1
|
Ye Z, Wang Y, Zhang G, Hu X, Wang J, Chen X. Exploration of uricase-like activity in Pd@Ir nanosheets and their application in relieving acute gout using self-cascade reaction. J Colloid Interface Sci 2025; 678:380-392. [PMID: 39303557 DOI: 10.1016/j.jcis.2024.09.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Gout, marked by the deposition of sodium urate crystals in joints and peripheral tissues, presents a considerable health challenge. Recent research has shown a growing interest in nanozyme-based treatments for gout. However, literature on nanozymes that combine uricase-like (UOX) activity for uric acid (UA) degradation with catalase (CAT)-like activity for H2O2 elimination through a self-cascade reaction is limited. Herein, we discovered that two-dimensional Pd@Ir nanosheets (NSs) exhibit UOX and CAT activities effectively. Notably, we observed a size-dependent effect of Pd@Ir on activation energy during UA degradation, with the larger Pd@Ir NSs demonstrating a lower energy barrier. The 46-nm Pd@Ir had activation energy as low as 35.9 kJ/mol, surpassing the efficiency of natural bacterial uricase and most reported nanozymes. Through a tandem self-cascade reaction of Pd@Ir, UA was effectively degraded via UOX activity, while the byproduct H2O2 was simultaneously eliminated by CAT-like activity. Cell experiments revealed that Pd@Ir protect normal cells from oxidative stress and promote cell proliferation, demonstrating an excellent self-cascade effect. Additionally, Pd@Ir substantially alleviated gout symptoms in monosodium urate-induced acute gout mice without causing toxic effects on biological organs and tissues. This study opens new avenues for using nanozyme-based cascade reaction systems in the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Zichen Ye
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yayao Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gongxin Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xinyan Hu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jingjuan Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xiaolan Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
2
|
Zhang J, Sun B, Shi S, Xu X, Shen J, Jiang H, Zhou N, Wu F. Heteroatom-doped cobalt single-atomic nanozymes with differential enzyme-like activity for bacteria-infected wound therapy. J Colloid Interface Sci 2024; 675:580-591. [PMID: 38986331 DOI: 10.1016/j.jcis.2024.07.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
Single-atom nanozymes (SANZs) have emerged as new media for enhancing chemodynamic therapy (CDT) to achieve desirable enzyme-like effects and excellent nanoscale specificity. However, non-optimal adsorption of Fenton-like reaction intermediates prevents SANZs from exerting kinetic activity and hinders the CDT effect. Herein, we demonstrate that heteroatom-doped Co single-atom nanozymes (SACNZs) with intrinsic charge transfer exhibit peroxidase-like properties and significantly improve the ability of CDT to treat Staphylococcus aureus-infected wounds. Density functional theory calculations showed that the S-induced charge transfer effect regulated the electronic distribution of the central metal more efficiently than P, thereby lowering the energy levels for the generation of OH and increasing the catalytic effect. Polyvinylpyrrolidone-modified SACNZs showed effects consistent with this theory in both in vitro antibacterial and in vivo ward management assays. This study systematically investigated the relationship between heteroatom-doping and the catalytic activity of metal centres, opening a new perspective for the application of CDT.
Collapse
Affiliation(s)
- Juyang Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Baohong Sun
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, School of Pharmacy, Bengbu Medical University, Bengbu 233030, China
| | - Shaoze Shi
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xiaoyu Xu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Huijun Jiang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ninglin Zhou
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Fan Wu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
3
|
Zhu CN, Chen X, Xu YQ, Wang F, Zheng DY, Liu C, Zhang XH, Yi Y, Cheng DB. Advanced Preparation Methods and Biomedical Applications of Single-Atom Nanozymes. ACS Biomater Sci Eng 2024. [PMID: 39535074 DOI: 10.1021/acsbiomaterials.4c01530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Metal nanoparticles with inherent defects can harness biomolecules to catalyze reactions within living organisms, thereby accelerating the advancement of multifunctional diagnostic and therapeutic technologies. In the quest for superior catalytic efficiency and selectivity, atomically dispersed single-atom nanozymes (SANzymes) have garnered significant interest recently. This review concentrates on the development of SANzymes, addressing potential challenges such as fabrication strategies, surface engineering, and structural characteristics. Notably, we elucidate the catalytic mechanisms behind some key reactions to facilitate the biomedical application of SANzymes. The diverse biomedical uses of SANzymes including in cancer therapy, wound disinfection, biosensing, and oxidative stress cytoprotection are comprehensively summarized, revealing the link between material structure and catalytic performance. Lastly, we explore the future prospects of SANzymes in biomedical fields.
