1
|
Garcia-Ceron D, Truong TT, Ratcliffe J, McKenna JA, Bleackley MR, Anderson MA. Metabolomic Analysis of Extracellular Vesicles from the Cereal Fungal Pathogen Fusarium graminearum. J Fungi (Basel) 2023; 9:jof9050507. [PMID: 37233218 DOI: 10.3390/jof9050507] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/27/2023] Open
Abstract
Fusarium graminearum (F. graminearum) is a filamentous fungus that infects cereals such as corn, wheat, and barley, with serious impact on yield as well as quality when the grain is contaminated with mycotoxins. Despite the huge impact of F. graminearum on food security and mammalian health, the mechanisms used by F. graminearum to export virulence factors during infection are not fully understood and may involve non-classical secretory pathways. Extracellular vesicles (EVs) are lipid-bound compartments produced by cells of all kingdoms that transport several classes of macromolecules and are implicated in cell-cell communication. EVs produced by human fungal pathogens carry cargo that facilitate infection, leading us to ask whether plant fungal pathogens also deliver molecules that increase virulence via EVs. We examined the metabolome of the EVs produced by F. graminearum to determine whether they carry small molecules that could modulate plant-pathogen interactions. We discovered that EVs from F. graminearum were produced in liquid medium-containing inducers of trichothecene production, but in lower quantities compared to other media. Nanoparticle tracking analysis and cryo-electron microscopy revealed that the EVs were morphologically similar to EVs from other organisms; hence, the EVs were metabolically profiled using LC-ESI-MS/MS. This analysis revealed that EVs carry 2,4-dihydroxybenzophenone (BP-1) and metabolites that have been suggested by others to have a role in host-pathogen interactions. BP-1 reduced the growth of F. graminearum in an in vitro assay, suggesting that F. graminearum might use EVs to limit metabolite self-toxicity.
Collapse
Affiliation(s)
- Donovan Garcia-Ceron
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora 3086, Australia
| | - Thy T Truong
- Proteomics and Metabolomics Platform, School of Agriculture, Biomedicine, and Environment, La Trobe University, Bundoora 3086, Australia
| | - Julian Ratcliffe
- La Trobe Bioimaging Platform, La Trobe Institute for Molecular Science, La Trobe University, Bundoora 3086, Australia
| | - James A McKenna
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora 3086, Australia
| | - Mark R Bleackley
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora 3086, Australia
| | - Marilyn A Anderson
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora 3086, Australia
| |
Collapse
|
2
|
Chatzigianni M, Pavlou P, Siamidi A, Vlachou M, Varvaresou A, Papageorgiou S. Environmental impacts due to the use of sunscreen products: a mini-review. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1331-1345. [PMID: 36173495 PMCID: PMC9652235 DOI: 10.1007/s10646-022-02592-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Sunscreen use has increased in recent years, as sunscreen products minimize the damaging effects of solar radiation. Active ingredients called ultraviolet (UV) filters or UV agents, either organic or inorganic, responsible for defending skin tissue against harmful UV rays, are incorporated in sunscreen formulations. UV agents have a serious impact on many members of bio communities, and they are transferred to the environment either directly or indirectly. Many organic UV filters are found to be accumulated in marine environments because of high values of the octanol/water partition coefficient. However, due to the fact that UV agents are not stable in water, unwanted by-products may be formed. Experimental studies or field observations have shown that organic UV filters tend to bioaccumulate in various aquatic animals, such as corals, algae, arthropods, mollusks, echinoderms, marine vertebrates. This review was conducted in order to understand the effects of UV agents on both the environment and marine biota. In vivo and in vitro studies of UV filters show a wide range of adverse effects on the environment and exposed organisms. Coral bleaching receives considerable attention, but the scientific data identify potential toxicities of endocrine, neurologic, neoplastic and developmental pathways. However, more controlled environmental studies and long-term human use data are limited. Several jurisdictions have prohibited specific UV filters, but this does not adequately address the dichotomy of the benefits of photoprotection vs lack of eco-friendly, safe, and approved alternatives.
Collapse
Affiliation(s)
- Myrto Chatzigianni
- Department of Biomedical Sciences, Division of Aesthetics and Cosmetic Science, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243, Egaleo, Greece
| | - Panagoula Pavlou
- Department of Biomedical Sciences, Division of Aesthetics and Cosmetic Science, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243, Egaleo, Greece.
