1
|
Von Behren J, Reynolds P, Bradley PM, Gray JL, Kolpin DW, Romanok KM, Smalling KL, Carpenter C, Avila W, Ventura A, English PB, Jones RR, Solomon GM. Per- and polyfluoroalkyl substances (PFAS) in drinking water in Southeast Los Angeles: Industrial legacy and environmental justice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176067. [PMID: 39244057 DOI: 10.1016/j.scitotenv.2024.176067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/23/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent chemicals of increasing concern to human health. PFAS contamination in water systems has been linked to a variety of sources including hydrocarbon fire suppression activities, industrial and military land uses, agricultural applications of biosolids, and consumer products. To assess PFAS in California tap water, we collected 60 water samples from inside homes in four different geographic regions, both urban and rural. We selected mostly small water systems with known history of industrial chemical or pesticide contamination and that served socioeconomically disadvantaged communities. Thirty percent of the tap water samples (18) had a detection of at least one of the 32 targeted PFAS and most detections (89 %) occurred in heavily industrialized Southeast Los Angeles (SELA). The residents of SELA are predominately Latino and low-income. Concentrations of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) ranged from 6.8 to 13.6 ng/L and 9.4-17.8 ng/L, respectively in SELA and were higher than State (PFOA: 0.007 ng/L; PFOS: 1.0 ng/L) and national health-based goals (zero). To look for geographic patterns, we mapped potential sources of PFAS contamination, such as chrome plating facilities, airports, landfills, and refineries, located near the SELA water systems; consistent with the multiple potential sources in the area, no clear spatial associations were observed. The results indicate the importance of systematic testing of PFAS in tap water, continued development of PFAS regulatory standards and advisories for a greater number of compounds, improved drinking-water treatments to mitigate potential health threats to communities, especially in socioeconomically disadvantaged and industrialized areas.
Collapse
Affiliation(s)
- Julie Von Behren
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA.
| | - Peggy Reynolds
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | | | | | | - Wendy Avila
- Communities for a Better Environment, Los Angeles, CA, USA
| | | | - Paul B English
- Tracking California, Public Health Institute, Oakland, CA, USA
| | - Rena R Jones
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Gina M Solomon
- Division of Occupational, Environmental and Climate Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
2
|
Bayode AA, Emmanuel SS, Akinyemi AO, Ore OT, Akpotu SO, Koko DT, Momodu DE, López-Maldonado EA. Innovative techniques for combating a common enemy forever chemicals: A comprehensive approach to mitigating per- and polyfluoroalkyl substances (PFAS) contamination. ENVIRONMENTAL RESEARCH 2024; 261:119719. [PMID: 39098711 DOI: 10.1016/j.envres.2024.119719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
The pervasive presence of per and polyfluoroalkyl substances (PFAS), commonly referred to as "forever chemicals," in water systems poses a significant threat to both the environment and public health. PFAS are persistent organic pollutants that are incredibly resistant to degradation and have a tendency to accumulate in the environment, resulting in long-term contamination issues. This comprehensive review delves into the primary impacts of PFAS on both the environment and human health while also delving into advanced techniques aimed at addressing these concerns. The focus is on exploring the efficacy, practicality, and sustainability of these methods. The review outlines several key methods, such as advanced oxidation processes, novel materials adsorption, bioremediation, membrane filtration, and in-situ chemical oxidation, and evaluates their effectiveness in addressing PFAS contamination. By conducting a comparative analysis of these techniques, the study aims to provide a thorough understanding of current PFAS remediation technologies, as well as offer insights into integrated approaches for managing these persistent pollutants effectively. While acknowledging the high efficiency of adsorption and membrane filtration in reducing persistent organic pollutants due to their relatively low cost, versatility, and wide applicability, the review suggests that the integration of these methods could result in an overall enhancement of removal performance. Additionally, the study emphasizes the need for researcher attention in key areas and underscores the necessity of collaboration between researchers, industry, and regulatory authorities to address this complex challenge.
Collapse
Affiliation(s)
- Ajibola A Bayode
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China; Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B. 230, 232101, Ede, Nigeria.
| | - Stephen Sunday Emmanuel
- Department of Industrial Chemistry, Faculty of Physical Sciences, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria.
| | - Amos O Akinyemi
- Department of Toxicology & Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Odunayo T Ore
- Department of Chemical Sciences, Achievers University, P.M.B. 1030, Owo, Nigeria
| | - Samson O Akpotu
- Department of Chemistry, Vaal University of Technology, Vanderbijlpark, 1900, Gauteng, South Africa
| | - Daniel T Koko
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B. 230, 232101, Ede, Nigeria
| | - David E Momodu
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B. 230, 232101, Ede, Nigeria
| | | |
Collapse
|
3
|
Petali JM, Pulster EL, McCarthy C, Pickard HM, Sunderland EM, Bangma J, Carignan CC, Robuck A, Crawford KA, Romano ME, Lohmann R, von Stackelburg K. Considerations and challenges in support of science and communication of fish consumption advisories for per- and polyfluoroalkyl substances. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1839-1858. [PMID: 38752651 PMCID: PMC11486601 DOI: 10.1002/ieam.4947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 06/12/2024]
Abstract
Federal, state, tribal, or local entities in the United States issue fish consumption advisories (FCAs) as guidance for safer consumption of locally caught fish containing contaminants. Fish consumption advisories have been developed for commonly detected compounds such as mercury and polychlorinated biphenyls. The existing national guidance does not specifically address the unique challenges associated with bioaccumulation and consumption risk related to per- and polyfluoroalkyl substances (PFAS). As a result, several states have derived their own PFAS-related consumption guidelines, many of which focus on one frequently detected PFAS, known as perfluorooctane sulfonic acid (PFOS). However, there can be significant variation between tissue concentrations or trigger concentrations (TCs) of PFOS that support the individual state-issued FCAs. This variation in TCs can create challenges for risk assessors and risk communicators in their efforts to protect public health. The objective of this article is to review existing challenges, knowledge gaps, and needs related to issuing PFAS-related FCAs and to provide key considerations for the development of protective fish consumption guidance. The current state of the science and variability in FCA derivation, considerations for sampling and analytical methodologies, risk management, risk communication, and policy challenges are discussed. How to best address PFAS mixtures in the development of FCAs, in risk assessment, and establishment of effect thresholds remains a major challenge, as well as a source of uncertainty and scrutiny. This includes developments better elucidating toxicity factors, exposures to PFAS mixtures, community fish consumption behaviors, and evolving technology and analytical instrumentation, methods, and the associated detection limits. Given the evolving science and public interests informing PFAS-related FCAs, continued review and revision of FCA approaches and best practices are vital. Nonetheless, consistent, widely applicable, PFAS-specific approaches informing methods, critical concentration thresholds, and priority compounds may assist practitioners in PFAS-related FCA development and possibly reduce variability between states and jurisdictions. Integr Environ Assess Manag 2024;20:1839-1858. © 2024 The Author(s). Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Jonathan Michael Petali
- Environmental Health Program, New Hampshire Department of Environmental Services, Concord, New Hampshire, USA
| | - Erin L Pulster
- US Geological Survey, Columbia Environmental Research Center, Columbia, Missouri, USA
| | | | - Heidi M Pickard
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts, USA
| | - Elsie M Sunderland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts, USA
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Jacqueline Bangma
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
- Center for Environmental Measurement and Modeling, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Courtney C Carignan
- Department Food Science and Human Nutrition, Department of Pharmacology and Toxicology Michigan State University, East Lansing, Michigan, USA
| | - Anna Robuck
- Environmental Effects Research Laboratory, US Environmental Protection Agency, Narragansett, Rhode Island, USA
| | - Kathryn A Crawford
- Environmental Studies Programs, Middlebury College, Middlebury, Vermont, USA
| | - Megan E Romano
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Katherine von Stackelburg
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Sharma M, Bains A, Sridhar K, Chawla P, Sharma M. Environmental impact and source-controlled approaches for emerging micropollutants: Current status and future prospects. Food Chem Toxicol 2024; 193:115038. [PMID: 39384093 DOI: 10.1016/j.fct.2024.115038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Emerging micropollutants, originating from diverse sources, including pharmaceutical, pesticides, and industrial effluents, are a serious environmental concern. Their presence in natural water bodies has negative effects on ecosystems and human health. To address this issue, the importance of a source-controlled approach has grown, highlighting the use of advanced technologies such as oxidation processes, membrane filtration, and adsorption to prevent micropollutants from entering the environment. Therefore, this review provides a comprehensive overview of emerging micropollutants, their analytical detection methods, and their environmental impacts, with a focus on aquatic ecosystems, human health, and terrestrial environments. It also highlights the importance of using a source-controlled approach and provides insights into the benefits and drawbacks of this strategy. The primary micropollutants identified in this review were erythromycin, ibuprofen, and triclocarban, originating from the pharmaceutical industries for their use as antibiotics, analgesic, and antibacterial drugs. The primary analytical methods used for detection involved hybrid techniques that integrate chromatography with spectroscopy. Thus, this review emphasizes the source-controlled approach's benefits and drawbacks, focusing on emerging micropollutants, their detection, and impacts on ecosystems and health.
Collapse
Affiliation(s)
- Madhu Sharma
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, 144411, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara, 144411, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to Be University), Coimbatore, 641021, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, 144411, India.
| | - Minaxi Sharma
- Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo, 315000, China.
| |
Collapse
|
5
|
Tokranov AK, Ransom KM, Bexfield LM, Lindsey BD, Watson E, Dupuy DI, Stackelberg PE, Fram MS, Voss SA, Kingsbury JA, Jurgens BC, Smalling KL, Bradley PM. Predictions of groundwater PFAS occurrence at drinking water supply depths in the United States. Science 2024:eado6638. [PMID: 39446898 DOI: 10.1126/science.ado6638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/31/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS), known colloquially as "forever chemicals", have been associated with adverse human health effects and have contaminated drinking water supplies across the United States owing to their long-term and widespread use. People in the United States may unknowingly be drinking water that contains PFAS because of a lack of systematic analysis, particularly in domestic water supplies. We present an extreme gradient boosting model for predicting the occurrence of PFAS in groundwater at the depths of drinking water supply for the conterminous United States. Our model results indicate that 71 to 95 million people in the conterminous United States potentially rely on groundwater with detectable concentrations of PFAS for their drinking-water supplies prior to any treatment.
Collapse
|
6
|
Qian B, Rayner JL, Davis GB, Trinchi A, Collis G, Kyratzis IL, Kumar A. Per- and poly-fluoroalkyl substances (PFAS) sensing: A focus on representatively sampling soil vadose zones linked to nano-sensors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116932. [PMID: 39205356 DOI: 10.1016/j.ecoenv.2024.116932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are a group of organo-fluorine compounds that have been broadly used in consumer and industrial products spanning virtually all sectors. They can be found as surfactants, coatings and liners, polymer additives, fire retardants, adhesives, and many more. The chemical stability of the carbon fluorine bond and amphiphilic nature of PFAS result in their persistence and mobility in the environment via soil porewater, surface water and groundwater, with potential for adverse effects on the environment and human health. There is an emergent and increasing requirement for fast, low-cost, robust, and portable methods to detect PFAS, especially in the field. There may be thousands of PFAS compounds present in soil and water at extremely low concentration (0.01-250 ppb) that require measurement, and traditional technologies for continuous environmental sensing are challenged due to the complexity of soil chemistry. This paper presents a comprehensive review of potentially rapid PFAS measurement methods, focused on techniques for representative sampling of PFAS in porewater from contaminated soil, and approaches for pre-treatment of porewater samples to eliminate these interferences to be ready for PFAS-detecting sensors. The review discusses selectivity, a key factor underlying pre-treatment and sensing performance, and explores the interactions between PFAS and various sensors. PFAS chemical nano-sensors discussed are categorized in terms of the detection mechanism (electrochemical and optical). This review aims to provide guidance and outline the current challenges and implications for future routine PFAS sensing linked to soil porewater collection, to achieve more selective and effective PFAS sensors.
