1
|
Viana LN, Saint'Pierre TD. Environmental impact assessment of end-of-life fluorescent lamps in Rio de Janeiro, Brazil, under different recycling rate scenarios. CHEMOSPHERE 2023; 340:139835. [PMID: 37611776 DOI: 10.1016/j.chemosphere.2023.139835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 07/27/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023]
Abstract
Fluorescent lamps are hazardous materials, as they contain toxic elements, which may lead to environmental contamination. Therefore, assessing potential environmental impacts arising from inadequate lamp disposal is paramount. Studies addressing the Life Cycle Analysis (LCA) of end-of-life fluorescent lamps are, however, still scarce, and inappropriate lamp disposal remains a matter of concern, especially in developing and underdeveloped countries. In Brazil, fluorescent lamps are still used countrywide and are often inadequately discarded. However, studies assessing fluorescent lamp impacts and potential impact reduction through enhanced recycling are still scarce in the country, despite Brazil's size and high waste generation rates. Furthermore, Brazil's lamp recycling program is a recent measure and still falls short of the country's needs. Thus, this study aimed to assess potential environmental impacts of end-of-life fluorescent lamps in Rio de Janeiro, the second largest capital in Brazil, to the best of our knowledge, for the first time. Potential impact reductions due to higher recycling program adherence considering 5, 20, 80 and 100 % recycling rates were also assessed. The findings indicate that the impact categories most influenced by end-of-life lamps were terrestrial ecotoxicity, human non-carcinogenic toxicity, global warming potential, and fossil resource scarcity. Increased recycling rates, in turn, reduced the environmental impact potential for all evaluated categories, reaching an almost 90 % reduction in most categories when applying a 100 % recycling rate. The current national program target recycling rate of 20 %, however, already contributes to an average impact reduction of over 70 %, comprising a more viable national application rate and already significantly contributing to reduced impacts.
Collapse
Affiliation(s)
- Laís Nascimento Viana
- Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Department of Chemistry, Rio de Janeiro, Brazil.
| | | |
Collapse
|
2
|
Lichter KE, Charbonneau K, Sabbagh A, Witztum A, Chuter R, Anand C, Thiel CL, Mohamad O. Evaluating the Environmental Impact of Radiation Therapy Using Life Cycle Assessments: A Critical Review. Int J Radiat Oncol Biol Phys 2023; 117:554-567. [PMID: 37172916 DOI: 10.1016/j.ijrobp.2023.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/17/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Concurrent increases in global cancer burden and the climate crisis pose an unprecedented threat to public health and human well-being. Today, the health care sector greatly contributes to greenhouse gas emissions, with the future demand for health care services expected to rise. Life cycle assessment (LCA) is an internationally standardized tool that analyzes the inputs and outputs of products, processes, and systems to quantify associated environmental impacts. This critical review explains the use of LCA methodology and outlines its application to external beam radiation therapy (EBRT) with the aim of providing a robust methodology to quantify the environmental impact of radiation therapy care practices today. The steps of an LCA are outlined and explained as defined by the International Organization for Standardization (ISO 14040 and 14044) guidelines: (1) definition of the goal and scope of the LCA, (2) inventory analysis, (3) impact assessment, and (4) interpretation. The existing LCA framework and its methodology is described and applied to the field of radiation oncology. The goal and scope of its application to EBRT is the evaluation of the environmental impact of a single EBRT treatment course within a radiation oncology department. The methodology for data collection via mapping of the resources used (inputs) and the end-of-life processes (outputs) associated with EBRT is explained, with subsequent explanation of the LCA analysis steps. Finally, the importance of appropriate sensitivity analysis and the interpretations that can be drawn from LCA results are reviewed. This critical review of LCA protocol provides and evaluates a methodological framework to scientifically establish baseline environmental performance measurements within a health care setting and assists in identifying targets for emissions mitigation. Future LCAs in the field of radiation oncology and across medical specialties will be crucial in informing best practices for equitable and sustainable care in a changing climate.
Collapse
Affiliation(s)
- Katie E Lichter
- Department of Radiation Oncology, University of California, San Francisco, California.
| | - Kiley Charbonneau
- Loyola University Chicago-Stritch School of Medicine, Chicago, Illinois
| | - Ali Sabbagh
- Department of Radiation Oncology, University of California, San Francisco, California
| | - Alon Witztum
- Department of Radiation Oncology, University of California, San Francisco, California
| | - Rob Chuter
- Christie Medical Physics and Engineering, Christie NHS Foundation Trust, Manchester, United Kingdom
| | | | - Cassandra L Thiel
- Department of Population Health, NYU Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Osama Mohamad
- Department of Radiation Oncology, University of California, San Francisco, California
| |
Collapse
|
3
|
Karaca AE, Dincer I. Development of a new photoelectrochemical system for clean hydrogen production and a comparative environmental impact assessment with other production methods. CHEMOSPHERE 2023; 337:139367. [PMID: 37414294 DOI: 10.1016/j.chemosphere.2023.139367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 06/01/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
Hydrogen is recognized as a critical substance for diversifying the global energy supply, providing new economic opportunities and realizing a carbon-free energy sector. In the current study, a life cycle assessment is conducted on a photoelectrochemical hydrogen production process of a newly developed photoelectrochemical reactor. With a photoactive electrode area of 870 cm2, the hydrogen production rate of the reactor is 47.1 μg/s while operating with the energy and exergy efficiencies of 6.3% and 6.31%, respectively. For a Faradaic efficiency of 96%, the produced current density is evaluated as 3.15 mA/cm2. A comprehensive study is conducted for a cradle-to-gate life cycle assessment of the proposed hydrogen photoelectrochemical production system. The life cycle assessment results of the proposed photoelectrochemical system are further evaluated within a comparative analysis by considering a total of four key hydrogen generation processes, namely steam-methane reforming, photovoltaics-based and wind electricity-driven proton exchange membrane water electrolysis and the current photoelectrochemical system and studying five environmental impact categories. The global warming potential of hydrogen production via the proposed photoelectrochemical cell is evaluated as 1.052 kg CO2 equivalent per kg of produced hydrogen. In the normalized comparative life cycle assessment results, the PEC-based hydrogen production is found to be the most nature-friendly option among the considered pathways.
Collapse
Affiliation(s)
- Ali Erdogan Karaca
- CERL, FEAS, Ontario Tech. University, 2000 Simcoe Street North, Oshawa, Ontario, Canada.
| | - Ibrahim Dincer
- CERL, FEAS, Ontario Tech. University, 2000 Simcoe Street North, Oshawa, Ontario, Canada.
| |
Collapse
|
4
|
Thant Zin MM, Lim SR. A methodology to screen priority toxins in pollutant release inventories. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118068. [PMID: 37137268 DOI: 10.1016/j.jenvman.2023.118068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/05/2023]
Abstract
Pollutant release inventories are used for environmental policy making to reduce toxic pollutants, even though the quantity-based inventory analysis does not take into account the relative toxicity of pollutants. To overcome this limit, life cycle impact assessment (LCIA)-based inventory analysis was developed but still has a high uncertainty from modelling the site- and time-specific fates and transports of pollutants. Thus, this study develops a methodology to evaluate toxicity potentials based on the concentration of pollutants in the exposure to humans in order to circumvent the uncertainty and subsequently screen priority toxins in pollutant release inventories. This methodology combines (i) analytical measurement of the concentration of the pollutants exposed to humans; (ii) application of toxicity effect characterization factors for pollutants; and (iii) identification of priority toxins and industries based on the toxicity potential evaluation results. To demonstrate the methodology, a case study is considered, evaluating toxicity potentials from the ingestion of heavy metals in seafood organisms and then identifying priority toxins and industry sectors in a pollutant release inventory. The results of the case study show that the methodology-based priority pollutant is different from the quantity- and LCIA-based ones. Therefore, the methodology can contribute to making effective environmental policy.
Collapse
Affiliation(s)
- Moh Moh Thant Zin
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Chuncheon, Gangwon, 24341, South Korea
| | - Seong-Rin Lim
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Chuncheon, Gangwon, 24341, South Korea.
| |
Collapse
|
5
|
Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S. The Minderoo-Monaco Commission on Plastics and Human Health. Ann Glob Health 2023; 89:23. [PMID: 36969097 PMCID: PMC10038118 DOI: 10.5334/aogh.4056] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.