- Laboratory of Chemistry-Biochemistry-Cosmetic Science, Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243, Egaleo, Greece.
| | - Angeliki Siamidi
- Department of Pharmacy, Division of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Athens, Greece
| | - Marilena Vlachou
- Department of Pharmacy, Division of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Athens, Greece
| | - Athanasia Varvaresou
- Department of Biomedical Sciences, Division of Aesthetics and Cosmetic Science, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243, Egaleo, Greece
- Laboratory of Chemistry-Biochemistry-Cosmetic Science, Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243, Egaleo, Greece
| | - Spyridon Papageorgiou
- Department of Biomedical Sciences, Division of Aesthetics and Cosmetic Science, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243, Egaleo, Greece
- Laboratory of Chemistry-Biochemistry-Cosmetic Science, Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243, Egaleo, Greece
| |
Collapse
|
3
|
Picone M, Distefano GG, Marchetto D, Russo M, Baccichet M, Brusò L, Zangrando R, Gambaro A, Volpi Ghirardini A. Long-term effects of neonicotinoids on reproduction and offspring development in the copepod Acartia tonsa. MARINE ENVIRONMENTAL RESEARCH 2022; 181:105761. [PMID: 36206640 DOI: 10.1016/j.marenvres.2022.105761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Neonicotinoids (NEOs) are neurotoxic pesticides acting as nicotinic acetylcholine receptor agonists. NEOs' efficacy against pest insects has favoured their spreading use in agriculture, but their proven effectiveness against non-target insects in terrestrial and aquatic ecosystems also raised concern over their environmental impact. Crustaceans were often studied for the impacts of NEOs due to their economic values and nervous' system similarity with insects. However, most studies on crustaceans focused on acute effects or exposure of early-life stages, while long-term effects were seldom explored. The present study aimed to assess the potential long-term effects of four commercially available NEOs on the reproduction and offspring of the calanoid copepod Acartia tonsa, a key species in the food webs of several coastal and estuarine environments. NEOs were confirmed as potent interferents of copepod reproduction. The first-generation compound acetamiprid significantly inhibited egg production and hatching ratio at 10 ng L-1, while larval survival and development were affected at 81 ng L-1. Similarly, the first-generation compound thiacloprid significantly inhibited the hatching ratio and larval development at 9 ng L-1, while it did not affect egg production and larval survival. Second-generation compounds were less toxic than acetamiprid and thiacloprid: clothianidin affected significantly only larval development of the offspring at 62 ng L-1, while thiamethoxam was not toxic at both the tested concentrations (8 ng L-1 and 84 ng L-1). These data evidenced that effects on copepods may occur at concentrations below the chronic aquatic life benchmarks reported by USEPA for acetamiprid (2100 ng L-1) and thiacloprid (970 ng L-1), suggesting that long-term effects of NEOs have been underestimated. A comparison with environmental concentrations evidenced that NEO-mediated effects on copepods are more liable in coastal areas receiving discharge from wastewater treatment plants or diffuse inputs from agricultural land during pesticide application periods.
Collapse
Affiliation(s)
- Marco Picone
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University, Campus Scientifico Via Torino 155, I-30170, Mestre, Venezia, Italy.
| | - Gabriele Giuseppe Distefano
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University, Campus Scientifico Via Torino 155, I-30170, Mestre, Venezia, Italy
| | - Davide Marchetto
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University, Campus Scientifico Via Torino 155, I-30170, Mestre, Venezia, Italy
| | - Martina Russo
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University, Campus Scientifico Via Torino 155, I-30170, Mestre, Venezia, Italy
| | - Marco Baccichet
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University, Campus Scientifico Via Torino 155, I-30170, Mestre, Venezia, Italy
| | - Luca Brusò
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University, Campus Scientifico Via Torino 155, I-30170, Mestre, Venezia, Italy
| | - Roberta Zangrando
- Institute of Polar Sciences - National Research Council (ISP-CNR), Campus Scientifico Via Torino 155, I-30170, Mestre, Venezia, Italy
| | - Andrea Gambaro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University, Campus Scientifico Via Torino 155, I-30170, Mestre, Venezia, Italy; Institute of Polar Sciences - National Research Council (ISP-CNR), Campus Scientifico Via Torino 155, I-30170, Mestre, Venezia, Italy
| | - Annamaria Volpi Ghirardini
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University, Campus Scientifico Via Torino 155, I-30170, Mestre, Venezia, Italy
| |
Collapse
|
4
|
Song Y, Liu S, Jiang X, Ren Q, Deng H, Paudel YN, Wang B, Liu K, Jin M. Benzoresorcinol induces developmental neurotoxicity and injures exploratory, learning and memorizing abilities in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155268. [PMID: 35429566 DOI: 10.1016/j.scitotenv.2022.155268] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/13/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Benzophenones (BPs) are a class of UV absorber commonly used in skin care products like sunscreens. With its wide range of application, its environmental and human hazards have received much attention in recent days. Previous studies on the toxicity of BPs mainly focused on its endocrine-disrupting effects, but there are limited studies on its neurodevelopment and neurotoxicity. Herein, using the zebrafish model we studied the neurodevelopmental- and neuro-toxicity of benzophenone 1 (BP1) (0.8, 1.0, 1.2, 1.6, and 2.4 μg/mL). As a result, BP1 led to an increase of embryo mortality, a decrease in hatching rate, and an increase in the rate of developmental abnormalities in a concentration-dependent manner. BP1 also caused developmental defects in the central nervous system (CNS) and dopaminergic (DA) neurons. Accordingly, BP1 injured larval zebrafish general locomotion and response to stimuli in light/dark challenge. In adult zebrafish, BP1 exposure (1, 10, 100, 1000 μg/L) caused inhibition of learning and memory abilities in the T-maze tests, and inhibited exploratory behavior and activity in the novel tank diving tests. Further, transcription levels of genes related to neurotoxicity, neurodevelopment, and anxiety revealed that BP1 may affect the development and function of the myelin sheath, inducing structural and functional defects of CNS, manifested as abnormal behaviors such as anxiety. Hence, the current study revealed the neurodevelopmental toxicity and neurotoxicity of BP1, expanded our knowledge about the toxic effects of BP1 on organisms, posing a possible threat to the environment and human health.
