature generalist, while the other (temperate) is a warm-adapted specialist. For both populations, the sub-lethal concentrations of imidacloprid became lethal with increasing temperature. Although the thermal maximum is higher for the warm-adapted population, the reduction in survival was stronger. Growth was reduced by imidacloprid in a temperature-dependent manner, but only at the adult life stage. The decrease in adult body size combined with the absence of an effect on the age at first reproduction suggests a selection on the timing of maturation. Egg production was reduced by imidacloprid in both populations, but the negative effect was only dependent on temperature in the warm-adapted population, with no effect at 10 °C, and decreases of 41 % at 15 °C, and 74 % at 20 °C. For several key traits, the population best adapted to utilize high temperatures was also the most sensitive to toxic stress at higher temperatures. It could be that by allocating more energy to faster growth, development, and reproduction at higher temperatures, the population had less energy for maintenance, making it more sensitive to toxic stress. Our findings demonstrate the need to take into account a population's thermal adaptation when assessing the interactive effects between temperature and other stressors.
Collapse
Affiliation(s)
- Silje M Kristiansen
- Department of Biosciences, University of Oslo, Blindernvn 31, 0316 Oslo, Norway.
| | - Hans P Leinaas
- Department of Biosciences, University of Oslo, Blindernvn 31, 0316 Oslo, Norway
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boolelaan 1108, 1081, HZ, Amsterdam, the Netherlands
| | - Katrine Borgå
- Department of Biosciences, University of Oslo, Blindernvn 31, 0316 Oslo, Norway
| |
Collapse
|
4
|
Ding TT, Wang ZJ, Tao MT, Gu ZW, Chen RJ, Xu YQ, Liu SS. An innovative mixture sampling strategy with uniform design: Application to global sensitivity analysis of mixture toxicity. ENVIRONMENT INTERNATIONAL 2024; 191:108968. [PMID: 39213918 DOI: 10.1016/j.envint.2024.108968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/24/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Global sensitivity analysis combined with quantitative high-throughput screening (GSA-qHTS) uses random starting points of the trajectories in mixture design, which may lead to potential contingency and a lack of representativeness. Moreover, a scenario in which all factor levels were at stimulatory effects was not considered, thereby hindering a comprehensive understanding of GSA-qHTS. Accordingly, this study innovatively introduced an optimised experimental design, uniform design (UD), to generate non-random and representative sample points with smaller uniformity deviation as starting points of multiple trajectories. By combining UD with the previously optimised one-factor-at-a-time (OAT) method, a novel mixture design method was developed (UD-OAT). The single toxicity tests showed that three pyridinium and five imidazolium ionic liquids (ILs) exerted stimulatory effects on Vibrio qinghaiensis sp.-Q67; thus, four stimulatory effective concentrations of each IL were selected as factor levels. The UD-OAT generated 108 mixture samples with equal frequency and without repetition. High-throughput microplate toxicity analysis revealed that all 108 mixtures exhibited inhibitory effects. Among these, type B mixtures exhibited increasing toxicities that subsequently decreased, unlike type C mixtures, which consistently increased over time. GSA successfully identified three of the eight ILs as important factors influencing the toxicities of the mixtures. When individual ILs produced stimulatory effects, mixtures containing two to three ILs exhibited either stimulatory effects or none. In contrast, mixtures containing five to eight ILs exhibited inhibitory effects, while those containing four ILs showed a transition from stimulatory to inhibitory effects. This study provides a novel mixture design method for studying mixture toxicity and fills the application gap of GSA-qHTS. The phenomenon of individuals being beneficial while mixtures can be harmful challenges traditional mixture risk assessments.
Collapse
Affiliation(s)
- Ting-Ting Ding
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Ze-Jun Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Meng-Ting Tao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Zhong-Wei Gu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Ru-Jun Chen
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ya-Qian Xu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
5
|
Tosadori A, Di Guardo A, Finizio A. Spatial distributions and temporal trends (2009-2020) of chemical mixtures in streams and rivers across Lombardy region (Italy). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170839. [PMID: 38340863 DOI: 10.1016/j.scitotenv.2024.170839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/11/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Chemical mixtures in the environment are of increasing concern in the scientific community and regulators. Indeed, evidence indicates that aquatic wildlife and humans can be simultaneously and successively exposed to multiple chemicals mainly originating from different anthropic sources by direct uptake from water and indirectly via eating aquatic organisms. This study analyses a large set of sampling data referring to the entire Lombardy region, the most industrialised and at the same time the most important agriculture area in Italy, investigating the presence and potential effects of chemical mixtures in surface water bodies. We enriched and further developed an approach based on a previous work, where the overall mixture toxicity was evaluated for three representative aquatic organisms (algae, Daphnia, fish) using the concentration addition model to combine exposure with ecotoxicological data. The calculation of the mixture toxicity has been realised for two scenarios, namely best- and worst-case scenarios. The former considered only quantified compounds in the monitoring campaign, while the latter also included substances with concentrations below the limit of quantification (LoQ). Differences between the two scenario results established the potential toxicity range. Our findings revealed that differences were minimal when the calculated toxicity in the best-case scenario indicated potential risk and, on the contrary, they suggest that the worst-case scenario is overly conservative; we could also state that including substances with concentrations below the LoQ when calculating the overall toxicity of the mixture is useless and then we focused solely on the best-case scenario. The analysis of spatial and temporal risk trends together with contaminant types and target organisms highlighted specific clusters of contamination. Finally, in several cases, our study found that only few compounds were responsible for the majority of mixture toxicity.
Collapse
Affiliation(s)
- Andrea Tosadori
- Department of Earth and Environmental Sciences DISAT, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Andrea Di Guardo
- Department of Earth and Environmental Sciences DISAT, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy.
| | - Antonio Finizio
- Department of Earth and Environmental Sciences DISAT, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| |
Collapse
|
6
|
Boxall ABA, Brooks BW. Pharmaceuticals and Personal Care Products in the Environment: What Progress Has Been Made in Addressing the Big Research Questions? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:481-487. [PMID: 38329166 DOI: 10.1002/etc.5827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/09/2024]
Affiliation(s)
- Alistair B A Boxall
- Department of Environment and Geography, University of York, York, United Kingdom
| | - Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Institute of Biomedical Studies, Baylor University, Waco, Texas, USA
| |
Collapse
|
7
|
Brooks BW, van den Berg S, Dreier DA, LaLone CA, Owen SF, Raimondo S, Zhang X. Towards Precision Ecotoxicology: Leveraging Evolutionary Conservation of Pharmaceutical and Personal Care Product Targets to Understand Adverse Outcomes Across Species and Life Stages. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:526-536. [PMID: 37787405 PMCID: PMC11017229 DOI: 10.1002/etc.5754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/19/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023]
Abstract
Translation of environmental science to the practice aims to protect biodiversity and ecosystem services, and our future ability to do so relies on the development of a precision ecotoxicology approach wherein we leverage the genetics and informatics of species to better understand and manage the risks of global pollution. A little over a decade ago, a workshop focusing on the risks of pharmaceuticals and personal care products (PPCPs) in the environment identified a priority research question, "What can be learned about the evolutionary conservation of PPCP targets across species and life stages in the context of potential adverse outcomes and effects?" We review the activities in this area over the past decade, consider prospects of more recent developments, and identify future research needs to develop next-generation approaches for PPCPs and other global chemicals and waste challenges. Environ Toxicol Chem 2024;43:526-536. © 2023 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Institute of Biomedical Studies, Baylor University, Waco, Texas, USA
| | | | - David A Dreier
- Syngenta Crop Protection, Greensboro, North Carolina, USA
| | - Carlie A LaLone
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Duluth, Minnesota
| | - Stewart F Owen
- Global Sustainability, Astra Zeneca, Macclesfield, Cheshire, UK
| | - Sandy Raimondo
- Gulf Ecosystem Measurement and Modeling Division, Office of Research and Development, US Environmental Protection Agency, Gulf Breeze, Florida
| | - Xiaowei Zhang
- School of the Environment, Nanjing University, Nanjing, China
| |
Collapse
|
8
|
Martínez-Megías C, Arenas-Sánchez A, Manjarrés-López D, Pérez S, Soriano Y, Picó Y, Rico A. Pharmaceutical and pesticide mixtures in a Mediterranean coastal wetland: comparison of sampling methods, ecological risks, and removal by a constructed wetland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14593-14609. [PMID: 38277107 PMCID: PMC10884053 DOI: 10.1007/s11356-024-31968-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/06/2024] [Indexed: 01/27/2024]
Abstract
Pharmaceuticals and pesticides can be considered hazardous compounds for Mediterranean coastal wetland ecosystems. Although many of these compounds co-occur in environmental samples, only a few studies have been dedicated to assessing the ecotoxicological risks of complex contaminant mixtures. We evaluated the occurrence of 133 pharmaceuticals and pesticides in 12 sites in a protected Mediterranean wetland, the Albufera Natural Park (ANP), based on conventional grab sampling and polar organic chemical integrative samplers (POCIS). We assessed acute and chronic ecological risks posed by these contaminant mixtures using the multi-substance Potentially Affected Fraction (msPAF) approach and investigated the capacity of a constructed wetland to reduce chemical exposure and risks. This study shows that pharmaceuticals and pesticides are widespread contaminants in the ANP, with samples containing up to 75 different compounds. POCIS samplers were found to be useful for the determination of less predictable exposure profiles of pesticides occurring at the end of the rice cultivation cycle, while POCIS and grab samples provide an accurate method to determine (semi-)continuous pharmaceutical exposure. Acute risks were identified in one sample, while chronic risks were determined in most of the collected samples, with 5-25% of aquatic species being potentially affected. The compounds that contributed to the chronic risks were azoxystrobin, ibuprofen, furosemide, caffeine, and some insecticides (diazinon, imidacloprid, and acetamiprid). The evaluated constructed wetland reduced contaminant loads by 45-73% and reduced the faction of species affected from 25 to 6%. Our study highlights the need of addressing contaminant mixture effects in Mediterranean wetlands and supports the use of constructed wetlands to reduce contaminant loads and risks in areas with high anthropogenic pressure.
Collapse
Affiliation(s)
- Claudia Martínez-Megías
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Ctra. Madrid-Barcelona, Km 33.600, 28871, Alcalá de Henares, Madrid, Spain
- IMDEA Water Institute, Parque Científico Tecnológico de La Universidad de Alcalá, Punto Com, 2, 28805, Alcalá de Henares, Madrid, Spain
| | - Alba Arenas-Sánchez
- IMDEA Water Institute, Parque Científico Tecnológico de La Universidad de Alcalá, Punto Com, 2, 28805, Alcalá de Henares, Madrid, Spain
| | - Diana Manjarrés-López
- ONHEALTH, Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Sandra Pérez
- ONHEALTH, Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Yolanda Soriano
- Food and Environmental Research Group of the University of Valencia (SAMA-UV), Research Desertification Centre (CIDE) (CSIC-UV-GV), CV-315 Road, Km 10.7, 46113, Moncada, Valencia, Spain
| | - Yolanda Picó
- Food and Environmental Research Group of the University of Valencia (SAMA-UV), Research Desertification Centre (CIDE) (CSIC-UV-GV), CV-315 Road, Km 10.7, 46113, Moncada, Valencia, Spain
| | - Andreu Rico
- IMDEA Water Institute, Parque Científico Tecnológico de La Universidad de Alcalá, Punto Com, 2, 28805, Alcalá de Henares, Madrid, Spain.