Collapse
Affiliation(s)
- Philip J. Landrigan
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Hervé Raps
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Maureen Cropper
- Economics Department, University of Maryland, College Park, US
| | - Caroline Bald
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | | | | | | | | | - Patrick Fenichel
- Université Côte d’Azur
- Centre Hospitalier, Universitaire de Nice, FR
| | - Lora E. Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, UK
| | | | | | | | - Carly Griffin
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, US
- Woods Hole Center for Oceans and Human Health, US
| | - Budi Haryanto
- Department of Environmental Health, Universitas Indonesia, ID
- Research Center for Climate Change, Universitas Indonesia, ID
| | - Richard Hixson
- College of Medicine and Health, University of Exeter, UK
| | - Hannah Ianelli
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution
- Department of Biology, Woods Hole Oceanographic Institution, US
| | | | - Amalia Laborde
- Department of Toxicology, School of Medicine, University of the Republic, UY
| | | | - Keith Martin
- Consortium of Universities for Global Health, US
| | - Jenna Mu
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | - Adetoun Mustapha
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Lead City University, NG
| | - Jia Niu
- Department of Chemistry, Boston College, US
| | - Sabine Pahl
- University of Vienna, Austria
- University of Plymouth, UK
| | | | - Maria-Luiza Pedrotti
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), Sorbonne Université, FR
| | | | | | - Bhedita Jaya Seewoo
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| | | | - John J. Stegeman
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - William Suk
- Superfund Research Program, National Institutes of Health, National Institute of Environmental Health Sciences, US
| | | | - Hideshige Takada
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, JP
| | | | | | - Zhanyun Wang
- Technology and Society Laboratory, WEmpa-Swiss Federal Laboratories for Materials and Technology, CH
| | - Ella Whitman
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | - Aroub K. Yousuf
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Sarah Dunlop
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| |
Collapse
|
6
|
Yousaf A, Hussain M, Ahmad S, Riaz A, Shaukat S, Shah SWA, Mishr RS, Akram S, Majeed M, Tabassum A, Amin M, Jabeen F. Environmental sustainability assessment of softwood and hardwood seedlings production in forest nurseries: A case study from Pakistan. BRAZ J BIOL 2022; 84:e260615. [PMID: 35544796 DOI: 10.1590/1519-6984.260615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/01/2022] [Indexed: 11/21/2022] Open
Abstract
This article describes the environmental impacts of producing a single seedling in forest nurseries of selected districts (i.e., Haripur, Abbottabad, and Mansehra) of Hazara Division of Khyber Pakhtunkhwa, Pakistan using the life cycle assessment (LCA) approach. This study was based on the cradle-to-gate approach which begins with the pre-nursery stage and progresses toward the main nursery before transplanting seedlings into the plantation site. Data or life cycle inventory (LCI) of seedling production were collected through questionnaire surveys and personal meetings with forest nurseries managers and workers regarding consumption of different inputs such as electricity, diesel, fertilizers, herbicides, and polyethylene bags, organic manure, and water consumption. The SimaPro software version 8.5 and the CML2000 v2.05 environmental model was applied to perform life cycle impact assessment (LCIA) for a single seedling production in forest nurseries in the study area. In line with the objectives of the study, primary data regarding inputs and outputs of the nurseries were collected from 35 nurseries in the study area by using a random questionnaire method. In addition, secondary data were taken from online databases such as Eco-invent v.3.2 CORRIM and peer-reviewed published literature. For this study, a functional unit of a single seedling was considered. Production weighted average data were modeled in the latest environmental modeling software i.e., SimaPro v.8.5 for ten US-EPA most wanted environmental impacts, such as global warming potential (GWP), abiotic depletion (AD), eutrophication potential (EP), acidification potential (AP), freshwater aquatic eco-toxicity (FAE), marine water eco-toxicity (MWE), terrestrial eco-toxicity (TE), ozone layer depletion (OLD), photochemical oxidation (PO), and human toxicity (HT). The results showed that the highest environmental impact posed by a single seedling was marine aquatic eco-toxicity (11.31360 kg 1,4-DB eq), followed by global warming potential (0.02945 kg CO2 eq) and (0.01227 kg 1,4-DB eq) human toxicity. The primary reason for these environmental burdens was the use of synthetic fertilizers in forest nurseries and the consumption of fossil fuels in nursery mechanization and transportation activities. The total cumulative energy demand for a single seedling was (0.800 MJ) with more than 90% contribution from fossil fuel energy resources such as petrol and diesel. It is therefore highly recommended to use renewable energy resources and organic fertilizers instead of chemical fertilizers in forest nurseries to avoid and minimize greenhouse gas emissions (GHS) and other toxic emissions in the study area.
Collapse
Affiliation(s)
- A Yousaf
- University of Haripur, Department of Forestry and Wildlife Management, Haripur, KP, Pakistan
| | - M Hussain
- University of Haripur, Department of Forestry and Wildlife Management, Haripur, KP, Pakistan
| | - S Ahmad
- Bharia University Medical and Dental College, Department of Biochemistry, Karachi, Pakistan
| | - A Riaz
- Jinnah University for Women Karachi, Department of Biochemistry, Karachi, Pakistan
| | - S Shaukat
- University of Tuscia, Department for Innovation in Biological, Agri-food and Forestry Systems - DIBAF, Viterbo, Italy
| | - S W A Shah
- University of Tuscia, Department for Innovation in Biological, Agri-food and Forestry Systems - DIBAF, Viterbo, Italy
| | - R S Mishr
- University of Padova, Department of Land, Environment, Agriculture and Forestry, Legnaro, Italy
| | - S Akram
- University of Northern British Columbia, Faculty of Environment, Department of Ecosystem Science and Management, Prince George, Canada
| | - M Majeed
- Technische Universität Dresden, Institute of International Forestry and Forest Products, Faculty of Environmental Sciences, Dresden, Germany
| | - A Tabassum
- MM Private Limited Tarbela KP, Haripur, Pakistan
| | - M Amin
- Shaheed Benazir Bhutto University, Department of Environmental Sciences, Sheringal, Dir (U), KP, Pakistan
| | - F Jabeen
- Jinnah University for Women Karachi, Department of Biochemistry, Karachi, Pakistan
| |
Collapse
|
7
|
Razavi L, Raissi H, Farzad F. Insights into glyphosate removal efficiency using a new 2D nanomaterial. RSC Adv 2022; 12:10154-10161. [PMID: 35424903 PMCID: PMC8968191 DOI: 10.1039/d2ra00385f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/23/2022] [Indexed: 12/29/2022] Open
Abstract
Glyphosate (GLY) is a nonselective herbicide that has been widely used in agriculture for weed control. However, there are potential genetic, development and reproduction risks to humans and animals associated with exposure to GLY. Therefore, the removal of this type of environmental pollutants has become a significant challenge. Some of the two-dimensional nanomaterials, due to the characteristics of hydrophilic nature, abundant highly active surficial sites and, large specific surface area are showed high removal efficiency for a wide range of pollutants. The present study focused on the adsorption behavior of GLY on silicene nanosheets (SNS). In order to provide more detailed information about the adsorption mechanism of contaminants on the adsorbent's surface, molecular dynamics (MD) and well-tempered metadynamics simulations are performed. The MD results are demonstrated that the contribution of the L-J term in pollutant/adsorbent interactions is more than coulombic energy. Furthermore, the simulation results demonstrated the lowest total energy value for system-A (with the lowest pollutant concentration), while system-D (contains the highest concentration of GLY) had the most total energy (E tot: -78.96 vs. -448.51 kJ mol-1). The well-tempered metadynamics simulation is accomplished to find the free energy surface of the investigated systems. The free energy calculation for the SNS/GLY system indicates a stable point in which the distance of GLY from the SNS surface is 1.165 nm.
Collapse
Affiliation(s)
- Leila Razavi
- Department of Chemistry, University of Birjand Birjand Iran +98 5632502064
| | - Heidar Raissi
- Department of Chemistry, University of Birjand Birjand Iran +98 5632502064
| | - Farzaneh Farzad
- Department of Chemistry, University of Birjand Birjand Iran +98 5632502064
| |
Collapse
|
8
|
A Life Cycle Assessment of an Energy-Biochar Chain Involving a Gasification Plant in Italy. LAND 2021. [DOI: 10.3390/land10111256] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Life cycle assessment (LCA) is a fundamental tool for evaluating the environmental and energy load of a production cycle. Its application to renewable energy production systems offers the possibility of identifying the environmental benefits of such processes—especially those related to the by-products of production processes (i.e., digestion or biochar). Biochar has received worldwide interest because of its potential uses in bioenergy production, due to its coproducts (bio-oil and syngas), as well as in global warming mitigation, sustainable agriculture, pollutant removal, and other uses. Biochar production and use of soil is a strategy for carbon sequestration that could contribute to the reduction of emissions, providing simultaneous benefits to soil and opportunities for bioenergy generation. However, to confirm all of biochar’s benefits, it is necessary to characterize the environmental and energy loads of the production cycle. In this work, soil carbon sequestration, nitrous oxide emissions, use of fertilizers, and use of water for irrigation have been considered in the biochar’s LCA, where the latter is used as a soil conditioner. Primary data taken from experiments and prior studies, as well as open-source available databases, were combined to evaluate the environmental impacts of energy production from biomass, as well as the biochar life cycle, including pre- and post-conversion processes. From the found results, it can be deduced that the use of gasification production of energy and biochar is an attractive strategy for mitigating the environmental impacts analyzed here—especially climate change, with a net decrease of about −8.3 × 103 kg CO2 eq. Finally, this study highlighted strategic research developments that combine the specific characteristics of biochar and soil that need to be amended.
Collapse
|
9
|
Life Cycle Assessment of Spinach Produced in Central and Southern Italy. SUSTAINABILITY 2021. [DOI: 10.3390/su131810001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Environmental sustainability continues to attract global interest, especially due to the issue of climate change. The agri-food sector is considered a major contributor to climate change as processes and activities within the sector can negatively impact the environment. The recent changing dietary pattern towards increased vegetable consumption implies a consequent increase in production to meet demand. This study assessed the environmental performance of 1 kg of spinach/FU (Functional Unit) cultivated by different producers in Italy under integrated and organic farming systems. The life cycle assessment was used following the CML_IA impact assessment method. The data used was mainly primary, related to 2019/2020 (harvest period), and representative of the cultivation systems of central and southern Italy. From the results obtained, impact scores for central Italy were higher (e.g., for global warming 0.56 and 0.47 kg CO2 eq. for central and southern respectively). There was high variability among the scores obtained. However, no statistically significant differences were observed at a confidence level of 95% (p < 0.05). Integrated farming was also more impacting than organic for most categories (e.g., for global warming 0.20 kg CO2 eq. for integrated and 0.075 kg CO2 eq. for organic) in Cerignola, Puglia region. Emissions from fertilizer, pesticide, tillage, and combine harvesting were major contributors to impact shares. The results of this study will be helpful to ensure sustainable spinach production and consumption.
