1
|
Fernandes IO, Monteiro LC, de Miranda VL, Rodrigues YOS, de Freitas Muniz DH, de Castro Paes É, Bernardi JVE. Mercury distribution in organisms, litter, and soils of the Middle Araguaia floodplain in Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20925-20940. [PMID: 38379047 DOI: 10.1007/s11356-024-32317-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Mercury (Hg) is a chemical element that, depending on its concentration, may become toxic to living organisms due to the ability of Hg to bioaccumulate in food chains. In this study, we collected samples of soil, litter, and organisms in the Middle Araguaia floodplain, Brazil. Total mercury (THg) concentrations in litter were significantly higher (p < 0.0001) than that in soil, ranging from 10.68 ± 0.55 to 48.94 ± 0.13 and 20.80 ± 1.07 to 55 .19 ± 1.59 ng g-1, respectively. Total mercury concentration levels in soil showed a linear, inversely proportional relationship with soil organic matter (SOM) contents and soil pH, consistent with the geochemical behavior of chemical elements in flooded environments. Ten orders of organisms were identified, and the average THg concentrations determined in their bodies were up to 20 times higher than those in soil and litter. We found a significant linear relationship between the levels of THg in litter and those found in soil organisms, thereby allowing the prediction of THg concentration levels in soil organisms through the analysis of litter at the sample units. The different dynamics and feeding habits of soil organisms and the concentration of THg in these organisms may be influenced by the river's course. This study provides evidence of the bioaccumulation of THg in soil organisms in the floodplain of the Middle Araguaia River, an important river basin in the Brazilian savanna.
Collapse
Affiliation(s)
- Iara Oliveira Fernandes
- Graduate Program in Environmental Sciences, Faculty UnB Planaltina, University of Brasília, Planaltina, Distrito Federal, 73345-010, Brazil.
| | - Lucas Cabrera Monteiro
- Graduate Program in Ecology, Institute of Biological Sciences, University of Brasília, Brasília, Distrito Federal, 70910-900, Brazil
| | - Vinícius Lima de Miranda
- Graduate Program in Zoology, Institute of Biological Sciences, University of Brasília, Brasília, Distrito Federal, 70910-900, Brazil
| | - Ygor Oliveira Sarmento Rodrigues
- Graduate Program in Environmental Sciences, Faculty UnB Planaltina, University of Brasília, Planaltina, Distrito Federal, 73345-010, Brazil
| | - Daphne Heloisa de Freitas Muniz
- Graduate Program in Environmental Sciences, Faculty UnB Planaltina, University of Brasília, Planaltina, Distrito Federal, 73345-010, Brazil
| | - Ésio de Castro Paes
- Graduate Program in Soils and Plant Nutrition, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - José Vicente Elias Bernardi
- Graduate Program in Environmental Sciences, Faculty UnB Planaltina, University of Brasília, Planaltina, Distrito Federal, 73345-010, Brazil
| |
Collapse
|
2
|
Chumchal MM, Beaubien GB, Drenner RW, Hannappel MP, Mills MA, Olson CI, Otter RR, Todd AC, Walters DM. Use of Riparian Spiders as Sentinels of Persistent and Bioavailable Chemical Contaminants in Aquatic Ecosystems: A Review. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:499-514. [PMID: 35113469 PMCID: PMC9703374 DOI: 10.1002/etc.5267] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 05/29/2023]
Abstract
Aquatic ecosystems around the world are contaminated with a wide range of anthropogenic chemicals, including metals and organic pollutants, that originate from point and nonpoint sources. Many of these chemical contaminants have complex environmental cycles, are persistent and bioavailable, can be incorporated into aquatic food webs, and pose a threat to the health of wildlife and humans. Identifying appropriate sentinels that reflect bioavailability is critical to assessing and managing aquatic ecosystems impacted by contaminants. The objective of the present study is to review research on riparian spiders as sentinels of persistent and bioavailable chemical contaminants in aquatic ecosystems. Our review of the literature on riparian spiders as sentinels suggests that significant progress has been made during the last two decades of research. We identified 55 published studies conducted around the world in which riparian spiders (primarily of the families Tetragnathidae, Araneidae, Lycosidae, and Pisauridae) were used as sentinels of chemical contamination of lotic, lentic, and estuarine systems. For several contaminants, such as polychlorinated biphenyls (PCBs), Hg, and Se, it is now clear that riparian spiders are appropriate sentinels. However, many contaminants and factors that could impact chemical concentrations in riparian spiders have not been well characterized. Further study of riparian spiders and their potential role as sentinels is critical because it would allow for development of national-scale programs that utilize riparian spiders as sentinels to monitor chemical contaminants in aquatic ecosystems. A riparian spider sentinel program in the United States would be complementary to existing national sentinel programs, including those for fish and immature dragonflies. Environ Toxicol Chem 2022;41:499-514. © 2021 SETAC.