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, c/ Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
9
|
Schäfer RB, Jackson M, Juvigny-Khenafou N, Osakpolor SE, Posthuma L, Schneeweiss A, Spaak J, Vinebrooke R. Chemical Mixtures and Multiple Stressors: Same but Different? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1915-1936. [PMID: 37036219 DOI: 10.1002/etc.5629] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 05/19/2023]
Abstract
Ecosystems are strongly influenced by multiple anthropogenic stressors, including a wide range of chemicals and their mixtures. Studies on the effects of multiple stressors have largely focussed on nonchemical stressors, whereas studies on chemical mixtures have largely ignored other stressors. However, both research areas face similar challenges and require similar tools and methods to predict the joint effects of chemicals or nonchemical stressors, and frameworks to integrate multiple chemical and nonchemical stressors are missing. We provide an overview of the research paradigms, tools, and methods commonly used in multiple stressor and chemical mixture research and discuss potential domains of cross-fertilization and joint challenges. First, we compare the general paradigms of ecotoxicology and (applied) ecology to explain the historical divide. Subsequently, we compare methods and approaches for the identification of interactions, stressor characterization, and designing experiments. We suggest that both multiple stressor and chemical mixture research are too focused on interactions and would benefit from integration regarding null model selection. Stressor characterization is typically more costly for chemical mixtures. While for chemical mixtures comprehensive classification systems at suborganismal level have been developed, recent classification systems for multiple stressors account for environmental context. Both research areas suffer from rather simplified experimental designs that focus on only a limited number of stressors, chemicals, and treatments. We discuss concepts that can guide more realistic designs capturing spatiotemporal stressor dynamics. We suggest that process-based and data-driven models are particularly promising to tackle the challenge of prediction of effects of chemical mixtures and nonchemical stressors on (meta-)communities and (meta-)food webs. We propose a framework to integrate the assessment of effects for multiple stressors and chemical mixtures. Environ Toxicol Chem 2023;42:1915-1936. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Ralf B Schäfer
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | | | - Noel Juvigny-Khenafou
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | - Stephen E Osakpolor
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | - Leo Posthuma
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Environmental Science, Radboud University, Nijmegen, The Netherlands
| | - Anke Schneeweiss
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | - Jürg Spaak
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | - Rolf Vinebrooke
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Ács A, Komáromy A, Kovács AW, Fodor I, Somogyvári D, Győri J, Farkas A. Temperature related toxicity features of acute acetamiprid and thiacloprid exposure in Daphnia magna and implications on reproductive performance. Comp Biochem Physiol C Toxicol Pharmacol 2023; 268:109601. [PMID: 36906245 DOI: 10.1016/j.cbpc.2023.109601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/18/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
This study investigated the potential for elevated temperature to alter the toxicity of acetamiprid (ACE) and thiacloprid (Thia) in the ecotoxicity model Daphnia magna. The modulation of CYP450 monooxygenases (ECOD), ABC transporter activity (MXR) and incident cellular reactive oxygen species (ROS) overproduction was screened in premature daphnids following acute (48 h) exposure to sublethal concentrations of ACE and Thia (0.1-, 1.0 μM) at standard 21 °C and elevated 26 °C temperatures. Delayed outcomes of acute exposures were further evaluated based on the reproduction performance of daphnids monitored over 14 days of recovery. Exposures to ACE and Thia at 21o C elicited moderate induction of ECOD activity, pronounced inhibition of MXR activity and severe ROS overproduction in daphnids. In the high thermal regime, treatments resulted in significantly lower induction of ECOD activity and inhibition of MXR activity, suggesting a suppressed metabolism of neonicotinoids and less impaired membrane transport activity in daphnids. Elevated temperature on its own, caused a three-fold rise in ROS levels in control daphnids, while ROS overproduction upon neonicotinoid exposure was less accentuated. Acute exposures to ACE and Thia caused significant decreases also in the reproduction of daphnids, indicating delayed outcomes even at environmentally relevant concentrations. Both the cellular alterations in exposed daphnids and decreases in their reproductive output post exposures evidenced closely similar toxicity patterns and potentials for the two neonicotinoids. While elevated temperature elicited only a shift in baseline cellular alterations evoked by neonicotinoids, it significantly worsened the reproductive performance of daphnids following neonicotinoid exposures.
Collapse
Affiliation(s)
- András Ács
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - András Komáromy
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Attila W Kovács
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - István Fodor
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Dávid Somogyvári
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - János Győri
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Anna Farkas
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary.
| |
Collapse
|
11
|
López-Valcárcel ME, Del Arco A, Parra G. Sublethal exposure to agrochemicals impairs zooplankton ability to face future global change challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162020. [PMID: 36773907 DOI: 10.1016/j.scitotenv.2023.162020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Intensive agriculture is characterized by the application of multiple stressors that damage aquatic systems. Currently, ecotoxicological evaluations are considered insufficient to understand the environmental risks of stressor mixtures and their consequences in ecosystems. In addition, future global change scenarios could alter the predicted effects of agrochemicals in aquatic systems based on single exposures, making it necessary to consider the history of environmental disturbances that may result in vulnerability to subsequent environmental changes. The objectives of this study were to induce disturbance histories by exposure to sublethal glyphosate concentrations in microcosms and to assess whether this disturbance results in vulnerable populations using Daphnia magna as the target species. Populations were considered vulnerable if their sensitivity to new stressors (inanition, temperature and salinity) was higher than that of undisturbed populations. To induce disturbance history, microcosm aquatic communities (two cladocerans and one microalgae) were exposed to two glyphosate sublethal concentrations (below the No Observed Effect Concentration, NOEC values for D. magna, 0.1 and 1 mg L-1) in microcosms under controlled conditions in a culture chamber for 48 days. After this period, no significant differences were observed with respect to the control microcosms in the selected parameters (cladoceran abundance, microalgae cell abundance, microalgae colony formation, pH and dissolved oxygen). To test vulnerability, our target D. magna populations, which were previously exposed to different glyphosate treatments, were subjected to inanition, elevated temperature and salinity. Our results showed that D. magna populations with disturbance history performed worse in all the scenarios compared to the populations from undisturbed conditions. These results underscore the need to study how environmental disturbance history influences population responses to new and future stressors. Moreover, our findings raise concern regarding the sublethal effects of pesticides on aquatic populations.
Collapse
Affiliation(s)
- María Eugenia López-Valcárcel
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Campus de Las Lagunillas S/n, E-23071 Jaén, Spain.
| | - Ana Del Arco
- Limnological Institute, University of Konstanz, Mainaustraße 252, 78464 Konstanz, Egg, Germany.
| | - Gema Parra
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Campus de Las Lagunillas S/n, E-23071 Jaén, Spain.
| |
Collapse
|
12
|
Singh G, Singh R, George N, Singh G, Sushma, Kaur G, Kaur G, Singh H, Singh J. ‘Click’-synthesized PET based fluorescent sensor for Hg(II), Pb(II) and Cr(III) recognition: DFT and docking studies. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
13
|
Sharma P, Bano A, Yadav S, Singh SP. Biocatalytic Degradation of Emerging Micropollutants. Top Catal 2023. [DOI: 10.1007/s11244-023-01790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
14
|
de Souza CM, Massi KG, Rodgher S. Meta-analysis reveals negative responses of freshwater organisms to the interactive effects of pesticides and warming. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Huang A, Mangold-Döring A, Guan H, Boerwinkel MC, Belgers D, Focks A, Van den Brink PJ. The effect of temperature on toxicokinetics and the chronic toxicity of insecticides towards Gammarus pulex. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158886. [PMID: 36167137 DOI: 10.1016/j.scitotenv.2022.158886] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/30/2022] [Accepted: 09/16/2022] [Indexed: 05/14/2023]
Abstract
A comprehensive understanding of chemical toxicity and temperature interaction is essential to improve ecological risk assessment under climate change. However, there is only limited knowledge about the effect of temperature on the toxicity of chemicals. To fill this knowledge gap and to improve our mechanistic understanding of the influence of temperature, the current study explored toxicokinetics and the chronic toxicity effects of two insecticides, imidacloprid (IMI) and flupyradifurone (FPF), on Gammarus pulex at different temperatures (7-24 °C). In the toxicokinetics tests, organisms were exposed to IMI or FPF for 2 days and then transferred to clean water for 3 days of elimination at 7, 18, or 24 °C. In the chronic tests, organisms were exposed to the individual insecticides for 28 days at 7, 11, or 15 °C. Our research found that temperature impacted the toxicokinetics and the chronic toxicity of both IMI and FPF, while the extent of such impact differed for each insecticide. For IMI, the uptake rate and biotransformation rate increased with temperature, and mortality and food consumption inhibition was enhanced by temperature. While for FPF, the elimination rate increased with temperature at a higher rate than the increasing uptake rate, resulting in a smaller pronounced effect of temperature on mortality compared to IMI. In addition, the adverse effects of the insecticides on sublethal endpoints (food consumption and dry weight) were exacerbated by elevated temperatures. Our results highlight the importance of including temperature in the ecological risk assessment of insecticides in light of global climate change.
Collapse
Affiliation(s)
- Anna Huang
- Aquatic Ecology and Water Quality Management Group, Wageningen University, the Netherlands.
| | - Annika Mangold-Döring
- Aquatic Ecology and Water Quality Management Group, Wageningen University, the Netherlands
| | - Huitong Guan
- Aquatic Ecology and Water Quality Management Group, Wageningen University, the Netherlands
| | | | - Dick Belgers
- Wageningen Environmental Research, Wageningen, the Netherlands
| | - Andreas Focks
- Wageningen Environmental Research, Wageningen, the Netherlands; Institute of Mathematics, Osnabrück University, Germany
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University, the Netherlands; Wageningen Environmental Research, Wageningen, the Netherlands
| |
Collapse
|
16
|
Xing K, Zhang SM, Jia MQ, Zhao F. Response of wheat aphid to insecticides is influenced by the interaction between temperature amplitudes and insecticide characteristics. Front Physiol 2023; 14:1188917. [PMID: 37168226 PMCID: PMC10165072 DOI: 10.3389/fphys.2023.1188917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction: Climate change not only directly affects the phenotype of organisms but also indirectly impacts their physiology, for example, by altering their susceptibility to insecticides. Changed diurnal temperature fluctuations are an important aspect of climate change; ignoring the impact of these fluctuations on the biological effects of various chemical insecticides can lead to inaccurate assessments of insecticide risk under the current and future climate change scenarios. Methods: In this study, we studied effects of different temperature amplitudes (± 0, ± 6, ± 12°C) at the same mean temperature (22°C) on the life history traits of a globally distributed pest (Sitobion avenae, wheat aphid), in response to low doses of two insecticides. The first, imidacloprid shows a positive temperature coefficient; the second, beta-cypermethrin has a negative temperature coefficient. Results: Compared with the results seen with the constant temperature (22°C), a wide temperature amplitude (± 12°C) amplified the negative effects of imidacloprid on the survival, longevity, and fecundity of S. avenae, but significantly increased the early fecundity of the wheat aphid. Beta-cypermethrin positively impacted the wheat aphid at all temperature amplitudes studied. Specifically, beta-cypermethrin significantly increased the survival, longevity, and fecundity of S. avenae under medium temperature amplitude (± 6°C). There were no significant differences in the survival, longevity, and the early fecundity of S. avenae when it was treated with beta-cypermethrin at the wide temperature amplitude (± 12°C). However, the negative effect of beta-cypermethrin on the intrinsic rate of increase of S. avenae decreased gradually with the increase in temperature amplitude. Discussion: In conclusion, the response of S. avenae to positive temperature coefficient insecticides was markedly affected by temperature amplitude, while negative temperature coefficient insecticides increased the environmental adaptability of S. avenae to various temperature amplitudes. Our results highlight the importance of the integrated consideration of diurnal temperature fluctuations and different temperature coefficient insecticide interactions in climate-change-linked insecticide risk assessment; these results emphasize the need for a more fine-scale approach within the context of climate change and poison sensitivity.
Collapse
Affiliation(s)
- Kun Xing
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
- Shanxi Shouyang Dryland Agroecosystem National Observation and Research Station, Shouyang, China
| | - Shu-Ming Zhang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
- Shanxi Shouyang Dryland Agroecosystem National Observation and Research Station, Shouyang, China
| | - Mei-Qi Jia
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
- Shanxi Shouyang Dryland Agroecosystem National Observation and Research Station, Shouyang, China
| | - Fei Zhao
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
- Shanxi Shouyang Dryland Agroecosystem National Observation and Research Station, Shouyang, China
- *Correspondence: Fei Zhao,
| |
Collapse
|
17
|
Schneeweiss A, Juvigny-Khenafou NPD, Osakpolor S, Scharmüller A, Scheu S, Schreiner VC, Ashauer R, Escher BI, Leese F, Schäfer RB. Three perspectives on the prediction of chemical effects in ecosystems. GLOBAL CHANGE BIOLOGY 2023; 29:21-40. [PMID: 36131639 DOI: 10.1111/gcb.16438] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
The increasing production, use and emission of synthetic chemicals into the environment represents a major driver of global change. The large number of synthetic chemicals, limited knowledge on exposure patterns and effects in organisms and their interaction with other global change drivers hamper the prediction of effects in ecosystems. However, recent advances in biomolecular and computational methods are promising to improve our capacity for prediction. We delineate three idealised perspectives for the prediction of chemical effects: the suborganismal, organismal and ecological perspective, which are currently largely separated. Each of the outlined perspectives includes essential and complementary theories and tools for prediction but captures only part of the phenomenon of chemical effects. Links between the perspectives may foster predictive modelling of chemical effects in ecosystems and extrapolation between species. A major challenge for the linkage is the lack of data sets simultaneously covering different levels of biological organisation (here referred to as biological levels) as well as varying temporal and spatial scales. Synthesising the three perspectives, some central aspects and associated types of data seem particularly necessary to improve prediction. First, suborganism- and organism-level responses to chemicals need to be recorded and tested for relationships with chemical groups and organism traits. Second, metrics that are measurable at many biological levels, such as energy, need to be scrutinised for their potential to integrate across levels. Third, experimental data on the simultaneous response over multiple biological levels and spatiotemporal scales are required. These could be collected in nested and interconnected micro- and mesocosm experiments. Lastly, prioritisation of processes involved in the prediction framework needs to find a balance between simplification and capturing the essential complexity of a system. For example, in some cases, eco-evolutionary dynamics and interactions may need stronger consideration. Prediction needs to move from a static to a real-world eco-evolutionary view.