Collapse
Affiliation(s)
- Bin Qian
- CSIRO Environment, 147 Underwood Avenue, Floreat, Western Australia 6014, Australia.
| | - John L Rayner
- CSIRO Environment, 147 Underwood Avenue, Floreat, Western Australia 6014, Australia
| | - Greg B Davis
- CSIRO Environment, 147 Underwood Avenue, Floreat, Western Australia 6014, Australia
| | - Adrian Trinchi
- CSIRO Manufacturing, Research Way , Clayton, Melbourne, Victoria 3168, Australia
| | - Gavin Collis
- CSIRO Manufacturing, Research Way , Clayton, Melbourne, Victoria 3168, Australia
| | - Ilias Louis Kyratzis
- CSIRO Manufacturing, Research Way , Clayton, Melbourne, Victoria 3168, Australia
| | - Anand Kumar
- CSIRO Environment, 147 Underwood Avenue, Floreat, Western Australia 6014, Australia
| |
Collapse
|
7
|
Smalling KL, Romanok KM, Bradley PM, Hladik ML, Gray JL, Kanagy LK, McCleskey RB, Stavreva DA, Alexander-Ozinskas AK, Alonso J, Avila W, Breitmeyer SE, Bustillo R, Gordon SE, Hager GL, Jones RR, Kolpin DW, Newton S, Reynolds P, Sloop J, Ventura A, Von Behren J, Ward MH, Solomon GM. Mixed contaminant exposure in tapwater and the potential implications for human-health in disadvantaged communities in California. WATER RESEARCH 2024; 267:122485. [PMID: 39368187 DOI: 10.1016/j.watres.2024.122485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/22/2024] [Accepted: 09/19/2024] [Indexed: 10/07/2024]
Abstract
Water is an increasingly precious resource in California as years of drought, climate change, pollution, as well as an expanding population have all stressed the state's drinking water supplies. Currently, there are increasing concerns about whether regulated and unregulated contaminants in drinking water are linked to a variety of human-health outcomes particularly in socially disadvantaged communities with a history of health risks. To begin to address this data gap by broadly assessing contaminant mixture exposures, the current study was designed to collect tapwater samples from communities in Gold Country, the San Francisco Bay Area, two regions of the Central Valley (Merced/Fresno and Kern counties), and southeast Los Angeles for 251 organic chemicals and 32 inorganic constituents. Sampling prioritized low-income areas with suspected water quality challenges and elevated breast cancer rates. Results indicated that mixtures of regulated and unregulated contaminants were observed frequently in tapwater throughout the areas studied and the types and concentrations of detected contaminants varied by region, drinking-water source, and size of the public water system. Multiple exceedances of enforceable maximum contaminant level(s) (MCL), non-enforceable MCL goal(s) (MCLG), and other health advisories combined with frequent exceedances of benchmark-based hazard indices were also observed in samples collected in all five of the study regions. Given the current focus on improving water quality in socially disadvantaged communities, our study highlights the importance of assessing mixed-contaminant exposures in drinking water at the point of consumption to adequately address human-health concerns (e.g., breast cancer risk). Data from this pilot study provide a foundation for future studies across a greater number of communities in California to assess potential linkages between breast cancer rates and tapwater contaminants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Diana A Stavreva
- National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | | | - Jesus Alonso
- Clean Water Action/Clean Water Fund, Oakland, CA, USA
| | - Wendy Avila
- Communities for a Better Environment, Los Angeles, CA, USA
| | | | | | | | - Gordon L Hager
- National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Rena R Jones
- National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | | | - Seth Newton
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Peggy Reynolds
- University of California San Francisco, San Francisco, CA, USA
| | - John Sloop
- ORISE, Office of Research & Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | | | | | - Mary H Ward
- National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Gina M Solomon
- University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
8
|
Adewuyi A, Li Q. Emergency of per- and polyfluoroalkyl substances in drinking water: Status, regulation, and mitigation strategies in developing countries. ECO-ENVIRONMENT & HEALTH 2024; 3:355-368. [PMID: 39281067 PMCID: PMC11399586 DOI: 10.1016/j.eehl.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/24/2024] [Accepted: 05/21/2024] [Indexed: 09/18/2024]
Abstract
The detection of per- and polyfluoroalkyl substances (PFAS) in water presents a significant challenge for developing countries, requiring urgent attention. This review focuses on understanding the emergence of PFAS in drinking water, health concerns, and removal strategies for PFAS in water systems in developing countries. This review indicates the need for more studies to be conducted in many developing nations due to limited information on the environmental status and fate of PFAS. The health consequences of PFAS in water are enormous and cannot be overemphasized. Efforts are ongoing to legislate a national standard for PFAS in drinking water. Currently, there are few known mitigation efforts from African countries, in contrast to several developing nations in Asia. Therefore, there is an urgent need to develop economically viable techniques that could be integrated into large-scale operations to remove PFAS from water systems in the region. However, despite the success achieved with removing long-chain PFAS from water, more studies are required on strategies for eliminating short-chain moieties in water.
Collapse
Affiliation(s)
- Adewale Adewuyi
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA
| | - Qilin Li
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Rice University, Houston, TX 77005, USA
- Department of Materials Science and Nano Engineering, Rice University, Houston, TX 77005, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
| |
Collapse
|
9
|
You S, Sun E, Chae H, Kim CK. Effect of Discharge Gas Composition on SiC Etching in an HFE-347mmy/O 2/Ar Plasma. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3917. [PMID: 39203095 PMCID: PMC11355763 DOI: 10.3390/ma17163917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024]
Abstract
This study explores the impact of varying discharge gas compositions on the etching performance of silicon carbide (SiC) in a heptafluoroisopropyl methyl ether (HFE-347mmy)/O2/Ar plasma. SiC is increasingly favored for high-temperature and high-power applications due to its wide bandgap and high dielectric strength, but its chemical stability makes it challenging to etch. This research explores the use of HFE-347mmy as a low-global-warming-potential (GWP) alternative to the conventional high-GWP fluorinated gasses that are typically used in plasma etching. By examining the behavior of SiC etch rates and analyzing the formation of fluorocarbon films and Si-O bonds, this study provides insights into optimizing plasma conditions for effective SiC etching, while addressing environmental concerns associated with high-GWP gasses.
Collapse
Affiliation(s)
- Sanghyun You
- Department of Chemical Engineering and Department of Energy Systems Research, Ajou University, Worldcup-ro 206, Yeongtong-gu, Suwon 16499, Republic of Korea; (S.Y.); (E.S.)
| | - Eunjae Sun
- Department of Chemical Engineering and Department of Energy Systems Research, Ajou University, Worldcup-ro 206, Yeongtong-gu, Suwon 16499, Republic of Korea; (S.Y.); (E.S.)
| | - Heeyeop Chae
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Seobu-ro 2066, Jangan-gu, Suwon 16419, Republic of Korea;
| | - Chang-Koo Kim
- Department of Chemical Engineering and Department of Energy Systems Research, Ajou University, Worldcup-ro 206, Yeongtong-gu, Suwon 16499, Republic of Korea; (S.Y.); (E.S.)
| |
Collapse
|
10
|
Olomukoro AA, Xie R, Paucar FXF, DeRosa C, Danielson ND, Gionfriddo E. Characterization of a mixed mode fluorocarbon/weak anion exchange sorbent for the separation of perfluoroalkyl substances. J Sep Sci 2024; 47:e2400413. [PMID: 39192716 DOI: 10.1002/jssc.202400413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024]
Abstract
The ubiquitous presence and persistence of per- and polyfluoroalkyl substances (PFAS) in the environment have raised concerns in the scientific community. Current research efforts are prioritizing effective PFAS remediation through novel sorbents with orthogonal interaction mechanisms. Recognized sorption mechanisms between PFAS and sorbents include hydrophobic, electrostatic, and fluorine-fluorine interaction. The interplay of these mechanisms contributes significantly to improved sorption capacity and selectivity in PFAS separations. In this study, a primary/secondary amine-functionalized polystyrene-divinylbenzene (Sepra-WAX) polymer was modified to create a fluorinated WAX resin (Sepra-WAX-KelF-PEI). The synthesis intermediate (Sepra-WAX-KelF) was also tested to assess the improvement of the final product (Sepra-WAX-KelF-PEI). The adsorption capacity of Sepra-WAX, Sepra-WAX-KelF, and Sepra-WAX-KelF-PEI, and their interactions with PFAS were evaluated. The effect of pH, ionic strength, and organic solvents on PFAS sorption in aqueous solution was also investigated. The sorbents showed varied adsorption capacities for perfluorooctanoic acid, perfluoropentanoic acid, perfluoro-n-decanoic acid, and hexafluoropropylene oxide dimer acid, with the average extraction capacity of the four analytes being Sepra-WAX-KelF-PEI (523 mg/g) > Sepra-WAX (353 mg/g) > Sepra-WAX-KelF (220 mg/g). Sepra-WAX-KelF-PEI provided the highest adsorption capacity for all analytes tested, proving that the combination of electrostatic and hydrophobic/fluorophilic interactions is crucial for the effective preconcentration of PFAS and its future applications for PFAS remediation from aqueous solutions.
Collapse
Affiliation(s)
- Aghogho A Olomukoro
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio, USA
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, The University of Toledo, Toledo, Ohio, USA
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Ruichao Xie
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Fabiola X Fernandez Paucar
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio, USA
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, The University of Toledo, Toledo, Ohio, USA
| | - Charlotte DeRosa
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, The University of Toledo, Toledo, Ohio, USA
- Department of Pharmacy Practice, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, Ohio, USA
| | - Neil D Danielson
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Emanuela Gionfriddo
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio, USA
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, The University of Toledo, Toledo, Ohio, USA
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York, USA
| |
Collapse
|
11
|
Grung M, Hjermann DØ, Rundberget T, Bæk K, Thomsen C, Knutsen HK, Haug LS. Low levels of per- and polyfluoroalkyl substances (PFAS) detected in drinking water in Norway, but elevated concentrations found near known sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174550. [PMID: 39004364 DOI: 10.1016/j.scitotenv.2024.174550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/30/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous contaminants which are also found in drinking water. Concentration levels in drinking water vary widely and range from a very low contribution to total daily exposure for humans to being the major source of uptake of PFAS. PFAS concentrations in Norwegian drinking water has been rarely reported. We investigated concentrations of 31 PFAS in 164 water samples, representing both source water (i.e., before drinking water treatment) and finished drinking water. Samples were taken from 18 different water bodies across Norway. The 17 waterworks involved supply drinking water to 41 % of the Norwegian population. Only four of the waterworks utilised treatment involving activated carbon which was able to significantly reduce PFAS from the source water. Samples of source water from waterworks not employing activated carbon in treatment were therefore considered to represent drinking water with regards to PFAS (142 samples). All samples from one of the water bodies exceeded the environmental quality standard (EQS) for perfluorooctane sulfonic acid (PFOS) according to the water framework directive (0.65 ng/L). No concentrations exceeded the sum of (20) PFAS (100 ng/L) specified in the EU directive 2020/2184 for drinking water. Several EU countries have issued lower guidelines for the sum of the four PFAS that the European Food Safety Authority (EFSA) has established as the tolerable weekly intake (TWI) for PFOS, perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorohexane sulfonic acid (PFHxS). Denmark and Sweden have guidelines specifying 2 and 4 ng/L for the sum of these PFAS. Only one of the 142 drinking water samples exceeded the Danish TWI and contained a sum of 6.6 ng/L PFAS. A population exposure model, for individuals drinking water from the investigated sources, showed that only 0.5 % of the population was receiving PFAS concentrations above the Danish limit of 2 ng/L.
Collapse
Affiliation(s)
- Merete Grung
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway.
| | - Dag Ø Hjermann
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway.
| | - Thomas Rundberget
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway.
| | - Kine Bæk
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway.
| | - Cathrine Thomsen
- Norwegian Institute of Public Health, Department of Food Safety, PO Box 222, Skøyen, 0213 Oslo, Norway; Norwegian Institute of Public Health, Centre for Sustainable Diets, PO Box 222, Skøyen, 0213 Oslo, Norway.
| | - Helle Katrine Knutsen
- Norwegian Institute of Public Health, Department of Food Safety, PO Box 222, Skøyen, 0213 Oslo, Norway; Norwegian Institute of Public Health, Centre for Sustainable Diets, PO Box 222, Skøyen, 0213 Oslo, Norway.
| | - Line Småstuen Haug
- Norwegian Institute of Public Health, Department of Food Safety, PO Box 222, Skøyen, 0213 Oslo, Norway; Norwegian Institute of Public Health, Centre for Sustainable Diets, PO Box 222, Skøyen, 0213 Oslo, Norway.
| |
Collapse
|
12
|
Dalapati R, Hunter M, Sk M, Yang X, Zang L. Fluorescence Turn-on Detection of Perfluorooctanoic Acid (PFOA) by Perylene Diimide-Based Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32344-32356. [PMID: 38718353 DOI: 10.1021/acsami.4c03389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
A novel, water-stable, perylene diimide (PDI) based metal-organic framework (MOF), namely, U-1, has been synthesized for selective and sensitive detection of perfluorooctanoic acid (PFOA) in mixed aqueous solutions. The MOF shows highly selective fluorescence turn-on detection via the formation of a PFOA-MOF complex. This PFOA-MOF complex formation was confirmed by various spectroscopic techniques. The detection limit of the MOF for PFOA was found to be 1.68 μM in an aqueous suspension. Upon coating onto cellulose paper, the MOF demonstrated a significantly lower detection limit, down to 3.1 nM, which is mainly due to the concentrative effect of solid phase extraction (SPE). This detection limit is lower than the fluorescence sensors based on MOFs previously reported for PFAS detection. The MOF sensor is regenerable and capable of detecting PFOA in drinking and tap water samples. The PDI-MOF-based sensor reported herein represents a novel approach, relying on fluorescence turn-on response, that has not yet been thoroughly investigated for detecting per- and polyfluoroalkyl substances (PFAS) until now.
Collapse
Affiliation(s)
- Rana Dalapati
- Nano Institute of Utah, and Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Matthew Hunter
- Nano Institute of Utah, and Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Mostakim Sk
- Lab of Soft Interfaces, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Xiaomei Yang
- Nano Institute of Utah, and Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Ling Zang
- Nano Institute of Utah, and Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
13
|
Sinkway TD, Mehdi Q, Griffin EK, Correia K, Camacho CG, Aufmuth J, Ilvento C, Bowden JA. Crowdsourcing citizens for statewide mapping of per- and polyfluoroalkyl substances (PFAS) in Florida drinking water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171932. [PMID: 38522527 DOI: 10.1016/j.scitotenv.2024.171932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of persistent chemicals that have been associated with a diverse array of adverse environmental and human health related effects. In addition to a growing list of health concerns, PFAS are also ubiquitously used and pervasive in our natural and built environments, and they have an innate ability to be highly mobile once released into the environment with an unmatched ability to resist degradation. As such, PFAS have been detected in a wide variety of environmental matrices, including soil, water, and biota; however, the matrix that largely dictates human exposure to PFAS is drinking water, in large part due to their abundance in water sources and our reliance on drinking water. As Florida is heavily reliant upon water and its varying sources, the primary objective of this study was to survey the presence of PFAS in drinking water collected from taps from the state of Florida (United States). In this study, 448 drinking water samples were collected by networking with trained citizen scientists, with at least one sample collected from each of the 67 counties in Florida. Well water, tap water, and bottled water, all sourced from Florida, were extracted and analyzed (31 PFAS) using isotope dilution and ultra-high-performance liquid chromatography - tandem mass spectrometry (UHPLC-MS/MS). Overall, when examining ∑PFAS: the minimum, maximum, median, and mean were ND, 219, 2.90, and 14.06 ng/L, respectively. The data herein allowed for a comparison of PFAS in drinking water geographically within the state of Florida, providing vital baseline concentrations for prospective monitoring and highlighting hotspots that require additional testing and mitigation. By incorporating citizen scientists into the study, we aimed to educate impacted communities regarding water quality issues and solutions.