Collapse
Affiliation(s)
- Yang Song
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Biological Engineering College, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250056, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 2878, People's Republic of China
| | - Siyuan Liu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250056, Shandong Province, People's Republic of China
| | - Xin Jiang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Biological Engineering College, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250056, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 2878, People's Republic of China
| | - Qingyu Ren
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Biological Engineering College, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250056, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 2878, People's Republic of China
| | - Hongyu Deng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Biological Engineering College, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250056, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 2878, People's Republic of China
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Baokun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Biological Engineering College, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250056, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 2878, People's Republic of China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Biological Engineering College, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250056, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 2878, People's Republic of China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Biological Engineering College, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250056, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 2878, People's Republic of China.
| |
Collapse
|
5
|
Inhibition of Larval Development of Marine Copepods Acartia tonsa by Neonocotinoids. TOXICS 2022; 10:toxics10040158. [PMID: 35448419 PMCID: PMC9026078 DOI: 10.3390/toxics10040158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023]
Abstract
Neonicotinoids (NEOs) are neurotoxic pesticides widely used in agriculture due to their high effectiveness against pest insects. Despite their widespread use, very little is known about their toxicity towards marine organisms, including sensitive and ecologically relevant taxa such as copepods. Thus, we investigated the toxicity of five widely used NEOs, including acetamiprid (ACE), clothianidin (CLO), imidacloprid (IMI), thiacloprid (THI), and thiamethoxam (TMX), to assess their ability to inhibit the larval development of the copepod Acartia tonsa. The more toxic NEOs were ACE (EC50 = 0.73 μg L−1), TMX (EC50 = 1.71 μg L−1) and CLO (EC50 = 1.90 μg L−1), while the less toxic compound was IMI (EC50 = 8.84 μg L−1). Early life-stage mortality was unaffected by NEOs at all of the tested concentrations. The calculated toxicity data indicated that significant effects due to ACE (EC20 = 0.12 μg L−1), THI (EC20 = 0.88 μg L−1) and TMX (EC20 = 0.18 μg L−1) are observed at concentrations lower than established chronic aquatic life benchmarks reported by USEPA for freshwater invertebrates. Nevertheless, since environmental concentrations of NEOs are generally lower than the threshold concentrations we calculated for A. tonsa, the effects may be currently of concern only in estuaries receiving wastewater discharges or experiencing intense runoff from agriculture.
Collapse
|
6
|
Barrick A, Champeau O, Butler J, Wiles T, Boundy M, Tremblay LA. Investigating the Ecotoxicity of Select Emerging Organic Contaminants Toward the Marine Copepod Gladioferens pectinatus. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:792-799. [PMID: 34918376 DOI: 10.1002/etc.5275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/29/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Estuarine ecosystems are recipients of anthropogenic stressors released from land-based activities. The aim of the present study was to investigate the ecotoxicological hazards of organic contaminants toward the estuarine copepod Gladioferens pectinatus using acute and chronic testing. Most chemicals demonstrated acute toxicity and influenced development of the copepods. Further research should be conducted to investigate these chemicals and their mixtures using long-term, multigenerational testing to characterize mechanisms of toxicity. Environ Toxicol Chem 2022;41:792-799. © 2022 SETAC.
Collapse
Affiliation(s)
| | | | | | | | | | - Louis A Tremblay
- Cawthron Institute, Nelson, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Carve M, Allinson G, Nugegoda D, Shimeta J. Trends in environmental and toxicity research on organic ultraviolet filters: A scientometric review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145628. [PMID: 33940738 DOI: 10.1016/j.scitotenv.2021.145628] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/12/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
In recent decades, the potential toxicological and environmental effects of organic ultraviolet filters (OUVF) have received growing attention. The number of studies in this area has increased; however, presently there is no scientometric perspective addressing this topic. The purpose of this study is to identify the intellectual base and research front using the visualization and analysis software, CiteSpace. We retrieved 453 articles, published in print or online as an early-access article between 2002 and 2020, from the Web of Science with a topic search related to OUVFs, environment, and toxicology. We then analysed synthesized networks of co-authorship (author, institution, country), co-citation (author, document, journal) and co-occurring keywords. The annual publication output has trended upwards since 2002. Authors based in China accounted for 29.4% of the total publications, followed by USA (17.4%); but overall publications from Switzerland and Spain were more influential. Major research themes identified included OUVF concentrations in aquatic environments, and hormonal effects. Emerging themes included improving the sensitivity of analytical detection methods for both OUVFs and their metabolites, consequences of OUVF transport to the marine environment, and concerns over prenatal exposure. Based on keyword analysis, benzophenone-3, 4-methylbenzylidene-camphor, 3-benzylidene camphor, and ethylhexyl-methoxycinnamate are the most studied OUVFs, and effects on estrogenic activity, gene expression, reproduction, and more recently, oxidative stress, have received most attention from a toxicological perspective. Other prominent topics were sources of environmental contamination and ecological risk assessments. This study maps the major research domains of OUVF environmental toxicology research; explanations and implications of the findings are discussed; and emerging trends highlighted.