Collapse
Affiliation(s)
| | - Gale B. Beaubien
- Office of Research and Development, Center for Environmental Solutions and Emergency Response, US Environmental Protection Agency, Cincinnati, Ohio
| | - Ray W. Drenner
- Biology Department, Texas Christian University, Fort Worth, Texas, USA
| | | | - Marc A. Mills
- Office of Research and Development, Center for Environmental Solutions and Emergency Response, US Environmental Protection Agency, Cincinnati, Ohio
| | - Connor I. Olson
- Department of Civil and Environmental Engineering, Syracuse University, Syracuse, New York, USA
| | - Ryan R. Otter
- Department of Biology, Molecular Bioscience, Data Science Institute, Middle Tennessee State University, Murfreesboro, Tennessee, USA
| | - Andrew C. Todd
- Biology Department, Texas Christian University, Fort Worth, Texas, USA
| | - David M. Walters
- US Geological Survey, Columbia Environmental Research Center, Columbia, Missouri
| |
Collapse
|
3
|
Beaubien GB, Olson CI, Todd AC, Otter RR. The Spider Exposure Pathway and the Potential Risk to Arachnivorous Birds. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:2314-2324. [PMID: 32790212 DOI: 10.1002/etc.4848] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/02/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
There is growing concern over the health of North American birds, with evidence suggesting substantial population declines. Spiders are prominent dietary items for many bird species and mediate the transfer of contaminants to arachnivorous birds that consume them. Few studies have investigated the potential risk the spider exposure pathway poses to these birds because most studies have focused on piscivores. In the present study, we developed new chronic and acute As, Cd, Cu, Pb, Ni, Se, Zn, and MeHg spider-based avian wildlife values (SBAWVs) for multiple adult and nestling birds (primarily passerines) and then used the newly generated SBAWVs to characterize the risk to birds across 2 study areas: 1) 5 reaches in the southern Appalachian Mountains, an area with substantial mercury deposition but minimal anthropogenic impact, and 2) 4 reaches adjacent to the Emory River, an area impacted by the largest fly coal-ash spill in US history. We identified MeHg and Cu, Pb, Se, and Zn as contaminants of potential concern (COPC) at the Appalachian Mountain and Emory River study areas, respectively, based on dietary exposure of aquatic contaminants via riparian spiders. The identification of COPC at both study areas due to dietary spider exposure is notable not only because the spider exposure pathway has largely been uninvestigated at these sites but also because the aquatic systems in both areas have been studied extensively. Significant differences in MeHg concentrations were detected among spider taxa and suggest that the selection of spider taxa can impact risk characterization. These results indicate that the spider exposure pathway is important to consider when assessing potential risk, particularly for passerine birds. Environ Toxicol Chem 2020;39:2314-2324. © 2020 SETAC.