Collapse
Affiliation(s)
- Thomas D Sinkway
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL 32611, United States
| | - Qaim Mehdi
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, United States
| | - Emily K Griffin
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, United States
| | - Keyla Correia
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, United States
| | - Camden G Camacho
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL 32611, United States
| | - Joe Aufmuth
- George A. Smathers Libraries, University of Florida, Gainesville, FL 32611, United States
| | - Carolina Ilvento
- Department of Journalism, College of Journalism and Communications, University of Florida, Gainesville, FL 32611, United States
| | - John A Bowden
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL 32611, United States; Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
14
|
Mueller R, Salvatore D, Brown P, Cordner A. Quantifying Disparities in Per- and Polyfluoroalkyl Substances (PFAS) Levels in Drinking Water from Overburdened Communities in New Jersey, 2019-2021. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:47011. [PMID: 38656167 PMCID: PMC11041625 DOI: 10.1289/ehp12787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/02/2024] [Accepted: 03/11/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Policymakers have become increasingly concerned regarding the widespread exposure and toxicity of per- and polyfluoroalkyl substances (PFAS). While concerns exist about unequal distribution of PFAS contamination in drinking water, research is lacking. OBJECTIVES We assess the scope of PFAS contamination in drinking water in New Jersey (NJ), the first US state to develop regulatory levels for PFAS in drinking water. We test for inequities in PFAS concentrations by community sociodemographic characteristics. METHODS We use PFAS testing data for community water systems (CWS) (n = 491 ) from the NJ Department of Environmental Protection (NJDEP) from 2019 to 2021 and demographic data at the block group level from the US Census to estimate the demographics of the NJ population served by CWS. We use difference in means tests to determine whether CWSs serving "overburdened communities" (OBCs) have a statistically significant difference in likelihood of PFAS detections. OBCs are defined by the NJDEP to be census block groups in which: a) at least 35% of the households qualify as low-income, b) at least 40% of the residents identify as people of color, or c) at least 40% of the households have limited English proficiency. We calculate statewide summary statistics to approximate the relative proportions of sociodemographic groups that are served by CWSs with PFAS detections. RESULTS We find that 63% of all CWSs tested by NJDEP from 2019 to 2021 had PFAS detections in public drinking water, collectively serving 84% of NJ's population receiving water from CWSs. Additionally, CWSs serving OBCs had a statistically significant higher likelihood of PFAS detection and a higher likelihood of exposure above state MCLs. We also find that a larger proportion of people of color lived in CWS service areas with PFAS detections compared to the non-Hispanic white population. DISCUSSION These findings quantitatively identify disparities in PFAS contamination of drinking water by CWS service area and highlight the extent of PFAS drinking water contamination and the importance of PFAS remediation efforts for protecting environmental health and justice. https://doi.org/10.1289/EHP12787.
Collapse
Affiliation(s)
- Rosie Mueller
- Department of Economics, Whitman College, Walla Walla, Washington, USA
| | | | - Phil Brown
- Department of Sociology and Anthropology, Northeastern University, Boston, Massachusetts, USA
- Department of Health Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Alissa Cordner
- Department of Sociology, Whitman College, Walla Walla, Washington, USA
| |
Collapse
|
15
|
Smalling KL, Bradley PM. Invited Perspective: Per- and Polyfluoroalkyl Substances in Drinking Water-Disparities in Community Exposures Based on Race and Socioeconomic Status. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:41302. [PMID: 38656166 PMCID: PMC11041623 DOI: 10.1289/ehp13899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/26/2023] [Accepted: 03/11/2024] [Indexed: 04/26/2024]
|
16
|
Roesch P, Schinnen A, Riedel M, Sommerfeld T, Sawal G, Bandow N, Vogel C, Kalbe U, Simon FG. Investigation of pH-dependent extraction methods for PFAS in (fluoropolymer-based) consumer products: A comparative study between targeted and sum parameter analysis. CHEMOSPHERE 2024; 351:141200. [PMID: 38228192 DOI: 10.1016/j.chemosphere.2024.141200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/18/2024]
Abstract
Here, we report a comparative study of different sum parameter analysis methods for the extraction of per- and polyfluoroalkyl substances (PFAS) from manufactured consumer products, which can be measured by combustion ion chromatography (CIC). Therefore, a hydrolysis-based extraction method was further developed, which accounts for the addition of hydrolyzable covalently bound polyfluoroalkylated side-chain polymers (SFPs) to the extractable organic fluorine portion of the mass balance proposed as "hydrolyzable organically bound fluorine" (HOF). To test this hypothesis, the method was applied to 39 different consumer products containing fluoropolymers or monomeric PFAS taken from four different categories: outdoor textiles, paper packaging, carpeting, and permanent baking sheets. We also evaluated the method's efficiency by extracting four synthesized fluorotelomer polyacrylate reference compounds. The total fluorine (TF) and extractable organically bound fluorine (EOF) values were measured through CIC using established protocols. The TF values ranged from sub-ppb to %-levels, depending on the compound class. All samples showed results for hydrolyzed organofluorine (HOF) between 0.03 and 76.3 μg/g, while most EOF values were lower (
Collapse
Affiliation(s)
- Philipp Roesch
- Federal Institute for Materials Research and Testing, Division 4.3 - Contaminant Transfer and Environmental Technologies, Unter den Eichen 87, 12205, Berlin, Germany.
| | - Andrea Schinnen
- Federal Institute for Materials Research and Testing, Division 4.3 - Contaminant Transfer and Environmental Technologies, Unter den Eichen 87, 12205, Berlin, Germany
| | - Maren Riedel
- Federal Institute for Materials Research and Testing, Division 4.3 - Contaminant Transfer and Environmental Technologies, Unter den Eichen 87, 12205, Berlin, Germany
| | - Thomas Sommerfeld
- Federal Institute for Materials Research and Testing, Division 1.7 - Organic Trace and Food Analysis, Richard-Willstätter-Straße 11, 12489, Berlin, Germany
| | - George Sawal
- German Environment Agency, Colditzstr. 34, 12099, Berlin, Germany
| | - Nicole Bandow
- German Environment Agency, Colditzstr. 34, 12099, Berlin, Germany
| | - Christian Vogel
- Federal Institute for Materials Research and Testing, Division 4.3 - Contaminant Transfer and Environmental Technologies, Unter den Eichen 87, 12205, Berlin, Germany
| | - Ute Kalbe
- Federal Institute for Materials Research and Testing, Division 4.3 - Contaminant Transfer and Environmental Technologies, Unter den Eichen 87, 12205, Berlin, Germany
| | - Franz-Georg Simon
- Federal Institute for Materials Research and Testing, Division 4.3 - Contaminant Transfer and Environmental Technologies, Unter den Eichen 87, 12205, Berlin, Germany
| |
Collapse
|
17
|
Ayodele A, Obeng-Gyasi E. Exploring the Potential Link between PFAS Exposure and Endometrial Cancer: A Review of Environmental and Sociodemographic Factors. Cancers (Basel) 2024; 16:983. [PMID: 38473344 PMCID: PMC10931119 DOI: 10.3390/cancers16050983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
This exploratory narrative review paper delves into the intricate interplay between per- and polyfluoroalkyl substances (PFAS) exposure, sociodemographic factors, and the influence of stressors in the context of endometrial cancer. PFAS, ubiquitous environmental contaminants notorious for their persistence in the ecosystem, have garnered attention for their potential to disrupt endocrine systems and provoke immune responses. We comprehensively examine the various sources of PFAS exposure, encompassing household items, water, air, and soil, thus shedding light on the multifaceted routes through which individuals encounter these compounds. Furthermore, we explore the influence of sociodemographic factors, such as income, education, occupation, ethnicity/race, and geographical location and their relationship to endometrial cancer risk. We also investigated the role of stress on PFAS exposure and endometrial cancer risk. The results revealed a significant impact of sociodemographic factors on both PFAS levels and endometrial cancer risk. Stress emerged as a notable contributing factor influencing PFAS exposure and the development of endometrial cancer, further emphasizing the importance of stress management practices for overall well-being. By synthesizing evidence from diverse fields, this review underscores the need for interdisciplinary research and targeted interventions to comprehensively address the complex relationship between PFAS, sociodemographic factors, stressors, and endometrial cancer.
Collapse
Affiliation(s)
- Aderonke Ayodele
- Department of Built Environment, North Carolina A&T State University, Greensboro, NC 27411, USA
- Environmental Health and Disease Laboratory, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Emmanuel Obeng-Gyasi
- Department of Built Environment, North Carolina A&T State University, Greensboro, NC 27411, USA
- Environmental Health and Disease Laboratory, North Carolina A&T State University, Greensboro, NC 27411, USA
| |
Collapse
|
18
|
Shih CH, Kim J, Yang SH, Soker O, Strathmann TJ, Chu KH. Remediation of PFAS-impacted soils using magnetic activated carbon (MAC) and hydrothermal alkaline treatment (HALT). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168931. [PMID: 38042197 DOI: 10.1016/j.scitotenv.2023.168931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic pollutants that are bioaccumulative, toxic, and persistent. One long-term source for PFAS release is PFAS-contaminated soil. Addition of activated carbon (AC) to soil has shown the potential to immobilize PFAS and reduce PFAS bioavailability, but PFAS-loaded spent AC remaining in the treated soil could lead to remobilization. Here we report a novel approach to address this challenge. By applying magnetic activated carbon (MAC) to remediate PFAS-impacted soil, the PFAS-loaded MAC can be retrieved from the treated soil and sorbed PFAS in the spent MAC can be destroyed using hydrothermal alkaline treatment (HALT). Effective MAC recovery was observed when water/soil ratios (w/w) were either <0.07 or > 1. Soil organic content and pH affected PFAS adsorption by the MAC added to soil. After three months of incubation with MAC, high PFAS removals [PFOS (87.6 %), PFOA (83.8 %), and 6:2 FTSA (81.5 %)] were observed for acidic environmental sandy soils with low organic content. In contrast, PFAS removal by MAC was poor for garden soils with high organic matter content. MAC was also used to remediate aqueous film-forming foam (AFFF)-impacted and PFAS-contaminated aged soils with varying PFAS removal performance. HALT technology was able to destroy and defluorinate PFAS adsorbed to the spent MAC. Additionally, the HALT-treated MAC retained its magnetic properties and PFOS sorption capacity, suggesting the potential reusability of HALT-treated MAC. Considering the low energy footprint of HALT compared to conventional PFAS thermal destruction techniques, the combination of MAC and HALT could be a promising treatment train for PFAS-contaminated soils.
Collapse
Affiliation(s)
- Chih-Hsuan Shih
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Jinha Kim
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Shih-Hung Yang
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Ori Soker
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Timothy J Strathmann
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA.
| |
Collapse
|
19
|
Sadia M, Beut LB, Pranić M, Wezel AP, Laak TL. Sorption of per- and poly-fluoroalkyl substances and their precursors on activated carbon under realistic drinking water conditions: Insights into sorbent variability and PFAS structural effects. Heliyon 2024; 10:e25130. [PMID: 38317999 PMCID: PMC10839585 DOI: 10.1016/j.heliyon.2024.e25130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/17/2023] [Accepted: 01/21/2024] [Indexed: 02/07/2024] Open
Abstract
Recent stringent drinking water quality standards create challenges for water utilities to meet these standards. Advanced treatment techniques will have to be applied on many drinking water production locations to meet these quality standards. This study investigated the sorption of per- and polyfluorinated-alkyl substances (PFAS) onto granular activated carbon (GAC). The study was performed at environmentally relevant PFAS concentrations and a realistic water-to-GAC ratio, providing a realism often overlooked in existing studies. Three different forms of GAC were evaluated, differing in micropore and mesopore structures. Tap water spiked with 5 ng/L of each of 31 PFAS was used in the sorption experiments, i.e. perfluorocarboxylic acids (C4-C12), perfluorosulfonic acids (PFSA, C5-C10) including linear and branched isomers, and three groups of PFAS precursors (per-/polyfluoroalkyl ether acids, sulfonamides, and sulfonamide acetic acids). The three studied GAC did not exhibit distinct differences in PFAS sorption. The removal of PFAS was below 50 % for most studied PFAS, except for the short-chain PFAS precursors. Sorption was affected by both the carbon chain length and functional groups for PFAS, while this was not observed for PFAS precursors. The presence of ether linkages and sulfonamide groups notably enhanced sorption. Linear and branched PFSA demonstrated similar sorption behavior, whereas branched isomers of the sulfonamide acetic acid precursors exhibited significantly higher sorption. This indicates that sorption was determined by both hydrophobic and electrostatic interactions. Given the relatively low PFAS removal by GAC under environmentally relevant test conditions, further improvements in sorbents are required to ensure that PFAS concentrations in produced drinking water comply with drinking water standards.