Collapse
Affiliation(s)
- Megan Carve
- Ecotoxicology Research Group, School of Sciences, RMIT University, Bundoora, Victoria 3083, Australia; Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Graeme Allinson
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Dayanthi Nugegoda
- Ecotoxicology Research Group, School of Sciences, RMIT University, Bundoora, Victoria 3083, Australia; Aquatic Environmental Stress Research Group (AQUEST), School of Science, RMIT University, PO Box 71, Bundoora, 3078, Victoria, Australia
| | - Jeff Shimeta
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
8
|
Fivenson D, Sabzevari N, Qiblawi S, Blitz J, Norton BB, Norton SA. Sunscreens: UV filters to protect us: Part 2-Increasing awareness of UV filters and their potential toxicities to us and our environment. Int J Womens Dermatol 2021; 7:45-69. [PMID: 33537395 PMCID: PMC7838327 DOI: 10.1016/j.ijwd.2020.08.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Sunscreens are topical preparations containing one or more compounds that filter, block, reflect, scatter, or absorb ultraviolet (UV) light. Part 2 of this review focuses on the environmental, ecological effects and human toxicities that have been attributed to UV filters. METHODS Literature review using NIH databases (eg, PubMed and Medline), FDA and EPA databases, Google Scholar, the Federal Register, and the Code of Federal Regulations (CFR). LIMITATIONS This was a retrospective literature review that involved many different types of studies across a variety of species. Comparison between reports is limited by variations in methodology and criteria for toxicity. CONCLUSIONS In vivo and in vitro studies on the environmental and biological effects of UV filters show a wide array of unanticipated adverse effects on the environment and exposed organisms. Coral bleaching receives considerable attention from the lay press, but the scientific literature identifies potential toxicities of endocrine, neurologic, neoplastic and developmental pathways. These effects harm a vast array of aquatic and marine biota, while almost no data supports human toxicity at currently used quantities (with the exception of contact allergy). Much of these data are from experimental studies or field observations; more controlled environmental studies and long-term human use data are limited. Several jurisdictions have prohibited specific UV filters, but this does not adequately address the dichotomy of the benefits of photoprotection vs lack of eco-friendly, safe, and FDA-approved alternatives.
Collapse
Key Words
- 4-MBC, 4-methylbenzylidene camphor
- AAD, American Academy of Dermatology
- Aquatic organism toxicity of UV filters
- BP-3, Benzophenone-3 or Oxybenzone
- Bioaccumulation
- CDER, Center for Drug Evaluation and Research (part of FDA)
- Coral bleaching
- EPA, Environmental Protection Agency
- Europa, European Union Commission for Public Health
- FDA, Food and Drug Administration
- GBRMPA, Great Barrier Reef Marine Park Authority
- GRASE, Generally Recognized As Safe and Effective
- Human toxicity of UV filters
- NDA, New drug application
- NHANES, National Health and Nutrition Examination Survey
- NanoTiO2, Nanoparticle titanium dioxide
- Nanoparticle toxicity
- OC, Octocrylene
- OMC, Octyl methoxycinnamate or octinoxate
- OTC, Over-the-counter
- PABA, Para-aminobenzoic acid
- PCPC, Personal care products and cosmetics
- PPCP, Pharmaceuticals and personal care products
- Sunscreen side effects
- TiO2, Titanium dioxide
- UV filter
- UV, Ultraviolet
- UVF, Ultraviolet filter
- WWTP, Wastewater treatment plant
Collapse
Affiliation(s)
- David Fivenson
- Fivenson Dermatology, 3200 W. Liberty Rd., Suite C5, Ann Arbor, MI 48103, United States
- St. Joseph Mercy Health System Ann Arbor-Dermatology Residency Program, United States
| | - Nina Sabzevari
- St. Joseph Mercy Hospital, Dermatology Resident, 5333 McAuley Drive, Suite 5003, Ypsilanti, MI 48197, United States
| | - Sultan Qiblawi
- Michigan State University College of Human Medicine, 965 Fee Rd A110, East Lansing, MI 48824, United States
| | - Jason Blitz
- Navy Region Hawaii Public Health Emergency Officer (PHEO) NMRTC, 480 Central Avenue, Code DPH, Pearl Harbor Hawaii JBPHH, HI 96860-4908, United States
| | - Benjamin B. Norton
- Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, United States
| | - Scott A. Norton
- Dermatology Division, Children’s National Hospital, 111 Michigan Avenue, NW, Washington, DC 20010, United States
- Dermatology and Pediatrics, George Washington University, Washington, DC, United States
| |
Collapse
|
9
|
Carve M, Nugegoda D, Allinson G, Shimeta J. A systematic review and ecological risk assessment for organic ultraviolet filters in aquatic environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115894. [PMID: 33120145 DOI: 10.1016/j.envpol.2020.115894] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/22/2020] [Accepted: 10/15/2020] [Indexed: 05/21/2023]
Abstract