Collapse
|
10
|
|
11
|
Djekic I, Bozickovic I, Djordjevic V, Smetana S, Terjung N, Ilic J, Doroski A, Tomasevic I. Can we associate environmental footprints with production and consumption using Monte Carlo simulation? Case study with pork meat. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:960-969. [PMID: 32748951 DOI: 10.1002/jsfa.10704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/19/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Growing population demands more animal protein products. Pork remains one of the traditional and relatively sustainable types of meats for human consumption. In this paper, life-cycle assessment was performed using data from 12 pig farms. In parallel, a survey on the consumption of pork meat products was conducted analyzing responses from 806 pork meat consumers. The study aims to provide a quantitative calculation of six environmental footprints associated with the consumption of pork meat products in Serbia by analyzing data from pig farms and a pork meat consumption survey. RESULTS Results revealed that pork meat production is responsible for the emission of 3.50 kg CO2e kg-1 live weight, 16.1 MJe kg-1 , 0.151 mg R11e kg-1 , 31.257 g SO2e kg-1 , 55.030 g PO4e kg-1 and 3.641 kg 1.4 dBe kg-1 . Further calculations reveal that weekly emissions of various environmental potentials associated with an average consumer of pork meat products in Serbia are estimated at values of 4.032 kg CO2e week-1 , 18.504 MJe week-1 , 0.17435 mg R11e week-1 , 35.972 g SO2e week-1 and 63.466 g PO4e week-1 . CONCLUSIONS Results show that, on the one hand, pork products are responsible for environmental production impacts that mainly occur on farms while, on the other hand, consumption is characterized with high meat inclusion rates. As a leverage strategy it is recommended for producers to concentrate on lowering the production impacts rather than trying to reach consumers for sustainability conciseness. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ilija Djekic
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Belgrade, Republic of Serbia
| | - Ivana Bozickovic
- Institute of Animal Science, Faculty of Agriculture, University of Belgrade, Belgrade, Republic of Serbia
| | - Vesna Djordjevic
- Institute of Meat Hygiene and Technology, Belgrade, Republic of Serbia
| | - Sergiy Smetana
- German Institute of Food Technologies, Quakenbrück, Germany
| | - Nino Terjung
- German Institute of Food Technologies, Quakenbrück, Germany
| | - Jovan Ilic
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Belgrade, Republic of Serbia
| | - Ana Doroski
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Belgrade, Republic of Serbia
| | - Igor Tomasevic
- Department of Animal Origin Products Technology, Faculty of Agriculture, University of Belgrade, Belgrade, Republic of Serbia
| |
Collapse
|
12
|
Comprehensive analysis of diverse biochemical treatment technologies of fixed-bed coal gasification wastewater from the perspective of different weight dimensions. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Life Cycle Assessment of Sugar Palm Fiber Reinforced-Sago Biopolymer Composite Takeout Food Container. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10227951] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the development of packaging products, the considerations are not limited to the food shelf-life, safety, and practicality, but also environmental sustainability. This paper reports a life cycle assessment (LCA) analysis of a proposed natural fiber-reinforced biopolymer composite takeout food container. The study focuses on the damage assessment of the whole product system, including disposal scenarios of the thermoformed sugar palm fiber (SPF)-reinforced sago starch composite takeout food container. The analysis performed was to anticipate the environmental impact of the cradle-to-grave approach. The results exhibited the total human health damage of 2.63 × 10−5 DALY and ecosystem damage of 9.46 × 10−8 species.year per kg of containers. The main contributor was the carbon dioxide emission from fossil fuel combustion for energy generation that contributed to climate change and caused human health and the ecosystem damages with low-level metrics of 1.3 × 10−5 DALY and 7.39 × 10−8 species.yr per kg of containers, respectively. The most contributed substances in the ‘Particulate matter formation’ impact categories that caused respiratory diseases were from air/nitrogen oxides, air/particulates, <2.5 µm, and air/sulphur dioxide with the metrics of 2.93 × 10−6 DALY, 2.75 × 10−6 DALY, and 1.9 × 10−6 DALY per kg containers, correspondingly. Whereas, for the ‘Agricultural land occupation’, which contributed to ecosystem damage, almost the total contributions came from raw/occupation, forest, intensive with the metric of 1.93 × 10−9 species.yr per kg of containers. Nevertheless, from the results, all impact categories impacted below than 0.0001 DALY for the Human Health damage category and below 0.00001 species.yr for the ecosystem damage category. These results would provide important insights to companies and manufacturers in commercializing the fully biobased takeout food containers.
Collapse
|
14
|
Wang X, Ning Z, Sun W, Liu H, Li B. Energy and environmental impact assessment of a passive remediation bioreactor for antimony-rich mine drainage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:35040-35050. [PMID: 32588309 DOI: 10.1007/s11356-020-09816-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Industrial processes, such as smelting and mining, lead to antimony (Sb) contamination, which poses an environmental and human health risk. In this study, the energy consumption and environmental impacts of a passive biological treatment system were quantitatively evaluated using life cycle assessment (LCA), and the results were compared with that of an adsorption purification system. The results showed that the biosystem had a lower energy consumption compared with the adsorption system, with an energy savings of 27.39%. The environmental impacts of the bioreactor were also lower regarding acidification, ecotoxicity, carcinogens, climate change, resource depletion, and respiratory effects. The construction resulted in the most energy consumption (99%) for the passive bioreactor. Therefore, adopting environmentally friendly construction materials could make the biosystem a more energy-efficient option. Results demonstrated that the bioreactor in this research can have great potential for Sb mine drainage applications in terms of energy savings and environmental remediation without diminishing performance. The study findings can be useful for deciding the most energy effective process for mine drainage remediation. In addition, the identification of the energy and environmental impacts of the processes provide valuable information for the design of future systems that consume less materials and utilize new construction materials.
Collapse
Affiliation(s)
- Xiaoyu Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
| | - Zengping Ning
- China State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China.
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China.
| | - Huaqing Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
| | - Baoqin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
| |
Collapse
|
15
|
What Impact Does Corporate Governance Have on Corporate Environmental Performances? An Empirical Study of Italian Listed Firms. SUSTAINABILITY 2020. [DOI: 10.3390/su12145742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this paper, we first build a multi-theoretical framework through which we hypothesise that the governance mechanisms of a board of directors, on the one hand, and the ownership structures of family and nonfamily firms, on the other, can have an impact on corporate environmental performances. We then test this hypothesis against a sample of 83 Italian listed firms, noting the characteristics of their governance and ownership structures over the five years from 2013 to 2017. We also take note of data from the firms’ Sustainability Reports on emissions of greenhouse gases over the 2014–2018 five-year period. The results we obtain support the prediction, made in line with the Agency-Theory perspective, that there is a positive relationship between board independence and the adoption of environmentally responsible practices. Only partial support emerges for the hypotheses, made in line with the Resource Dependence Theory, according to which better corporate environmental performances can be obtained by increasing the resource provision of board members. In particular, we discover a positive effect of a large-size board on corporate environmental performances, but no significant effect arising from the presence of interlocked board members. Finally, our study provides support for the theoretically-based hypothesis according to which the non-economic utility (socioemotional wealth) of family ownership makes family firms likely to have better environmental performances than non-family firms.
Collapse
|
16
|
Paulillo A, Clift R, Dodds JM, Milliken A, Palethorpe SJ, Lettieri P. Radiological impacts in Life Cycle Assessment. Part I: General framework and two practical methodologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135179. [PMID: 31806334 DOI: 10.1016/j.scitotenv.2019.135179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
To date, impacts of ionising radiations have been largely disregarded in Life Cycle Assessment (LCA). This omission can be linked to the lack of a standard and comprehensive framework for including the effects of radionuclides alongside other emissions from industrial processes. Drawing on a recent review of Radiological Impact Assessment methodologies for LCA studies, this article proposes an overarching framework for integrating impacts of radionuclides in the Impact Assessment phase of LCA. From this framework, two alternative methodologies have been derived. They differ mainly in the way transport and dispersion of radionuclides in the environment are modelled: UCrad represents the first-of-its-kind compartment-type methodology for radionuclides, whereas the alternative Critical Group Methodology (CGM) has been adapted from standard Risk Assessment practices. Characterisation factors for a range of emitted species have been calculated using both methodologies and compared with those obtained from the Human Health Damages methodology, which is the only approach to radiological impacts yet implemented in LCA. For both UCrad and CGM the results are in general agreement with the Human Health Damages methodology, but UCrad gives factors closer to those obtained by the CGM approach. UCrad represents a major step towards incorporating ionising radiation impacts in LCIA. A subsequent paper will explore quantitatively the main differences between the UCrad and CGM methodologies.
Collapse
Affiliation(s)
- Andrea Paulillo
- Department of Chemical Engineering, University College London, Torrington Place, London WC1 E7JE, United Kingdom.
| | - Roland Clift
- Centre for Environment and Sustainability, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Jonathan M Dodds
- National Nuclear Laboratory, Workington, Cumbria CA14 3YQ, United Kingdom
| | - Andrew Milliken
- Ardskell, Embleton, Cockermouth, Cumbria CA13 9YP, United Kingdom
| | | | - Paola Lettieri
- Department of Chemical Engineering, University College London, Torrington Place, London WC1 E7JE, United Kingdom
| |
Collapse
|
17
|
Localizing Sustainable Development Goals: Nonprofit Density and City Sustainability. ACADEMY OF MANAGEMENT DISCOVERIES 2019. [DOI: 10.5465/amd.2018.0151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Scientific Challenges in Performing Life-Cycle Assessment in the Food Supply Chain. Foods 2019; 8:foods8080301. [PMID: 31374833 PMCID: PMC6724041 DOI: 10.3390/foods8080301] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/05/2022] Open
Abstract
This paper gives an overview of scientific challenges that occur when performing life-cycle assessment (LCA) in the food supply chain. In order to evaluate these risks, the Failure Mode and Effect Analysis tool has been used. Challenges related to setting the goal and scope of LCA revealed four hot spots: system boundaries of LCA; used functional units; type and quality of data categories, and main assumptions and limitations of the study. Within the inventory analysis, challenging issues are associated with allocation of material and energy flows and waste streams released to the environment. Impact assessment brings uncertainties in choosing appropriate environmental impacts. Finally, in order to interpret results, a scientifically sound sensitivity analysis should be performed to check how stable calculations and results are. Identified challenges pave the way for improving LCA of food supply chains in order to enable comparison of results.
Collapse
|
19
|
Parascanu MM, Sánchez P, Soreanu G, Valverde JL, Sanchez-Silva L. Mexican biomasses valorization through pyrolysis process: Environmental and costs analysis. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 95:171-181. [PMID: 31351602 DOI: 10.1016/j.wasman.2019.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 06/10/2023]
Abstract
Biomasses valorization by pyrolysis is a good option for reducing environmental problems. In this study, the environmental performance of three Mexican biomass valorizations (castor husk, coffee pulp and Pinus sawdust) by the pyrolysis was compared. The environmental impacts of all equipment involved in pyrolysis were evaluated. In addition, the financial viability of pyrolysis technology of coffee pulp was studied. The biomass with the lowest impact for all the selected categories was the Pinus sawdust, followed by castor husk and coffee pulp. The GWP category had values greater than 700 kg CO2eq for all the biomass studied. GWP category is caused by the emissions, mainly due to the high amounts of CH4 and CO2 released for all the studied biomasses. Furthermore, the equipment with the greatest impact are the separator, the pyrolyzer and the cyclone. Finally, it was observed that even the least favorable biomass with the environment is viable from a financial point of view.