Collapse
Affiliation(s)
- Mohammad Sadia
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, the Netherlands
| | - Lola Beltrán Beut
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, the Netherlands
| | - Marko Pranić
- Environmental Technology, Wageningen University, Bornse Weilanden 9, 6708WG, Wageningen, the Netherlands
| | - Annemarie P.van Wezel
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, the Netherlands
| | - Thomas L.ter Laak
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, the Netherlands
- KWR Water Research Institute, Groningenhaven 7, 3430BB Nieuwegein, the Netherlands
| |
Collapse
|
20
|
Rosato I, Bonato T, Fletcher T, Batzella E, Canova C. Estimation of per- and polyfluoroalkyl substances (PFAS) half-lives in human studies: a systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2024; 242:117743. [PMID: 38008199 DOI: 10.1016/j.envres.2023.117743] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) constitute a heterogeneous group of synthetic compounds widely used in industrial applications. The estimation of PFAS half-life (t1/2) is essential to quantify their persistence, their toxicity and mechanism of action in humans. OBJECTIVES The purpose of this review is to summarize the evidence on PFAS half-lives in humans from the available literature, and to investigate the limitations and uncertainties characterizing half-life estimation. METHODS The search was conducted on PubMed, Scopus, and Embase databases up to July 03, 2023 and was aimed at identifying all papers that estimated PFAS half-life in human populations. We excluded studies on temporal trends or providing estimates of half-life based solely on renal clearance. As persistent and ongoing exposures can influence half-life estimation, we decided to include only studies that were conducted after the main source of exposure to PFAS had ceased. A random-effects meta-analysis was conducted on studies that reported perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS) or perfluorohexanesulfonic acid (PFHxS) half-life estimation. Risk of bias was evaluated using the OHAT tool. RESULTS A total of 13 articles were included in the review, with 5 studies conducted in exposed general populations and 8 studies conducted in exposed workers; the estimated mean half-life ranged from 1.48 to 5.1 years for PFOA, from 3.4 to 5.7 years for total PFOS, and from 2.84 to 8.5 years for PFHxS. High heterogeneity among studies was observed; potential reasons include the variability among the investigated populations, discrepancies in considering ongoing exposures, variability in PFAS isomeric compositions, accounting for background exposure, time since exposure stopped and methods used for half-life estimation. DISCUSSION Despite the efforts made to better understand PFAS toxicokinetics, further studies are needed to identify important characteristics of these persistent chemicals. Biomonitoring studies should focus on persistent and unaccounted sources of exposure to PFAS and on individual characteristics potentially determining half-life, to ensure accurate estimates.
Collapse
Affiliation(s)
- Isabella Rosato
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, Padova, Italy
| | - Tiziano Bonato
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, Padova, Italy
| | - Tony Fletcher
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Erich Batzella
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, Padova, Italy
| | - Cristina Canova
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, Padova, Italy.
| |
Collapse
|
21
|
Ruffle B, Archer C, Vosnakis K, Butler JD, Davis CW, Goldsworthy B, Parkman R, Key TA. US and international per- and polyfluoroalkyl substances surface water quality criteria: A review of the status, challenges, and implications for use in chemical management and risk assessment. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:36-58. [PMID: 37069739 DOI: 10.1002/ieam.4776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/04/2023]
Abstract
Regulation of per- and polyfluorinated substances (PFAS) in surface water is a work-in-progress with relatively few criteria promulgated in the United States and internationally. Surface water quality criteria (SWQC) or screening values derived for perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) by Australia, Canada, the European Union (EU), and four US states (Florida, Michigan, Minnesota, and Wisconsin), and the San Francisco Bay Regional Water Quality Control Board (SFB RWQCB; California) were compared. Across these eight jurisdictions, promulgated numeric criteria for the same compound and receptor span over five orders of magnitude as a result of different approaches and data interpretations. Human health criteria for PFOS range from 0.0047 to 600 ng/L depending on route of exposure (e.g., fish consumption or drinking water) and are lower than most ecological criteria for protection of aquatic and wildlife receptors. Data gaps and uncertainty in chronic toxicity and bioaccumulation of PFOS and PFOA, as well as the use of conservative assumptions regarding intake and exposure, have resulted in some criteria falling at or below ambient background concentrations and current analytical detection limits (around 1 ng/L for commercial laboratories). Some jurisdictions (e.g., Australia, Canada) have deemed uncertainty in quantifying water-fish bioaccumulation too great and set fish tissue action levels in lieu of water criteria. Current dynamics associated with the emerging and evolving science of PFAS toxicity, exposure, and environmental fate (i.e., data gaps and uncertainty), as well as the continuous release of scientific updates, pose a challenge to setting regulatory limits. Integr Environ Assess Manag 2024;20:36-58. © 2023 AECOM Technical Services, Inc and The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | | | | | - Josh D Butler
- ExxonMobil Biomedical Sciences Inc., Annandale, New Jersey, USA
| | - Craig W Davis
- ExxonMobil Biomedical Sciences Inc., Annandale, New Jersey, USA
| | | | | | - Trent A Key
- ExxonMobil Environmental and Property Solutions Company, Spring, Texas, USA
| |
Collapse
|
22
|
Marciesky M, Aga DS, Bradley IM, Aich N, Ng C. Mechanisms and Opportunities for Rational In Silico Design of Enzymes to Degrade Per- and Polyfluoroalkyl Substances (PFAS). J Chem Inf Model 2023; 63:7299-7319. [PMID: 37981739 PMCID: PMC10716909 DOI: 10.1021/acs.jcim.3c01303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/21/2023]
Abstract
Per and polyfluoroalkyl substances (PFAS) present a unique challenge to remediation techniques because their strong carbon-fluorine bonds make them difficult to degrade. This review explores the use of in silico enzymatic design as a potential PFAS degradation technique. The scope of the enzymes included is based on currently known PFAS degradation techniques, including chemical redox systems that have been studied for perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) defluorination, such as those that incorporate hydrated electrons, sulfate, peroxide, and metal catalysts. Bioremediation techniques are also discussed, namely the laccase and horseradish peroxidase systems. The redox potential of known reactants and enzymatic radicals/metal-complexes are then considered and compared to potential enzymes for degrading PFAS. The molecular structure and reaction cycle of prospective enzymes are explored. Current knowledge and techniques of enzyme design, particularly radical-generating enzymes, and application are also discussed. Finally, potential routes for bioengineering enzymes to enable or enhance PFAS remediation are considered as well as the future outlook for computational exploration of enzymatic in situ bioremediation routes for these highly persistent and globally distributed contaminants.
Collapse
Affiliation(s)
- Melissa Marciesky
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Diana S Aga
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Ian M Bradley
- Department of Civil, Structural, and Environmental Engineering, State University of New York at Buffalo, Buffalo, New York 14228, United States
- Research and Education in Energy, Environmental and Water (RENEW) Institute, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Nirupam Aich
- Department of Civil and Environmental Engineering, University of Nebraska─Lincoln, Lincoln, Nebraska 68588-0531, United States
| | - Carla Ng
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
23
|
Matei E, Șăulean AA, Râpă M, Constandache A, Predescu AM, Coman G, Berbecaru AC, Predescu C. ZnO nanostructured matrix as nexus catalysts for the removal of emerging pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114779-114821. [PMID: 37919505 PMCID: PMC10682326 DOI: 10.1007/s11356-023-30713-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Water pollution stands as a pressing global environmental concern, elevating the significance of innovative, dependable, and sustainable solutions. This study represents an extensive review of the use of photocatalytic zinc oxide nanoparticles (ZnO NPs) for the removal of emerging pollutants from water and wastewater. The study examines ZnO NPs' different preparation methods, including physical, chemical, and green synthesis, and emphasizes on advantages, disadvantages, preparation factors, and investigation methods for the structural and morphological properties. ZnO NPs demonstrate remarkable properties as photocatalysts; however, their small dimensions pose an issue, leading to potential post-use environmental losses. A strategy to overcome this challenge is scaling up ZnO NP matrices for enhanced stability and efficiency. The paper introduces novel ZnO NP composites, by incorporating supports like carbon and clay that serve as photocatalysts in the removal of emerging pollutants from water and wastewater. In essence, this research underscores the urgency of finding innovative, efficient, and eco-friendly solutions for the removal of emerging pollutants from wastewater and highlights the high removal efficiencies obtained when using ZnO NPs obtained from green synthesis as a photocatalyst. Future research should be developed on the cost-benefit analysis regarding the preparation methods, treatment processes, and value-added product regeneration efficiency.
Collapse
Affiliation(s)
- Ecaterina Matei
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Anca Andreea Șăulean
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania.
| | - Maria Râpă
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Alexandra Constandache
- Faculty of Biotechnical Systems Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Andra Mihaela Predescu
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - George Coman
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Andrei Constantin Berbecaru
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Cristian Predescu
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| |
Collapse
|
24
|
Shittu AR, Iwaloye OF, Ojewole AE, Rabiu AG, Amechi MO, Herve OF. The effects of per- and polyfluoroalkyl substances on environmental and human microorganisms and their potential for bioremediation. Arh Hig Rada Toksikol 2023; 74:167-178. [PMID: 37791672 PMCID: PMC10549896 DOI: 10.2478/aiht-2023-74-3708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/01/2023] [Accepted: 08/01/2023] [Indexed: 10/05/2023] Open
Abstract
Utilised in a variety of consumer products, per- and polyfluoroalkyl substances (PFAS) are major environmental contaminants that accumulate in living organisms due to their highly hydrophobic, lipophobic, heat-resistant, and non-biodegradable properties. This review summarizes their effects on microbial populations in soils, aquatic and biogeochemical systems, and the human microbiome. Specific microbes are insensitive to and even thrive with PFAS contamination, such as Escherichia coli and the Proteobacteria in soil and aquatic environments, while some bacterial species, such as Actinobacteria and Chloroflexi, are sensitive and drop in population. Some bacterial species, in turn, have shown success in PFAS bioremediation, such as Acidimicrobium sp. and Pseudomonas parafulva.
Collapse
Affiliation(s)
- Adenike R. Shittu
- Bowling Green State University College of Arts and Sciences, Department of Biological Sciences, Bowling Green, OH, USA
| | - Opeoluwa F. Iwaloye
- Bowling Green State University College of Arts and Sciences, Department of Biological Sciences, Bowling Green, OH, USA
| | - Akinloye E. Ojewole
- Southern Illinois University, Department of Environmental Sciences, Edwardsville, IL, USA
| | - Akeem G. Rabiu
- University of Ibadan, Department of Microbiology, Ibadan, Nigeria
| | - Miracle O. Amechi
- University of Louisville, Department of Chemistry, Louisville, KY, USA
| | - Ouambo F. Herve
- Chantal Biya International Reference Centre, Laboratory of Vaccinology, Yaounde, Cameroon
| |
Collapse
|
25
|
Smalling KL, Romanok KM, Bradley PM, Morriss MC, Gray JL, Kanagy LK, Gordon SE, Williams BM, Breitmeyer SE, Jones DK, DeCicco LA, Eagles-Smith CA, Wagner T. Per- and polyfluoroalkyl substances (PFAS) in United States tapwater: Comparison of underserved private-well and public-supply exposures and associated health implications. ENVIRONMENT INTERNATIONAL 2023; 178:108033. [PMID: 37356308 DOI: 10.1016/j.envint.2023.108033] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/27/2023]
Abstract
Drinking-water quality is a rising concern in the United States (US), emphasizing the need to broadly assess exposures and potential health effects at the point-of-use. Drinking-water exposures to per- and poly-fluoroalkyl substances (PFAS) are a national concern, however, there is limited information on PFAS in residential tapwater at the point-of-use, especially from private-wells. We conducted a national reconnaissance to compare human PFAS exposures in unregulated private-well and regulated public-supply tapwater. Tapwater from 716 locations (269 private-wells; 447 public supply) across the US was collected during 2016-2021 including three locations where temporal sampling was conducted. Concentrations of PFAS were assessed by three laboratories and compared with land-use and potential-source metrics to explore drivers of contamination. The number of individual PFAS observed ranged from 1 to 9 (median: 2) with corresponding cumulative concentrations (sum of detected PFAS) ranging from 0.348 to 346 ng/L. Seventeen PFAS were observed at least once with PFBS, PFHxS and PFOA observed most frequently in approximately 15% of the samples. Across the US, PFAS profiles and estimated median cumulative concentrations were similar among private wells and public-supply tapwater. We estimate that at least one PFAS could be detected in about 45% of US drinking-water samples. These detection probabilities varied spatially with limited temporal variation in concentrations/numbers of PFAS detected. Benchmark screening approaches indicated potential human exposure risk was dominated by PFOA and PFOS, when detected. Potential source and land-use information was related to cumulative PFAS concentrations, and the number of PFAS detected; however, corresponding relations with specific PFAS were limited likely due to low detection frequencies and higher detection limits. Information generated supports the need for further assessments of cumulative health risks of PFAS as a class and in combination with other co-occurring contaminants, particularly in unmonitored private-wells where information is limited or not available.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Tyler Wagner
- U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
26
|
Garvey GJ, Anderson JK, Goodrum PP, Tyndall KH, Cox LA, Khatami M, Morales-Montor J, Schoeny RS, Seed JG, Tyagi RK, Kirman CR, Hays SM. Response to the letter to the editor regarding the article "Weight of evidence evaluation for chemical-induced immunotoxicity for PFOA and PFOS: findings from an independent panel of experts" by Garvey et al. (2023). Crit Rev Toxicol 2023; 53:438-439. [PMID: 37624076 DOI: 10.1080/10408444.2023.2240841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 08/26/2023]
Affiliation(s)
| | | | | | | | | | - Mahin Khatami
- Inflammation Research, Retired, NCI/NIH, Bethesda, MD, USA
| | | | | | | | - Rajeev K Tyagi
- CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | | | | |
Collapse
|
27
|
Post GB. Letter to the editor about the article "Weight of evidence evaluation for chemical-induced immunotoxicity for PFOA and PFOS: findings from an independent panel of experts" by Garvey et al. (2023). Crit Rev Toxicol 2023; 53:436-437. [PMID: 37624073 DOI: 10.1080/10408444.2023.2240903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/17/2023] [Indexed: 08/26/2023]
Affiliation(s)
- Gloria B Post
- New Jersey Department of Environmental Protection, Trenton, NJ, USA
| |
Collapse
|
28
|
Hu H, Liu M, Shen L, Zhang L, Zhu H, Wu Q. Simultaneous determination of multiple perfluoroalkyl and polyfluoroalkyl substances in aquatic products by ultra-performance liquid chromatography-tandem mass spectrometry with automated solid-phase extraction. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1224:123736. [PMID: 37245446 DOI: 10.1016/j.jchromb.2023.123736] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/20/2023] [Accepted: 04/30/2023] [Indexed: 05/30/2023]
Abstract
Diet is an important route of human exposure to perfluoroalkyl and polyfluoroalkyl substances (PFASs), and aquatic products are the main dietary source of PFASs. This study aimed to establish a method for the analysis of 52 PFASs in typical aquatic products, such as crucian carp, large yellow croaker, shrimp, and clam, by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) after automated solid phase extraction (SPE). After optimization of the conditions of SPE, the recovery and precision of the method is within an acceptable range. The intra-day and inter-day average recoveries of spiked samples ranged from 66.5% to 122.3% and 64.5%-128.0% for crucian carp, large yellow croaker, shrimp, and clam, with intra-day and inter-day relative standard deviation (RSD) of 0.78%-11.4%, and 2.54%-24.2%. The ranges of method detection limits (MDLs) and quantification limits (MQLs) of PFASs were 0.003-0.60 ng/g and 0.005-2.0 ng/g, respectively. The accuracy of the method was also verified by standard reference material (SRM), and the measured values of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) were in the allowable range. The method was applied to analyze aquatic products from the local supermarket. The concentrations of ∑PFASs ranged from 13.9 ng/g ww to 75.5 ng/g ww. PFOS was the dominant pollutant, accounting for 79.6% of ∑PFASs. The branch-chain isomers, perfluoro-3-methylheptane sulfonate (P3MHpS) and perfluoro-6-methylheptane sulfonate (P6MHpS) accounted for one-quarter of PFOS. Long-chain perfluoro carboxylic acids (PFCAs) were also detected in most samples. The estimated daily intake of PFOS was over the recommended tolerable intake by several organizations such as the Minnesota Department of Health (MDH), the New Jersey Drinking Water Quality Institute (NJDWQI), and the European Food Safety Authority (EFSA). PFOS would have posed health risks to consumers through dietary exposure.