Collapse
Affiliation(s)
- Anke Schneeweiss
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | | | - Stephen Osakpolor
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | - Andreas Scharmüller
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
- Institut Terre et Environnement de Strasbourg (ITES), UMR 7063, CNRS-Université de Strasbourg-ENGEES, Strasbourg, France
| | - Sebastian Scheu
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | - Verena C Schreiner
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | - Roman Ashauer
- Syngenta Crop Protection AG, Basel, Switzerland
- Department of Environment and Geography, University of York, York, UK
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Environmental Toxicology, Center for Applied Geoscience, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Florian Leese
- Aquatic Ecosystem Research, University of Duisburg-Essen, Essen, Germany
| | - Ralf B Schäfer
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| |
Collapse
|
18
|
Pillet M, Evensen KG, Marengo M, Lejeune P, Poynton HC, Thomas H. First insight into the development of a new transcriptomic tool in French Corsica harbors. MARINE POLLUTION BULLETIN 2022; 184:114173. [PMID: 36191473 DOI: 10.1016/j.marpolbul.2022.114173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Coastal harbor areas are subjected to a myriad of contamination sources with largely unknown effects. Such complex chemical mixtures are difficult to monitor but transcriptomics is a promising approach for such biomonitoring. The present study was designed to verify the use of the Coastal Biosensor for Endocrine Disruption (C-BED) assay, previously developed to detect emerging contaminants and their effects on Mytilus edulis, on another mussel species, Mytilus galloprovincialis. Mussels were caged on St-Florent harbor (contaminated) and on Revellata Bay (reference) for three months. A classical multibiomarkers approach was coupled to the C-BED assay. The results of both approaches were analysed using the Integrated Biomarkers Responses (IBR) and compared to each other. Both approaches demonstrated a higher contamination and probable endocrine disruption of mussels in St-Florent, compared to the reference station. These results confirm that the C-BED assay provides an innovative method to expand our ability to detect emerging contaminants.
Collapse
Affiliation(s)
- Marion Pillet
- STAtion de REcherches Sous-marines et Océanographiques, Punta Revellata, 20260 Calvi, France; LIttoral ENvironnement et Sociétés (UMR7266 CNRS), La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France.
| | - K Garrett Evensen
- School for the Environment, University of Massachusetts, 100 William T. Morrissey Blvd., Boston, MA 02125, United States
| | - Michel Marengo
- STAtion de REcherches Sous-marines et Océanographiques, Punta Revellata, 20260 Calvi, France
| | - Pierre Lejeune
- STAtion de REcherches Sous-marines et Océanographiques, Punta Revellata, 20260 Calvi, France
| | - Helen C Poynton
- School for the Environment, University of Massachusetts, 100 William T. Morrissey Blvd., Boston, MA 02125, United States
| | - Hélène Thomas
- LIttoral ENvironnement et Sociétés (UMR7266 CNRS), La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| |
Collapse
|
19
|
Burtt JJ, Leblanc J, Randhawa K, Ivanova A, Rudd MA, Wilkins R, Azzam EI, Hecker M, Horemans N, Vandenhove H, Adam-Guillermin C, Armant O, Klokov D, Audouze K, Kaiser JC, Moertl S, Lumniczky K, Tanaka IB, Yamada Y, Hamada N, Al-Nabulsi I, Preston J, Bouffler S, Applegate K, Cool D, Beaton D, Tollefsen KE, Garnier-Laplace J, Laurier D, Chauhan V. Radiation Adverse Outcome Pathways (AOPs) are on the Horizon: Advancing Radiation Protection through an International Horizon-Style Exercisewe. Int J Radiat Biol 2022; 98:1763-1776. [PMID: 36067511 DOI: 10.1080/09553002.2022.2121439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Purpose: The Adverse Outcome Pathway (AOP) framework, a systematic tool that can link available mechanistic data with phenotypic outcomes of relevance to regulatory decision-making, is being explored in areas related to radiation risk assessment. To examine the challenges including the use of AOPs to support the radiation protection community, an international horizon-style exercise (HSE) was initiated through the Organisation for Economic Co-operation and Development Nuclear Energy Agency High-Level Group on Low Dose Research Radiation/Chemical AOP Joint Topical Group (JTG). The objective of the HSE was to facilitate the collection of ideas from a range of experts, to short-list a set of priority research questions that could, if answered, improve the description of the radiation dose-response relationship for low dose/dose-rate exposures, as well as reduce uncertainties in estimating the risk of developing adverse health outcomes following such exposures.Materials and methods: The HSE was guided by an international steering committee (SC) of radiation risk experts. In the first phase, research questions were solicited on areas that can be supported by the AOP framework, or challenges on the use of AOPs in radiation risk assessment. In the second phase, questions received were refined and sorted by the SC using a best-worst scaling (BWS) method. During a virtual 3-day workshop, the list of questions was further narrowed. In the third phase, an international survey of the broader radiation protection community led to an orderly ranking of the top questions.Results: Of the 271 questions solicited, 254 were accepted and categorized into 9 themes. These were further refined to the top 25 prioritized questions. Among these, the higher ranked questions will be considered as 'important' to drive future initiatives in the low dose radiation protection community. These included questions on the ability of AOPs to delineate responses across different levels of biological organization, and how AOPs could be applied to address research questions on radiation quality, doses or dose-rates, exposure time patterns and deliveries, and uncertainties in low dose/dose-rate effects. A better understanding of these concepts is required to support the use of the AOP framework in radiation risk assessment.Conclusion: Through dissemination of these results and considerations on next steps, the JTG will address select priority questions to advance the development and use of AOPs in the radiation protection community. The major themes observed will be discussed in the context of their relevance to areas of research that support the system of radiation protection.
Collapse
Affiliation(s)
- Julie J Burtt
- Directorate of Environmental and Radiation Protection and Assessment, Canadian Nuclear Safety Commission, Ottawa, Canada
| | - Julie Leblanc
- Directorate of Environmental and Radiation Protection and Assessment, Canadian Nuclear Safety Commission, Ottawa, Canada
| | - Kristi Randhawa
- Directorate of Environmental and Radiation Protection and Assessment, Canadian Nuclear Safety Commission, Ottawa, Canada
| | - Addie Ivanova
- Directorate of Environmental and Radiation Protection and Assessment, Canadian Nuclear Safety Commission, Ottawa, Canada
| | | | - Ruth Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Canada
| | - Edouard I Azzam
- Isotopes, Radiobiology and Environment Directorate, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
| | - Markus Hecker
- School of Environment and Sustainability, University of Saskatchewan, Saskatchewan, Canada
| | - Nele Horemans
- Biosphere Impact Studies, Belgian Nuclear Research Center (SCK CEN), Boeretang 200, 2400 Mol, Belgium
| | - Hildegarde Vandenhove
- Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium
| | - Christelle Adam-Guillermin
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Olivier Armant
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Dmitry Klokov
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Karine Audouze
- Université Paris Cité, T3S, Inserm UMRS 1124, Paris, France
| | - Jan Christian Kaiser
- Helmholtz Zentrum Munchen, Deutsches Forschungszentrum fur Gesundheit und Umwelt (GMBH) Neuherberg, Germany
| | - Simone Moertl
- Federal Office for Radiation Protection, 85764 Neuherberg, Germany
| | - Katalin Lumniczky
- National Public Health Centre, Unit of Radiation Medicine, Budapest, Albert Florian u. 2-6, 1097, Hungary
| | - Ignacia B Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7, Ienomae, Obuchi, Rokkasho, Kamikita, Aomori, 039-3212, Japan
| | - Yutaka Yamada
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan
| | - Isaf Al-Nabulsi
- US Department of Energy, Office of Domestic and International Health Studies, Office of Health and Safety, Office of Environment, Health Safety and Security, Washington, DC. USA
| | - Julian Preston
- Office of Air and Radiation, Radiation Protection Division, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Simon Bouffler
- UK Health Security Agency, Chilton, Didcot, Oxfordshire, UK
| | - Kimberly Applegate
- University of Kentucky College of Medicine, Department of Radiology, Lexington, KY, USA (retired)
| | | | - Danielle Beaton
- Isotopes, Radiobiology and Environment Directorate, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Økernveien 94, N-0579, Oslo, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), PO box 5003, N-1432 Ås, Norway
| | - Jacqueline Garnier-Laplace
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France.,On secondment from IRSN to the Committee on Radiological Protection and Public Health's secretariat, France
| | - Dominique Laurier
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Canada
| |
Collapse
|
20
|
Spurgeon D, Wilkinson H, Civil W, Hutt L, Armenise E, Kieboom N, Sims K, Besien T. Worst-case ranking of organic chemicals detected in groundwaters and surface waters in England. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155101. [PMID: 35461935 DOI: 10.1016/j.scitotenv.2022.155101] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
The Environment Agency has been using Gas Chromatography-Mass Spectrometry (GC-MS) and Accurate-mass Quadrupole Time-of-Flight (Q-TOF) / Liquid Chromatography-Mass Spectrometry (LC-MS) target screen analysis to semi-quantitatively measure organic substances in groundwater and surface water since 2009 for GC-MS and 2014 for LC-MS. Here we use this data to generate a worst-case "risk" ranking of the detected substances. Three sets of hazard values relating to effects on aquatic organisms, namely Water Framework Directive EQSs, NORMAN Network PNECs (hereafter NORMAN PNEC) and chronic Species Sensitivity Distribution (SSD) HC50s from Posthuma et al., (2019) were used for the assessment. These hazard values were compared to the highest measured concentration for each chemical to generate a worst-case hazard quotient (HQ). Calculated HQs for each metric were ranked, averaged and multiplied by rank for detection frequency to generate an overall ordering based on HQ and occurrence. This worst-case approach was then used to generate ranking lists for GC-MS and LC-MS detected substances in groundwater and surface water. Pesticides in the top 30 overall ranked list included more legacy pesticides in groundwater and more current use actives in surface water. Specific uses were linked to some high rankings (e.g. rotenone for invasive species control). A number of industrial and plastics associated chemicals were ranked highly in the groundwater dataset, while more personal care products and pharmaceuticals were highly ranked in surface waters. Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) compounds were commonly highly ranked in both environmental compartments. The approach confirmed high rankings for some substance (e.g. selected pesticides) from previous prioritization exercises, but also identified novel substance for consideration (e.g. some PFAS compounds and pharmaceuticals). Overall our approach provided a simple approach using readily accessible data to identify substances for further and more detailed assessment.
Collapse
Affiliation(s)
- David Spurgeon
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxon OX10 8BB, UK.
| | - Helen Wilkinson
- Environment Agency, Horizon House, Deanery Road, Bristol BS1 5AH, UK.
| | - Wayne Civil
- Environment Agency, Starcross Laboratory, Staplake Mount, Starcross, Devon EX6 8FD, UK.
| | - Lorraine Hutt
- Environment Agency, Horizon House, Deanery Road, Bristol BS1 5AH, UK.
| | - Elena Armenise
- Environment Agency, Horizon House, Deanery Road, Bristol BS1 5AH, UK; Environment Agency, Starcross Laboratory, Staplake Mount, Starcross, Devon EX6 8FD, UK
| | - Natalie Kieboom
- Environment Agency, Horizon House, Deanery Road, Bristol BS1 5AH, UK.
| | - Kerry Sims
- Environment Agency, Horizon House, Deanery Road, Bristol BS1 5AH, UK.
| | - Tim Besien
- Environment Agency, Horizon House, Deanery Road, Bristol BS1 5AH, UK.
| |
Collapse
|
21
|
Spurgeon D, Wilkinson H, Civil W, Hutt L, Armenise E, Kieboom N, Sims K, Besien T. Proportional contributions to organic chemical mixture effects in groundwater and surface water. WATER RESEARCH 2022; 220:118641. [PMID: 35635919 DOI: 10.1016/j.watres.2022.118641] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/08/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Semi-quantitative GC-MS and LC-MS measurements of organic chemicals in groundwater and surface waters were used to assess the overall magnitude and contribution of the most important substances to calculated mixture hazard. Here we use GC-MS and LC-MS measurements taken from two separate national monitoring programs for groundwater and surface water in England, in combination with chronic species sensitivity distribution (SSD) HC50 values published by Posthuma et al. (2019, Environ. Toxicol. Chem, 38, 905-917) to calculate individual substance hazard quotients and mixture effects using a concentration addition approach. The mixture analysis indicated that, as anticipated, there was an increased hazard from the presence of a cocktail of substances at sites compared to the hazard for any single chemical. The magnitude of the difference between the hazard attributed to the most important chemical and the overall mixture effect, however, was not large. Thus, the most toxic chemical contributed ≥ 20% of the calculated mixture effect in >99% of all measured groundwater and surface water samples. On the basis of this analysis, a 5 fold assessment factor placed on the risk identified for any single chemical would offer a high degree of in cases where implementation of a full mixture analysis was not possible. This finding is consistent with previous work that has assessed chemical mixture effects within field monitoring programs and as such provides essential underpinning for future policy and management decisions on how to effectively and proportionately manage mixture risks.