Collapse
Affiliation(s)
- M M Parascanu
- University of Castilla-La Mancha, Department of Chemical Engineering, Avda. Camilo José Cela, 12, 13071 Ciudad Real, Spain
| | - P Sánchez
- University of Castilla-La Mancha, Department of Chemical Engineering, Avda. Camilo José Cela, 12, 13071 Ciudad Real, Spain
| | - G Soreanu
- Technical University "Gheorghe Asachi" of Iasi, Department of Environmental Engineering and Management, 73 D. Mangeron Blvd, 700050 Iasi, Romania
| | - J L Valverde
- University of Castilla-La Mancha, Department of Chemical Engineering, Avda. Camilo José Cela, 12, 13071 Ciudad Real, Spain
| | - L Sanchez-Silva
- University of Castilla-La Mancha, Department of Chemical Engineering, Avda. Camilo José Cela, 12, 13071 Ciudad Real, Spain.
| |
Collapse
|
20
|
Su X, Chiang P, Pan S, Chen G, Tao Y, Wu G, Wang F, Cao W. Systematic approach to evaluating environmental and ecological technologies for wastewater treatment. CHEMOSPHERE 2019; 218:778-792. [PMID: 30508796 DOI: 10.1016/j.chemosphere.2018.11.108] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
Evaluating the performance of wastewater treatment represents a challenging and complex task as it usually involves engineering, environmental and economic (3E) factors. In this study, we developed an 3E triangle model to evaluate the performance of environmental technologies (i.e., anaerobic-anoxic-oxic reactors, oxidation ditches, and membrane bioreactors) and ecological technologies (i.e., stabilization ponds, constructed wetlands, and slow-rate systems) for wastewater treatment. A total of 17 key performance indicators, such as energy consumption, pollutant removal, global warming potential and wastewater treatment fees, were considered in the 3E triangle model. The results indicated that, in terms of engineering performance, both the membrane bioreactors and constructed wetlands were stable, effective and reliable during their operating periods. When the environmental impacts of wastewater treatment technologies were compared via a life cycle assessment, the ecological technologies showed superior performance, in terms of environmental impacts, especially for the global warming potential and eutrophication potential. In general, environmental technologies exhibited higher treatment fees and unit construction costs because of their large power consumption and equipment costs. In contrast, ecological technologies had higher unit land use due to their large area requirements and low treatment capacity. In overall, both the membrane bioreactors and constructed wetlands showed excellent overall performance in the 3E triangle model. Wastewater treatment plant are typical case studies for addressing the interactions of water and energy elements. Reducing energy consumption is a hotspot for the research field of membrane bioreactors, while constructed wetlands are continually improved and optimized to have broad applications for rural wastewater treatment.
Collapse
Affiliation(s)
- Xiaoling Su
- College of the Environment and Ecology, Xiamen University, Xiang'an District, Xiamen City, Fujian, China.
| | - Penchi Chiang
- Graduate Institute of Environmental Engineering, Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan; Carbon Cycle Research Center, Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan.
| | - Shuyuan Pan
- Energy Technologies Area, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 90R-2121, Berkeley, United States.
| | - Guangjiao Chen
- College of the Environment and Ecology, Xiamen University, Xiang'an District, Xiamen City, Fujian, China.
| | - Yinren Tao
- College of the Environment and Ecology, Xiamen University, Xiang'an District, Xiamen City, Fujian, China.
| | - Gaojie Wu
- College of the Environment and Ecology, Xiamen University, Xiang'an District, Xiamen City, Fujian, China.
| | - Feifei Wang
- College of the Environment and Ecology, Xiamen University, Xiang'an District, Xiamen City, Fujian, China.
| | - Wenzhi Cao
- College of the Environment and Ecology, Xiamen University, Xiang'an District, Xiamen City, Fujian, China.
| |
Collapse
|
21
|
Environmental Quantification of the Existing Waste Management System in a Developing World Municipality Using EaseTech: The Case of Bahawalpur, Pakistan. SUSTAINABILITY 2018. [DOI: 10.3390/su10072424] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Heath C, Myers M, Pejcic B. The Effect of Pressure and Temperature on Mid-Infrared Sensing of Dissolved Hydrocarbons in Water. Anal Chem 2017; 89:13391-13397. [DOI: 10.1021/acs.analchem.7b03623] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Charles Heath
- CSIRO, Energy, Kensington, Western Australia 6151, Australia
| | - Matthew Myers
- CSIRO, Energy, Kensington, Western Australia 6151, Australia
| | - Bobby Pejcic
- CSIRO, Energy, Kensington, Western Australia 6151, Australia
| |
Collapse
|
23
|
Chen L, Miller SA, Ellis BR. Comparative Human Toxicity Impact of Electricity Produced from Shale Gas and Coal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13018-13027. [PMID: 29016130 DOI: 10.1021/acs.est.7b03546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The human toxicity impact (HTI) of electricity produced from shale gas is lower than the HTI of electricity produced from coal, with 90% confidence using a Monte Carlo Analysis. Two different impact assessment methods estimate the HTI of shale gas electricity to be 1-2 orders of magnitude less than the HTI of coal electricity (0.016-0.024 DALY/GWh versus 0.69-1.7 DALY/GWh). Further, an implausible shale gas scenario where all fracturing fluid and untreated produced water is discharged directly to surface water throughout the lifetime of a well also has a lower HTI than coal electricity. Particulate matter dominates the HTI for both systems, representing a much larger contribution to the overall toxicity burden than VOCs or any aquatic emission. Aquatic emissions can become larger contributors to the HTI when waste products are inadequately disposed or there are significant infrastructure or equipment failures. Large uncertainty and lack of exposure data prevent a full risk assessment; however, the results of this analysis provide a comparison of relative toxicity, which can be used to identify target areas for improvement and assess potential trade-offs with other environmental impacts.
Collapse
Affiliation(s)
- Lu Chen
- Center for Sustainable Systems, School for Environment and Sustainability, University of Michigan , 440 Church Street, Ann Arbor Michigan 48109, United States
- Department of Civil and Environmental Engineering, University of Michigan , 2350 Hayward Street, Ann Arbor Michigan 48109, United States
| | - Shelie A Miller
- Center for Sustainable Systems, School for Environment and Sustainability, University of Michigan , 440 Church Street, Ann Arbor Michigan 48109, United States
- Department of Civil and Environmental Engineering, University of Michigan , 2350 Hayward Street, Ann Arbor Michigan 48109, United States
| | - Brian R Ellis
- Department of Civil and Environmental Engineering, University of Michigan , 2350 Hayward Street, Ann Arbor Michigan 48109, United States
| |
Collapse
|
24
|
Shin HM, McKone TE, Bennett DH. Model framework for integrating multiple exposure pathways to chemicals in household cleaning products. INDOOR AIR 2017; 27:829-839. [PMID: 27859724 DOI: 10.1111/ina.12356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/11/2016] [Indexed: 05/03/2023]
Abstract
We present a screening-level exposure-assessment method which integrates exposure from all plausible exposure pathways as a result of indoor residential use of cleaning products. The exposure pathways we considered are (i) exposure to a user during product use via inhalation and dermal, (ii) exposure to chemical residues left on clothing, (iii) exposure to all occupants from the portion released indoors during use via inhalation and dermal, and (iv) exposure to the general population due to down-the-drain disposal via inhalation and ingestion. We use consumer product volatilization models to account for the chemical fractions volatilized to air (fvolatilized ) and disposed down the drain (fdown-the-drain ) during product use. For each exposure pathway, we use a fate and exposure model to estimate intake rates (iR) in mg/kg/d. Overall, the contribution of the four exposure pathways to the total exposure varies by the type of cleaning activities and with chemical properties. By providing a more comprehensive exposure model and by capturing additional exposures from often-overlooked exposure pathways, our method allows us to compare the relative contribution of various exposure routes and could improve high-throughput exposure assessment for chemicals in cleaning products.
Collapse
Affiliation(s)
- H-M Shin
- Department of Public Health Sciences, University of California, Davis, CA, USA
- Department of Earth and Environmental Sciences, University of Texas, Arlington, TX, USA
| | - T E McKone
- Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- School of Public Health, University of California, Berkeley, CA, USA
| | - D H Bennett
- Department of Public Health Sciences, University of California, Davis, CA, USA
| |
Collapse
|
25
|
Musee N. A model for screening and prioritizing consumer nanoproduct risks: A case study from South Africa. ENVIRONMENT INTERNATIONAL 2017; 100:121-131. [PMID: 28089582 DOI: 10.1016/j.envint.2017.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/16/2016] [Accepted: 01/05/2017] [Indexed: 06/06/2023]
Abstract
The potential risks of the increasing variety and volume of engineered nanomaterials (ENMs) entering into the ecosystem remain poorly quantified. In recent years, information essential to evaluate the ecological risks of ENMs has increased. However, the data are highly fragmented, limited, or severely lacking. This limits the usefulness of the information to support holistic screening and prioritization of potentially harmful ENMs. To screen and prioritize ENMs risks, we adopted a two-phased approach. First, a holistic framework model was developed to integrate a diverse set of factors aimed to assess the potential hazard, exposure, and in turn, risk to the ecosystem of ENMs from a given consumer nanoproduct. Secondly, using published literature we created a database of consumer nanoproduct categories, and types based on embedded ENMs type. The database consisted of eight consumer product categories, eleven different types of ENMs, and twenty-three nanoproduct types. The model results indicates the largest quantities of ENMs were released from sunscreens, textiles, cosmetics and paints with dominant ENMs quantities in descending order (based on quantity) as nTiO2>nZnO>nSiO2>nAg, and nFe2O3. In addition, according to the results from this study, nAg from washing machine were found to likely the highest risk to the environment. Overall, our model-derived results based on the case study illustrated: (i) the holistic framework's ability to screen, prioritize, rank, and compare ENMs potential exposure and risks among different nanoproducts categories and types, (ii) the derived risk estimations could support nanowastes classification with likelihood of non-uniformity of nanowastes classes even from the same nanoproduct category (e.g. cosmetics), and (iii) the lack of a mass-based criteria specific for EMNs impedes realistic exposure and risk evaluation in the ecological systems.