Collapse
Affiliation(s)
- Hongjiao Hu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090 Shanghai, China.
| | - Min Liu
- Bioassay and Safety Assessment Laboratory, Shanghai Academy of Public Measurement, 201203 Shanghai, China.
| | - Lu Shen
- Bioassay and Safety Assessment Laboratory, Shanghai Academy of Public Measurement, 201203 Shanghai, China.
| | - Lu Zhang
- Bioassay and Safety Assessment Laboratory, Shanghai Academy of Public Measurement, 201203 Shanghai, China.
| | - Hui Zhu
- Bioassay and Safety Assessment Laboratory, Shanghai Academy of Public Measurement, 201203 Shanghai, China.
| | - Qiang Wu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090 Shanghai, China.
| |
Collapse
|
29
|
Capozzi SL, Leang AL, Rodenburg LA, Chandramouli B, Delistraty DA, Carter CH. PFAS in municipal landfill leachate: Occurrence, transformation, and sources. CHEMOSPHERE 2023; 334:138924. [PMID: 37209854 DOI: 10.1016/j.chemosphere.2023.138924] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
To understand sources and processes affecting per- and polyfluoroalkyl substances (PFAS), 32 PFAS were measured in landfill leachate from 17 landfills across Washington State in both pre-and post-total oxidizable precursor (TOP) assay samples, using an analytical method that was the precursor to EPA Draft Method 1633. As in other studies, 5:3FTCA was the dominant PFAS in the leachate, suggesting that carpets, textiles, and food packaging were the main sources of PFAS. Total PFAS concentrations (Σ32PFAS) ranged from 61 to 172,976 ng/L and 580-36,122 ng/L in pre-TOP and post-TOP samples, respectively, suggesting that little or no uncharacterized precursors remained in landfill leachate. Furthermore, due to chain-shortening reactions, the TOP assay often resulted in a loss of overall PFAS mass. Positive matrix factorization (PMF) analysis of the combined pre- and post-TOP samples produced five factors that represent sources and processes. Factor 1 consisted primarily of 5:3FTCA (intermediate of 6:2 fluorotelomer degradation and characteristic of landfill leachate), while factor 2 was dominated by PFBS (degradant of C-4 sulfonamide chemistry) and, to a lesser extent, by several PFCAs and 5:3FTCA. Factor 3 consisted primarily of both short-chain PFCAs (end-products of 6:2 fluorotelomer degradation) and PFHxS (derived from C-6 sulfonamide chemistry), while the main component of factor 4 was PFOS (dominant in many environmental media but minor in landfill leachate, perhaps reflecting a production shift from longer to shorter chain PFAS). Factor 5, highly loaded with PFCAs, was dominant in post-TOP samples and therefore represented the oxidation of precursors. Overall, PMF analysis suggests that the TOP assay approximates some redox processes which occur in landfills, including chain-shortening reactions which yield biodegradable products.
Collapse
Affiliation(s)
- Staci L Capozzi
- Paul H. O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, USA; Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA
| | - Amy L Leang
- Washington State Department of Ecology, Shoreline, WA, USA; University of Washington, Department of Environmental and Occupational Health Sciences, Seattle, WA, USA
| | - Lisa A Rodenburg
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ, 08901, USA.
| | | | | | - Cole H Carter
- Washington State Department of Ecology, Spokane, WA, USA
| |
Collapse
|
30
|
Smith SJ, Lewis J, Wiberg K, Wall E, Ahrens L. Foam fractionation for removal of per- and polyfluoroalkyl substances: Towards closing the mass balance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162050. [PMID: 36758489 DOI: 10.1016/j.scitotenv.2023.162050] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Foam fractionation has recently attracted attention as a low-cost and environmentally benign treatment technology for water contaminated with per- and polyfluoroalkyl substances (PFAS). However, data on the mass balance over the foam fractionation process are scarce and when available, gaps in the mass balance are often identified. This study verified the high treatment efficiency of a pilot-scale foam fractionation system for removal of PFAS from industrial water contaminated with aqueous film-forming foam. ΣPFAS removal reached up to 84 % and the removal of perfluorooctane sulfonic acid (PFOS) up to 97 %, but the short-chain perfluorobutanoic acid (PFBA) was only removed with a mean efficiency of 1.5 %. In general, mobile short-chain PFAS were removed less efficiently when the perfluorocarbon chain length was below six for carboxylic acids and below five for sulfonic acids. Fluctuations in treatment efficiency due to natural variations in the chemistry of the influent water were minor, confirming the robustness of the technology, but significant positive correlations between PFAS removal and influent metal concentration and conductivity were observed. Over all experiments, the mass balance closure did not differ significantly from 100 %. Nonetheless, PFAS sorption to the walls of the reactor was measured, as well as high PFAS emissions by the air exiting the reactor. PFAS emissions in aerosols correlated positively with mass balance closure. The elevated aerial PFAS concentrations measured in the experimental facility have implications for worker safety and prevention of PFAS-emissions to the atmosphere, and demonstrate the importance of installing appropriate filters on the air outlet of foam fractionation systems.
Collapse
Affiliation(s)
- Sanne J Smith
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07 Uppsala, Sweden.
| | | | - Karin Wiberg
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07 Uppsala, Sweden
| | - Erik Wall
- Cytiva, Björkgatan 30, SE-75323 Uppsala, Sweden
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07 Uppsala, Sweden
| |
Collapse
|
31
|
Sun J, Xing L, Chu J. Global ocean contamination of per- and polyfluoroalkyl substances: A review of seabird exposure. CHEMOSPHERE 2023; 330:138721. [PMID: 37080473 DOI: 10.1016/j.chemosphere.2023.138721] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been extensively produced and used as surfactants and repellents for decades. To date, the global contamination pattern of PFAS in marine biota has seldomly been reviewed. Seabirds are ideal biomonitoring tools to study environmental contaminants and their effects. Here, we compiled and synthesized reported PFAS concentrations in various seabird species to reflect spatiotemporal patterns and exposure risks of major PFAS on a global ocean scale. Perfluorooctane sulfonic acid (PFOS) was the most studied PFAS in seabirds, which showed the highest level in eggs of common guillemots (U. aalge) from the Baltic Sea, followed by great cormorants (P. carbo) from the North Sea and double-crested cormorants (P.auritus) from the San Francisco Bay, whereas the lowest were those reported for Antarctic seabirds. The temporal pattern showed an overall higher level of PFOS in the late 1990s and early 2000s, consistent with the phase-out of perfluorooctane sulfonyl fluoride-based products. Maximum liver PFOS concentrations in several species such as cormorants and fulmars from Europe and North America exceeded the estimated toxicity reference values. Systematic evaluations using representative species and long time-series are necessary to understand contamination patterns in seabirds in South America, Africa, and Asia where information is lacking. In addition, limited research has been conducted on the identification and toxic effects of novel substitutes such as fluorotelomers and ether PFAS (F-53B, Gen-X etc.) in seabirds. Further research, including multi-omics analysis, is needed to comprehensively characterize the exposure and toxicological profiles of PFAS in seabirds and other wildlife.
Collapse
Affiliation(s)
- Jiachen Sun
- College of Marine Life Sciences, Ocean University of China, CN-266003, Qingdao, China.
| | - Lingling Xing
- College of Marine Life Sciences, Ocean University of China, CN-266003, Qingdao, China
| | - Jiansong Chu
- College of Marine Life Sciences, Ocean University of China, CN-266003, Qingdao, China.
| |
Collapse
|
32
|
Barber LB, Pickard HM, Alvarez DA, Becanova J, Keefe SH, LeBlanc DR, Lohmann R, Steevens JA, Vajda AM. Uptake of Per- and Polyfluoroalkyl Substances by Fish, Mussel, and Passive Samplers in Mobile-Laboratory Exposures Using Groundwater from a Contamination Plume at a Historical Fire Training Area, Cape Cod, Massachusetts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5544-5557. [PMID: 36972291 PMCID: PMC10116195 DOI: 10.1021/acs.est.2c06500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Aqueous film-forming foams historically were used during fire training activities on Joint Base Cape Cod, Massachusetts, and created an extensive per- and polyfluoroalkyl substances (PFAS) groundwater contamination plume. The potential for PFAS bioconcentration from exposure to the contaminated groundwater, which discharges to surface water bodies, was assessed with mobile-laboratory experiments using groundwater from the contamination plume and a nearby reference location. The on-site continuous-flow 21-day exposures used male and female fathead minnows, freshwater mussels, polar organic chemical integrative samplers (POCIS), and polyethylene tube samplers (PETS) to evaluate biotic and abiotic uptake. The composition of the PFAS-contaminated groundwater was complex and 9 PFAS were detected in the reference groundwater and 17 PFAS were detected in the contaminated groundwater. The summed PFAS concentrations ranged from 120 to 140 ng L-1 in reference groundwater and 6100 to 15,000 ng L-1 in contaminated groundwater. Biotic concentration factors (CFb) for individual PFAS were species, sex, source, and compound-specific and ranged from 2.9 to 1000 L kg-1 in whole-body male fish exposed to contaminated groundwater for 21 days. The fish and mussel CFb generally increased with increasing fluorocarbon chain length and were greater for sulfonates than for carboxylates. The exception was perfluorohexane sulfonate, which deviated from the linear trend and had a 10-fold difference in CFb between sites, possibly because of biotransformation of precursors such as perfluorohexane sulfonamide. Uptake for most PFAS in male fish was linear over time, whereas female fish had bilinear uptake indicated by an initial increase in tissue concentrations followed by a decrease. Uptake of PFAS was less for mussels (maximum CFb = 200) than for fish, and mussel uptake of most PFAS also was bilinear. Although abiotic concentration factors were greater than CFb, and values for POCIS were greater than for PETS, passive samplers were useful for assessing PFAS that potentially bioconcentrate in fish but are present at concentrations below method quantitation limits in water. Passive samplers also accumulate short-chain PFAS that are not bioconcentrated.