Collapse
Affiliation(s)
- David Spurgeon
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxon OX10 8BB, UK
| | - Helen Wilkinson
- Environment Agency, Horizon House, Deanery Road, Bristol BS1 5AH, UK
| | - Wayne Civil
- Environment Agency, Starcross Laboratory, Staplake Mount, Starcross, Devon EX6 8FD, UK
| | - Lorraine Hutt
- Environment Agency, Horizon House, Deanery Road, Bristol BS1 5AH, UK
| | - Elena Armenise
- Environment Agency, Horizon House, Deanery Road, Bristol BS1 5AH, UK
| | - Natalie Kieboom
- Environment Agency, Horizon House, Deanery Road, Bristol BS1 5AH, UK
| | - Kerry Sims
- Environment Agency, Horizon House, Deanery Road, Bristol BS1 5AH, UK
| | - Tim Besien
- Environment Agency, Horizon House, Deanery Road, Bristol BS1 5AH, UK
| |
Collapse
|
22
|
Verheyen J, Delnat V, Theys C. Daily temperature fluctuations can magnify the toxicity of pesticides. CURRENT OPINION IN INSECT SCIENCE 2022; 51:100919. [PMID: 35390505 DOI: 10.1016/j.cois.2022.100919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
We review the effect of daily temperature fluctuations (DTF), a key thermal factor predicted to increase under climate change, on pesticide toxicity. The effect of DTF on pesticide toxicity may be explained by: (i) a DTF-specific mechanism (caused by Jensen's inequality) and (ii) general mechanisms underlying an increased pesticide toxicity at both higher (increased energetic costs, pesticide uptake and metabolic conversion) and lower constant temperatures (lower organismal metabolic and associated elimination rates, increased sodium channel modulated nervous system vulnerability and energetic costs). Furthermore, DTF may enhance pesticide-induced reductions in heat tolerance due to stronger effects on oxygen demand (increase) and oxygen supply (decrease). Our literature review showed considerable support that DTF increase the negative impact of pesticides on insects, especially in terms of decreased survival. Therefore, we suggest that considering DTF in ecotoxicological studies may be of great importance to better protect biodiversity in our warming world.
Collapse
Affiliation(s)
- Julie Verheyen
- Evolutionary Stress Ecology and Ecotoxicology, Deberiotstraat 32, 3000 Leuven, Belgium.
| | - Vienna Delnat
- Evolutionary Stress Ecology and Ecotoxicology, Deberiotstraat 32, 3000 Leuven, Belgium
| | - Charlotte Theys
- Evolutionary Stress Ecology and Ecotoxicology, Deberiotstraat 32, 3000 Leuven, Belgium
| |
Collapse
|
23
|
Mentzel S, Grung M, Tollefsen KE, Stenrød M, Petersen K, Moe SJ. Development of a Bayesian network for probabilistic risk assessment of pesticides. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:1072-1087. [PMID: 34618406 DOI: 10.1002/ieam.4533] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Conventional environmental risk assessment of chemicals is based on a calculated risk quotient, representing the ratio of exposure to effects of the chemical, in combination with assessment factors to account for uncertainty. Probabilistic risk assessment approaches can offer more transparency by using probability distributions for exposure and/or effects to account for variability and uncertainty. In this study, a probabilistic approach using Bayesian network modeling is explored as an alternative to traditional risk calculation. Bayesian networks can serve as meta-models that link information from several sources and offer a transparent way of incorporating the required characterization of uncertainty for environmental risk assessment. To this end, a Bayesian network has been developed and parameterized for the pesticides azoxystrobin, metribuzin, and imidacloprid. We illustrate the development from deterministic (traditional) risk calculation, via intermediate versions, to fully probabilistic risk characterization using azoxystrobin as an example. We also demonstrate the seasonal risk calculation for the three pesticides. Integr Environ Assess Manag 2022;18:1072-1087. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | - Merete Grung
- Norwegian Institute for Water Research, Oslo, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research, Oslo, Norway
- Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Marianne Stenrød
- Division for Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | | | | |
Collapse
|
24
|
Undeman E, Rasmusson K, Kokorite I, Leppänen MT, Larsen MM, Pazdro K, Siedlewicz G. Micropollutants in urban wastewater: large-scale emission estimates and analysis of measured concentrations in the Baltic Sea catchment. MARINE POLLUTION BULLETIN 2022; 178:113559. [PMID: 35364370 DOI: 10.1016/j.marpolbul.2022.113559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/16/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Wastewater treatment plants (WWTPs) transmit many chemical contaminants to aquatic environments. Quantitative data on micropollutant emissions via WWTPs are needed for environmental risk assessments and evaluation of mitigation measures. This study compiled published data on substances analysed in effluents from WWTPs in the Baltic Sea region, assessed country related differences in the data sets and estimated micropollutant inputs to the Baltic Sea catchment. Concentration data were found for 1090 substances analysed at 650 WWTPs. Heterogeneity and low number of data points for most substances hindered adequate comparisons of country specific concentrations. Emission estimates were made for the 280 substances analysed in at least five WWTPs in years 2010 to 2019. For selected substances, mass loads were compared to previously published estimations. The study provides data useful for national and Baltic Sea-scale pressure analysis and risk assessments. However, it also highlights the need for broad scope monitoring of micropollutants in wastewater.
Collapse
Affiliation(s)
- Emma Undeman
- Baltic Sea Centre, Stockholm University, SE-106 91 Stockholm, Sweden.
| | | | - Ilga Kokorite
- Latvian Environmental, Geology and Meteorology Centre, Maskavas iela 165, LV-1016 Riga, Latvia; Institute of Biology, University of Latvia, Jelgavas iela 1, LV-1004 Riga, Latvia
| | - Matti T Leppänen
- Laboratory Centre, Finnish Environment Institute, FI-40500 Jyväskylä, Finland
| | - Martin M Larsen
- Institute of EcoScience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Ksenia Pazdro
- Institute of Oceanology Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Grzegorz Siedlewicz
- Institute of Oceanology Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
| |
Collapse
|
25
|
Chai N, Mao C. Population management in an urban center using the dynamic integrated solution for an adequate atmospheric environmental quality. ENVIRONMENTAL RESEARCH 2022; 205:112482. [PMID: 34871597 DOI: 10.1016/j.envres.2021.112482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/26/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
Accelerated growth in urban populations has become a powerful force for human development, particularly in developed countries. Metropolitan cities are centers for technical and economic advancement, but air pollution, overflowing of water, and other climate effects still pose significant problems related to nature, climate, and the environment. Cities are vulnerable to increasingly dense, diverse, and interdependent urban systems. A single extreme occurrence can contribute to a systemic break-up of a city's infrastructure, often like dominoes. In this paper, a dynamic integration-assisted population management solution (DI-PMS) has been proposed. DI-PMS recognizes that the latest facilities' optimal usage of knowledge and technologies is needed to increase urbanization. They are one of the critical priorities of the weather community. Such integrated urban weather, environmental, and climate services will help cities address dangers including storms, floods, heatwaves, and air pollution, especially in climate change. The goal is to create urban facilities that satisfy communities' unique needs by high-resolution forecasting and pollution reduction climate services, which allow the construction of durable, robust, and thriving cities that support the Sustainable Development Goals. Several recent international surveys to explore these topics have been undertaken. DI-PMS gives a brief description of urban hydrometeorological, climate and air pollution activities, outlines the new urban integrated weather and environmental services concept, and emphasizes the need for science to be implemented.
Collapse
Affiliation(s)
- Ning Chai
- School of Public Administration and Human Geography, Hunan University of Technology and Business, Changsha, 410205, China; School of Architecture and Art Design, Hunan University of Science and Technology, XiangTan, 411201, China.
| | - Chun Mao
- Cultural Centre, University of Malaya, Kuala Lumpur, 50603, Malaysia; School of Architecture and Art Design, Hunan University of Science and Technology, XiangTan, 411201, China.
| |
Collapse
|
26
|
Townhill BL, Reppas-Chrysovitsinos E, Sühring R, Halsall CJ, Mengo E, Sanders T, Dähnke K, Crabeck O, Kaiser J, Birchenough SNR. Pollution in the Arctic Ocean: An overview of multiple pressures and implications for ecosystem services. AMBIO 2022; 51:471-483. [PMID: 34874530 PMCID: PMC8692579 DOI: 10.1007/s13280-021-01657-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/30/2021] [Accepted: 10/19/2021] [Indexed: 05/25/2023]
Abstract
The Arctic is undergoing unprecedented change. Observations and models demonstrate significant perturbations to the physical and biological systems. Arctic species and ecosystems, particularly in the marine environment, are subject to a wide range of pressures from human activities, including exposure to a complex mixture of pollutants, climate change and fishing activity. These pressures affect the ecosystem services that the Arctic provides. Current international policies are attempting to support sustainable exploitation of Arctic resources with a view to balancing human wellbeing and environmental protection. However, assessments of the potential combined impacts of human activities are limited by data, particularly related to pollutants, a limited understanding of physical and biological processes, and single policies that are limited to ecosystem-level actions. This manuscript considers how, when combined, a suite of existing tools can be used to assess the impacts of pollutants in combination with other anthropogenic pressures on Arctic ecosystems, and on the services that these ecosystems provide. Recommendations are made for the advancement of targeted Arctic research to inform environmental practices and regulatory decisions.
Collapse
Affiliation(s)
- Bryony L. Townhill
- The Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, Suffolk, NR33 0HT UK
| | | | - Roxana Sühring
- Department of Environmental Science, Stockholm University, 106 91, Stockholm, Sweden
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3 Canada
| | - Crispin J. Halsall
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ UK
| | - Elena Mengo
- The Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, Suffolk, NR33 0HT UK
| | - Tina Sanders
- Helmholtz-Zentrum Hereon, Institute for Carbon Cycles, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Kirsten Dähnke
- Helmholtz-Zentrum Hereon, Institute for Carbon Cycles, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Odile Crabeck
- Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ UK
| | - Jan Kaiser
- Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ UK
| | - Silvana N. R. Birchenough
- The Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, Suffolk, NR33 0HT UK
| |
Collapse
|
27
|
Recent nanomaterials development and application in diffusive gradients in thin-film devices. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Schuijt LM, Peng FJ, van den Berg SJP, Dingemans MML, Van den Brink PJ. (Eco)toxicological tests for assessing impacts of chemical stress to aquatic ecosystems: Facts, challenges, and future. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148776. [PMID: 34328937 DOI: 10.1016/j.scitotenv.2021.148776] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Monitoring of chemicals in the aquatic environment by chemical analysis alone cannot completely assess and predict the effects of chemicals on aquatic species and ecosystems. This is primarily because of the increasing number of (unknown) chemical stressors and mixture effects present in the environment. In addition, the ability of ecological indices to identify underlying stressors causing negative ecological effects is limited. Therefore, additional complementary methods are needed that can address the biological effects in a direct manner and provide a link to chemical exposure, i.e. (eco)toxicological tests. (Eco)toxicological tests are defined as test systems that expose biological components (cells, individuals, populations, communities) to (environmental mixtures of) chemicals to register biological effects. These tests measure responses at the sub-organismal (biomarkers and in vitro bioassays), whole-organismal, population, or community level. We performed a literature search to obtain a state-of-the-art overview of ecotoxicological tests available for assessing impacts of chemicals to aquatic biota and to reveal datagaps. In total, we included 509 biomarkers, 207 in vitro bioassays, 422 tests measuring biological effects at the whole-organismal level, and 78 tests at the population- community- and ecosystem-level. Tests at the whole-organismal level and biomarkers were most abundant for invertebrates and fish, whilst in vitro bioassays are mostly based on mammalian cell lines. Tests at the community- and ecosystem-level were almost missing for organisms other than microorganisms and algae. In addition, we provide an overview of the various extrapolation challenges faced in using data from these tests and suggest some forward looking perspectives. Although extrapolating the measured responses to relevant protection goals remains challenging, the combination of ecotoxicological experiments and models is key for a more comprehensive assessment of the effects of chemical stressors to aquatic ecosystems.