Collapse
Affiliation(s)
- Ndeke Musee
- Department of Chemical Engineering, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa.
| |
Collapse
|
26
|
Hassim MH. Comparison of methods for assessing occupational health hazards in chemical process development and design phases. Curr Opin Chem Eng 2016. [DOI: 10.1016/j.coche.2016.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Csiszar SA, Meyer DE, Dionisio KL, Egeghy P, Isaacs KK, Price PS, Scanlon KA, Tan YM, Thomas K, Vallero D, Bare JC. Conceptual Framework To Extend Life Cycle Assessment Using Near-Field Human Exposure Modeling and High-Throughput Tools for Chemicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:11922-11934. [PMID: 27668689 PMCID: PMC7388028 DOI: 10.1021/acs.est.6b02277] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across the life cycle of a product or service. This paper presents a conceptual framework to integrate human health impact assessment with risk screening approaches to extend LCA to include near-field chemical sources (e.g., those originating from consumer products and building materials) that have traditionally been excluded from LCA. A new generation of rapid human exposure modeling and high-throughput toxicity testing is transforming chemical risk prioritization and provides an opportunity for integration of screening-level risk assessment (RA) with LCA. The combined LCA and RA approach considers environmental impacts of products alongside risks to human health, which is consistent with regulatory frameworks addressing RA within a sustainability mindset. A case study is presented to juxtapose LCA and risk screening approaches for a chemical used in a consumer product. The case study demonstrates how these new risk screening tools can be used to inform toxicity impact estimates in LCA and highlights needs for future research. The framework provides a basis for developing tools and methods to support decision making on the use of chemicals in products.
Collapse
Affiliation(s)
- Susan A Csiszar
- Oak Ridge Institute for Science and Education (ORISE) Research Participation Program, hosted at U.S. Environmental Protection Agency , Cincinnati, Ohio 45268, United States
| | - David E Meyer
- Office of Research and Development, National Risk Management Research Laboratory, U.S. Environmental Protection Agency , Cincinnati, Ohio 45268, United States
| | - Kathie L Dionisio
- Office of Research and Development, National Exposure Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
| | - Peter Egeghy
- Office of Research and Development, National Exposure Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
| | - Kristin K Isaacs
- Office of Research and Development, National Exposure Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
| | - Paul S Price
- Office of Research and Development, National Exposure Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
| | - Kelly A Scanlon
- AAAS Science & Technology Policy Fellow hosted by the U.S. Environmental Protection Agency, Office of Air and Radiation, Office of Radiation and Indoor Air, Washington, DC 20460, United States
| | - Yu-Mei Tan
- Office of Research and Development, National Exposure Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
| | - Kent Thomas
- Office of Research and Development, National Exposure Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
| | - Daniel Vallero
- Office of Research and Development, National Exposure Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
| | - Jane C Bare
- Office of Research and Development, National Risk Management Research Laboratory, U.S. Environmental Protection Agency , Cincinnati, Ohio 45268, United States
| |
Collapse
|
28
|
Bejarano AC, Farr JK, Jenne P, Chu V, Hielscher A. The Chemical Aquatic Fate and Effects database (CAFE), a tool that supports assessments of chemical spills in aquatic environments. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:1576-1586. [PMID: 26497000 DOI: 10.1002/etc.3289] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/05/2015] [Accepted: 10/23/2015] [Indexed: 06/05/2023]
Abstract
The Chemical Aquatic Fate and Effects (CAFE) database is a centralized repository that allows for rapid and unrestricted access to data. Information in CAFE is integrated into a user-friendly tool with modules containing fate and effects data for 32 377 and 4498 chemicals, respectively. Toxicity data are summarized in the form of species sensitivity distributions (SSDs) with associated 1st and 5th percentile hazard concentrations (HCs). An assessment of data availability relative to reported chemical incidents showed that CAFE had fate and toxicity data for 32 and 20 chemicals, respectively, of 55 chemicals reported in the US National Response Center database (2000-2014), and fate and toxicity data for 86 and 103, respectively, of 205 chemicals reported by the National Oceanic and Atmospheric Administration (2003-2014). Modeled environmental concentrations of 2 hypothetical spills (acrylonitrile, 625 barrels; and denatured ethanol, 857 barrels) were used to demonstrate CAFE's practical application. Most species in the 24-h SSD could be potentially impacted by acrylonitrile and denatured ethanol during the first 35 min and 15 h post spill, respectively, with concentrations falling below their HC5s (17 mg/L and 2676 mg/L) at 45 min and 60 h post spill, respectively. Comparisons of CAFE-based versus published HC5 values for 100 chemicals showed that nearly half of values were within a 2-fold difference, with a relatively small number of comparisons exceeding a 10-fold difference. The development of CAFE facilitates access to relevant environmental information, with potential uses likely expanding beyond those related to assessment of spills in aquatic environments. Environ Toxicol Chem 2016;35:1576-1586. © 2015 SETAC.
Collapse
Affiliation(s)
| | - James K Farr
- National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | - Polly Jenne
- National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | | | | |
Collapse
|
29
|
Pivato A, Vanin S, Raga R, Lavagnolo MC, Barausse A, Rieple A, Laurent A, Cossu R. Use of digestate from a decentralized on-farm biogas plant as fertilizer in soils: An ecotoxicological study for future indicators in risk and life cycle assessment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2016; 49:378-389. [PMID: 26724231 DOI: 10.1016/j.wasman.2015.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 12/12/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
Over the last decade, the number of decentralized farm biogas plants has increased significantly in the EU. This development leads not only to an increasing amount of biogas produced, but also to a higher amount of digestate obtained. One of the most attractive options to manage the digestate is to apply it as biofertiliser to the soil, because this gives the opportunity of recovering the nutrients, primarily nitrogen and phosphorus, and of attenuating the loss of organic matter suffered by soils under agricultural exploitation. Studies have claimed that digestates can present a residual biodegradability, and contain complex organic elements, salts or pathogenic bacteria that can damage terrestrial organisms. However few ecotoxicological studies have been performed to evaluate the ecological impact of digestate application on soil. In this study, the use of digestate as biofertiliser in agriculture was assessed by a battery of ecotoxicological tests considering the potential pollutants present in the digestate as a whole by using the "matrix-based" approach (also known as "whole effluent toxicity" for eluates or wastewater effluents). The direct and indirect tests included plant bioassays with Lepidium sativum, earthworm bioassays with Eisenia fetida, aquatic organisms (Artemia sp. and Daphnia magna) and luminescent bacteria bioassays (Vibrio fischeri). Direct tests occurred to be more sensitive than indirect tests. The earthworm bioassays did not show serious negative effects for concentrations up to 15% (dry weight/dry weight percent, w/w dm) and the plant bioassays showed no negative effect, but rather a positive one for concentrations lower than 20% (w/w dm), which encourages the use of digestate as a biofertiliser in agriculture provided that proper concentrations are used. The indirect tests, on the eluate, with the using aquatic organisms and luminescent bacteria showed an LC50 value of 13.61% volume/volume percent, v/v) for D. magna and no toxicity for Artemia sp. and V. fischeri. The ecotoxicological parameters obtained from the experimental activity have been analyzed so that they could serve in both ecological risk assessment (ERA) and life cycle assessment (LCA) to assess the risks and impacts of using digestate as a biofertiliser in agriculture. An interim effect factor of 1.17E-3m(3)/kg-in-soil is advocated and can be used in life cycle impact assessment modelling of terrestrial ecotoxicity. A predicted non effect concentration for soil organisms was defined at 341 mg-digestate/kg-soil and can be used for the dose-response assessment step in ERA. Although these values are recommended for use in ERA and LCA applications, it should be stressed that they underlie important uncertainties, which should be reduced by increasing the number of toxicological tests, in particular of chronic studies conducted at different trophic levels.
Collapse
Affiliation(s)
- Alberto Pivato
- DII - Department of Industrial Engineering, University of Padova, via Marzolo n 9, 35131 Padova, Italy.
| | - Stefano Vanin
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - Roberto Raga
- DII - Department of Industrial Engineering, University of Padova, via Marzolo n 9, 35131 Padova, Italy
| | - Maria Cristina Lavagnolo
- DII - Department of Industrial Engineering, University of Padova, via Marzolo n 9, 35131 Padova, Italy
| | - Alberto Barausse
- DII - Department of Industrial Engineering, University of Padova, via Marzolo n 9, 35131 Padova, Italy
| | - Antonia Rieple
- DII - Department of Industrial Engineering, University of Padova, via Marzolo n 9, 35131 Padova, Italy
| | - Alexis Laurent
- Division for Quantitative Sustainability Assessment, Department of Management Engineering, Technical University of Denmark (DTU). 2800 Kgs. Lyngby, Denmark
| | - Raffaello Cossu
- DII - Department of Industrial Engineering, University of Padova, via Marzolo n 9, 35131 Padova, Italy
| |
Collapse
|
30
|
Li PC, Ma HW. Using risk elasticity to prioritize risk reduction strategies for geographical areas and industry sectors. JOURNAL OF HAZARDOUS MATERIALS 2016; 302:208-216. [PMID: 26476307 DOI: 10.1016/j.jhazmat.2015.09.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/19/2015] [Accepted: 09/22/2015] [Indexed: 06/05/2023]
Abstract
The total quantity of chemical emissions does not take into account their chemical toxicity, and fails to be an accurate indicator of the potential impact on human health. The sources of released contaminants, and therefore, the potential risk, also differ based on geography. Because of the complexity of the risk, there is no integrated method to evaluate the effectiveness of risk reduction. Therefore, this study developed a method to incorporate the spatial variability of emissions into human health risk assessment to evaluate how to effectively reduce risk using risk elasticity analysis. Risk elasticity analysis, the percentage change in risk in response to the percentage change in emissions, was adopted in this study to evaluate the effectiveness and efficiency of risk reduction. The results show that the main industry sectors are different in each area, and that high emission in an area does not correspond to high risk. Decreasing the high emissions of certain sectors in an area does not result in efficient risk reduction in this area. This method can provide more holistic information for risk management, prevent the development of increased risk, and prioritize the risk reduction strategies.