Collapse
Affiliation(s)
- Gale B Beaubien
- Molecular Biosciences, Middle Tennessee State University, Murfreesboro, Tennessee, USA
| | - Connor I Olson
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, USA
- Department of Civil and Environmental Engineering, Syracuse University, Syracuse, New York, USA
| | - Andrew C Todd
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, USA
| | - Ryan R Otter
- Molecular Biosciences, Middle Tennessee State University, Murfreesboro, Tennessee, USA
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, USA
- Data Science Institute, Middle Tennessee State University, Murfreesboro, Tennessee, USA
| |
Collapse
|
4
|
Rodenhouse NL, Lowe WH, Gebauer RLE, McFarland KP, Bank MS. Mercury bioaccumulation in temperate forest food webs associated with headwater streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 665:1125-1134. [PMID: 30893744 DOI: 10.1016/j.scitotenv.2019.02.151] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/25/2019] [Accepted: 02/09/2019] [Indexed: 06/09/2023]
Abstract
The soils and food webs associated with mid to high elevation, forested, headwater streams in northeastern North America are potential hotspots for mercury (Hg) methylation and bioaccumulation, but are not well studied. Our goals were to quantify total Hg (THg) and methyl Hg (MeHg) concentrations in soils and terrestrial food webs associated with headwater streams of northern hardwood forests to identify predictors of small-scale spatial variation in Hg bioaccumulation. We sampled soil characteristics that promote Hg methylation including pH, sulfur and calcium content, and organic matter. To assess spatial variation, we sampled at high (~700 m asl) and mid elevations (~500 m asl), both adjacent to (<1 m) and away from (>75 m) three replicate headwater streams in each of two watersheds of the White Mountains region, New Hampshire, USA. Soils of these forested watersheds differed significantly in pH and the content of calcium, sulfur, organic matter and THg. Conditions for methylation were more favorable in the upland forest sites compared to streamside sites. Significant bioaccumulation of THg occurred in all measured components of the food web, including insects, spiders, salamanders, and birds. Trophic position, as determined by δ15N, was the best predictor of both THg and MeHg bioaccumulation across the sampled taxa and was also a better predictor than spatial location. However, the degree of bioaccumulation at which MeHg significantly affects animal behavior, reproduction or survival is unknown for most taxa in terrestrial habitats, particularly for invertebrates. These findings show that Hg methylation and bioaccumulation is not limited to areas traditionally classified as wetlands or to areas with exceptionally high THg inputs, but that it is a widespread and important phenomenon in the moist deciduous forests of eastern North America.
Collapse
Affiliation(s)
| | - Winsor H Lowe
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | | | | | - Michael S Bank
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA, USA; Institute of Marine Research, Postboks 1870, Nordnes 5817, Bergen, Norway
| |
Collapse
|
5
|
Tavshunsky I, Eggert SL, Mitchell CPJ. Accumulation of Methylmercury in Invertebrates and Masked Shrews (Sorex cinereus) at an Upland Forest-Peatland Interface in Northern Minnesota, USA. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 99:673-678. [PMID: 29063129 DOI: 10.1007/s00128-017-2198-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
Mercury (Hg) methylation is often elevated at the terrestrial-peatland interface, but methylmercury (MeHg) production at this "hot spot" has not been linked with in situ biotic accumulation. We examined total Hg and MeHg levels in peat, invertebrates and tissues of the insectivore Sorex cinereus (masked shrew), inhabiting a terrestrial-peatland ecotone in northern Minnesota, USA. Mean MeHg concentrations in S. cinereus (71 ng g-1) fell between concentrations measured in spiders (mean 70-140 ng g-1), and ground beetles and millipedes (mean 29-42 ng g-1). Methylmercury concentrations in S. cinereus increased with age and differed among tissues, with highest concentrations in kidneys and muscle, followed by liver and brain. Nearly all Hg in S. cinereus was in the methylated form. Overall, the high proportional accumulation of MeHg in peat at the site (3.5% total Hg as MeHg) did not lead to particularly elevated concentrations in invertebrates or shrews, which are below values considered a toxicological risk.
Collapse
Affiliation(s)
- Ilana Tavshunsky
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada
| | - Susan L Eggert
- United States Forest Service, Northern Research Station, 1831 Hwy 169 E, Grand Rapids, MN, 55744, USA
| | - Carl P J Mitchell
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada.