Collapse
Affiliation(s)
- Lara M Schuijt
- Aquatic Ecology and Water Quality Management group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands.
| | - Feng-Jiao Peng
- Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Sanne J P van den Berg
- Aquatic Ecology and Water Quality Management group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Milou M L Dingemans
- KWR Water Research Institute, Nieuwegein, the Netherlands; Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
29
|
van Dijk J, Leopold A, Flerlage H, van Wezel A, Seiler T, Enrici M, Bloor MC. The EU Green Deal's ambition for a toxic-free environment: Filling the gap for science-based policymaking. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2021; 17:1105-1113. [PMID: 33860613 PMCID: PMC8596606 DOI: 10.1002/ieam.4429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/10/2021] [Accepted: 04/13/2021] [Indexed: 05/30/2023]
Abstract
Around the world, many ambitious environmental conventions and regulations have been implemented over recent decades. Despite this, the environment is still deteriorating. An increase in the volume and diversity of chemicals is one of the main drivers of this deterioration, of which biodiversity loss is a telling indicator. In response to this situation, in October 2020, a chemicals strategy for sustainability (CSS) was published in the EU. The CSS is the first regional framework aiming to address chemical pollution in a holistic manner. The CSS covers the complete lifecycle of a chemical, including the design of better substances and remediation options, to remove chemicals from the environment. The strategy contains terms, such as a "toxic-free environment," for which no clear definition exists, potentially hampering the implementation of the CSS. In this paper, a definition for a "toxic-free environment" is proposed on the basis of a survey and a discussion held at the 2020 SETAC Europe Annual Meeting. In addition, key issues that are absent from the CSS but are considered to be key for the realization of a toxic-free environment are identified. To achieve the policy goals, it is recommended to align the definition of risk across the different chemical legislations, to establish a platform for open data and data sharing, and to increase the utility and use of novel scientific findings in policymaking, through the development of a strong science to regulation feedback mechanism and vice versa. The paper concludes that environmental scientists have the tools to address the key challenges presented in the CSS. However, an extra step is needed by both policymakers and scientists to develop methods, processes and tools, to increase the robustness and transparency of deliberation processes, and the utility of science. Integr Environ Assess Manag 2021;17:1105-1113. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Joanke van Dijk
- Copernicus Institute of Sustainable DevelopmentUtrecht UniversityUtrechtThe Netherlands
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Annegaaike Leopold
- Calidris Environment BVWarnsveldThe Netherlands
- EGESTA LabUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Hannah Flerlage
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Annemarie van Wezel
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | | | | | - Michelle C. Bloor
- School of Interdisciplinary Studies, University of Glasgow, Dumfries CampusDumfriesScotlandUK
| |
Collapse
|
30
|
Brans KI, Almeida RA, Fajgenblat M. Genetic differentiation in pesticide resistance between urban and rural populations of a nontarget freshwater keystone interactor, Daphnia magna. Evol Appl 2021; 14:2541-2552. [PMID: 34745342 PMCID: PMC8549624 DOI: 10.1111/eva.13293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/01/2021] [Accepted: 08/03/2021] [Indexed: 01/02/2023] Open
Abstract
There is growing evidence that urbanization drives adaptive evolution in response to thermal gradients. One such example is documented in the water flea Daphnia magna. However, organisms residing in urban lentic ecosystems are increasingly exposed to chemical pollutants such as pesticides through run-off and aerial transportation. The extent to which urbanization drives the evolution of pesticide resistance in aquatic organisms and whether this is impacted by warming and thermal adaptation remains limitedly studied. We performed a common garden rearing experiment using multiple clonal lineages originating from five replicated urban and rural D. magna populations, in which we implemented an acute toxicity test exposing neonates (<24h) to either a solvent control or the organophosphate pesticide chlorpyrifos. Pesticide exposures were performed at two temperatures (20°C vs. 24°C) to test for temperature-associated differences in urbanization-driven evolved pesticide resistance. We identified a strong overall effect of pesticide exposure on Daphnia survival probability (-72.8 percentage points). However, urban Daphnia genotypes showed higher survival probabilities compared to rural ones in the presence of chlorpyrifos (+29.7 percentage points). Our experiment did not reveal strong temperature x pesticide or temperature x pesticide x urbanization background effects on survival probability. The here observed evolution of resistance to an organophosphate pesticide is a first indication Daphnia likely also adapts to pesticide pollution in urban areas. Increased pesticide resistance could facilitate their population persistence in urban ponds, and feed back to ecosystem functions, such as top-down control of algae. In addition, adaptive evolution of nontarget organisms to pest control strategies and occupational pesticide use may modulate how pesticide applications affect genetic and species diversity in urban areas.
Collapse
Affiliation(s)
- Kristien I. Brans
- Laboratory of Aquatic Ecology, Evolution, and ConservationKU LeuvenLeuvenBelgium
| | - Rafaela A. Almeida
- Laboratory of Aquatic Ecology, Evolution, and ConservationKU LeuvenLeuvenBelgium
| | - Maxime Fajgenblat
- Laboratory of Aquatic Ecology, Evolution, and ConservationKU LeuvenLeuvenBelgium
| |
Collapse
|
31
|
Olisah C, Adams JB, Rubidge G. The state of persistent organic pollutants in South African estuaries: A review of environmental exposure and sources. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 219:112316. [PMID: 33993093 DOI: 10.1016/j.ecoenv.2021.112316] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
The long-term health of many South African estuaries is impacted by pollutants entering these systems through industrial and agricultural runoff, sewage outfalls, contaminated storm water drainage, flows from informal settlements, and plastic materials in marine debris. Uncontrolled inputs combined with poor environmental management often result in elevated levels of persistent organic pollutants (POPs) in affected estuaries. Data on POPs research from 1960 to 2020 were analysed in terms of their sources, environmental investigations, and health implications. The outcome showed polychlorinated biphenyls (PCBs) and per- and poly-fluoroalkyl sulphonates (PFASs) to exceed the US EPA health advisory levels for drinking water. Concentration of organochlorine pesticides (OCPs) in water were below the WHO limits, while those in fish tissues from most estuaries were found to be below the US FDA limits. Although environmental compartments in some estuaries (e.g. Rooiels and uMngeni estuaries) seem to be less contaminated relative to other marine systems around the world, many others were polluted and critically modified (e.g. Durban Bay, Swartkops, Sundays, and Buffalo systems). Due to inconsistent monitoring methods coupled with limited data availability, temporal trends were unclear. Of the 290 estuaries in South Africa, 65 were prioritised and recommended for POPs evaluation based on their pollution sources, and a monitoring strategy was defined in terms of sampling. Government policies to curb marine pollution need to be enforced to prevent chronic contamination that leads to water quality deterioration and loss of ecosystem services.
Collapse
Affiliation(s)
- Chijioke Olisah
- Department of Botany and the Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth 6031, South Africa; DSI/NRF Research Chair in Shallow Water Ecosystem, Nelson Mandela University, Port Elizabeth 6031, South Africa; Department of Chemistry, Nelson Mandela University, Port Elizabeth 6031, South Africa.
| | - Janine B Adams
- Department of Botany and the Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth 6031, South Africa; DSI/NRF Research Chair in Shallow Water Ecosystem, Nelson Mandela University, Port Elizabeth 6031, South Africa
| | - Gletwyn Rubidge
- Department of Chemistry, Nelson Mandela University, Port Elizabeth 6031, South Africa
| |
Collapse
|
32
|
Identification of Antibiotics in Surface-Groundwater. A Tool towards the Ecopharmacovigilance Approach: A Portuguese Case-Study. Antibiotics (Basel) 2021; 10:antibiotics10080888. [PMID: 34438939 PMCID: PMC8388677 DOI: 10.3390/antibiotics10080888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 11/29/2022] Open
Abstract
Environmental monitoring, particularly of water, is crucial to screen and preselect potential hazardous substances for policy guidance and risk minimisation strategies. In Portugal, extensive data are missing. This work aimed to perform a qualitative survey of antibiotics in surface- groundwater, reflecting demographic, spatial, consumption and drug profiles during an observational period of three years. A passive sampling technique (POCIS) and high-resolution chromatographic system were used to monitor and analyse the antibiotics. The most frequently detected antibiotics were enrofloxacin/ciprofloxacin and tetracycline in surface-groundwater, while clarithromycin/erythromycin and sulfamethoxazole were identified only in surface water. The detection of enzyme inhibitors (e.g., tazobactam/cilastatin) used exclusively in hospitals and abacavir, a specific human medicine was also noteworthy. North (Guimarães, Santo Tirso and Porto) and South (Faro, Olhão and Portimão) Portugal were the regions with the most significant frequency of substances in surface water. The relatively higher detection downstream of the effluent discharge points compared with a low detection upstream could be attributed to a low efficiency in urban wastewater treatment plants and an increased agricultural pressure. This screening approach is essential to identify substances in order to perform future quantitative risk assessment and establishing water quality standards. The greatest challenge of this survey data is to promote an ecopharmacovigilance framework, implement measures to avoid misuse/overuse of antibiotics and slow down emission and antibiotic resistance.
Collapse
|
33
|
Tarazona D, Tarazona G, Tarazona JV. A Simplified Population-Level Landscape Model Identifying Ecological Risk Drivers of Pesticide Applications, Part One: Case Study for Large Herbivorous Mammals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:7720. [PMID: 34360014 PMCID: PMC8345457 DOI: 10.3390/ijerph18157720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022]
Abstract
Environmental risk assessment is a key process for the authorization of pesticides, and is subjected to continuous challenges and updates. Current approaches are based on standard scenarios and independent substance-crop assessments. This arrangement does not address the complexity of agricultural ecosystems with mammals feeding on different crops. This work presents a simplified model for regulatory use addressing landscape variability, co-exposure to several pesticides, and predicting the effect on population abundance. The focus is on terrestrial vertebrates and the aim is the identification of the key risk drivers impacting on mid-term population dynamics. The model is parameterized for EU assessments according to the European Food Safety Authority (EFSA) Guidance Document, but can be adapted to other regulatory schemes. The conceptual approach includes two modules: (a) the species population dynamics, and (b) the population impact of pesticide exposure. Population dynamics is modelled through daily survival and seasonal reproductions rates; which are modified in case of pesticide exposure. All variables, parameters, and functions can be modified. The model has been calibrated with ecological data for wild rabbits and brown hares and tested for two herbicides, glyphosate and bromoxynil, using validated toxicity data extracted from EFSA assessments. Results demonstrate that the information available for a regulatory assessment, according to current EU information requirements, is sufficient for predicting the impact and possible consequences at population dynamic levels. The model confirms that agroecological parameters play a key role when assessing the effect of pesticide exposure on population abundance. The integration of laboratory toxicity studies with this simplified landscape model allows for the identification of conditions leading to population vulnerability or resilience. An Annex includes a detailed assessment of the model characteristics according to the EFSA scheme on Good Modelling Practice.
Collapse
Affiliation(s)
| | | | - Jose V. Tarazona
- Scientific Committee and Emerging Risks Unit, European Food Safety Authority, 43126 Parma, Italy
| |
Collapse
|
34
|
An Assessment of the Relationship between Defence Expenditure and Sustainable Development in the Baltic Countries. SUSTAINABILITY 2021. [DOI: 10.3390/su13126916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As geopolitical instability increases and new threats emerge, a number of countries are increasing their respective allocations for defence expenditure in order to take greater responsibility for their citizens in terms of defending and protecting their values and way of life. Small states such as Lithuania, Latvia, and Estonia must evaluate certain economic, political, and strategic factors when increasing their respective defence expenditure. While they do tend to increase expenditure on national defence matters, budgetary constraints often force them to cut funding in some civilian domains or to increase their borrowing on international markets. Therefore, the security and defence of small states must be addressed in an integrated way, taking into account economic, social, and environmental factors. The aim of this article is to assess the relationships between defence expenditure and sustainable development indicators during the period between 2000 and 2018 in the Baltic states. The authors of this article aimed to determine which sustainable development indicators have a significant impact upon a country’s expenditure when it comes to defence matters. The study was conducted using econometric methods, including Spearman’s correlation analysis and Automatic Linear Modelling (ALM). The research results revealed some differences amongst the Baltic countries. In Lithuania, the employment rate and R&D personnel as a share of the active population demonstrated a significant impact upon defence expenditure. In Latvia, defence expenditure was found to be affected by disposable household income per capita and environmental taxes as a share of total tax revenue. In Estonia, defence expenditure was mainly influenced by disposable household income per capita and energy import dependency. The study’s findings may be used to ensure both the security of the country and the implementation of the Sustainable Development Goals.