Collapse
Affiliation(s)
- Chun-Nan Zhu
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
| | - Xin Chen
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
| | - Yong-Qiang Xu
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Fei Wang
- Department of Biology and the School of Natural Sciences, Wentworth College, University of York, Wentworth Way, Heslington, York YO10 5DD, England
| | - Dong-Yun Zheng
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
| | - Chao Liu
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
| | - Xue-Hao Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Yu Yi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering & Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
4
|
Wang Q, Nie X, Song Y, Qiu H, Chen L, Zhu H, Zhang X, Yang M, Xu X, Chen P, Zhang C, Xu J, Ren Y, Shang W. Redox nanodrugs alleviate chronic kidney disease by reducing inflammation and regulating ROS. Biomater Sci 2024. [PMID: 39526526 DOI: 10.1039/d4bm00881b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Immune-mediated glomerular diseases lead to chronic kidney disease (CKD), primarily through mechanisms such as immune cell overactivation, mitochondrial dysfunction and imbalance of reactive oxygen species (ROS). We have developed an ultra-small nanodrug composed of Mn3O4 nanoparticles which is functionalized with biocompatible ligand citrate (C-Mn3O4 NPs) to maintain cellular redox balance in an animal model of oxidative injury. Furthermore, this ultra-small nanodrug, loaded with tacrolimus (Tac), regulated the activity of immune cells. We established a doxorubicin (DOX)-induced CKD model in SD rats using conditions of oxidative distress. The results demonstrate the ROS scavenging capability of Mn3O4 NPs, which mimics enzymatic activity, and the immunosuppressive effect of tacrolimus. This combination promotes targeted accumulation in the renal region with sustained drug release through the enhanced permeability and retention (EPR) effect. Tac@C-Mn3O4 protects the structural and functional integrity of mitochondria from oxidative damage while eliminating excess ROS to maintain cellular redox homeostasis, thereby suppressing the overexpression of pro-inflammatory cytokines to restore kidney function and preserve a normal kidney structure, reducing inflammation and regulating antioxidant stress pathways. This dual-pronged treatment strategy also provides novel strategies for CKD management and demonstrates substantial potential for clinical translational application.
Collapse
Affiliation(s)
- Qin Wang
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518000, China.
| | - Xuedan Nie
- Department of Neurology, South China Hospital, Medical School, Shenzhen University, Shenzhen, Guangdong, 518116, China
| | - Yifan Song
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518000, China.
| | - Haiyan Qiu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Liting Chen
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518000, China.
| | - He Zhu
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518000, China.
| | - Xueli Zhang
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518000, China.
| | - Mengru Yang
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518000, China.
| | - Xiaohui Xu
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518000, China.
| | - Peidan Chen
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518000, China.
| | - Chao Zhang
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518000, China.
| | - Jia Xu
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518000, China.
| | - Yeping Ren
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518000, China.