Collapse
Affiliation(s)
- Pei-Chiun Li
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Road, Taipei 106, Taiwan
| | - Hwong-Wen Ma
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Road, Taipei 106, Taiwan.
| |
Collapse
|
31
|
Kim J, Yalaltdinova A, Sirina N, Baranovskaya N. Integration of life cycle assessment and regional emission information in agricultural systems. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:2544-2553. [PMID: 25707850 DOI: 10.1002/jsfa.7149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 02/05/2015] [Accepted: 02/18/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Life cycle assessment (LCA) is a compilation and evaluation of the input energy and materials, output emissions and the potential environmental impacts of a product, service or system throughout its life cycle. While methodological issues of LCA are still being developed, much research is being conducted worldwide in order to improve them. One of the important advances in LCA is a regionalised LCA, i.e. the development of regionalised databases, inventories, and impact assessment methods and models. RESULTS Regional emission information (REI) was developed and integrated with the characterisation results in LCA of an agricultural product in the study area. Comparison of outcomes obtained with LCA characterisation results that did not include REI shows that the characterisation results taking REI into account are much higher as regards human toxicity, from 0.02% to 0.18%, freshwater ecotoxicity from 89% to 99% and terrestrial ecotoxicity from 8.006% to 26.177%. CONCLUSION Results of current LCA studies on agricultural products and systems that do not include REI are under-estimating the life cycle environmental impact. For the LCA of agricultural products and systems, the REI as well as regionalised life cycle inventory data should be developed and integrated into the current LCA approach.
Collapse
Affiliation(s)
- Junbeum Kim
- CREIDD Research Centre on Environmental Studies & Sustainability, Department of Humanities, Environment & Information Technology, University of Technology of Troyes, Troyes, France
- Department of Geoecology and Geochemistry, Institute of Natural Resources, Tomsk Polytechnic University, Tomsk, Russia
| | - Albina Yalaltdinova
- Department of Geoecology and Geochemistry, Institute of Natural Resources, Tomsk Polytechnic University, Tomsk, Russia
| | - Natalia Sirina
- CREIDD Research Centre on Environmental Studies & Sustainability, Department of Humanities, Environment & Information Technology, University of Technology of Troyes, Troyes, France
| | - Natalia Baranovskaya
- Department of Geoecology and Geochemistry, Institute of Natural Resources, Tomsk Polytechnic University, Tomsk, Russia
| |
Collapse
|
32
|
Kirman CR, Aylward LL, Wetmore BA, Thomas RS, Sochaski M, Ferguson SS, Csiszar SA, Jolliet O. Quantitative Property–Property Relationship for Screening-Level Prediction of Intrinsic Clearance: A Tool for Exposure Modeling for High-Throughput Toxicity Screening Data. ACTA ACUST UNITED AC 2015. [DOI: 10.1089/aivt.2014.0008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | - Barbara A. Wetmore
- The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| | - Russell S. Thomas
- The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| | - M. Sochaski
- The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| | | | - Susan A. Csiszar
- University of Michigan, School of Public Health, Ann Arbor, Michigan
| | - Olivier Jolliet
- University of Michigan, School of Public Health, Ann Arbor, Michigan
| |
Collapse
|
33
|
Tran K, Mactal LP, Cromer MR, Vocque RH, Smith RE. Development and validation of ethylenethiourea determination in foods using methanol-based extraction, solid-phase extraction cleanup and LC–MS/MS. Food Chem 2013; 140:340-2. [DOI: 10.1016/j.foodchem.2013.02.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 09/04/2012] [Accepted: 02/10/2013] [Indexed: 10/27/2022]
|
34
|
Lim SR, Lam CW, Schoenung JM. Priority screening of toxic chemicals and industry sectors in the U.S. toxics release inventory: a comparison of the life cycle impact-based and risk-based assessment tools developed by U.S. EPA. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2011; 92:2235-40. [PMID: 21561706 DOI: 10.1016/j.jenvman.2011.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 04/22/2011] [Indexed: 05/17/2023]
Abstract
Life Cycle Impact Assessment (LCIA) and Risk Assessment (RA) employ different approaches to evaluate toxic impact potential for their own general applications. LCIA is often used to evaluate toxicity potentials for corporate environmental management and RA is often used to evaluate a risk score for environmental policy in government. This study evaluates the cancer, non-cancer, and ecotoxicity potentials and risk scores of chemicals and industry sectors in the United States on the basis of the LCIA- and RA-based tools developed by U.S. EPA, and compares the priority screening of toxic chemicals and industry sectors identified with each method to examine whether the LCIA- and RA-based results lead to the same prioritization schemes. The Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI) is applied as an LCIA-based screening approach with a focus on air and water emissions, and the Risk-Screening Environmental Indicator (RSEI) is applied in equivalent fashion as an RA-based screening approach. The U.S. Toxic Release Inventory is used as the dataset for this analysis, because of its general applicability to a comprehensive list of chemical substances and industry sectors. Overall, the TRACI and RSEI results do not agree with each other in part due to the unavailability of characterization factors and toxic scores for select substances, but primarily because of their different evaluation approaches. Therefore, TRACI and RSEI should be used together both to support a more comprehensive and robust approach to screening of chemicals for environmental management and policy and to highlight substances that are found to be of concern from both perspectives.
Collapse
Affiliation(s)
- Seong-Rin Lim
- Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
35
|
Lam CW, Lim SR, Schoenung JM. Environmental and risk screening for prioritizing pollution prevention opportunities in the U.S. printed wiring board manufacturing industry. JOURNAL OF HAZARDOUS MATERIALS 2011; 189:315-322. [PMID: 21398034 DOI: 10.1016/j.jhazmat.2011.02.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 02/12/2011] [Accepted: 02/14/2011] [Indexed: 05/30/2023]
Abstract
Modern manufacturing of printed wiring boards (PWBs) involves extensive use of various hazardous chemicals in different manufacturing steps such as board preparation, circuit design transfer, etching and plating processes. Two complementary environmental screening methods developed by the U.S. EPA, namely: (i) the Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI) and (ii) Risk-Screening Environmental Indicators (RSEI), are used to quantify geographic and chemical environmental impacts in the U.S. PWB manufacturing industry based on Toxics Release Inventory (TRI) data. Although the release weight percentages of industrial chemicals such as methanol, glycol ethers and dimethylformamide comprise the larger fraction of reported air and water emissions, results indicate that lead, copper and their compounds' releases correspond to the highest environmental impact from toxicity potentials and risk-screening scores. Combining these results with further knowledge of PWB manufacturing, select alternative chemical processes and materials for pollution prevention are discussed. Examples of effective pollution prevention options in the PWB industry include spent etchant recovery technologies, and process and material substitutions. In addition, geographic assessment of environmental burden highlights states where promotion of pollution prevention strategies and emissions regulations can have the greatest effect to curb the PWB industry's toxic release impacts.
Collapse
Affiliation(s)
- Carl W Lam
- Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
36
|
Wegener Sleeswijk A, Heijungs R. GLOBOX: A spatially differentiated global fate, intake and effect model for toxicity assessment in LCA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:2817-32. [PMID: 20394965 DOI: 10.1016/j.scitotenv.2010.02.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 01/09/2010] [Accepted: 02/26/2010] [Indexed: 05/17/2023]
Abstract
GLOBOX is a model for the calculation of spatially differentiated LCA toxicity characterisation factors on a global scale. It can also be used for human and environmental risk assessment. The GLOBOX model contains equations for the calculation of fate, intake and effect factors, and equations for the calculation of LCA characterisation factors for human toxicity and ecotoxicity. The model is differentiated on the level of 239 countries/territories and 50 seas/oceans. Each region has its own set of homogeneous compartments, and the regions are interconnected by atmospheric and aquatic flows. Multimedia transport and degradation calculations are largely based on the EUSES 2.0 multimedia model, and are supplemented by specific equations to account for the advective air and water transport between different countries and/or seas. Metal-specific equations are added to account for speciation in fresh and marine surface water. Distribution parameters for multimedia transport equations are differentiated per country or sea with respect to geographic features, hydrology, and climate. The model has been tested with nitrobenzene as a test chemical, for emissions to all countries in the world. Spatially differentiated characterisation factors turn out to show wide ranges of variation between countries, especially for releases to inland water and soil compartments. Geographic position, distribution of lakes and rivers and variations in environmental temperature and rain rate are decisive parameters for a number of different characterisation factors. Population density and dietary intake play central roles in the variation of characterisation factors for human toxicity. Among the countries that show substantial deviations from average values of the characterisation factors are not only small and remote islands, but also countries with a significant economic production rate, as indicated by their GDPs. It is concluded that spatial differentiation between countries is an important step forward with respect to the improvement of LCA toxicity characterisation factors.
Collapse
Affiliation(s)
- Anneke Wegener Sleeswijk
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA Leiden, The Netherlands.
| | | |
Collapse
|
37
|
Lim SR, Lam CW, Schoenung JM. Quantity-based and toxicity-based evaluation of the U.S. Toxics Release Inventory. JOURNAL OF HAZARDOUS MATERIALS 2010; 178:49-56. [PMID: 20122796 DOI: 10.1016/j.jhazmat.2010.01.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 01/05/2010] [Accepted: 01/08/2010] [Indexed: 05/28/2023]
Abstract
The U.S. EPA Toxics Release Inventory (TRI) represents an extensive, publicly available dataset on toxics and, as such, has contributed to reducing the releases and disposal of toxic chemicals. The TRI, however, reports on a wide range of releases from different sources, some of which are less likely to generate a human or ecological hazard. Furthermore, the TRI is quantity based and does not take into account the relative toxicity of chemicals. In an effort to utilize the TRI more effectively to guide environmental management and policy, this work provides an in-depth analysis of the quantity-based TRI data for year 2007 at industry sector, state, and chemical levels and couples it with toxicity potentials. These toxicity potentials are derived from the U.S. EPA's TRACI (Tool for the Reduction and Assessment of Chemical and other environmental Impacts) characterization factors for cancer, non-cancer and ecotoxicity. The combination of quantity-based and toxicity-based analysis allows a more robust evaluation of toxics use and priorities. Results show, for instance, that none of the highest priority chemicals identified through the toxicity-based evaluation would have been identified if only quantity-based evaluation had been used. As the chemicals are aggregated to the state and industry sector levels, the discrepancies between the evaluation methods are less significant.