Collapse
Affiliation(s)
- Larry B Barber
- U.S. Geological Survey, 3215 Marine Street, Boulder, Colorado 80303, United States
| | - Heidi M Pickard
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - David A Alvarez
- U.S. Geological Survey, 4200 New Haven Road, Columbia, Missouri 65201, United States
| | - Jitka Becanova
- Graduate School of Oceanography, University of Rhode Island, Horn Building 118, 215 South Ferry Road, Narragansett, Rhode Island 02882, United States
| | - Steffanie H Keefe
- U.S. Geological Survey, 3215 Marine Street, Boulder, Colorado 80303, United States
| | - Denis R LeBlanc
- U.S. Geological Survey, 10 Bearfoot Road, Northborough, Massachusetts 01532, United States
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Horn Building 118, 215 South Ferry Road, Narragansett, Rhode Island 02882, United States
| | - Jeffery A Steevens
- U.S. Geological Survey, 4200 New Haven Road, Columbia, Missouri 65201, United States
| | - Alan M Vajda
- University of Colorado Denver, P.O. Box 173364, Denver, Colorado 80217, United States
| |
Collapse
|
33
|
Timmermann A, Avenbuan ON, Romano ME, Braun JM, Tolstrup JS, Vandenberg LN, Fenton SE. Per- and Polyfluoroalkyl Substances and Breastfeeding as a Vulnerable Function: A Systematic Review of Epidemiological Studies. TOXICS 2023; 11:325. [PMID: 37112552 PMCID: PMC10145877 DOI: 10.3390/toxics11040325] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 05/25/2023]
Abstract
Milk formation in the breast during breastfeeding is a complex hormonally regulated process, potentially sensitive to the effects of endocrine-disrupting chemical exposures. The environmental chemicals, per- and polyfluoroalkyl substances (PFAS) are known endocrine disruptors. PFAS exposure have been associated with insufficient mammary gland development in mice and reduced breastfeeding duration in humans. The aim of this review was to gather the epidemiological evidence on the association between PFAS exposure and breastfeeding duration. Using PubMed and Embase, we performed a systematic literature search (on 23 January 2023) to identify epidemiological studies examining the association between maternal PFAS exposure and breastfeeding duration. Animal studies, reviews, and non-English studies were excluded. The risk of bias was assessed using the risk of bias in non-randomized studies of exposures tool. Estimates describing the association between PFAS exposure and the duration of breastfeeding were identified, and the data were synthesized separately for each type of PFAS and for the duration of exclusive and total breastfeeding. Six studies with between 336 and 2374 participants each were identified. PFAS exposure was assessed in serum samples (five studies) or based on residential address (one study). Five out of six studies found shorter total duration of breastfeeding with higher PFAS exposure. The most consistent associations were seen for perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA). The finding of a potential causal association between PFAS exposure and breastfeeding duration is in agreement with findings from experimental studies.
Collapse
Affiliation(s)
- Amalie Timmermann
- National Institute of Public Health, University of Southern Denmark, 1455 Copenhagen, Denmark
| | - Oyemwenosa N. Avenbuan
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, NC 27 599-7325, USA
| | - Megan E. Romano
- Department of Epidemiology, Dartmouth Geisel School of Medicine, Hanover, NH 03 755, USA
| | - Joseph M. Braun
- Department of Epidemiology, Brown University, Providence, RI 02 903, USA
| | - Janne S. Tolstrup
- National Institute of Public Health, University of Southern Denmark, 1455 Copenhagen, Denmark
| | - Laura N. Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA 01 003, USA
| | - Suzanne E. Fenton
- Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC 27 709, USA
| |
Collapse
|
34
|
Sadia M, Nollen I, Helmus R, ter Laak TL, Béen F, Praetorius A, van Wezel AP. Occurrence, Fate, and Related Health Risks of PFAS in Raw and Produced Drinking Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3062-3074. [PMID: 36779784 PMCID: PMC9979608 DOI: 10.1021/acs.est.2c06015] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 06/01/2023]
Abstract
This study investigates human exposure to per- and polyfluoroalkyl substances (PFAS) via drinking water and evaluates human health risks. An analytical method for 56 target PFAS, including ultrashort-chain (C2-C3) and branched isomers, was developed. The limit of detection (LOD) ranged from 0.009 to 0.1 ng/L, except for trifluoroacetic-acid and perfluoropropanoic-acid with higher LODs of 35 and 0.24 ng/L, respectively. The method was applied to raw and produced drinking water from 18 Dutch locations, including groundwater or surface water as source, and applied various treatment processes. Ultrashort-chain (300 to 1100 ng/L) followed by the group of perfluoroalkyl-carboxylic-acids (PFCA, ≥C4) (0.4 to 95.1 ng/L) were dominant. PFCA and perfluoroalkyl-sulfonic-acid (≥C4), including precursors, showed significantly higher levels in drinking water produced from surface water. However, no significant difference was found for ultrashort PFAS, indicating the need for groundwater protection. Negative removal of PFAS occasionally observed for advanced treatment indicates desorption and/or degradation of precursors. The proportion of branched isomers was higher in raw and produced drinking water as compared to industrial production. Drinking water produced from surface water, except for a few locations, exceed non-binding provisional guideline values proposed; however, all produced drinking waters met the recent soon-to-be binding drinking-water-directive requirements.
Collapse
Affiliation(s)
- Mohammad Sadia
- Institute
for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands
| | - Ingeborg Nollen
- Institute
for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands
| | - Rick Helmus
- Institute
for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands
| | - Thomas L. ter Laak
- Institute
for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands
- KWR
Water Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands
| | - Frederic Béen
- KWR
Water Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands
| | - Antonia Praetorius
- Institute
for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands
| | - Annemarie P. van Wezel
- Institute
for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands
| |
Collapse
|
35
|
Johanson G, Gyllenhammar I, Ekstrand C, Pyko A, Xu Y, Li Y, Norström K, Lilja K, Lindh C, Benskin JP, Georgelis A, Forsell K, Jakobsson K, Glynn A, Vogs C. Quantitative relationships of perfluoroalkyl acids in drinking water associated with serum concentrations above background in adults living near contamination hotspots in Sweden. ENVIRONMENTAL RESEARCH 2023; 219:115024. [PMID: 36535390 DOI: 10.1016/j.envres.2022.115024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Contaminated drinking water (DW) is a major source of exposure to per- and polyfluoroalkyl substances (PFAS) at locations around PFAS production/use facilities and military airports. This study aimed to investigate quantitative relationships between concentrations in DW and serum of nine perfluoroalkyl acids (PFAAs) in Swedish adult populations living near contamination hotspots. Short-chained (PFPeA, PFHxA, PFHpA, and PFBS) and long-chained PFAAs (PFOA, PFNA, PFDA, PFHxS and PFOS) were measured in DW and serum. We matched DW and serum concentrations for a total of 398 subjects living or working in areas receiving contaminated DW and in one non-contaminated area. Thereafter, linear regression analysis with and without adjustments for co-variates was conducted. This enabled to derive (i) serum concentrations at background exposure (CB) from sources other than local DW exposure (i.e. food, dust and textiles) at 0 ng/L DW concentration, (ii) population-mean PFAA serum:water ratios (SWR) and (iii) PFAA concentrations in DW causing observable elevated serum PFAA concentrations above background variability. Median concentrations of the sum of nine PFAAs ranged between 2.8 and 1790 ng/L in DW and between 7.6 and 96.9 ng/mL in serum. DW concentration was the strongest predictor, resulting in similar unadjusted and adjusted regression coefficients. Mean CB ranged from <0.1 (PFPeA, PFHpA, PFBS) to 5.1 ng/mL (PFOS). Serum concentrations increased significantly with increasing DW concentrations for all PFAAs except for PFPeA with SWRs ranging from <10 (PFHxA, PFHpA and PFBS) to 111 (PFHxS). Observed elevated serum concentrations above background variability were reached at DW concentrations between 24 (PFOA) and 357 ng/L (PFHxA). The unadjusted linear regression predictions agreed well with serum concentrations previously reported in various populations exposed to low and high DW levels of PFOA, PFHxS and PFOS. The quantitative relationships derived herein should be helpful to translate PFAA concentrations in DW to concentrations in serum at the population level.
Collapse
Affiliation(s)
- Gunnar Johanson
- Division of Pharmacology and Toxicology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Box 7028, 750 07, Uppsala, Sweden; Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, P.O. Box 210, SE 171 77, Stockholm, Sweden
| | - Irina Gyllenhammar
- Division of Pharmacology and Toxicology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Box 7028, 750 07, Uppsala, Sweden; Swedish Food Agency, Box 622, 751 26, Uppsala, Sweden
| | - Carl Ekstrand
- Division of Pharmacology and Toxicology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Box 7028, 750 07, Uppsala, Sweden
| | - Andrei Pyko
- Center for Occupational and Environmental Health, Region Stockholm, Sweden; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yiyi Xu
- School of Public Health and Community Medicine, Sahlgrenska Academy, University of Gothenburg, P.O Box 414, 405 30, Gothenburg, Sweden
| | - Ying Li
- School of Public Health and Community Medicine, Sahlgrenska Academy, University of Gothenburg, P.O Box 414, 405 30, Gothenburg, Sweden
| | - Karin Norström
- Swedish Environmental Protection Agency, Circular Economy Department, 106 48, Stockholm, Sweden
| | - Karl Lilja
- Swedish Environmental Protection Agency, Circular Economy Department, 106 48, Stockholm, Sweden
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | | | - Antonios Georgelis
- Center for Occupational and Environmental Health, Region Stockholm, Sweden; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karl Forsell
- Occupational and Environmental Medicine, Norrland University Hospital, Umeå, Sweden
| | - Kristina Jakobsson
- School of Public Health and Community Medicine, Sahlgrenska Academy, University of Gothenburg, P.O Box 414, 405 30, Gothenburg, Sweden; Occupational and Environmental Medicine, Sahlgrenska University Hospital, Box 414, 405 30, Gothenburg, Sweden
| | - Anders Glynn
- Division of Pharmacology and Toxicology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Box 7028, 750 07, Uppsala, Sweden
| | - Carolina Vogs
- Division of Pharmacology and Toxicology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Box 7028, 750 07, Uppsala, Sweden.
| |
Collapse
|
36
|
Tian Y, Zhou Q, Zhang L, Li W, Yin S, Li F, Xu C. In utero exposure to per-/polyfluoroalkyl substances (PFASs): Preeclampsia in pregnancy and low birth weight for neonates. CHEMOSPHERE 2023; 313:137490. [PMID: 36513200 DOI: 10.1016/j.chemosphere.2022.137490] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/29/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Per-/polyfluoroalkyl substances (PFASs) have been linked to preeclampsia with inconsistent directions for outcomes. However, information regarding the joint effects of PFASs mixtures on preeclampsia as well as their associations with the low birth weight (LBW) and small for gestational age (SGA) is nascent. The present study included 82 women with preeclampsia and 169 healthy participants from Hangzhou, China. Fifteen PFASs were analyzed in maternal serum before delivery. PFOA and 6:2Cl-PFESA were associated with higher incidence of preeclampsia both linearly and by tertile. Each log-unit increase in serum PFOA (OR:5.29, 95% CI: 1.05, 26.7, p = 0.044) and 6:2 Cl-PFESA (OR:1.02, 95%CI: 1.00, 1.48, p = 0.045) concentrations were associated with increased risks of preeclampsia. These effects were more profound among primiparous women carrying female fetuses. Both PFOA and PFUnDA concentrations were significantly associated with higher odds of early-onset preeclampsia, but the associations tended to be null for late-onset. In addition, each logarithmic increment in PFOA concentrations were significantly associated with a 0.262 and 0.224 mmHg increase in systolic (95% CI: 0.147, 0.377) and diastolic (95% CI: 0.133, 0.314) blood pressures. Using Bayesian kernel machine regressions (BKMR), the overall effects of PFASs mixture concentrations on preeclampsia showed an increasing trend, with PFOA being the largest contributor. With regard to birth weight, the Cox proportional hazards model indicated that significantly higher risks of the LBW were associated with preeclampsia than normal pregnancy (OR: 4.56, 95% CI: 2.44, 6.68, p = 0.000). Increased LBW risks were found for the higher PFOA exposure both linearly and by tertile. Besides, serum PFOA and PFUnDA concentrations were significantly associated with higher odds of SGA development. Nevertheless 4:2 FTS and ADONA were inversely associated with LBW and SGA incidences. Further adverse birth outcomes should be explored to elucidate the health implications of PFASs exposure and preeclampsia development.
Collapse
Affiliation(s)
- Yonghong Tian
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310000, China.
| | - Quan Zhou
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Long Zhang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310000, China.
| | - Weitong Li
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Shanshan Yin
- Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Fang Li
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Chenye Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
37
|
Garvey GJ, Anderson JK, Goodrum PE, Tyndall KH, Cox LA, Khatami M, Morales-Montor J, Schoeny RS, Seed JG, Tyagi RK, Kirman CR, Hays SM. Weight of evidence evaluation for chemical-induced immunotoxicity for PFOA and PFOS: findings from an independent panel of experts. Crit Rev Toxicol 2023; 53:34-51. [PMID: 37115714 DOI: 10.1080/10408444.2023.2194913] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 04/29/2023]
Abstract
Immunotoxicity is the critical endpoint used by some regulatory agencies to establish toxicity values for perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). However, the hypothesis that exposure to certain per- and polyfluoroalkyl substances (PFAS) causes immune dysregulation is subject to much debate. An independent, international expert panel was engaged utilizing methods to reduce bias and "groupthink". The panel concluded there is moderate evidence that PFOS and PFOA are immunotoxic, based primarily on evidence from animal data. However, species concordance and human relevance cannot be well established due to data limitations. The panel recommended additional testing that includes longer-term exposures, evaluates both genders, includes other species of animals, tests lower dose levels, assesses more complete measures of immune responses, and elucidates the mechanism of action. Panel members agreed that the Faroe Islands cohort data should not be used as the primary basis for deriving PFAS risk assessment values. The panel agreed that vaccine antibody titer is not useful as a stand-alone metric for risk assessment. Instead, PFOA and PFOS toxicity values should rely on multiple high-quality studies, which are currently not available for immune suppression. The panel concluded that the available PFAS immune epidemiology studies suffer from weaknesses in study design that preclude their use, whereas available animal toxicity studies provide comprehensive dataset to derive points of departure (PODs) for non-immune endpoints. The panel recommends accounting for potential PFAS immunotoxicity by applying a database uncertainty factor to POD values derived from animal studies for other more robustly supported critical effects.