| | - Wenting Shang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
5
|
Zhang Y, Ma S, Chang W, Yu W, Zhang L. Nanozymes targeting mitochondrial repair in disease treatment. J Biotechnol 2024; 394:57-72. [PMID: 39159753 DOI: 10.1016/j.jbiotec.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/01/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
Mitochondria are crucial sites for biological oxidation and substance metabolism and plays a vital role in maintaining intracellular homeostasis. When mitochondria undergo oxidative damage or dysfunction, they can harm the organism, leading to various reactive oxygen species (ROS)-related diseases. Therefore, therapies targeting mitochondria are a strategy for treating multiple diseases. Many nanozymes can mimic antioxidant enzymes, which enables them to eliminate ROS to mitigate mitochondrial dysfunction. The therapeutic approaches and drugs targeting the mitochondrial electron transport chain (ETC) have emerged as effective treatments for oxidative stress-related diseases resulting from mitochondrial respiratory chain disorders. Therefore, nanozymes that can regulate homeostasis in the mitochondrial ETC have emerged as effective therapeutic agents for treating oxidative stress-related diseases. In addition, benefit from the controllability and modifiability of nanozymes, their modification with TPP, SS-31 peptide, and mitochondrial permeability membrane peptide to eliminate ROS and repair mitochondrial function. The nanozymes that specifically target mitochondria are powerful tools for the treatment of ROS-associated disorders. We discussed the design strategies pertaining to mitochondrion-targeted nanozymes to treat various diseases to develop more efficacious nanozyme tools for the treatment of ROS-related diseases in the future.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
| | - Shuxian Ma
- Obstetric Ultrasound Department, Qingdao Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wanpeng Yu
- Medical Collage, Qingdao University, Qingdao, China.
| | - Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
| |
Collapse
|
6
|
Hu X, Ma Z, Zhang B, Wang J, Zhou Y, Li J, Liu T, Zhang J, Hong B, Zhu M, Li F, Ling D. A Single-Atom Mn/MoO 3- x Nanoagonist for Cascade cGAS/STING Activation in Tumor-Specific Catalytic Metalloimmunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407214. [PMID: 39498728 DOI: 10.1002/smll.202407214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/07/2024] [Indexed: 11/07/2024]
Abstract
The cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway plays a crucial role in initiating anti-tumor immunity. Despite the development of various STING agonists, their effectiveness is often limited by suboptimal activation efficiency and poor sustainability. To address this, a Mn/MoO3- x nanoagonist featuring Mn single-atom sites is presented, designed for cascade cGAS/STING activation in tumor-specific catalytic metalloimmunotherapy. The single-atom nanoagonist (SANA) is meticulously crafted by doping Mn atoms into defective molybdenum oxide (MoO3- x), enabling robust peroxidase-mimicking catalysis and inducing severe double-stranded DNA (dsDNA) damage in tumors. Of note, Mn2+ and MoO4 2- can be responsively released from Mn/MoO3- x SANA and enhance the sensitivity of cGAS to dsDNA. Importantly, MoO4 2- with a relatively slow-release profile and facile cellular accumulation compensates for Mn2+ that has poor cellular accumulation due to continuous efflux, thus continuatively triggering the secretion of type I interferon for beyond 72 h. Remarkably, Mn/MoO3- x SANA significantly inhibits tumor growth and metastasis without supplementary STING agonists or external stimulation. This study offers a promising cascade cGAS/STING activation approach to enhance the efficacy and sustainability of catalytic metalloimmunotherapy.
Collapse
Affiliation(s)
- Xi Hu
- School of Pharmacy, Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Zhiyuan Ma
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- WLA Laboratories, Shanghai, 201203, China
| | - Jie Wang
- School of Pharmacy, Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
- Department of Clinical Laboratory, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders (LEAD), Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Yan Zhou
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jun Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tianqi Liu
- School of Pharmacy, Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Jingxin Zhang
- School of Pharmacy, Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Bangzhen Hong
- School of Pharmacy, Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Mingjian Zhu
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fangyuan Li
- Department of Clinical Laboratory, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders (LEAD), Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- WLA Laboratories, Shanghai, 201203, China
| |
Collapse
|
7
|
Lin X, Dong Q, Chang Y, Shi P, Zhang S. Transition-metal-based nanozymes for biosensing and catalytic tumor therapy. Anal Bioanal Chem 2024; 416:5933-5948. [PMID: 38782780 DOI: 10.1007/s00216-024-05345-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Nanozymes, as an emerging class of enzyme mimics, have attracted much attention due to their adjustable catalytic activity, low cost, easy modification, and good stability. Researchers have made great efforts in developing and applying high-performance nanozymes. Recently, transition-metal-based nanozymes have been designed and widely developed because they possess unique photoelectric properties and high enzyme-like catalytic activities. To highlight these achievements and help researchers to understand the research status of transition-metal-based nanozymes, the development of transition-metal-based nanozymes from material characteristics to biological applications is summarized. Herein, we focus on introducing six categories of transition-metal-based nanozymes and highlight their progress in biomarker sensing and catalytic therapy for tumors. We hope that this review can guide the further development of transition-metal-based nanozymes and promote their practical applications in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Xiangfang Lin
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi, 276005, People's Republic of China
| | - Qinhui Dong
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi, 276005, People's Republic of China
| | - Yalin Chang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi, 276005, People's Republic of China
| | - Pengfei Shi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi, 276005, People's Republic of China.