Collapse
|
35
|
Theys C, Verheyen J, Tüzün N, Stoks R. Higher mean and fluctuating temperatures jointly determine the impact of the pesticide chlorpyrifos on the growth rate and leaf consumption of a freshwater isopod. CHEMOSPHERE 2021; 273:128528. [PMID: 33092821 DOI: 10.1016/j.chemosphere.2020.128528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
There is growing evidence that both increases in mean temperature and the widespread daily temperature fluctuations (DTF) may increase pesticide toxicity. Nevertheless, the likely more stressful, realistic combination of the two warming-related stressors has rarely been considered in ecotoxicology. Moreover, we have little knowledge on whether these stressor combinations could impair ecosystem functioning. We examined the effect of the pesticide chlorpyrifos under an increased mean temperature (+4 °C, from 18 °C to 22 °C) and in the presence of DTF (constant and 8 °C) on two life-history traits (mortality and growth rate) and one ecologically important behavioural trait (feeding rate) in the freshwater isopod Asellus aquaticus. The chlorpyrifos concentration used, 0.2 μg/L, did not cause mortality in any thermal condition, nor did it cause sublethal effects at the mean temperature of 18 °C. A key finding was that growth rate was strongly reduced by the pesticide only under the combination of both a higher mean temperature and DTF, highlighting the importance of testing toxicity under this realistic thermal scenario. The leaf consumption of chlorpyrifos-exposed isopods increased at the higher mean temperature when this was kept constant, however, it lowered again towards control levels when DTF was induced, thereby contributing to the growth reduction at this most stressful condition. These alterations of growth and leaf degradation rates may impact nutrient recycling, a key ecosystem function. Our results highlight the importance of integrating both increases in mean temperature and in DTF to improve current and future ecological risk assessment of pesticides.
Collapse
Affiliation(s)
- Charlotte Theys
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000, Leuven, Belgium.
| | - Julie Verheyen
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000, Leuven, Belgium
| | - Nedim Tüzün
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000, Leuven, Belgium
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000, Leuven, Belgium
| |
Collapse
|
36
|
Anser MK, Ahmad M, Khan MA, Zaman K, Nassani AA, Askar SE, Abro MMQ, Kabbani A. The role of information and communication technologies in mitigating carbon emissions: evidence from panel quantile regression. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:21065-21084. [PMID: 33405124 DOI: 10.1007/s11356-020-12114-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/14/2020] [Indexed: 05/14/2023]
Abstract
The objective of the study is to analyze the dynamic linkages between technology factors and carbon emission in a panel of 26 selected European countries from 2000 to 2017. The results of the panel fixed-effect regression model show the monotonic increasing function between agriculture technology and carbon emissions. In contrast, panel quantile regression confirmed the inverted U-shaped 'Agriculture Technology Kuznets curve (ATKC)' of carbon emissions at 30th quantile distribution to 80th quantile distribution with the turning points of 12,60,000 tractors to 9,68,000 tractors, respectively. The results further exhibit the negative relationship between high-technology exports and carbon emissions, as high-technology exports have a positive impact on environmental quality in order to reduce carbon emissions across countries. The relationship between ICT goods exports and carbon emissions is complimentary, while R&D expenditures have a negative relationship with carbon emissions in a given period. The study substantiates the 'pollution haven hypothesis (PHH)' that is controlled by trade liberalization policies. The telephone and mobile penetrations have a differential impact on carbon emissions in both of the prescribed statistical techniques, which needs fair economic policies in order to delimit carbon emissions through green ICT infrastructure. The results further exhibit the 'material footprint' that is visible at the earlier stages of economic development while it is substantially decreasing at the later stages to verify 'environmental Kuznets curve (EKC)' hypothesis with a turning point of US$45,700. Finally, the study shows the positive relationship between industry value-added and carbon emissions that sabotaged the process of green development across countries. The study concludes that green ICT infrastructure is imperative for sustainable production and consumption, and climate change protection with cleaner production techniques and environmental regulations that reshape the international policies towards sustained growth.
Collapse
Affiliation(s)
- Muhammad Khalid Anser
- School of Public Administration, Xi'an University of Architecture and Technology, Xi'an, 710000, China
| | - Munir Ahmad
- School of Economics, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Azhar Khan
- Department of Economics, University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Khalid Zaman
- Department of Economics, University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan.
| | - Abdelmohsen A Nassani
- Department of Management, College of Business Administration, King Saud University, P.O. Box 71115, Riyadh, 11587, Saudi Arabia
| | - Sameh E Askar
- Department of Statistics and Operations Research, College of Science, King Saud University, P.O. Box 11451, Riyadh, 11587, Saudi Arabia
| | - Muhammad Moinuddin Qazi Abro
- Department of Management, College of Business Administration, King Saud University, P.O. Box 71115, Riyadh, 11587, Saudi Arabia
| | - Ahmad Kabbani
- Department of Management, Aleppo University, Aleppo, Syria
| |
Collapse
|
37
|
Chauhan V, Wilkins RC, Beaton D, Sachana M, Delrue N, Yauk C, O’Brien J, Marchetti F, Halappanavar S, Boyd M, Villeneuve D, Barton-Maclaren TS, Meek B, Anghel C, Heghes C, Barber C, Perkins E, Leblanc J, Burtt J, Laakso H, Laurier D, Lazo T, Whelan M, Thomas R, Cool D. Bringing together scientific disciplines for collaborative undertakings: a vision for advancing the adverse outcome pathway framework. Int J Radiat Biol 2021; 97:431-441. [PMID: 33539251 PMCID: PMC10711570 DOI: 10.1080/09553002.2021.1884314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Decades of research to understand the impacts of various types of environmental occupational and medical stressors on human health have produced a vast amount of data across many scientific disciplines. Organizing these data in a meaningful way to support risk assessment has been a significant challenge. To address this and other challenges in modernizing chemical health risk assessment, the Organisation for Economic Cooperation and Development (OECD) formalized the adverse outcome pathway (AOP) framework, an approach to consolidate knowledge into measurable key events (KEs) at various levels of biological organisation causally linked to disease based on the weight of scientific evidence (http://oe.cd/aops). Currently, AOPs have been considered predominantly in chemical safety but are relevant to radiation. In this context, the Nuclear Energy Agency's (NEA's) High-Level Group on Low Dose Research (HLG-LDR) is working to improve research co-ordination, including radiological research with chemical research, identify synergies between the fields and to avoid duplication of efforts and resource investments. To this end, a virtual workshop was held on 7 and 8 October 2020 with experts from the OECD AOP Programme together with the radiation and chemical research/regulation communities. The workshop was a coordinated effort of Health Canada, the Electric Power Research Institute (EPRI), and the Nuclear Energy Agency (NEA). The AOP approach was discussed including key issues to fully embrace its value and catalyze implementation in areas of radiation risk assessment. CONCLUSIONS A joint chemical and radiological expert group was proposed as a means to encourage cooperation between risk assessors and an initial vision was discussed on a path forward. A global survey was suggested as a way to identify priority health outcomes of regulatory interest for AOP development. Multidisciplinary teams are needed to address the challenge of producing the appropriate data for risk assessments. Data management and machine learning tools were highlighted as a way to progress from weight of evidence to computational causal inference.
Collapse
Affiliation(s)
- Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Canada
| | - Ruth C. Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Canada
| | | | - Magdalini Sachana
- Environment Health and Safety Division, Environment Directorate, Organisation for Economic Co-operation and Development (OECD), Paris, France
| | - Nathalie Delrue
- Environment Health and Safety Division, Environment Directorate, Organisation for Economic Co-operation and Development (OECD), Paris, France
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, Canada
| | - Jason O’Brien
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, Canada
| | - Francesco Marchetti
- Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Sabina Halappanavar
- Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Michael Boyd
- U.S. Environmental Protection Agency, Office of Air and Radiation, Washington, DC, USA
| | - Daniel Villeneuve
- U.S. Environmental Protection Agency, Office of Research and Development, Duluth, MN, USA
| | | | - Bette Meek
- McLaughlin Centre, University of Ottawa, Ottawa, Canada
| | | | | | | | - Edward Perkins
- US Army Engineer Research and Development Center Jackson, Vicksburg, MS, USA
| | - Julie Leblanc
- Directorate of Environment and Radiation Protection and Assessment, Canadian Nuclear Safety Commission, Ottawa, Canada
| | - Julie Burtt
- Directorate of Environment and Radiation Protection and Assessment, Canadian Nuclear Safety Commission, Ottawa, Canada
| | - Holly Laakso
- Canadian Nuclear Laboratories, Chalk River, Canada
| | - Dominique Laurier
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Ted Lazo
- Radiological Protection and Human Aspects of Nuclear Safety Division, OECD Nuclear Energy Agency, Paris, France
| | - Maurice Whelan
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Russell Thomas
- U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Donald Cool
- Electric Power Research Institute, Charlotte, NC, USA
| |
Collapse
|
38
|
Sapounidou M, Ebbrell DJ, Bonnell MA, Campos B, Firman JW, Gutsell S, Hodges G, Roberts J, Cronin MTD. Development of an Enhanced Mechanistically Driven Mode of Action Classification Scheme for Adverse Effects on Environmental Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1897-1907. [PMID: 33478211 DOI: 10.1021/acs.est.0c06551] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study developed a novel classification scheme to assign chemicals to a verifiable mechanism of (eco-)toxicological action to allow for grouping, read-across, and in silico model generation. The new classification scheme unifies and extends existing schemes and has, at its heart, direct reference to molecular initiating events (MIEs) promoting adverse outcomes. The scheme is based on three broad domains of toxic action representing nonspecific toxicity (e.g., narcosis), reactive mechanisms (e.g., electrophilicity and free radical action), and specific mechanisms (e.g., associated with enzyme inhibition). The scheme is organized at three further levels of detail beyond broad domains to separate out the mechanistic group, specific mechanism, and the MIEs responsible. The novelty of this approach comes from the reference to taxonomic diversity within the classification, transparency, quality of supporting evidence relating to MIEs, and that it can be updated readily.
Collapse
Affiliation(s)
- Maria Sapounidou
- School of Pharmacy and Bimolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, U.K
| | - David J Ebbrell
- School of Pharmacy and Bimolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, U.K
| | - Mark A Bonnell
- Science and Risk Assessment Directorate, Environment & Climate Change Canada, 351 St. Joseph Blvd, Gatineau, Quebec K1A 0H3, Canada
| | - Bruno Campos
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K
| | - James W Firman
- School of Pharmacy and Bimolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, U.K
| | - Steve Gutsell
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K
| | - Geoff Hodges
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K
| | - Jayne Roberts
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K
| | - Mark T D Cronin
- School of Pharmacy and Bimolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, U.K
| |
Collapse
|
39
|
Peace A, Frost PC, Wagner ND, Danger M, Accolla C, Antczak P, Brooks BW, Costello DM, Everett RA, Flores KB, Heggerud CM, Karimi R, Kang Y, Kuang Y, Larson JH, Mathews T, Mayer GD, Murdock JN, Murphy CA, Nisbet RM, Pecquerie L, Pollesch N, Rutter EM, Schulz KL, Scott JT, Stevenson L, Wang H. Stoichiometric Ecotoxicology for a Multisubstance World. Bioscience 2021. [DOI: 10.1093/biosci/biaa160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Abstract
Nutritional and contaminant stressors influence organismal physiology, trophic interactions, community structure, and ecosystem-level processes; however, the interactions between toxicity and elemental imbalance in food resources have been examined in only a few ecotoxicity studies. Integrating well-developed ecological theories that cross all levels of biological organization can enhance our understanding of ecotoxicology. In the present article, we underline the opportunity to couple concepts and approaches used in the theory of ecological stoichiometry (ES) to ask ecotoxicological questions and introduce stoichiometric ecotoxicology, a subfield in ecology that examines how contaminant stress, nutrient supply, and elemental constraints interact throughout all levels of biological organization. This conceptual framework unifying ecotoxicology with ES offers potential for both empirical and theoretical studies to deepen our mechanistic understanding of the adverse outcomes of chemicals across ecological scales and improve the predictive powers of ecotoxicology.