Collapse
Affiliation(s)
| | | | | | | | - L Anthony Cox
- Business Analytics, University of Colorado, Denver, CO, USA
| | | | - Jorge Morales-Montor
- Department of Immunology, Universidad Nacional Autonoma De Mexico, Mexico City, Mexico
| | | | | | - Rajeev K Tyagi
- CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | | | | |
Collapse
|
38
|
Lasters R, Groffen T, Eens M, Coertjens D, Gebbink WA, Hofman J, Bervoets L. Home-produced eggs: An important human exposure pathway of perfluoroalkylated substances (PFAS). CHEMOSPHERE 2022; 308:136283. [PMID: 36075366 DOI: 10.1016/j.chemosphere.2022.136283] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 08/17/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Humans are generally exposed to per- and polyfluoroalkyl substances (PFAS) through their diet. Whilst plenty of data are available on commercial food products, little information exists on the contribution of self-cultivated food, such as home-produced eggs (HPE), to the dietary PFAS intake in humans. The prevalence of 17 legacy and emerging PFAS in HPE (N = 70) from free-ranging laying hens was examined at 35 private gardens, situated within a 10 km radius from a fluorochemical plant in Antwerp (Belgium). Potential influences from housing conditions (feed type and number of individuals) and age of the chickens on the egg concentrations was examined, and possible human health risks were evaluated. Perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) were detected in all samples. PFOS was the dominant compound and concentrations (range: 0.13-241 ng/g wet weight) steeply decreased with distance from the fluorochemical plant, while there was no clear distance trend for other PFAS. Laying hens receiving an obligate diet of kitchen leftovers, exhibited higher PFOS and PFOA concentrations in their eggs than hens feeding only on commercial food, suggesting that garden produce may be a relevant exposure pathway to both chickens and humans. The age of laying hens affected egg PFAS concentrations, with younger hens exhibiting significantly higher egg PFOA concentrations. Based on a modest human consumption scenario of two eggs per week, the European health guideline was exceeded in ≥67% of the locations for all age classes, both nearby and further away (till 10 km) from the plant site. These results indicate that PFAS exposure via HPE causes potential human health risks. Extensive analysis in other self-cultivated food items on a larger spatial scale is highly recommended, taking into account potential factors that may affect PFAS bioavailability to garden produce.
Collapse
Affiliation(s)
- Robin Lasters
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium; Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Thimo Groffen
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium; Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Marcel Eens
- Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Dries Coertjens
- Centre for Research on Environmental and Social Change, Department of Sociology, University of Antwerp, Sint-Jacobstraat 2, 2000, Antwerp, Belgium.
| | | | - Jelle Hofman
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium.
| | - Lieven Bervoets
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| |
Collapse
|
39
|
Giffard NG, Gitlin SA, Rardin M, Petali JM, Chen CY, Romano ME. Occurrence and Risks of Per- and Polyfluoroalkyl Substances in Shellfish. Curr Environ Health Rep 2022; 9:591-603. [PMID: 36255596 PMCID: PMC9841895 DOI: 10.1007/s40572-022-00379-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Per- and polyfluoroalkyl substances (PFAS) are a diverse class of persistent, fluorinated surfactants used widely in industrial and commercial applications with known adverse health effects. Seafood consumption is thought to be an underappreciated source of PFAS exposure in the general population. This review synthesizes the current understanding of PFAS occurrence in shellfish, a term used to describe animals such as mollusk bivalves, certain gastropods (snails), cephalopods (e.g., octopuses and squid), and crustaceans, and highlights scientific gaps relative to bioaccumulation and the protection of shellfish consumers. RECENT FINDINGS A range of sampling methodologies are used across studies, and the suite of PFAS surveyed across studies is highly variable. Concentrations of PFAS observed in shellfish vary by geographic location, shellfish species, habitat, and across PFAS compounds, and studies informing estimates of bioaccumulation of PFAS in shellfish are extremely limited at this time. This review identifies several important opportunities for researchers to standardize PFAS sampling techniques, sample preparation, and analytical methodologies to allow for better comparison of PFAS analytes both within and across future studies. Increasing the range of geographic locations where samples are collected is also a critical priority to support a greater knowledge of worldwide PFAS contamination. When put into the context of risk to consumer, concentrations of PFAS, especially PFOS, found in shellfish collected from sites containing aqueous film-forming foam (AFFF) and industrial contamination may present risks to frequent consumers. Further research is needed to protect shellfish consumers and to inform shellfish advisories and health protective policies.
Collapse
Affiliation(s)
- Nathan G Giffard
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Saige A Gitlin
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Marta Rardin
- Environmental Health Program, New Hampshire Department of Environmental Services, Concord, NH, USA
| | - Jonathan M Petali
- Environmental Health Program, New Hampshire Department of Environmental Services, Concord, NH, USA
| | - Celia Y Chen
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Megan E Romano
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
- One Medical Center Drive, Hinman, Box 7927, Lebanon, NH, 03756, USA.
| |
Collapse
|
40
|
Hammer J, Endo S. Volatility and Nonspecific van der Waals Interaction Properties of Per- and Polyfluoroalkyl Substances (PFAS): Evaluation Using Hexadecane/Air Partition Coefficients. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15737-15745. [PMID: 36240042 PMCID: PMC9671037 DOI: 10.1021/acs.est.2c05804] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 05/28/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) form weak van der Waals (vdW) interactions, which render this class of chemicals more volatile than nonfluorinated analogues. Here, the hexadecane/air partition coefficient (KHxd/air) values at 25 °C, as an index of vdW interaction strength and volatility, were determined for 64 neutral PFAS using the variable phase ratio headspace and gas chromatographic retention methods. Log KHxd/air values increased linearly with increasing number of CF2 units, and the increase in log KHxd/air value per CF2 was smaller than that per CH2. Comparison of PFAS sharing the same perfluoroalkyl chain length but with different functional groups demonstrated that KHxd/air was highest for the N-alkyl perfluoroalkanesulfonamidethanols and lowest for the perfluoroalkanes and that the size of the nonfluorinated structure determines the difference in KHxd/air between PFAS groups. Two models, the quantum chemistry-based COSMOtherm model and an iterative fragment selection quantitative structure-property relationship (IFS-QSPR) model, accurately predicted the log KHxd/air values of the PFAS with root-mean-square errors of 0.55 and 0.35, respectively. COSMOtherm showed minor systematic errors for all PFAS, whereas IFS-QSPR exhibited large errors for a few PFAS groups that were outside the model applicability domain. The present data set will be useful as a benchmark of the volatilities of the various PFAS and for predicting other partition coefficient values of PFAS.
Collapse
Affiliation(s)
- Jort Hammer
- Health and Environmental
Risk Division, National Institute for Environmental
Studies (NIES), Onogawa 16-2, 305-8506Tsukuba, Ibaraki, Japan
| | - Satoshi Endo
- Health and Environmental
Risk Division, National Institute for Environmental
Studies (NIES), Onogawa 16-2, 305-8506Tsukuba, Ibaraki, Japan
| |
Collapse
|
41
|
Pickard HM, Ruyle BJ, Thackray CP, Chovancova A, Dassuncao C, Becanova J, Vojta S, Lohmann R, Sunderland EM. PFAS and Precursor Bioaccumulation in Freshwater Recreational Fish: Implications for Fish Advisories. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15573-15583. [PMID: 36280234 PMCID: PMC9670858 DOI: 10.1021/acs.est.2c03734] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 05/08/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a diverse class of fluorinated anthropogenic chemicals that include perfluoroalkyl acids (PFAA), which are widely used in modern commerce. Many products and environmental samples contain abundant precursors that can degrade into terminal PFAA associated with adverse health effects. Fish consumption is an important dietary exposure source for PFAS that bioaccumulate in food webs. However, little is known about bioaccumulation of PFAA precursors. Here, we identify and quantify PFAS in recreational fish species collected from surface waters across New Hampshire, US, using a toolbox of analytical methods. Targeted analysis of paired water and tissue samples suggests that many precursors below detection in water have a higher bioaccumulation potential than their terminal PFAA. Perfluorobutane sulfonamide (FBSA), a short-chain precursor produced by electrochemical fluorination, was detected in all fish samples analyzed for this compound. The total oxidizable precursor assay interpreted using Bayesian inference revealed fish muscle tissue contained additional, short-chain precursors in high concentration samples. Suspect screening analysis indicated these were perfluoroalkyl sulfonamide precursors with three and five perfluorinated carbons. Fish consumption advisories are primarily being developed for perfluorooctane sulfonate (PFOS), but this work reinforces the need for risk evaluations to consider additional bioaccumulative PFAS, including perfluoroalkyl sulfonamide precursors.
Collapse
Affiliation(s)
- Heidi M. Pickard
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, United States
| | - Bridger J. Ruyle
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, United States
| | - Colin P. Thackray
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, United States
| | - Adela Chovancova
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, United States
| | - Clifton Dassuncao
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, United States
- Eastern
Research Group, Inc., Arlington, Virginia 22201, United States
| | - Jitka Becanova
- Graduate
School of Oceanography, University of Rhode
Island, Narragansett, Rhode Island 02882, United States
| | - Simon Vojta
- Graduate
School of Oceanography, University of Rhode
Island, Narragansett, Rhode Island 02882, United States
| | - Rainer Lohmann
- Graduate
School of Oceanography, University of Rhode
Island, Narragansett, Rhode Island 02882, United States
| | - Elsie M. Sunderland
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, United States
- Department
of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
| |
Collapse
|
42
|
Salvatore D, Mok K, Garrett KK, Poudrier G, Brown P, Birnbaum LS, Goldenman G, Miller MF, Patton S, Poehlein M, Varshavsky J, Cordner A. Presumptive Contamination: A New Approach to PFAS Contamination Based on Likely Sources. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2022; 9:983-990. [PMID: 36398312 PMCID: PMC9648201 DOI: 10.1021/acs.estlett.2c00502] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 05/26/2023]
Abstract
While research and regulatory attention to per- and polyfluoroalkyl substances (PFAS) has increased exponentially in recent years, data are uneven and incomplete about the scale, scope, and severity of PFAS releases and resulting contamination in the United States. This paper argues that in the absence of high-quality testing data, PFAS contamination can be presumed around three types of facilities: (1) fluorinated aqueous film-forming foam (AFFF) discharge sites, (2) certain industrial facilities, and (3) sites related to PFAS-containing waste. While data are incomplete on all three types of presumptive PFAS contamination sites, we integrate available geocoded, nationwide data sets into a single map of presumptive contamination sites in the United States, identifying 57,412 sites of presumptive PFAS contamination: 49,145 industrial facilities, 4,255 wastewater treatment plants, 3,493 current or former military sites, and 519 major airports. This conceptual approach allows governments, industries, and communities to rapidly and systematically identify potential exposure sources.
Collapse
Affiliation(s)
- Derrick Salvatore
- Department
of Marine and Environmental Sciences, Northeastern
University, Boston, Massachusetts 02215, United States
| | - Kira Mok
- Department
of Sociology and Anthropology and Department of Health Sciences, Northeastern University, Boston, Massachusetts 02215, United States
| | - Kimberly K. Garrett
- Department
of Sociology and Anthropology and Department of Health Sciences, Northeastern University, Boston, Massachusetts 02215, United States
| | - Grace Poudrier
- Department
of Sociology and Anthropology and Department of Health Sciences, Northeastern University, Boston, Massachusetts 02215, United States
| | - Phil Brown
- Department
of Sociology and Anthropology and Department of Health Sciences, Northeastern University, Boston, Massachusetts 02215, United States
- Department
of Health Sciences, Northeastern University, Boston, Massachusetts 02215, United States
| | - Linda S. Birnbaum
- National
Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, United States
- Duke
University, Durham, North Carolina 27708, United States
| | | | - Mark F. Miller
- National
Institute of Environmental Health Sciences and U.S. Public Health
Service, Research
Triangle Park, North Carolina 27709, United States
| | - Sharyle Patton
- Health
and Environment Program, Commonweal, Bolinas, California 94924, United States
| | - Maddy Poehlein
- PFAS
Project Lab, Northeastern University, Boston, Massachusetts 02215, United States
| | - Julia Varshavsky
- Department
of Health Sciences and Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02215, United States
| | - Alissa Cordner
- Department of Sociology, Whitman College, Walla Walla, Washington 99362, United States
| |
Collapse
|
43
|
Lele CK, Olarewaju MO, Adeyemi OS. Concentrations of Polycyclic Aromatic Hydrocarbons and Potability of Borehole Water in Onne, Nigeria. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2118336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Charity Kelechi Lele
- Landmark University SDG 3 (Good Health & Well-Being Research Group), Landmark University, Omu-Aran, Kwara State, Nigeria
- SDG 06 Group – Clean Water and Sanitation, Landmark University, Omu-Aran, Kwara State, Nigeria
- Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | - Michael Oluba Olarewaju
- Landmark University SDG 3 (Good Health & Well-Being Research Group), Landmark University, Omu-Aran, Kwara State, Nigeria
- SDG 06 Group – Clean Water and Sanitation, Landmark University, Omu-Aran, Kwara State, Nigeria
- Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | - Oluyomi Stephen Adeyemi
- Landmark University SDG 3 (Good Health & Well-Being Research Group), Landmark University, Omu-Aran, Kwara State, Nigeria
- SDG 06 Group – Clean Water and Sanitation, Landmark University, Omu-Aran, Kwara State, Nigeria
- Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| |
Collapse
|
44
|
Yuan J, Mortazavian S, Passeport E, Hofmann R. Evaluating perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) removal across granular activated carbon (GAC) filter-adsorbers in drinking water treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156406. [PMID: 35660589 DOI: 10.1016/j.scitotenv.2022.156406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Granular activated carbon (GAC) was harvested from six filter-adsorbers that are used for taste and odour control in three drinking water treatment plants in Ontario, Canada, and evaluated for the removal of perfluorooctanic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) using minicolumn tests under different operational conditions. Parallel column tests were conducted using unsterilized GAC and sterilized GAC to distinguish adsorption from potential biodegradation of PFOA and PFOS across the GAC. It was observed that the GAC could achieve approximately 20% to 55% of PFOA and PFOS removal even after a long period of GAC operation (e.g., 6 years). There was no evidence of PFOA and PFOS biodegradation, so the removal in GAC can be attributed solely to adsorption under the conditions tested. However, in one location, there was evidence suggesting both removal and formation of PFOS and PFOA across the GAC, with the formation presumably due to the biotransformation of pre-existing precursors in the source water. Additionally, GAC service time and empty bed contact time (EBCT) were identified to be important factors that could affect the removal of PFOA and PFOS. Based on this information, an empirical model was proposed to predict PFOA and PFOS removal in GAC filter-adsorbers as a function of GAC service time and EBCT. This study provides useful information for utilities that have installed GAC for taste and odour control but may consider per- and polyfluoroalkyl substances (PFAS) removal as an additional voluntary objective or due to more stringent guidelines.