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi, 276005, People's Republic of China.
| |
Collapse
|
8
|
Hao L, Liang XJ, Zhang Y, Zhang Z, Han Y, Jin Y, Li L, Magrini A, Bottini M, Gao S, Zhang J. Fine-Tuning the d-Band Center Position of Zinc to Increase the Anti-Tumor Activity of Single-Atom Nanozymes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412368. [PMID: 39396367 DOI: 10.1002/adma.202412368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Indexed: 10/15/2024]
Abstract
The exceptional biocompatibility of Zn-based single-atom nanozymes (SAzymes) has led to extensive research in their application for disease diagnosis and treatment. However, the fully occupied 3d10 electron configuration has seriously hampered the enzymatic-like activity of Zn-based SAzymes. Herein, a B-doped Zn-based SAzymes is fabricated by carbonizing zeolite-like Zn-based boron imidazolate framework at different temperatures (Zn-SAs@BNCx, x = 800, 900, 1000, and 1100 °C). The formed B─N bond yielded a local electric field, which changes the position of the d-band center and improved the oxidation state of Zn by facilitating the electron transfer from Zn to N to B. These changes enhanced the adsorption and activation of H2O2 and O2 by Zn-SAs@BNC1000, increasing the nanozymes' multi-enzyme catalytic activity. B doping led to 24.81-, 32.37-, and 13.98-fold increase in the peroxidase-, oxidase- and catalase-like, respectively, catalytic efficiency (Kcat/Km) of Zn-SAs@BNC1000 when compared with no B doping. In addition, Zn-SAs@BNC1000 showed excellent ability to kill tumor cells both in vitro and in vivo. This study demonstrates that the modulation of the electron configuration of Zn is an effective strategy to develop efficient anti-tumor approaches by boosting the enzymatic activity of Zn-based SAzymes.
Collapse
Affiliation(s)
- Lin Hao
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, P. R. China
- College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Yawen Zhang
- College of Basic Medical Science, Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, P. R. China
| | - Zijing Zhang
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, P. R. China
| | - Yu Han
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, P. R. China
| | - Yi Jin
- College of Basic Medical Science, Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, P. R. China
| | - Luwei Li
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, P. R. China
| | - Andrea Magrini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Massimo Bottini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Shutao Gao
- College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Jinchao Zhang
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, P. R. China
| |
Collapse
|
9
|
Zeng Q, Zhong H, Liao J, Huo Q, Miao B, Zeng L, Zhang B, Nie G. Antioxidant activities of metal single-atom nanozymes in biomedicine. Biomater Sci 2024; 12:5150-5163. [PMID: 39254215 DOI: 10.1039/d4bm00978a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Nanozymes are a class of nanomaterials with enzyme-like activity that can mimic the catalytic properties of natural enzymes. The small size, high catalytic activity, and strong stability of nanozymes compared to those of natural enzymes allow them to not only exist in a wide temperature and pH range but also maintain stability in complex environments. Recently developed single-atom nanozymes have metal active sites composed of a single metal atom fixed to a carrier. These metal atoms can act as independent catalytically active centers. Metal single-atom nanozymes have a homogeneous single-atom structure and a suitable coordination environment for stronger catalytic activity and specificity than traditional nanozymes. The antioxidant metal single-atom nanozymes with the ability of removing reactive oxygen species (ROS) can simulate superoxidase dismutase, catalase, and glutathione peroxidase to show different effects in vivo. Furthermore, due to the similar structure of antioxidant enzymes, a metal single-atom nanozyme often has multiple antioxidant activities, and this synergistic effect can more efficiently remove ROS related to oxidative stress. The versatility of single-atom nanozymes encompasses a broad spectrum of biomedical applications such as anti-oxidation, anti-infection, immunomodulatory, biosensing, bioimaging, and tumor therapy applications. Herein, the nervous, circulatory, digestive, motor, immune, and sensory systems are considered in order to demonstrate the role of metal single-atom nanozymes in biomedical antioxidants.