| |
Collapse
|
6
|
Chaves-Ulloa R, Taylor BW, Broadley HJ, Cottingham KL, Baer NA, Weathers KC, Ewing HA, Chen CY. Dissolved organic carbon modulates mercury concentrations in insect subsidies from streams to terrestrial consumers. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2016; 26:1771-1784. [PMID: 27755696 PMCID: PMC5070544 DOI: 10.1890/15-0025.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 05/28/2023]
Abstract
Mercury (Hg) concentrations in aquatic environments have increased globally, exposing consumers of aquatic organisms to high Hg levels. For both aquatic and terrestrial consumers, exposure to Hg depends on their food sources as well as environmental factors influencing Hg bioavailability. The majority of the research on the transfer of methylmercury (MeHg), a toxic and bioaccumulating form of Hg, between aquatic and terrestrial food webs has focused on terrestrial piscivores. However, a gap exists in our understanding of the factors regulating MeHg bioaccumulation by non-piscivorous terrestrial predators, specifically consumers of adult aquatic insects. Because dissolved organic carbon (DOC) binds tightly to MeHg, affecting its transport and availability in aquatic food webs, we hypothesized that DOC affects MeHg transfer from stream food webs to terrestrial predators feeding on emerging adult insects. We tested this hypothesis by collecting data over 2 years from 10 low-order streams spanning a broad DOC gradient in the Lake Sunapee watershed in New Hampshire, USA. We found that streamwater MeHg concentration increased linearly with DOC concentration. However, streams with the highest DOC concentrations had emerging stream prey and spiders with lower MeHg concentrations than streams with intermediate DOC concentrations; a pattern that is similar to fish and larval aquatic insects. Furthermore, high MeHg concentrations found in spiders show that MeHg transfer in adult aquatic insects is an overlooked but potentially significant pathway of MeHg bioaccumulation in terrestrial food webs. Our results suggest that although MeHg in water increases with DOC, MeHg concentrations in stream and terrestrial consumers did not consistently increase with increases in streamwater MeHg concentrations. In fact, there was a change from a positive to a negative relationship between aqueous exposure and bioaccumulation at streamwater MeHg concentrations associated with DOC above ~5 mg/L. Thus, our study highlights the importance of stream DOC for MeHg dynamics beyond stream boundaries, and shows that factors modulating MeHg bioavailability in aquatic systems can affect the transfer of MeHg to terrestrial predators via aquatic subsidies.
Collapse
Affiliation(s)
- Ramsa Chaves-Ulloa
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, New Hampshire, 03755, USA.
| | - Brad W Taylor
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, New Hampshire, 03755, USA
| | - Hannah J Broadley
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, New Hampshire, 03755, USA
- Environmental Studies Program, Bates College, 7 Andrews Road, Lewiston, Maine, 04240, USA
| | - Kathryn L Cottingham
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, New Hampshire, 03755, USA
| | - Nicholas A Baer
- Department of Natural Sciences, Colby-Sawyer College, 541 Main Street, New London, New Hampshire, 03257, USA
| | - Kathleen C Weathers
- Cary Institute of Ecosystem Studies, PO Box AB, Millbrook, New York, 12545, USA
| | - Holly A Ewing
- Environmental Studies Program, Bates College, 7 Andrews Road, Lewiston, Maine, 04240, USA
| | - Celia Y Chen
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, New Hampshire, 03755, USA
| |
Collapse
|
7
|
Zhou J, Wang Z, Sun T, Zhang H, Zhang X. Mercury in terrestrial forested systems with highly elevated mercury deposition in southwestern China: The risk to insects and potential release from wildfires. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 212:188-196. [PMID: 26845366 DOI: 10.1016/j.envpol.2016.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/28/2015] [Accepted: 01/01/2016] [Indexed: 05/26/2023]
Abstract
Forests are considered a pool of mercury in the global mercury cycle. However, few studies have investigated the distribution of mercury in the forested systems in China. Tieshanping forest catchment in southwest China was impacted by mercury emissions from industrial activities and coal combustions. Our work studied mercury content in atmosphere, soil, vegetation and insect with a view to estimating the potential for mercury release during forest fires. Results of the present study showed that total gaseous mercury (TGM) was highly elevated and the annual mean concentration was 3.51 ± 1.39 ng m(-2). Of the vegetation tissues, the mercury concentration follows the order of leaf/needle > root > bark > branch > bole wood for each species. Total ecosystem mercury pool was 103.5 mg m(-2) and about 99.4% of the mercury resides in soil layers (0-40 cm). The remaining 0.6% (0.50 mg m(-2)) of mercury was stored in biomass. The large mercury stocks in the forest ecosystem pose a serious threat for large pluses to the atmospheric mercury during potential wildfires and additional ecological stress to forest insect: dung beetles, cicada and longicorn, with mercury concentration of 1983 ± 446, 49 ± 38 and 7 ± 5 ng g(-1), respectively. Hence, the results obtained in the present study has implications for global estimates of mercury storage in forests, risks to forest insect and potential release to the atmosphere during wildfires.