Collapse
Affiliation(s)
- Seong-Rin Lim
- Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
38
|
Lim SR, Schoenung JM. Human health and ecological toxicity potentials due to heavy metal content in waste electronic devices with flat panel displays. JOURNAL OF HAZARDOUS MATERIALS 2010; 177:251-259. [PMID: 20056318 DOI: 10.1016/j.jhazmat.2009.12.025] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 10/31/2009] [Accepted: 12/04/2009] [Indexed: 05/28/2023]
Abstract
Display devices such as cathode-ray tube (CRT) televisions and computer monitors are known to contain toxic substances and have consequently been banned from disposal in landfills in the State of California and elsewhere. New types of flat panel display (FPD) devices, millions of which are now purchased each year, also contain toxic substances, but have not previously been systematically studied and compared to assess the potential impact that could result from their ultimate disposal. In the current work, the focus is on the evaluation of end-of-life toxicity potential from the heavy metal content in select FPD devices with the intent to inform material selection and design-for-environment (DfE) decisions. Specifically, the metals antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, mercury, molybdenum, nickel, selenium, silver, vanadium, and zinc in plasma TVs, LCD (liquid crystal display) TVs, LCD computer monitors and laptop computers are considered. The human health and ecotoxicity potentials are evaluated through a life cycle assessment perspective by combining data on the respective heavy metal contents, the characterization factors in the U.S. EPA Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI), and a pathway and impact model. Principal contributors to the toxicity potentials are lead, arsenic, copper, and mercury. Although the heavy metal content in newer flat panel display devices creates less human health toxicity potential than that in CRTs, for ecological toxicity, the new devices are worse, especially because of the mercury in LCD TVs and the copper in plasma TVs.
Collapse
Affiliation(s)
- Seong-Rin Lim
- Department of Chemical Engineering and Materials Science, University of California, 2017 Kemper Hall, One Shields Avenue, Davis, CA 95616, USA
| | | |
Collapse
|
39
|
Dong X, Li C, Li J, Wang J, Liu S, Ye B. A novel approach for soil contamination assessment from heavy metal pollution: a linkage between discharge and adsorption. JOURNAL OF HAZARDOUS MATERIALS 2010; 175:1022-1030. [PMID: 19942348 DOI: 10.1016/j.jhazmat.2009.10.112] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 10/25/2009] [Accepted: 10/28/2009] [Indexed: 05/27/2023]
Abstract
Soil protection from heavy metal contamination requires scientific assessment on the linkage between site-specific pollutant discharge and environmental effects. However, this kind of linkage is usually disregarded due to the lack of assessment tools in environmental policies, e.g., some developed coastal cities in China have forced their highly polluting industries out to less developed interior areas without consideration of the impacts from pollution transfer. This paper developed a soil adsorption fraction (SAF) model to characterize the emissions-to-adsorption relationship between heavy metal emission and the adsorption by soil. Case studies were carried out for two adjacent southern cities in China, i.e., Guangzhou and Shaoguan. The results indicated that the average SAF of cadmium was 5.38 x 10(-3) for Shaoguan and 1.28 x 10(-3) for Guangzhou, i.e., cadmium released from Shaoguan threatened the soil environment 4.2 times of that from Guangzhou. Further analysis showed the polluting pathway and abundance of water resources were the main influencing factors on SAF. Soil contamination will be exaggerated by relocating heavy metal polluting industries from coastal areas to interior areas. The results should be useful to prompt site-specific policies on heavy metal pollution control.
Collapse
Affiliation(s)
- Xiaoqing Dong
- Environmental Science and Engineering Research Center, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, PR China
| | | | | | | | | | | |
Collapse
|
40
|
Zhou X, Schoenung JM. Combining U.S.-based prioritization tools to improve screening level accountability for environmental impact: the case of the chemical manufacturing industry. JOURNAL OF HAZARDOUS MATERIALS 2009; 172:423-431. [PMID: 19647936 DOI: 10.1016/j.jhazmat.2009.07.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 07/08/2009] [Accepted: 07/08/2009] [Indexed: 05/28/2023]
Abstract
There are two quantitative indicators that are most widely used to assess the extent of compliance of industrial facilities with environmental regulations: the quantity of hazardous waste generated and the amount of toxics released. These indicators, albeit useful in terms of some environmental monitoring, fail to account for direct or indirect effects on human and environmental health, especially when aggregating total quantity of releases for a facility or industry sector. Thus, there is a need for a more comprehensive approach that can prioritize a particular chemical (or industry sector) on the basis of its relevant environmental performance and impact on human health. Accordingly, the objective of the present study is to formulate an aggregation of tools that can simultaneously capture multiple effects and several environmental impact categories. This approach allows us to compare and combine results generated with the aid of select U.S.-based quantitative impact assessment tools, thereby supplementing compliance-based metrics such as data from the U.S. Toxic Release Inventory. A case study, which presents findings for the U.S. chemical manufacturing industry, is presented to illustrate the aggregation of these tools. Environmental impacts due to both upstream and manufacturing activities are also evaluated for each industry sector. The proposed combinatorial analysis allows for a more robust evaluation for rating and prioritizing the environmental impacts of industrial waste.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of Chemical Engineering and Materials Science, University of California, Davis, Davis, CA 95616, USA
| | | |
Collapse
|
41
|
Juraske R, Mutel CL, Stoessel F, Hellweg S. Life cycle human toxicity assessment of pesticides: comparing fruit and vegetable diets in Switzerland and the United States. CHEMOSPHERE 2009; 77:939-945. [PMID: 19729188 DOI: 10.1016/j.chemosphere.2009.08.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 07/14/2009] [Accepted: 08/04/2009] [Indexed: 05/28/2023]
Abstract
Food consumption represents the dominant exposure pathway of the general public to pesticides. In this paper, we characterize the lifelong cumulative human health damage from ingestion of pesticides contained in fruits and vegetables in Switzerland and the United States. We evaluated pesticide residues in 62,151 food samples. Chemical specific concentrations were combined with pesticide emission data and information on country-specific diets and chemical toxicity to assess the human health impacts of 51 food commodities and national average diets. Furthermore, a list of characterization factors for pesticide ingestion via food was calculated for use in life cycle impact assessment. On average, the Swiss population takes in via food ingestion 0.41g of every 1kg of pesticide applied during agricultural cultivation. The corresponding value in the United States is 0.51. Intake fractions based on experimental monitoring data were compared with outputs from the USEtox model for life cycle impact assessment of toxic substances. The modeled intake fractions were underestimated by up to two orders of magnitude. However, even when using the monitored residue concentration data, the absolute health damage via fruits and vegetable ingestion was small: The potential lifelong damage of pesticides is estimated to be only 4.2 and 3.2 min of life lost per person in Switzerland and the United States, respectively. The results of this study indicate that pesticide intake due to the ingestion of fruits and vegetables consumed in Switzerland and the United States does not lead to significant human health damages.
Collapse
Affiliation(s)
- Ronnie Juraske
- ETH Zurich, Institute of Environmental Engineering, Schafmattstrasse 6, CH-8093 Zürich, Switzerland.
| | | | | | | |
Collapse
|
42
|
von Waldow H, Scheringer M, Hungerbühler K. Modelled environmental exposure to persistent organic chemicals is independent of the time course of emissions: Proof and significance for chemical exposure assessments. Ecol Modell 2008. [DOI: 10.1016/j.ecolmodel.2008.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Arnot JA, Mackay D. Policies for chemical hazard and risk priority setting: can persistence, bioaccumulation, toxicity, and quantity information be combined? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:4648-54. [PMID: 18677986 DOI: 10.1021/es800106g] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Existing methods used to screen chemical inventories for hazardous substances that may pose risks to humans and the environment are evaluated with a holistic mass balance modeling approach. The model integrates persistence (P), bioaccumulation (B), toxicity (T), and quantity (Q) information for a specific substance to assess chemical exposure, hazard, and risk. P and B are combined in an exposure assessment factor (EAF), P, B, and T in a hazard assessment factor (HAF), and P, B, T, and Q in a risk assessment factor (RAF) providing single values for transparent comparisons of exposure, hazard, and risk for priority setting. This holistic approach is illustrated using 200 Canadian Domestic Substances List(DSL) chemicals and 12 United Nations listed Persistent Organic Pollutants (POPs). Priority setting results are evaluated with those of multiple category-based screening methods employed by Environment Canada and applied elsewhere that use cutoff criteria in multiple categories (P, B, and T) to identify hazardous chemicals for more comprehensive evaluations. Existing methods have categorized the DSL chemicals as either higher priority (requiring further assessment; screened in) or lower priority (requiring no further action at this time; screened out). The priority setting results of the cutoff-based categorization are largely inconsistent with the proposed integrated method, and reasons for these discrepancies are discussed. Many chemicals screened out using existing methods have equivalent or greater risk potential than chemicals screened in. Decisions for screening assessments using binary classification on the basis of cutoff criteria can be flawed, and complementary holistic methods for priority setting evaluations such as the one proposed should be considered.
Collapse
Affiliation(s)
- Jon A Arnot
- The Canadian Environmental Modelling Centre, Trent University, 1600 West Bank Drive, Peterborough, ON, Canada, K9H 7B8.
| | | |
Collapse
|
44
|
Musee N, Lorenzen L, Aldrich C. New methodology for hazardous waste classification using fuzzy set theory Part I. Knowledge acquisition. JOURNAL OF HAZARDOUS MATERIALS 2008; 154:1040-1051. [PMID: 18082951 DOI: 10.1016/j.jhazmat.2007.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 10/06/2007] [Accepted: 11/03/2007] [Indexed: 05/25/2023]
Abstract
In the literature on hazardous waste classification, the criteria used are mostly based on physical properties, such as quantity (weight), form (solids, liquid, aqueous or gaseous), the type of processes generating them, or a set of predefined lists. Such classification criteria are inherently inadequate to account for the influence of toxic and hazard characteristics of the constituent chemicals in the wastes, as well as their exposure potency in multimedia environments, terrestrial mammals and other biota. Second, none of these algorithms in the literature has explicitly presented waste classification by examining the contribution of individual constituent components of the composite wastes. In this two-part paper, we propose a new automated algorithm for waste classification that takes into account physicochemical and toxicity effects of the constituent chemicals to humans and ecosystems, in addition, to the exposure potency and waste quantity. In part I, available data on the physicochemical and toxicity properties of individual chemicals in humans and ecosystems, their exposure potency in environmental systems and the effect of waste quantity are described, because they fundamentally contribute to the final waste ranking. Knowledge acquisition in this study was accomplished through the extensive review of published and specialized literature to establish facts necessary for the development of fuzzy rule-bases. Owing to the uncertainty and imprecision of various forms of data (both quantitative and qualitative) essential for waste classification, and the complexity resulting from knowledge incompleteness, the use of fuzzy set theory for the aggregation and computation of waste classification ranking index is proposed. A computer-aided intelligent decision tool is described in part II of this paper and the functionality of the fuzzy waste classification algorithm is illustrated through nine worked examples.