Collapse
Affiliation(s)
- Qingdong Zeng
- Graduate Collaborative Training Base of Shenzhen Second People's Hospital, Heng Yang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China.
| | - Huihai Zhong
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China.
| | - Jiahao Liao
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China.
| | - Qin Huo
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China.
| | - Beiping Miao
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China.
| | - Li Zeng
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China.
| | - Bin Zhang
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China.
| | - Guohui Nie
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine, Department of Otolaryngology Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China.
| |
Collapse
|
10
|
Pu C, Wang Y, Xiang H, He J, Sun Q, Yong Y, Chen L, Jiang K, Yang H, Li Y. Zinc-based Polyoxometalate Nanozyme Functionalized Hydrogels for optimizing the Hyperglycemic-Immune Microenvironment to Promote Diabetic Wound Regeneration. J Nanobiotechnology 2024; 22:611. [PMID: 39380018 PMCID: PMC11462698 DOI: 10.1186/s12951-024-02840-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/07/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND In diabetic wounds, hyperglycemia-induced cytotoxicity and impaired immune microenvironment plasticity directly hinder the wound healing process. Regulation of the hyperglycemic microenvironment and remodeling of the immune microenvironment are crucial. RESULTS Here, we developed a nanozymatic functionalized regenerative microenvironmental regulator (AHAMA/CS-GOx@Zn-POM) for the effective repair of diabetic wounds. This novel construct integrated an aldehyde and methacrylic anhydride-modified hyaluronic acid hydrogel (AHAMA) and chitosan nanoparticles (CS NPs) encapsulating zinc-based polymetallic oxonate nanozyme (Zn-POM) and glucose oxidase (GOx), facilitating a sustained release of release of both enzymes. The GOx catalyzed glucose to gluconic acid and (H₂O₂), thereby alleviating the effects of the hyperglycemic microenvironment on wound healing. Zn-POM exhibited catalase and superoxide dismutase activities to scavenge reactive oxygen species and H₂O₂, a by-product of glucose degradation. Additionally, Zn-POM induced M1 macrophage reprogramming to the M2 phenotype by inhibiting the MAPK/IL-17 signaling diminishing pro-inflammatory cytokines, and upregulating the expression of anti-inflammatory mediators, thus remodeling the immune microenvironment and enhancing angiogenesis and collagen regeneration within wounds. In a rat diabetic wound model, the application of AHAMA/CS-GOx@Zn-POM enhanced neovascularization and collagen deposition, accelerating the wound healing process. CONCLUSIONS Therefore, the regenerative microenvironment regulator AHAMA/CS-GOx@Zn-POM can achieve the effective conversion of a pathological microenvironment to regenerative microenvironment through integrated control of the hyperglycemic-immune microenvironment, offering a novel strategy for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Chaoyu Pu
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China
- Nanomedicine Innovation Research and Development Transformation Institute, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China
| | - Yong Wang
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China
| | - Honglin Xiang
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China
| | - Jiangtao He
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China
| | - Qiyuan Sun
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China
| | - Yuan Yong
- School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, P.R. China
| | - Lu Chen
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China
| | - Ke Jiang
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China.
| | - Hanfeng Yang
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China.
- Nanomedicine Innovation Research and Development Transformation Institute, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China.
| | - Yuling Li
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China.