Organic ultraviolet filters (OUVFs) are used in a wide range of manufactured products including personal care (e.g. sunscreens) and plastic items. This review summarizes the available data regarding the toxic effects of OUVFs on marine and freshwater organisms and generates the predicted no-effect concentration (PNEC) values necessary for assessing ecological risk. Through a systematic search of the literature, 89 studies were identified and ecotoxicological data extracted. Collectively, these studies described toxicity testing with 39 OUVF from 10 structural classes, with derivatives of benzophenones (49%) and camphors (16%) most studied. There was a bias towards selecting freshwater species (61%), and evaluating single OUVF effects (87%) rather than OUVF mixtures. Short-term (acute) experimentation (58%) was marginally more common than long-term (chronic) testing (42%). Reproductive, developmental, genetic, and neurological toxicity were the most commonly identified effects in aquatic organism, and were associated with molecular interactions with steroid receptors, DNA, or the production of reactive oxygen species. Species sensitivity distribution and/or assessment factors were used to calculate PNECs for 22 OUVFs and the risk quotients for 12 OUVFs. When using maximum concentrations, high risk was observed for six OUVFs in marine environments (4-methylbenzylidene-camphor, octocrylene, padimate-O, benzophenone-1, and oxybenzone, ethylhexyl-4-methoxycinnamate), and for four OUVFs in freshwater environments (ethylhexyl-4-methoxycinnamate, octocrylene, avobenzone and oxybenzone). When using median concentrations, a risk to marine environments was observed for oxybenzone. The results of this review underline that there is limited knowledge of the pathological effects of OUVFs and their metabolites in aquatic environments, and this inhibits the development of informed water-quality guidelines.
Collapse
Affiliation(s)
- Megan Carve
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Dayanthi Nugegoda
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Graeme Allinson
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Jeff Shimeta
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| |
Collapse
|
10
|
A Review on Graphene’s Light Stabilizing Effects for Reduced Photodegradation of Polymers. CRYSTALS 2020. [DOI: 10.3390/cryst11010003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Graphene, the newest member of the carbon’s family, has proven its efficiency in improving polymers’ resistance against photodegradation, even at low loadings equal to 1 wt% or lower. This protective role involves a multitude of complementary mechanisms associated with graphene’s unique geometry and chemistry. In this review, these mechanisms, taking place during both the initiation and propagation steps of photodegradation, are discussed concerning graphene and graphene derivatives, i.e., graphene oxide (GO) and reduced graphene oxide (rGO). In particular, graphene displays important UV absorption, free radical scavenging, and quenching capabilities thanks to the abundant π-bonds and sp2 carbon sites in its hexagonal lattice structure. The free radical scavenging effect is also partially linked with functional hydroxyl groups on the surface. However, the sp2 sites remain the predominant player, which makes graphene’s antioxidant effect potentially stronger than rGO and GO. Besides, UV screening and oxygen barriers are active protective mechanisms attributed to graphene’s high surface area and 2D geometry. Moreover, the way that graphene, as a nucleating agent, can improve the photostability of polymers, have been explored as well. These include the potential effect of graphene on increasing polymer’s glass transition temperature and crystallinity.
Collapse
|
11
|
Carotenuto Y, Vitiello V, Gallo A, Libralato G, Trifuoggi M, Toscanesi M, Lofrano G, Esposito F, Buttino I. Assessment of the relative sensitivity of the copepods Acartia tonsa and Acartia clausi exposed to sediment-derived elutriates from the Bagnoli-Coroglio industrial area. MARINE ENVIRONMENTAL RESEARCH 2020; 155:104878. [PMID: 31975692 DOI: 10.1016/j.marenvres.2020.104878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
The sensitivity of the copepods Acartia tonsa, commonly used in standardized tests for environmental risk assessment and A. clausi, the dominant autochthonous congener species in the Mediterranean Sea, was assessed using sediment-derived elutriates from the industrial area of Bagnoli-Coroglio and nickel chloride as referent toxicant. Acute A. clausi naupliar immobilization test showed EC50 for elutriates E25, E56 and E84 of 23.3%, 80.5% and >100%, respectively, compared to 59.5%, 66.6% and >100% in A. tonsa. In the 7 day sublethal test, a reduction in A. clausi egg production rates was observed in all elutriates, but only in E56 for A. tonsa. Elutriate 56, which contained the highest amount of polycyclic aromatic hydrocarbons, also induced 70% mortality in A. clausi females. Although A. clausi was more sensitive than A. tonsa, the two species had convergent responses to the three elutriates, thus opening the venue for a potential use of A. clausi in standardized ecotoxicity tests.