Collapse
Affiliation(s)
- Jie Yuan
- Department of Civil & Mineral Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada.
| | - Soroosh Mortazavian
- Department of Civil & Mineral Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Elodie Passeport
- Department of Civil & Mineral Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Ron Hofmann
- Department of Civil & Mineral Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| |
Collapse
|
45
|
Kidd J, Fabricatore E, Jackson D. Current and future federal and state sampling guidance for per- and polyfluoroalkyl substances in environmental matrices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155523. [PMID: 35504374 DOI: 10.1016/j.scitotenv.2022.155523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/31/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of emerging contaminants composed of an estimated 5000 to 10,000 human-made, fluorinated, organic chemicals. Due to the complexity of PFAS, the need for multiple environmental matrix considerations and the absence of a promulgated federal standard for environmental sampling and analysis, U.S. states have begun developing health-based regulatory and/or guidance values for a limited number of PFAS in environmental matrices. As there is a growing body of science to inform PFAS sampling guidance standard development, it is important to understand which U.S. states are implementing sampling guidelines and how they plan to handle emerging PFAS. This critical review discusses the current and impending federal and state sampling guidelines for PFAS in environmental matrices, the data gaps surrounding PFAS sampling guidance in U.S. states, and the future impacts of impending guidance documents and regulations. Ten federal guidance documents are available for PFAS sampling guidance and analysis. The maximum number of PFAS covered in these guidance documents is 25 analytes spanning across 8 unique media. While the EPA has developed several different sampling and analytical guidelines for PFAS, there is no formal regulation of PFAS or requirements of states to enforce these guidelines. As a result, only 31 states have informally adopted sampling guidelines, while the other 19 states have no guidance documentation in place for PFAS. The introduction of new PFAS sampling guidelines by the EPA, as well as updated analytical guidelines that target more PFAS or total organofluoride, is expected to continuously shift the landscape of federal and state guidance for PFAS sampling moving forward.
Collapse
Affiliation(s)
- Justin Kidd
- Savannah River National Laboratory (SRNL), Aiken, SC 29808, United States.
| | - Emily Fabricatore
- Savannah River National Laboratory (SRNL), Aiken, SC 29808, United States.
| | - Dennis Jackson
- Savannah River National Laboratory (SRNL), Aiken, SC 29808, United States.
| |
Collapse
|
46
|
Cousins IT, Johansson JH, Salter ME, Sha B, Scheringer M. Outside the Safe Operating Space of a New Planetary Boundary for Per- and Polyfluoroalkyl Substances (PFAS). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11172-11179. [PMID: 35916421 PMCID: PMC9387091 DOI: 10.1021/acs.est.2c02765] [Citation(s) in RCA: 149] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 05/16/2023]
Abstract
It is hypothesized that environmental contamination by per- and polyfluoroalkyl substances (PFAS) defines a separate planetary boundary and that this boundary has been exceeded. This hypothesis is tested by comparing the levels of four selected perfluoroalkyl acids (PFAAs) (i.e., perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexanesulfonic acid (PFHxS), and perfluorononanoic acid (PFNA)) in various global environmental media (i.e., rainwater, soils, and surface waters) with recently proposed guideline levels. On the basis of the four PFAAs considered, it is concluded that (1) levels of PFOA and PFOS in rainwater often greatly exceed US Environmental Protection Agency (EPA) Lifetime Drinking Water Health Advisory levels and the sum of the aforementioned four PFAAs (Σ4 PFAS) in rainwater is often above Danish drinking water limit values also based on Σ4 PFAS; (2) levels of PFOS in rainwater are often above Environmental Quality Standard for Inland European Union Surface Water; and (3) atmospheric deposition also leads to global soils being ubiquitously contaminated and to be often above proposed Dutch guideline values. It is, therefore, concluded that the global spread of these four PFAAs in the atmosphere has led to the planetary boundary for chemical pollution being exceeded. Levels of PFAAs in atmospheric deposition are especially poorly reversible because of the high persistence of PFAAs and their ability to continuously cycle in the hydrosphere, including on sea spray aerosols emitted from the oceans. Because of the poor reversibility of environmental exposure to PFAS and their associated effects, it is vitally important that PFAS uses and emissions are rapidly restricted.
Collapse
Affiliation(s)
- Ian T. Cousins
- Department
of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| | - Jana H. Johansson
- Department
of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| | - Matthew E. Salter
- Department
of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| | - Bo Sha
- Department
of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| | - Martin Scheringer
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
- RECETOX, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
47
|
Babayev M, Capozzi SL, Miller P, McLaughlin KR, Medina SS, Byrne S, Zheng G, Salamova A. PFAS in drinking water and serum of the people of a southeast Alaska community: A pilot study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119246. [PMID: 35367506 PMCID: PMC9090981 DOI: 10.1016/j.envpol.2022.119246] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 05/27/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have become a target of rigorous scientific research due to their ubiquitous nature and adverse health effects. However, there are still gaps in knowledge about their environmental fate and health implications. More attention is needed for remote locations with source exposures. This study focuses on assessing PFAS exposure in Gustavus, a small Alaska community, located near a significant PFAS source from airport operations and fire training sites. Residential water (n = 25) and serum (n = 40) samples were collected from Gustavus residents and analyzed for 39 PFAS compounds. In addition, two water samples were collected from the previously identified PFAS source near the community. Fourteen distinct PFAS were detected in Gustavus water samples, including 6 perfluorinated carboxylic acids (PFCAs), 7 perfluorosulfonic acids (PFSAs), and 1 fluorotelomer sulfonate (FTS). ΣPFAS concentrations in residential drinking water ranged from not detected to 120 ng/L. High ΣPFAS levels were detected in two source samples collected from the Gustavus Department of Transportation (14,600 ng/L) and the Gustavus Airport (228 ng/L), confirming these two locations as a nearby major source of PFAS contamination. Seventeen PFAS were detected in serum and ΣPFAS concentrations ranged from 0.0170 to 13.1 ng/mL (median 0.0823 ng/mL). Perfluorooctanesulfonic acid (PFOS) and perfluorohexanesulfonic acid (PFHxS) were the most abundant PFAS in both water and serum samples and comprised up to 70% of ΣPFAS concentrations in these samples. Spearman's correlation analysis revealed PFAS concentrations in water and sera were significantly and positively correlated (r = 0.495; p = 0.0192). Our results confirm a presence of a significant PFAS source near Gustavus, Alaska and suggest that contaminated drinking water from private wells contributes to the overall PFAS body burden in Gustavus residents.
Collapse
Affiliation(s)
- Maksat Babayev
- School of Public Health, Indiana University, Bloomington, IN 47405, United States
| | - Staci L Capozzi
- O'Neill School of Public and Environmental Affairs, Bloomington, Indiana 47405 United States
| | - Pamela Miller
- Alaska Community Action on Toxics, Anchorage, AK 99518, United States
| | | | | | - Samuel Byrne
- Department of Biology, Middlebury College, Middlebury, VT 05753, United States
| | - Guomao Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Amina Salamova
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States.
| |
Collapse
|
48
|
Loganathan N, Wilson AK. Adsorption, Structure, and Dynamics of Short- and Long-Chain PFAS Molecules in Kaolinite: Molecular-Level Insights. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8043-8052. [PMID: 35543620 DOI: 10.1021/acs.est.2c01054] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The ubiquitous presence of poly- and perfluoroalkyl substances (PFAS) in different natural settings poses a serious threat to environmental and human health. Soils and sediments represent one of the important exposure pathways of PFAS for humans and animals. With increasing bioaccumulation and mobility, it is extremely important to understand the interactions of PFAS molecules with the dominant constituents of soils such as clay minerals. This study reports for the first time the fundamental molecular-level insights into the adsorption, interfacial structure, and dynamics of short- and long-chain PFAS molecules at the water-saturated mesopores of kaolinite clay using classical molecular dynamics (MD) simulations. At environmental conditions, all the PFAS molecules are exclusively adsorbed near the hydroxyl surface of the kaolinite, irrespective of the terminal functional groups and metal cations. The interfacial adsorption structures and coordination environments of PFAS are strongly dependent on the nature of the functional groups and their hydrophobic chain length. The formation of large, aggregated clusters of long-chain PFAS at the hydroxyl surface of kaolinite is responsible for their restricted dynamics in comparison to short-chain PFAS molecules. Such comprehensive knowledge of PFAS at the clay mineral interface is critical to developing novel site-specific degradation and mitigation strategies.
Collapse
Affiliation(s)
- Narasimhan Loganathan
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Angela K Wilson
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
49
|
Ducatman A, LaPier J, Fuoco R, DeWitt JC. Official health communications are failing PFAS-contaminated communities. Environ Health 2022; 21:51. [PMID: 35538533 PMCID: PMC9092686 DOI: 10.1186/s12940-022-00857-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/12/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Environmental health agencies are critical sources of information for communities affected by chemical contamination. Impacted residents and their healthcare providers often turn to federal and state agency webpages, fact sheets, and other documents to weigh exposure risks and interventions. MAIN BODY This commentary briefly reviews scientific evidence concerning per- and polyfluoroalkyl substances (PFAS) for health outcomes that concern members of affected communities and that have compelling or substantial yet differing degree of scientific evidence. It then features official documents in their own language to illustrate communication gaps, as well as divergence from scientific evidence and from best health communication practice. We found official health communications mostly do not distinguish between the needs of heavily contaminated communities characterized by high body burdens and the larger population with ubiquitous but substantially smaller exposures. Most health communications do not distinguish levels of evidence for health outcomes and overemphasize uncertainty, dismissing legitimate reasons for concern in affected communities. Critically, few emphasize helpful approaches to interventions. We also provide examples that can be templates for improvement. CONCLUSIONS Immediate action should be undertaken to review and improve official health communications intended to inform the public and health providers about the risks of PFAS exposure and guide community and medical decisions.
Collapse
Affiliation(s)
- Alan Ducatman
- School of Public Health, West Virginia University, Morgantown, WV, USA.
| | - Jonas LaPier
- Green Science Policy Institute, Berkeley, CA, USA
| | | | - Jamie C DeWitt
- Brody School of Medicine, East Carolina University, Greenville, NC, USA
| |
Collapse
|
50
|
Wang J, Lin Z, He X, Song M, Westerhoff P, Doudrick K, Hanigan D. Critical Review of Thermal Decomposition of Per- and Polyfluoroalkyl Substances: Mechanisms and Implications for Thermal Treatment Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5355-5370. [PMID: 35446563 DOI: 10.1021/acs.est.2c02251] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are fluorinated organic chemicals that are concerning due to their environmental persistence and adverse human and ecological effects. Remediation of environmental PFAS contamination and their presence in consumer products have led to the production of solid and liquid waste streams containing high concentrations of PFASs, which require efficient and cost-effective treatment solutions. PFASs are challenging to defluorinate by conventional and advanced destructive treatment processes, and physical separation processes produce waste streams (e.g., membrane concentrate, spent activated carbon) requiring further post-treatment. Incineration and other thermal treatment processes are widely available, but their use in managing PFAS-containing wastes remains poorly understood. Under specific operating conditions, thermal treatment is expected to mineralize PFASs, but the degradation mechanisms and pathways are unknown. In this review, we critically evaluate the thermal decomposition mechanisms, pathways, and byproducts of PFASs that are crucial to the design and operation of thermal treatment processes. We highlight the analytical capabilities and challenges and identify research gaps which limit the current understanding of safely applying thermal treatment to destroy PFASs as a viable end-of-life treatment process.
Collapse
Affiliation(s)
- Junli Wang
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Nevada 89557-0258, United States
| | - Zunhui Lin
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Xuexiang He
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Nevada 89557-0258, United States
| | - Mingrui Song
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Nevada 89557-0258, United States
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Kyle Doudrick
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - David Hanigan
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Nevada 89557-0258, United States
| |
Collapse
|