- Nanomedicine Innovation Research and Development Transformation Institute, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P.R. China.
| |
Collapse
|
11
|
Chen Q, Wang J, Xiong X, Chen J, Wang B, Yang H, Zhou J, Deng H, Gu L, Tian J. Blood-Brain Barrier-Penetrating Metal-Organic Framework Antioxidant Nanozymes for Targeted Ischemic Stroke Therapy. Adv Healthc Mater 2024:e2402376. [PMID: 39373278 DOI: 10.1002/adhm.202402376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/20/2024] [Indexed: 10/08/2024]
Abstract
Overproduction of reactive oxygen species (ROS) during reperfusion in ischemic stroke (IS) severely impedes neuronal survival and results in high rates of morbidity and disability. The effective blood-brain barrier (BBB) penetration and brain delivery of antioxidative agents remain the biggest challenge in treating ischemic reperfusion-induced cerebrovascular and neural injury. In this study, a metal-organic framework (MOF) nanozyme (MIL-101-NH2(Fe/Cu)) with ROS scavenging activities to encapsulate neuroprotective agent rapamycin is fabricated and decorating the exterior with BBB-targeting protein ligands (transferrin), thereby realizing enhanced drug retention and controlled release within ischemic lesions for the synergistic treatment of IS. Through the receptor-mediated transcellular pathway, the transferrin-coated MOF nanoparticles achieved efficient transport across the BBB and targeted accumulation at the cerebral ischemic injury site of mice with middle cerebral artery occlusion/reperfusion (MCAO/R), wherein the nanocarrier exhibited catalytic activities of ROS decomposition into O2 and H2O2-responsive rapamycin release. By its BBB-targeting, antioxidative, anti-inflammatory, and antiapoptotic properties, the MOF nanosystem addressed multiple pathological factors of IS and realized remarkable neuroprotective effects, leading to the substantial reduction of cerebral infarction volume and accelerated recovery of nerve functions in the MCAO/R mouse model. This MOF-based nanomedicine provides valuable design principles for effective IS therapy with multi-mechanism synergies.
Collapse
Affiliation(s)
- Qing Chen
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jin Wang
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Anesthesia, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaoxing Xiong
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Junyang Chen
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Bo Wang
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Haixia Yang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jianliang Zhou
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Hongping Deng
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Anesthesia, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jian Tian
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
12
|
Kuai L, Huang F, Mao L, Ru Y, Jiang J, Song J, Chen S, Li K, Li Y, Dong H, Lu X, Li B, Shi J. Single-Atom Catalysts with Isolated Cu 1-N 4 Sites for Atopic Dermatitis Cascade Catalytic Therapy via Activating PPAR Signaling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407365. [PMID: 39363827 DOI: 10.1002/smll.202407365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/23/2024] [Indexed: 10/05/2024]
Abstract
Atopic dermatitis (AD) is one of the most common allergic skin disorders affecting over 230 million people worldwide, while safe and efficient therapeutic options for AD are currently rarely available. Reactive oxygen species (ROS) accumulation plays a key role in AD's disease progression. Therefore, a novel single-atom catalyst is designed with isolated Cu1-N4 sites anchored on carbon support (Cu1-N4 ISAC), featuring triple antioxidant enzyme-mimicking activities, for efficient AD cascade catalytic therapy (CCT). The excellent superoxide dismutase (SOD)-, glutathione peroxidase (GPx)-, and ascorbate peroxidase (APx)-like activities of Cu1-N4 ISACs enable the sequential conversion of O2•- to H2O2 and then to harmless H2O, thereby protecting keratinocytes from oxidative stress damage. Notably, two novel experimental methods are developed to directly prove the SOD-GPx and SOD-APx cascade catalytic activities for the first time. In vivo experiments show that Cu1-N4 ISACs are more potent than a recommended typical medicine (halcinonide solution). Additionally, RNA sequencing and bioinformatic analysis reveal that Cu1-N4 ISACs reduce inflammation and inhibit ROS production by activating PPAR signaling, which is aberrantly reduced in AD. Therefore, the synthesized catalytic medicine offers an alternative to alleviate AD and has the potential to serve as PPAR agonists for treating similar diseases.