Collapse
Affiliation(s)
- Jun Zhou
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhangwei Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Ting Sun
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoshan Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
8
|
Jeremiason JD, Reiser TK, Weitz RA, Berndt ME, Aiken GR. Aeshnid dragonfly larvae as bioindicators of methylmercury contamination in aquatic systems impacted by elevated sulfate loading. ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:456-468. [PMID: 26738880 DOI: 10.1007/s10646-015-1603-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/22/2015] [Indexed: 06/05/2023]
Abstract
Methylmercury (MeHg) levels in dragonfly larvae and water were measured over two years in aquatic systems impacted to varying degrees by sulfate releases related to iron mining activity. This study examined the impact of elevated sulfate loads on MeHg concentrations and tested the use of MeHg in dragonfly larvae as an indicator of MeHg levels in a range of aquatic systems including 16 river/stream sites and two lakes. MeHg concentrations in aeshnid dragonfly larvae were positively correlated (R(2) = 0.46, p < 0.01) to peak MeHg concentrations in the dissolved phase for the combined years of 2012 and 2013. This relation was strong in 2012 (R(2) = 0.85, p < 0.01), but showed no correlation in 2013 (R(2) = 0.02, p > 0.05). MeHg in dragonfly larvae were not elevated at the highest sulfate sites, but rather the reverse was generally observed. Record rainfall events in 2012 and above average rainfall in 2013 likely delivered the majority of Hg and MeHg to these systems via interflow and activated groundwater flow through reduced sediments. As a result, the impacts of elevated sulfate releases due to mining activities were not apparent in these systems where little of the sulfate is reduced. Lower bioaccumulation factors for MeHg in aeshnid dragonfly larvae were observed with increasing dissolved organic carbon (DOC) concentrations. This finding is consistent with previous studies showing that MeHg in high DOC systems is less bioavailable; an equilibrium model shows that more MeHg being associated with DOC rather than algae at the base of the food chain readily explains the lower bioaccumulation factors.
Collapse
Affiliation(s)
| | - T K Reiser
- Gustavus Adolphus College, St Peter, MN, 56082, USA
| | - R A Weitz
- Gustavus Adolphus College, St Peter, MN, 56082, USA
| | - M E Berndt
- Minnesota Department of Natural Resources, St Paul, MN, USA
| | - G R Aiken
- US Geological Survey, 3215 Marine St., Boulder, CO, 80309, USA
| |
Collapse
|
9
|
Bartrons M, Gratton C, Spiesman BJ, Vander Zanden MJ. Taking the trophic bypass: aquatic-terrestrial linkage reduces methylmercury in a terrestrial food web. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2015; 25:151-159. [PMID: 26255364 DOI: 10.1890/14-0038.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ecosystems can be linked by the movement of matter and nutrients across habitat boundaries via aquatic insect emergence. Aquatic organisms tend to have higher concentrations of certain toxic contaminants such as methylmercury (MeHg) compared to their terrestrial counterparts. If aquatic organisms come to land, terrestrial organisms that consume them are expected to have elevated MeHg concentrations. But emergent aquatic insects could have other impacts as well, such as altering consumer trophic position or increasing ecosystem productivity as a result of nutrient inputs from insect carcasses. We measure MeHg in terrestrial arthropods at two lakes in northeastern Iceland and use carbon and nitrogen stable isotopes to quantify aquatic reliance and trophic position. Across all terrestrial focal arthropod taxa (Lycosidae, Linyphiidae, Acari, Opiliones), aquatic reliance had significant direct and indirect (via changes in trophic position) effects on terrestrial consumer MeHg. However, contrary to our expectations, terrestrial consumers that consumed aquatic prey had lower MeHg concentrations than consumers that ate mostly terrestrial prey. We hypothesize that this is due to the lower trophic position of consumers feeding directly on midges relative to those that fed mostly on terrestrial prey and that had, on average, higher trophic positions. Thus, direct consumption of aquatic inputs results in a trophic bypass that creates a shorter terrestrial food web and reduced biomagnification of MeHg across the food web. Our finding that MeHg was lower at terrestrial sites with aquatic inputs runs counter to the conventional wisdom that aquatic systems are a source of MeHg contamination to surrounding terrestrial ecosystems.
Collapse
|