Collapse
Affiliation(s)
- Ylenia Carotenuto
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121, Napoli, Italy.
| | - Valentina Vitiello
- Istituto Superiore per la Protezione e Ricerca Ambientale, via del cedro 38, 57122, Livorno, Italy
| | - Alessandra Gallo
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121, Napoli, Italy
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126, Naples, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126, Naples, Italy
| | - Maria Toscanesi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126, Naples, Italy
| | - Giusy Lofrano
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126, Naples, Italy
| | - Francesco Esposito
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121, Napoli, Italy
| | - Isabella Buttino
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121, Napoli, Italy; Istituto Superiore per la Protezione e Ricerca Ambientale, via del cedro 38, 57122, Livorno, Italy.
| |
Collapse
|
12
|
Bioaccumulation and Toxicological Effects of UV-Filters on Marine Species. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2020. [DOI: 10.1007/698_2019_442] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Guyon A, Smith KF, Charry MP, Champeau O, Tremblay LA. Effects of chronic exposure to benzophenone and diclofenac on DNA methylation levels and reproductive success in a marine copepod. J Xenobiot 2018; 8:7674. [PMID: 30701062 PMCID: PMC6343104 DOI: 10.4081/xeno.2018.7674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/06/2018] [Indexed: 02/08/2023] Open
Abstract
The UV-filter benzophenone and the anti-inflammatory diclofenac are commonly detected in the environment. The aim of this study was to assess the multigenerational effects of chronic exposure to low concentrations of these chemicals on toxicity and DNA methylation levels in the copepod Gladioferens pectinatus. Acute toxicity tests were conducted to determine the sensitivity of G. pectinatus to the chemicals. All chemicals impacted breeding, hatching and egg viability. Diclofenac (1 mg.L-1) reduced the number of eggs per gravid female. Benzophenone (0.5 mg.L-1) decreased egg hatching success. Exposure to the reference toxicant copper (0.02 mg.L-1) led to unsuccessful hatching. Effects on DNA methylation was estimated by the percentage of 5- methylcytosine. The treatments resulted in strong differences in DNA methylation with increased methylation in the exposed animals. The two chemicals impacted both egg viability and the induction of differential DNA methylation, suggesting potential intra- and trans-generational evolutionary effects.
Collapse
Affiliation(s)
- Anais Guyon
- Cawthron Institute, Nelson, New Zealand.,European Institute for Marine Studies, University of Western Brittany, Plouzané, France
| | | | - Maria P Charry
- Cawthron Institute, Nelson, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Louis A Tremblay
- Cawthron Institute, Nelson, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
14
|
Ozáez I, Morcillo G, Martínez-Guitarte JL. Ultraviolet filters differentially impact the expression of key endocrine and stress genes in embryos and larvae of Chironomus riparius. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 557-558:240-247. [PMID: 26994811 DOI: 10.1016/j.scitotenv.2016.03.078] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 03/11/2016] [Accepted: 03/11/2016] [Indexed: 06/05/2023]
Abstract
Several organic UV filters have hormonal activity in vertebrates, as demonstrated in fishes, rodents and human cells. Despite the accumulation of filter contaminants in aquatic systems, research on their effects on the endocrine systems of freshwaters invertebrates is scarce. In this work, the effects of five frequently used UV filters were investigated in embryos and larvae of Chironomus riparius, which is a reference organism in ecotoxicology. LC50 values for larvae as well as the percentage of eclosion of eggs were determined following exposures to: octyl-p-methoxycinnamate (OMC) also known as 2-ethylhexyl-4-methoxycinnamate (EHMC); 4-methylbenzylidene camphor (4MBC); 4-hydroxybenzophenone (4HB); octocrylene (OC); and octyldimethyl-p-aminobenzoate (OD-PABA). To assess sublethal effects, expression levels of the genes coding for the ecdysone receptor (EcR) and heat shock protein HSP70 were investigated as biomarkers for endocrine and stress effects at the cellular level. Life-stage-dependent sensitivity was found. In embryos, all of the UV filters provoked a significant overexpression of EcR at 24h after exposure. OC, 4MBC and OD-PABA also triggered transcriptional activation of the hsp70 stress gene in embryos. In contrast, in larvae, only 4MBC and OMC/EHMC increased EcR and hsp70 mRNA levels and OD-PABA upregulated only the EcR gene. These results revealed that embryos are particularly sensitive to UV filters, which affect endocrine regulation during development. Most UV filters also triggered the cellular stress response, and thus exhibit proteotoxic effects. The differences observed between embryos and larvae and the higher sensitivity of embryos highlight the importance of considering different life stages when evaluating the environmental risks of pollutants, particularly when analyzing endocrine effects.