Collapse
Affiliation(s)
- Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Dermatology, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Fang Huang
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Lijie Mao
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200331, China
| | - Yi Ru
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jingsi Jiang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jiankun Song
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Si Chen
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200331, China
| | - Ke Li
- School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Yongyong Li
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Haiqing Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Xiangyu Lu
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200331, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Bin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Dermatology, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jianlin Shi
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| |
Collapse
|
13
|
Zhang N, Ping W, Xiang J, Chu S, Li D, Ning S, Zhu D, Zeng W, Xu Q. Biomimetic Single-Atom Nanozyme for Dual Starvation-Enhanced Breast Cancer Immunotherapy. Adv Healthc Mater 2024:e2401362. [PMID: 39363640 DOI: 10.1002/adhm.202401362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/08/2024] [Indexed: 10/05/2024]
Abstract
Cold exposure (CE) therapy is an innovative and cost-efficient cancer treatment that activates brown adipose tissue to compete for glucose uptake, leading to metabolic starvation in tumors. Exploring the combined antitumor mechanisms of CE and traditional therapies (such as nanocatalysis) is exciting and promising. In this study, a platelet membrane biomimetic single-atom nanozyme (SAEs) nanodrug (PFB) carrying bis-2-(5-phenylacetamido-1, 2, 4-thiadiazol-2-yl) ethyl sulfide (BPTES) is developed for use in cancer CE therapy. Owing to the platelet membrane modification, PFB can effectively target tumors. Upon entering cancer cells, the dual starvation effect induced by CE treatment and BPTES can significantly diminish intracellular glucose and ATP levels, resulting in a substantial reduction in cellular (glutathione) GSH, which can enhance the cytotoxic efficacy of reactive oxygen species generated by SAEs. This strategy not only boosts ROS production in tumors, but also strengthens immune responses, particularly by increasing memory T-cell abundance and suppressing distant tumor growth and tumor metastasis. Compared with SAEs therapy alone, this combined approach offers superior benefits for tumor immunotherapy. This study achieves a combination of CE and nanomedicines for the first time, providing new ideas for future nanomedicine combination therapy modalities.
Collapse
Affiliation(s)
- Ni Zhang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Wei Ping
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jingfeng Xiang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Sitong Chu
- Department of Breast Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Dan Li
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530003, China
| | - Shipeng Ning
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530003, China
| | - Daoming Zhu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Wen Zeng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qingyong Xu
- Department of Breast Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| |
Collapse
|
14
|
Sun Q, Ni Y, Wang K, Zhang H, Liu J, Xu L, Zhao Y. Rhodium nanozyme mitigates RPE degeneration and preserves vision in age-related macular degeneration via antioxidant and anti-inflammatory mechanisms. Mater Today Bio 2024; 28:101230. [PMID: 39296359 PMCID: PMC11408860 DOI: 10.1016/j.mtbio.2024.101230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/17/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness among elderly people worldwide. However, there are currently no effective treatments for AMD. Oxidative stress-induced retinal pigment epithelium (RPE) degeneration and the inflammatory response are the main causes of AMD. In this study, a polyethylene glycol (PEG)-coated rhodium nanozyme (PEG-RhZ) with excellent reactive oxygen species (ROS) and reactive nitrogen species (RNS) elimination capability was synthesized for the treatment of AMD. PEG-RhZs protected RPE cell viability and barrier function upon exposure to oxidative stress stimuli. Additionally, microglial migration and iNOS, IL-1β and TNF-α expression were inhibited by PEG-RhZs. In the acute phase of the AMD model, PEG-RhZs significantly alleviated RPE oxidative damage and inhibited microglial activation. In the late stage of the AMD model, PEG-RhZs reduced photoreceptor loss and improved vision impairment. Furthermore, PEG-RhZs showed good biocompatibility and stability both in vitro and in vivo. Collectively, our findings suggest the therapeutic potential of PEG-RhZs for AMD treatment. STATEMENT OF SIGNIFICANCE: AMD is a kind of retinal degenerative disease that poses heavy health burden globally. PEG-RhZs exhibiting robust ROS and RNS scavenging capabilities have shown promise in safeguarding retinal pigment epithelium (RPE) from oxidative stress, suppressing microglia activation and the secretion of pro-inflammatory molecules, mitigating loss of retinal photoreceptor cells, and ameliorating visual impairment. The commendable antioxidant properties, biological safety, and biostability of PEG-RhZs offer valuable insights for the clinical management of AMD.