Collapse
Affiliation(s)
- N Musee
- Centre for Process Engineering, University of Stellenbosch, Stellenbosch, Private Bag X1, Matieland 7602, South Africa.
| | | | | |
Collapse
|
45
|
Hossain KA, Khan FI, Hawboldt K. E-Green − A Robust Risk-Based Environmental Assessment Tool for Process Industries. Ind Eng Chem Res 2007. [DOI: 10.1021/ie0709077] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Khandoker A. Hossain
- Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B 3X5
| | - Faisal I. Khan
- Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B 3X5
| | - Kelly Hawboldt
- Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B 3X5
| |
Collapse
|
46
|
Srivastava A, Som D. Hazardous air pollutants in industrial area of Mumbai - India. CHEMOSPHERE 2007; 69:458-68. [PMID: 17544479 DOI: 10.1016/j.chemosphere.2007.04.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 04/13/2007] [Accepted: 04/16/2007] [Indexed: 05/15/2023]
Abstract
Hazardous Air Pollutants (HAPs) have a potential to be distributed into different component of environment with varying persistence. In the current study fourteen HAPs have been quantified in the air using TO-17 method in an industrial area of Mumbai. The distribution of these HAPs in different environmental compartments have been calculated using multi media mass balance model, TaPL3, along with long range transport potential and persistence. Results show that most of the target compounds partition mostly in air. Phenol and trifluralin, partition predominantly into soil while ethyl benzene and xylene partition predominantly into vegetation compartment. Naphthalene has the highest persistence followed by ethyl benzene, xylene and 1,1,1 trihloro ethane. Long range transport potential is maximum for 1,1,1 trichloroethane. Assessment of human health risk in terms of non-carcinogenic hazard and carcinogenic risk due to exposure to HAPs. have been estimated for industrial workers and residents in the study area considering all possible exposure routes using the output from TaPL3 model. The overall carcinogenic risk for residents and workers are estimated as high as unity along with very high hazard potential.
Collapse
Affiliation(s)
- Anjali Srivastava
- National Environmental Engineering Research Institute, Kolkata Zonal Centre i-8, Sector C, East Kolkata Area Development Project, P.O. East Kolkata Township, Kolkata 700107, India.
| | | |
Collapse
|
47
|
Rosenbaum RK, Margni M, Jolliet O. A flexible matrix algebra framework for the multimedia multipathway modeling of emission to impacts. ENVIRONMENT INTERNATIONAL 2007; 33:624-34. [PMID: 17350097 DOI: 10.1016/j.envint.2007.01.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2006] [Revised: 12/14/2006] [Accepted: 01/11/2007] [Indexed: 05/14/2023]
Abstract
When assessing human health or ecosystem impacts of chemicals several calculation steps need to be addressed. Matrix algebra solving techniques are a useful approach to structure and solve the system of mass balance equations assessing chemical fate in environmental multimedia models. We suggest expanding this matrix approach towards a framework which includes the exposure, effect, and damage assessment for human health and ecosystems, also applicable to spatial modeling. Special emphasis is laid upon interpretation of the physical meaning of different elements within the matrices. The proposed framework provides several advantages such as simplified updating or extending of models to new impact pathways, possibility of covering various models within the same framework and transparency. Interpretation of intermediate and final results is facilitated, e.g., allowing for direct identification of dominating exposure pathways. Model comparability and evaluation is well supported, as the four matrices contain all intermediate results in a clear and interpretable way, independent from parameters, such as amount and place of emission. Multidisciplinary work is strongly facilitated enabling the linkage of different models from various disciplines together, since each of its modules defines a clear interface of intermediate results. This framework was reviewed by an independent expert panel within a UNEP/SETAC workshop, and adopted as starting-point for new advances in modeling environmental toxic releases within the UNEP/SETAC Life Cycle Initiative.
Collapse
Affiliation(s)
- Ralph K Rosenbaum
- Institute of Environmental Science and Technology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | | | | |
Collapse
|
48
|
McKone TE, Castorina R, Harnly ME, Kuwabara Y, Eskenazi B, Bradman A. Merging models and biomonitoring data to characterize sources and pathways of human exposure to organophosphorus pesticides in the Salinas Valley of California. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:3233-40. [PMID: 17539531 DOI: 10.1021/es0618447] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We characterize cumulative intakes of organophosphorus (OP) pesticides in an agricultural region of California by drawing on human biomonitoring data, California pesticide use reporting (PUR) data, and limited environmental samples together with outputs from the CalTOX multimedia, multipathway, source-to-dose model. The study population is the CHAMACOS cohort of almost 600 pregnant Latina women in the Salinas Valley region. We use model estimates of OP intake and urinary dialkylphosphate (DAP) metabolite excretion to develop premises about relative contributions from different exposure sources and pathways. We evaluate these premises by comparing the magnitude and variation of DAPs in the CHAMACOS cohort with those of the whole U.S. population using data from the National Health and Nutrition Examination Survey (NHANES). This comparison supports the premise that diet is the common and dominant exposure pathway in both populations. Biomarker comparisons and model results support the observation that, relative to NHANES, the CHAMACOS population has a statistically significant (p < 0.001) added intake of OP pesticides with low inter-individual variability. We attribute the magnitude and small variance of this intake to residential nondietary exposures from local agricultural OP uses. These results show that mass-balance models can estimate exposures for OP pesticides within the range measured by biological monitoring.
Collapse
Affiliation(s)
- Thomas E McKone
- Lawrence Berkeley National Laboratory, Berkeley, California, Center for Children's Environmental Health Research, School of Public Health, University of California, Berkeley, California, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Kerret D, Gray GM. What do we learn from emissions reporting? Analytical considerations and comparison of pollutant release and transfer registers in the United States, Canada, England, and Australia. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2007; 27:203-23. [PMID: 17362410 DOI: 10.1111/j.1539-6924.2006.00870.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Pollutant release and transfer registers (PRTRs) are becoming a popular measure for addressing industrial pollution in many countries. PRTRs require reporting of emissions from specific industrial sectors and making the information publicly available. This article suggests a framework for comparing PRTRs in order to determine whether they attain their declared goals and which factors, if any, influence their effectiveness. The challenges to such a comparison can be divided into three groups. The first refers to changes that are directly linked to the characteristics of PRTRs: both the changes within a specific system over time and variations among different systems. The second refers to parameters that affect the outcomes of the systems without being directly a part of them. The third involves the relations between the emissions reported to the PRTRs and the associated environmental risk. We suggest an approach that relies on relative comparison, commensurate with the unique characteristics of each PRTR, that compares their actual outcomes. Such an approach is necessary both due to significant variations among current PRTRs as well as for following the unique policy objectives that are manifested in different PRTRs. Application of this comparative approach in the United States, England, Canada, and Australia demonstrates significant differences in PRTR systems across countries and suggests that the mere presence of a PRTR may not lead to reduced industrial emissions. The analysis also demonstrates that emission reductions do not correlate with reductions in risk-related measures. The article proposes several simple modifications to the composition of current PRTR databases that may facilitate more accurate analysis of results and effective oversight of implementation.
Collapse
Affiliation(s)
- Dorit Kerret
- Harvard University, Harvard Center for Risk Analysis, Boston, MA 02115, USA.
| | | |
Collapse
|
50
|
Carpenter AC, Gardner KH, Fopiano J, Benson CH, Edil TB. Life cycle based risk assessment of recycled materials in roadway construction. WASTE MANAGEMENT (NEW YORK, N.Y.) 2007; 27:1458-64. [PMID: 17499986 DOI: 10.1016/j.wasman.2007.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 03/19/2007] [Indexed: 05/15/2023]
Abstract
This paper uses a life-cycle assessment (LCA) framework to characterize comparative environmental impacts from the use of virgin aggregate and recycled materials in roadway construction. To evaluate site-specific human toxicity potential (HTP) in a more robust manner, metals release data from a demonstration site were combined with an unsaturated contaminant transport model to predict long-term impacts to groundwater. The LCA determined that there were reduced energy and water consumption, air emissions, Pb, Hg and hazardous waste generation and non-cancer HTP when bottom ash was used in lieu of virgin crushed rock. Conversely, using bottom ash instead of virgin crushed rock increased the cancer HTP risk due to potential leachate generation by the bottom ash. At this scale of analysis, the trade-offs are clearly between the cancer HTP (higher for bottom ash) and all of the other impacts listed above (lower for bottom ash). The site-specific analysis predicted that the contaminants (Cd, Cr, Se and Ag for this study) transported from the bottom ash to the groundwater resulted in very low unsaturated zone contaminant concentrations over a 200 year period due to retardation in the vadose zone. The level of contaminants predicted to reach the groundwater after 200 years was significantly less than groundwater maximum contaminant levels (MCL) set by the US Environmental Protection Agency for drinking water. Results of the site-specific contaminant release estimates vary depending on numerous site and material specific factors. However, the combination of the LCA and the site specific analysis can provide an appropriate context for decision making. Trade-offs are inherent in making decisions about recycled versus virgin material use, and regulatory frameworks should recognize and explicitly acknowledge these trade-offs in decision processes.
Collapse
Affiliation(s)
- A C Carpenter
- Recycled Materials Resource Center, 35 Colovos Road, Gregg Hall, University of New Hampshire, Durham, NH 03824, USA.
| | | | | | | | | |
Collapse
|