Collapse
Affiliation(s)
- Irene Ozáez
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain
| | - Gloria Morcillo
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain
| | - José-Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain.
| |
Collapse
|
15
|
Piazza V, Gambardella C, Canepa S, Costa E, Faimali M, Garaventa F. Temperature and salinity effects on cadmium toxicity on lethal and sublethal responses of Amphibalanus amphitrite nauplii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 123:8-17. [PMID: 26410667 DOI: 10.1016/j.ecoenv.2015.09.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 09/10/2015] [Accepted: 09/14/2015] [Indexed: 06/05/2023]
Abstract
The official protocol of an ecotoxicological assay employing larvae of the crustacean Amphibalanus amphitrite as a model organism has recently been published by the Italian regulatory authority UNICHIM. Such assay is now one of the applicable tests for water quality assessment under Italian law. While specific temperature and salinity values are recommended by ecotoxicology bioassay protocols for test set up, little information is available on response changes in case of parameter variations. In particular, information is totally lacking for this innovative model organism. Under the standard test protocol, 20°C and 37‰ temperature and salinity, respectively, are required to be set in A. amphitrite bioassay. In order to evaluate the environmental relevance of the test, laboratory experiments simulating the effect on larval responses due to variations of temperature and salinity expected in field collected samples were carried out. The effect of temperature and salinity changes on different end-points, involving increasing sensitivity levels, has been investigated, with and without the presence of cadmium nitrate, Cd(NO3)2, as a reference toxicant, to determine the possible interactions between pollutants and environmental parameters fluctuations. Three end-points - mortality, immobilization, and swimming speed alteration - were measured in order to evaluate the impact of a wide range of temperature (5, 10, 15, 20, 25, 30, 35, 40°C) and salinity values (10, 20, 30, 37, 40, 50, 60, 70‰) on response variation after 24 and 48h of exposure. For each parameter, a Non-Effect Range (NER) - namely the limit values within which no effect related to environmental parameter changes is observed - has been defined. For both parameters, NER resulted to be wider for the less sensitive end-points - such as mortality and immobilization - and for shorter exposure time (24h). Later, the same end-points have been evaluated by exposing the same organisms to a reference toxic compound, Cd(NO3)2 (0, 0.2, 0.4, 0.8, 1.6, 3.2mg/L), within the detected NER both for temperature and salinity. LC50 and EC50 values have been calculated for each end-point after 24 and 48h. Cadmium toxicity was shown to decrease at higher salinity values and increase at higher temperatures. Obtained results offer a better bioassay characterization, and the possibility of a more realistic estimation of ecotoxicological assessments performed on field collected samples. Further studies are needed, especially to investigate the effects of simultaneous salinity and temperature changes on end-points.
Collapse
Affiliation(s)
- Veronica Piazza
- Institute of Marine Science (ISMAR), CNR, via De Marini 6, 16149 Genoa, Italy.
| | - Chiara Gambardella
- Institute of Marine Science (ISMAR), CNR, via De Marini 6, 16149 Genoa, Italy
| | - Sara Canepa
- Institute of Marine Science (ISMAR), CNR, via De Marini 6, 16149 Genoa, Italy
| | - Elisa Costa
- Institute of Marine Science (ISMAR), CNR, Arsenale-Tesa 104, 2737F Castello, Venice, Italy
| | - Marco Faimali
- Institute of Marine Science (ISMAR), CNR, via De Marini 6, 16149 Genoa, Italy
| | - Francesca Garaventa
- Institute of Marine Science (ISMAR), CNR, Arsenale-Tesa 104, 2737F Castello, Venice, Italy
| |
Collapse
|
16
|
Abstract
Ultraviolet solar radiation is a well-known environmental health risk factor and the use of sun lotions is encouraged to achieve protection mainly from skin cancer. Sun lotions are cosmetic commercial products that combine active and inactive ingredients and many of these are associated with health problems, including allergic reactions and endocrine disorders. This review focuses on their ability to cause endocrine and reproductive impairments, with emphasis laid on the active ingredients (common and less common UV filters). In vitro and in vivo studies have demonstrated their ability to show oestrogenic/anti-oestrogenic and androgenic/anti-androgenic activity. Many ingredients affect the oestrous cycle, spermatogenesis, sexual behaviour, fertility and other reproductive parameters in experimental animals. Their presence in aquatic environments may reveal a new emerging environmental hazard.
Collapse
Affiliation(s)
- Sotirios Maipas
- National and Kapodistrian University of Athens, School of Medicine, First Department of Pathology and Cytology Unit, 1st Pathology Laboratory, Athens, Greece
| | - Polyxeni Nicolopoulou-Stamati
- National and Kapodistrian University of Athens, School of Medicine, First Department of Pathology and Cytology Unit, 1st Pathology Laboratory, Athens, Greece
| |
Collapse
|
17
|
Zhao H, Wei D, Li M, Du Y. Substituent contribution to the genotoxicity of benzophenone-type UV filters. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 95:241-246. [PMID: 23790521 DOI: 10.1016/j.ecoenv.2013.05.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/22/2013] [Accepted: 05/28/2013] [Indexed: 06/02/2023]
Abstract
Benzophenones (BPs) are widely used in UV filters, fragrance enhancers, and plastic additives. In this study, the genotoxicity of 14 BPs was tested using the SOS/umu assay, and the related substituent contribution was disclosed. The results of this study revealed that the major contributor to the genotoxicity of the BPs was the ortho,para-di-substitution, and the increasing hydroxy substitution on the benzene ring. In addition, the higher the dispersion of the substituent species on the two benzene rings, the lower the genotoxicity exhibited by the compound. Furthermore, 2 dimensional and 3 dimenional quantitative structure-activity relationships (2D- and 3D-QSAR) studies indicated that hydrogen-bond interactions and electrostatic effects were determinants for the genotoxicity of the BPs. The current results provide useful information for the assessment of the potential ecological risk and health effects of BP-type UV filters.