Collapse
Affiliation(s)
- Angela Peace
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, Texas, United States
| | - Paul C Frost
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Nicole D Wagner
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, United States
| | | | - Chiara Accolla
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Twin Cities, Minneapolis, Minnesota, United States
| | | | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, Texas, United States
| | - David M Costello
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States
| | - Rebecca A Everett
- Department of Mathematics and Statistics, Haverford College, Haverford, Pennsylvania, United States
| | - Kevin B Flores
- Department of Mathematics and the Center for Research in Scientific Computation, North Carolina State University, Raleigh, North Carolina, United States
| | - Christopher M Heggerud
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Roxanne Karimi
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, United States
| | - Yun Kang
- Arizona State University, Mesa, Arizona, United States
| | - Yang Kuang
- Arizona State University, Tempe, Arizona, United States
| | - James H Larson
- US Geological Survey's Upper Midwest Environmental Sciences Center, La Crosse, Wisconsin, United States
| | - Teresa Mathews
- Environmental Sciences Division of Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
| | - Gregory D Mayer
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas, United States
| | - Justin N Murdock
- Department of Biology, Tennessee Tech University, Cookeville, Tennessee, United States
| | - Cheryl A Murphy
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States
| | - Roger M Nisbet
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, California, United States
| | - Laure Pecquerie
- Université de Brest, CNRS, IRD, Ifremer, LEMAR, Plouzane, France
| | - Nathan Pollesch
- University of Wisconsin's Aquatic Sciences Center and with the US Environmental Protection Agency's Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, United States
| | - Erica M Rutter
- Department of Applied Mathematics, University of California, Merced, Merced, California, United States
| | - Kimberly L Schulz
- Department of Environmental and Forest Biology, State University of New York's College of Environmental Science and Forestry, Syracuse, New York, United States
| | - J Thad Scott
- Department of Biology, Baylor University, Waco, Texas, United States
| | - Louise Stevenson
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee; with the Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, California; and with the Department of Biological Sciences at Bowling Green State University, in Bowling Green, Ohio, United States
| | - Hao Wang
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
40
|
Anderson JC, Marteinson SC, Prosser RS. Prioritization of Pesticides for Assessment of Risk to Aquatic Ecosystems in Canada and Identification of Knowledge Gaps. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 259:171-231. [PMID: 34625837 DOI: 10.1007/398_2021_81] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pesticides can enter aquatic environments via direct application, via overspray or drift during application, or by runoff or leaching from fields during rain events, where they can have unintended effects on non-target aquatic biota. As such, Fisheries and Oceans Canada identified a need to prioritize current-use pesticides based on potential risks towards fish, their prey species, and habitats in Canada. A literature review was conducted to: (1) Identify current-use pesticides of concern for Canadian marine and freshwater environments based on use and environmental presence in Canada, (2) Outline current knowledge on the biological effects of the pesticides of concern, and (3) Identify general data gaps specific to biological effects of pesticides on aquatic species. Prioritization was based upon recent sales data, measured concentrations in Canadian aquatic environments between 2000 and 2020, and inherent toxicity as represented by aquatic guideline values. Prioritization identified 55 pesticides for further research nationally. Based on rank, a sub-group of seven were chosen as the top-priority pesticides, including three herbicides (atrazine, diquat, and S-metolachlor), three insecticides (chlorpyrifos, clothianidin, and permethrin), and one fungicide (chlorothalonil). A number of knowledge gaps became apparent through this process, including gaps in our understanding of sub-lethal toxicity, environmental fate, species sensitivity distributions, and/or surface water concentrations for each of the active ingredients reviewed. More generally, we identified a need for more baseline fish and fish habitat data, ongoing environmental monitoring, development of marine and sediment-toxicity benchmarks, improved study design including sufficiently low method detection limits, and collaboration around accessible data reporting and management.
Collapse
Affiliation(s)
| | - Sarah C Marteinson
- National Contaminants Advisory Group, Ecosystems and Oceans Science Sector, Fisheries and Oceans Canada, Ottawa, ON, Canada.
| | - Ryan S Prosser
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
41
|
Delnat V, Verborgt J, Janssens L, Stoks R. Daily temperature variation lowers the lethal and sublethal impact of a pesticide pulse due to a higher degradation rate. CHEMOSPHERE 2021; 263:128114. [PMID: 33297107 DOI: 10.1016/j.chemosphere.2020.128114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 05/12/2023]
Abstract
Daily temperature variation (DTV) is an important warming-related stressor that may magnify pesticide toxicity. Yet, it is unknown whether the pesticide impact under DTV is partly ameliorated by a faster pesticide degradation caused by cyclically higher temperatures under DTV. As synergisms may be more likely under energy-limiting conditions, the impact of the pesticide chlorpyrifos was tested under DTV on the mosquito Culex pipiens in the absence and presence of interspecific competition with the water flea Daphnia magna. Chlorpyrifos exposure at a constant temperature without interspecific competition caused considerable mortality, decreased development time, and increased pupal mass of C. pipiens. Competition with D. magna had negative sublethal effects, but it did not affect the toxicity of chlorpyrifos. In contrast, the presence of C. pipiens decreased the impact of chlorpyrifos on D. magna probably due to corporal absorption of chlorpyrifos by C. pipiens. A key finding was that chlorpyrifos no longer caused lethal effects on C. pipiens under DTV, despite DTV on its own being mildly lethal. Additionally, chlorpyrifos exposure under DTV decreased development time less and had no effect anymore on pupal mass compared to chlorpyrifos exposure at a constant temperature. Similarly, the negative chlorpyrifos impact on adult survival of D. magna was less under DTV than at the constant temperature. This could be explained by a faster chlorpyrifos degradation under DTV. This antagonism between pesticide exposure and DTV is likely widespread because organisms experience DTV, many pesticides are applied in pulses, and pesticide degradation is faster at higher temperatures.
Collapse
Affiliation(s)
- Vienna Delnat
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, 3000, Leuven, Belgium.
| | - Jonathan Verborgt
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, 3000, Leuven, Belgium
| | - Lizanne Janssens
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, 3000, Leuven, Belgium
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, 3000, Leuven, Belgium
| |
Collapse
|
42
|
Song J, Ma Z, Kong H, Liu H. A mechanistic effect modeling approach to the prioritization of hidden drivers in chemical cocktails. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:142525. [PMID: 33113692 DOI: 10.1016/j.scitotenv.2020.142525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Exposure to a single chemical does not exist in reality. Mixtures, which are the ecological norm, are often characterized by numerous intrinsic driving factors with unknown combined effects. Interactions between heterogeneous chemicals, or chemical and nonchemical stressors, could alter their toxicity traits relative to single exposure. Hence, revealing the hidden environmental effects affecting multiple stressor interactions is essential to expand our knowledge about uncertainty sources in chemical risk-based decision contexts. Global sensitivity analysis (GSA) techniques involving Morris method sampling and elementary effects (EE) sensitivity analysis was applied to investigate the driving factors underlying the combined effects on Scenedesmus obliquus, and identify the mode of interaction in mixtures at environmentally-relevant concentrations. One hundred mixed-exposure formulas were generated with 9 variables (8 chemicals and temperature) via the Morris method, representing environmental perspective in the field. Subsequently, EE sensitivity analysis combined with quantitative high-throughput screening (q-HTS) was adopted to identify the most critical mixture and its primary drivers. Combined exposure exerted significantly increased effects on S. obliquus compared to the effects of individual exposure. The critical drivers were identified and validated by the control variate method. For the mode of combined action, mixture toxicity did not match the additivity relationship, and a strong interaction existed among chemicals. Collectively, the data provides evidence that a combination of specific pesticides and emerging brominated flame retardants can produce comparable, or even stronger, bionegative effects than pure chemicals due to complicated interactions. The method used offers direct comparison of multifarious factors in a unified standard scale, bridges the actual interaction scenarios in the field to toxicity simulations in the laboratory, and fill a gap in ecotoxicology.
Collapse
Affiliation(s)
- Jingwen Song
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhiyuan Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Haoyue Kong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hongling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
43
|
Naegeli H, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Guerche P, Hejatko J, Moreno FJ, Mullins E, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Bonsall MB, Mumford J, Wimmer EA, Devos Y, Paraskevopoulos K, Firbank LG. Adequacy and sufficiency evaluation of existing EFSA guidelines for the molecular characterisation, environmental risk assessment and post-market environmental monitoring of genetically modified insects containing engineered gene drives. EFSA J 2020; 18:e06297. [PMID: 33209154 PMCID: PMC7658669 DOI: 10.2903/j.efsa.2020.6297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Advances in molecular and synthetic biology are enabling the engineering of gene drives in insects for disease vector/pest control. Engineered gene drives (that bias their own inheritance) can be designed either to suppress interbreeding target populations or modify them with a new genotype. Depending on the engineered gene drive system, theoretically, a genetic modification of interest could spread through target populations and persist indefinitely, or be restricted in its spread or persistence. While research on engineered gene drives and their applications in insects is advancing at a fast pace, it will take several years for technological developments to move to practical applications for deliberate release into the environment. Some gene drive modified insects (GDMIs) have been tested experimentally in the laboratory, but none has been assessed in small-scale confined field trials or in open release trials as yet. There is concern that the deliberate release of GDMIs in the environment may have possible irreversible and unintended consequences. As a proactive measure, the European Food Safety Authority (EFSA) has been requested by the European Commission to review whether its previously published guidelines for the risk assessment of genetically modified animals (EFSA, 2012 and 2013), including insects (GMIs), are adequate and sufficient for GDMIs, primarily disease vectors, agricultural pests and invasive species, for deliberate release into the environment. Under this mandate, EFSA was not requested to develop risk assessment guidelines for GDMIs. In this Scientific Opinion, the Panel on Genetically Modified Organisms (GMO) concludes that EFSA's guidelines are adequate, but insufficient for the molecular characterisation (MC), environmental risk assessment (ERA) and post-market environmental monitoring (PMEM) of GDMIs. While the MC,ERA and PMEM of GDMIs can build on the existing risk assessment framework for GMIs that do not contain engineered gene drives, there are specific areas where further guidance is needed for GDMIs.
Collapse
|
44
|
Zhao Q, De Laender F, Van den Brink PJ. Community composition modifies direct and indirect effects of pesticides in freshwater food webs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139531. [PMID: 32531685 DOI: 10.1016/j.scitotenv.2020.139531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/10/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
For environmental risk assessment, the effects of pesticides on aquatic ecosystems are often assessed based on single species tests, disregarding the potential influence of community composition. We, therefore, studied the influence of changing the horizontal (the number of species within trophic levels) and vertical composition (number of trophic levels) on the ecological effects of the herbicide linuron and the insecticide chlorpyrifos, targeting producers and herbivores, respectively. We tested how adding, to a single primary producer, 4 selected competing producer species, 0-1-4 selected herbivore species, and one selected predator species resulting in 1, 2 and 3 trophic levels, changes the effects of the two pesticides. Linuron decreased producer biovolume less (17%) when the 4 producers were added, because insensitive producers compensated for the loss of sensitive producers. However, linuron decreased producer biovolume 42% and 32% more as we increased the number of herbivore species from 0 to 4 and as we increased trophic levels from 1 to 3, respectively. The indirect negative effect of linuron on herbivore biovolume was 11% and 15% lower when more producer and herbivores were added, respectively. Adding a predator increased this indirect negative effect by 22%. Chlorpyrifos decreased herbivore biovolume about 10% less when adding multiple herbivore or producer species. However, adding a predator magnified the direct negative impact on herbivores (13%). Increasing the number of producer, herbivore species and adding trophic levels increased the indirect positive impact on producer biovolume (between 10% and 35%). Our study shows that changing horizontal composition can both increase and decrease the effects of the selected pesticides, while changing vertical composition by adding number of trophic levels always increased these effects. Therefore, single species sensitivity will not always represent a worst case estimate of ecological effects. Protecting the most sensitive species may not ensure protection of ecosystems.
Collapse
Affiliation(s)
- Qinghua Zhao
- Aquatic Ecology and Water Quality Management Group, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands.
| | - Frederik De Laender
- Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, Institute of Life, Earth, and the Environment, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
45
|
Delnat V, Swaegers J, Asselman J, Stoks R. Reduced stress defence responses contribute to the higher toxicity of a pesticide under warming. Mol Ecol 2020; 29:4735-4748. [PMID: 33006234 DOI: 10.1111/mec.15667] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/06/2020] [Accepted: 09/11/2020] [Indexed: 11/30/2022]
Abstract
There is a pressing need to identify the molecular mechanisms underlying the, often magnifying, interactive effects between contaminants and natural stressors. Here we test our hypothesis that lower general stress defence responses contribute to synergistic interactions between stressors. We focus on the widespread pattern that many contaminants are more toxic at higher temperatures. Specifically, we tested the effects of an environmentally realistic low-effect and high-effect concentration of the pesticide chlorpyrifos under warming at the gene expression level in the northern house mosquito Culex pipiens molestus (Forskal, 1775). By applying the independent action model for combined stressors on RNA-sequencing data, we identified interactive gene expression patterns under combined exposure to chlorpyrifos and warming for general stress defence responses: protection of macromolecules, antioxidant processes, detoxification and energy metabolism/allocation. Most of these general stress defence response genes showed upregulated antagonistic interactions (i.e., were less upregulated than expected under the independent action model). This indicates that when pesticide exposure was combined with warming, the general stress defence responses were no longer buffering increased stress levels, which may contribute to a higher sensitivity to toxicants under warming. These upregulated antagonistic interactions were stronger for the high-effect chlorpyrifos concentration, indicating that exposure to this concentration under warming was most stressful. Our results highlight that quantitative analysis of the frequency and strength of the interaction types of general stress defence response genes, specifically focusing on antagonistic upregulations and synergistic downregulations, may advance our understanding of how natural stressors modify the toxicity of contaminants.
Collapse
Affiliation(s)
- Vienna Delnat
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Janne Swaegers
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Ostend, Belgium
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| |
Collapse
|
46
|
Walton WE, Mai K, Nguyen A, Tse R. Evaluation of Two Management Strategies for Harvested Emergent Vegetation on Immature Mosquito Abundance and Water Quality. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2020; 36:139-151. [PMID: 33600584 DOI: 10.2987/20-6913.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Emergent macrophytes play critical roles in water treatment processes of free-water surface constructed treatment wetlands. Management strategies for plant biomass affect wetland function and mosquito populations. Sinking of harvested macrophyte biomass is thought to provide organic carbon that enhances denitrifying bacteria important for nutrient removal while concomitantly reducing harborage for mosquitoes. The effects of sinking versus floating dried plant biomass (California bulrush [Schoenoplectus californicus]) on immature mosquito abundance and water quality (nutrient levels, oxygen demand, and physicochemical variables) were examined in mesocosms (28-m2 ponds or 1.4-m2 wading pools) under different flow regimes in 4 studies. The numbers of mosquito larvae in earthen ponds with floating vegetation were greater than in ponds with sunken vegetation on most dates but did not differ significantly between the 2 vegetation treatments in experiments using wading pools. Differences of the abundance of Anopheles larvae between the 2 vegetation management treatments were larger than for Culex larvae when naturally occurring larval mosquito predators were present. At high turnover rates (>2 pond volumes/day), water quality did not differ significantly between the vegetation management treatments and the water supply. At low turnover rates (approximately 2-6% of water volume/day), water quality differed significantly between the 2 vegetation management treatments and the water supply. Sinking vegetation can enhance the effectiveness of mosquito control but, depending on water management practices, may raise the concentrations of water quality constituents in discharges that are regulated under the Clean Water Act.
Collapse
|
47
|
Leung KM, Yeung KW, You J, Choi K, Zhang X, Smith R, Zhou G, Yung MM, Arias‐Barreiro C, An Y, Burket SR, Dwyer R, Goodkin N, Hii YS, Hoang T, Humphrey C, Iwai CB, Jeong S, Juhel G, Karami A, Kyriazi‐Huber K, Lee K, Lin B, Lu B, Martin P, Nillos MG, Oginawati K, Rathnayake I, Risjani Y, Shoeb M, Tan CH, Tsuchiya MC, Ankley GT, Boxall AB, Rudd MA, Brooks BW. Toward Sustainable Environmental Quality: Priority Research Questions for Asia. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1485-1505. [PMID: 32474951 PMCID: PMC7496081 DOI: 10.1002/etc.4788] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/03/2020] [Accepted: 05/22/2020] [Indexed: 05/22/2023]
Abstract
Environmental and human health challenges are pronounced in Asia, an exceptionally diverse and complex region where influences of global megatrends are extensive and numerous stresses to environmental quality exist. Identifying priorities necessary to engage grand challenges can be facilitated through horizon scanning exercises, and to this end we identified and examined 23 priority research questions needed to advance toward more sustainable environmental quality in Asia, as part of the Global Horizon Scanning Project. Advances in environmental toxicology, environmental chemistry, biological monitoring, and risk-assessment methodologies are necessary to address the adverse impacts of environmental stressors on ecosystem services and biodiversity, with Asia being home to numerous biodiversity hotspots. Intersections of the food-energy-water nexus are profound in Asia; innovative and aggressive technologies are necessary to provide clean water, ensure food safety, and stimulate energy efficiency, while improving ecological integrity and addressing legacy and emerging threats to public health and the environment, particularly with increased aquaculture production. Asia is the largest chemical-producing continent globally. Accordingly, sustainable and green chemistry and engineering present decided opportunities to stimulate innovation and realize a number of the United Nations Sustainable Development Goals. Engaging the priority research questions identified herein will require transdisciplinary coordination through existing and nontraditional partnerships within and among countries and sectors. Answering these questions will not be easy but is necessary to achieve more sustainable environmental quality in Asia. Environ Toxicol Chem 2020;39:1485-1505. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Kenneth M.Y. Leung
- Swire Institute of Marine Science and School of Biological SciencesUniversity of Hong KongPokfulamHong KongChina
- State Key Laboratory of Marine Pollution and Department of ChemistryCity University of Hong KongKowloonHong KongChina
| | - Katie W.Y. Yeung
- Swire Institute of Marine Science and School of Biological SciencesUniversity of Hong KongPokfulamHong KongChina
| | - Jing You
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and HealthJinan UniversityGuangzhouChina
| | | | - Xiaowei Zhang
- School of the EnvironmentNanjing UniversityNanjingChina
| | | | - Guang‐Jie Zhou
- Swire Institute of Marine Science and School of Biological SciencesUniversity of Hong KongPokfulamHong KongChina
| | | | | | | | | | | | | | | | | | - Chris Humphrey
- Supervising Scientist BranchCanberraAustralian Capital TerritoryAustralia
| | | | | | | | | | | | | | - Bin‐Le Lin
- National Institute of Advanced Industrial Science and TechnologyTokyoJapan
| | - Ben Lu
- International Copper Association–AsiaShanghaiChina
| | | | - Mae Grace Nillos
- College of Fisheries and Ocean SciencesUniversity of the Philippines VisayasIloilo CityPhilippines
| | | | - I.V.N. Rathnayake
- Department of MicrobiologyFaculty of Science, University of KelaniyaKelaniyaSri Lanka
| | | | | | | | | | | | | | | | - Bryan W. Brooks
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and HealthJinan UniversityGuangzhouChina
- Baylor UniversityWacoTexasUSA
| |
Collapse
|
48
|
Iram S, Iqbal A, Ahmad KS, Jaffri SB. Congruously designed eco-curative integrated farming model designing and employment for sustainable encompassments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19543-19560. [PMID: 32219656 DOI: 10.1007/s11356-020-08499-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 03/17/2020] [Indexed: 06/10/2023]
Abstract
Eco-degradative features associated with the modern agriculture due to utilization of toxic agro-chemicals and intensified technologies need an urgent attention. Considering this need for eco-curativeness and eco-efficiency, current has for the first time employed an integrated farming system (IFS) through designing an appropriate assemblage of vegetables, poultry, and fish (VPF) and investigated its applied scale practicability in addition to the its role in the enhancement of the productivity and environmental quality maintenance. The practical employment of VPF model resulted in the remarkable improvement of soil fertility through an increment in the essential nutrient quantity. Physicochemical analysis of the soils expressed an improvement in the treated samples, i.e., pH (7.31), EC (0.92 dS/m), organic matter (2.97%), nitrogen (2.1 mg/kg), phosphorous (120.3 mg/kg), potassium (322 mg/kg), calcium (1482.0 mg/kg), and magnesium (471.5 mg/kg). Furthermore, ecological detoxification was expressed in form of lower heavy metals (HM) in the experimental soils. At the early plantation stage, HM concentration in the soils modified with nutrient-rich water signified considerably lower pattern with trend, i.e., Cd < Zn < Ni <Pb< Cu < Fe. The morphological growth of the vegetable plants, i.e., Lycopersicon esculentum L., Capsicum annum, and Abelmoschus esculentus, and fish species, i.e., Lobeo rohita and Clarias gariepinus, in the current investigation was remarkably good. Currently employed VPF model expressed a duality in completion of sustainability goals through production of good-quality vegetables in addition to environmental integrity boosting by complete elimination of need for toxic chemical inputs. Results of this research can be adopted for large-scale employment for production of augmented agricultural production in a completely sustainable manner.
Collapse
Affiliation(s)
- Shazia Iram
- Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, Rawalpindi, 46000, Pakistan.
| | - Ayesha Iqbal
- Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, Rawalpindi, 46000, Pakistan
| | - Khuram Shahzad Ahmad
- Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, Rawalpindi, 46000, Pakistan
| | - Shaan Bibi Jaffri
- Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, Rawalpindi, 46000, Pakistan
| |
Collapse
|
49
|
Orr JA, Vinebrooke RD, Jackson MC, Kroeker KJ, Kordas RL, Mantyka-Pringle C, Van den Brink PJ, De Laender F, Stoks R, Holmstrup M, Matthaei CD, Monk WA, Penk MR, Leuzinger S, Schäfer RB, Piggott JJ. Towards a unified study of multiple stressors: divisions and common goals across research disciplines. Proc Biol Sci 2020; 287:20200421. [PMID: 32370677 DOI: 10.1098/rspb.2020.0421] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Anthropogenic environmental changes, or 'stressors', increasingly threaten biodiversity and ecosystem functioning worldwide. Multiple-stressor research is a rapidly expanding field of science that seeks to understand and ultimately predict the interactions between stressors. Reviews and meta-analyses of the primary scientific literature have largely been specific to either freshwater, marine or terrestrial ecology, or ecotoxicology. In this cross-disciplinary study, we review the state of knowledge within and among these disciplines to highlight commonality and division in multiple-stressor research. Our review goes beyond a description of previous research by using quantitative bibliometric analysis to identify the division between disciplines and link previously disconnected research communities. Towards a unified research framework, we discuss the shared goal of increased realism through both ecological and temporal complexity, with the overarching aim of improving predictive power. In a rapidly changing world, advancing our understanding of the cumulative ecological impacts of multiple stressors is critical for biodiversity conservation and ecosystem management. Identifying and overcoming the barriers to interdisciplinary knowledge exchange is necessary in rising to this challenge. Division between ecosystem types and disciplines is largely a human creation. Species and stressors cross these borders and so should the scientists who study them.
Collapse
Affiliation(s)
- James A Orr
- School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Rolf D Vinebrooke
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Kristy J Kroeker
- Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Rebecca L Kordas
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Berkshire, UK
| | - Chrystal Mantyka-Pringle
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Wildlife Conservation Society Canada, Whitehorse, Yukon Territory, Canada
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands.,Wageningen Environmental Research, PO Box 47, 6700 AA Wageningen, The Netherlands
| | - Frederik De Laender
- Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and Institute of Life, Earth, and the Environment, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | | | | | - Wendy A Monk
- Environment and Climate Change Canada at Canadian Rivers Institute, Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Marcin R Penk
- School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Sebastian Leuzinger
- Institute for Applied Ecology, Auckland University of Technology, Auckland, New Zealand
| | - Ralf B Schäfer
- Quantitative Landscape Ecology, iES-Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | - Jeremy J Piggott
- School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| |
Collapse
|
50
|
Saari GN, Haddad SP, Mole RM, Hill BN, Steele WB, Lovin LM, Chambliss CK, Brooks BW. Low dissolved oxygen increases uptake of a model calcium channel blocker and alters its effects on adult Pimephales promelas. Comp Biochem Physiol C Toxicol Pharmacol 2020; 231:108719. [PMID: 31987992 DOI: 10.1016/j.cbpc.2020.108719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 10/25/2022]
Abstract
Human population growth accompanied with urbanization is urbanizing the water cycle in many regions. Urban watersheds, particularly with limited upstream dilution of effluent discharges, represent worst case scenarios for exposure to multiple environmental stressors, including down the drain chemicals (e.g., pharmaceuticals) and other stressors (e.g., dissolved oxygen (DO)). We recently identified the calcium channel blocker diltiazem (DZM) to accumulate in fish plasma exceeding human therapeutic doses (e.g., Cmin) in coastal estuaries impaired due to nonattainment of DO water quality standards. Thus, we examined whether DO influences DZM uptake by fish, and if changes in DO-dependent upatke alter fish physiological and biochemical responses. Low DO (3.0 mg DO/L) approximately doubled diltiazem uptake in adult fathead minnows relative to normoxic (8.2 mg DO/L) conditions and were associated with significant (p < 0.05) increases in fish ventilation rate at low DO levels. Decreased burst swim performance (Uburst) of adult fathead minnows were significantly (p < 0.05) altered by low versus normal DO levels. DO × DZM studies reduced Uburst by 13-31% from controls, though not significantly (p = 0.06). Physiological responses in fish exposed to DZM alone were minimal; however, in co-exposure with low DO, decreasing trends in Uburst appeared inversely related to plasma lactate levels. Such physiological responses to multiple stressors, when paired with internal tissue concentrations, identify the utility of employing biological read across approaches to identify adverse outcomes of heart medications and potentially other cardiotoxicants impacting fish cardiovascular function across DO gradients.
Collapse
Affiliation(s)
- Gavin N Saari
- Department of Environmental Science, Baylor University, Waco, TX, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Samuel P Haddad
- Department of Environmental Science, Baylor University, Waco, TX, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Rachel M Mole
- Department of Environmental Science, Baylor University, Waco, TX, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Bridgett N Hill
- Department of Environmental Science, Baylor University, Waco, TX, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - W Baylor Steele
- Department of Environmental Science, Baylor University, Waco, TX, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA; Institute of Biomedical Studies, Baylor University, Waco, TX, USA
| | - Lea M Lovin
- Department of Environmental Science, Baylor University, Waco, TX, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - C Kevin Chambliss
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA; Department of Chemistry, Baylor University, Waco, TX, USA
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, TX, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA; Institute of Biomedical Studies, Baylor University, Waco, TX, USA; School of Environment, Jinan University, Guangzhou, China.
| |
Collapse
|