Collapse
Affiliation(s)
- Huimin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | | | | | | |
Collapse
|
18
|
Watermann BT, Albanis TA, Dagnac T, Gnass K, Ole Kusk K, Sakkas VA, Wollenberger L. Effects of methyltestosterone, letrozole, triphenyltin and fenarimol on histology of reproductive organs of the copepod Acartia tonsa. CHEMOSPHERE 2013; 92:544-554. [PMID: 23664474 DOI: 10.1016/j.chemosphere.2013.03.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/18/2013] [Accepted: 03/22/2013] [Indexed: 06/02/2023]
Abstract
The marine calanoid copepod Acartia tonsa was exposed to methyltestosterone (MET, 1.6-126 μg L(-1)), letrozole (LET, 10-1000 μg L(-1)), triphenyltin chloride (TPT, 0.0014-0.0088 μg L(-1) TPT-Sn) and fenarimol (FEN, 2.8-105 μg L(-1)) for 21 d covering a full life-cycle. All four compounds investigated are known to act as androgens in vertebrates. The digestive tract, musculature, nervous system, reproductive organs, gonad and accessory sexual glands were examined by light microscopy after routine staining and immune-labelling for detection of apoptosis and determination of proliferation activities. MET induced an inhibition of oogenesis, oocyte maturation and yolk formation, respectively, which was most pronounced at the lowest concentrations tested. In LET exposed males, spermatogenesis was enhanced with very prominent gamete stages; in some stages apoptosis occurred. The spermatophore was hypertrophied and displayed deformations. In females, LET induced a disorder of oogenesis and disturbances in yolk synthesis. TPT stimulated the male reproductive system at 0.0014 and 0.0035 μg TPT-SnL(-1), whereas inhibiting effects were observed in the female gonad at 0.0088 μg TPT-SnL(-1). In FEN exposed females proliferation of gametes was reduced and yolk formation showed irregular features at 2.8-105 μgL(-1). In FEN exposed males an elevated proliferation activity was observed. No pathological alterations in other organ systems, e.g. the digestive tract including the hindgut acting as respiratory organ, the nervous system, or the musculature were seen. This indicates that the effects on gonads might be caused rather by disturbance of endocrine signalling or interference with hormone metabolism than by general toxicity.
Collapse
Affiliation(s)
- Burkard T Watermann
- Laboratory for Aquatic Research and Comparative Pathology (LimnoMar), Bei der Neuen Muenze 11, D-22145 Hamburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
19
|
Gago-Ferrero P, Díaz-Cruz MS, Barceló D. An overview of UV-absorbing compounds (organic UV filters) in aquatic biota. Anal Bioanal Chem 2012; 404:2597-610. [PMID: 22669305 DOI: 10.1007/s00216-012-6067-7] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 04/18/2012] [Accepted: 04/19/2012] [Indexed: 10/28/2022]
Abstract
The purpose of this article is to summarize biological monitoring information on UV-absorbing compounds, commonly referred as organic UV filters or sunscreen agents, in aquatic ecosystems. To date a limited range of species (macroinvertebrates, fish, and birds), habitats (lakes, rivers, and sea), and compounds (benzophenones and camphors) have been investigated. As a consequence there is not enough data enabling reliable understanding of the global distribution and effect of UV filters on ecosystems. Both liquid chromatography and gas chromatography coupled with mass spectrometry-based methods have been developed and applied to the trace analysis of these pollutants in biota, enabling the required selectivity and sensitivity. As expected, the most lipophilic compounds occur most frequently with concentrations up to 7112 ng g(-1) lipids in mussels and 3100 ng g(-1) lipids (homosalate) in fish. High concentrations have also been reported for 4-methylbenzilidenecamphor (up to 1800 ng g(-1) lipids) and octocrylene (2400 ng g(-1) lipids). Many fewer studies have evaluated the potential bioaccumulation and biomagnification of these compounds in both fresh and marine water and terrestrial food webs. Estimated biomagnification factors suggest biomagnification in predator-prey pairs, for example bird-fish and fish-invertebrates. Ecotoxicological data and preliminary environmental assessment of the risk of UV filters are also included and discussed.
Collapse
Affiliation(s)
- Pablo Gago-Ferrero
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Spanish Council of Scientific Research, Barcelona, Spain
| | | | | |
Collapse
|