Collapse
Affiliation(s)
- Qian Sun
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yueqi Ni
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kang Wang
- Hubei Province Tobacco Quality Supervision and Test Station, Wuhan, 430030, China
| | - Hong Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lingjuan Xu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
15
|
Li L, Zhang Y, Liu Y, Wu Y, Wang X, Cao L, Feng X. Synthesis of Pt-MoS 2 with enhanced photothermal and peroxidase-like properties and its antibacterial application. RSC Adv 2024; 14:29428-29438. [PMID: 39297038 PMCID: PMC11409452 DOI: 10.1039/d4ra05487c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024] Open
Abstract
Despite tremendous efforts, bacterial infection and contamination remain a major clinical challenge to modern humans. Nanozyme materials with stimuli-responsive properties are expected to be powerful tools for the next generation of antibacterial therapy. Here, MoS2 nanosheet was firstly prepared by liquid phase exfoliation method, and Pt-MoS2 hybrid biomaterial was then successfully synthesized by a simple self-reduction method. The Pt decoration significantly improves the photothermal effect of MoS2 nanosheet under 808 nm NIR laser irradiation. Besides, benefiting from the formation of heterogeneous structure, the Pt-MoS2 has significantly enhanced peroxidase mimetic catalytic activity, which can kill bacteria through catalysis of H2O2 to generate antimicrobial hydroxyl radicals. Moreover, the temperature rise brought about by NIR laser stimulation further amplifies the nanozyme activity of the composites. After treatment by the synergistic platform, both Staphylococcus aureus and Escherichia coli can be effectively inhibited, demonstrating its broad-spectrum antibacterial properties. In addition, the developed antibacterial Pt-MoS2 nanozyme have the excellent biocompatibility, which makes them well suited for infection elimination in biological systems. Overall, this work shows great potential for rationally combining the multiple functions of MoS2-based nanomaterials for synergistic antibacterial therapy. In the future, the Pt-MoS2 nanozyme may find wider applications in areas such as personal healthcare or surface disinfection treatment of medical devices.
Collapse
Affiliation(s)
- Liangyu Li
- Department of Nursing, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou China
| | - Yueqin Zhang
- School of Public Health, Hangzhou Medical College Hangzhou China
| | - Yumeng Liu
- School of Public Health, Hangzhou Medical College Hangzhou China
| | - Yaojuan Wu
- Department of Nursing, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou China
| | - Xiao Wang
- School of Public Health, Hangzhou Medical College Hangzhou China
| | - Lidong Cao
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou China
- College of Mechanical Engineering, Zhejiang University Hangzhou China
| | - Xia Feng
- Department of Nursing, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou China
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou China
| |
Collapse
|
16
|
Qin J, Li Z, Feng Y, Guo Y, Zhao Z, Sun S, Zheng J, Zhang M, Zhang J, Zhang Y, Wei J, Ding C, Xue W. Reactive Oxygen Species-Scavenging Mesoporous Poly(tannic acid) Nanospheres Alleviate Acute Kidney Injury by Inhibiting Ferroptosis. ACS Biomater Sci Eng 2024; 10:5856-5868. [PMID: 39164198 PMCID: PMC11389690 DOI: 10.1021/acsbiomaterials.4c00844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Acute kidney injury (AKI), predominantly associated with the excess production of endogenous ROS, is a serious renal dysfunction syndrome. Ferroptosis characterized by iron-dependent regulated cell death has significant involvement in AKI pathogenesis. As symptomatic treatment of AKI remains clinically limited, a new class of effective therapies has emerged, which is referred to as nanozyme. In our research, a natural mesoporous poly(tannic acid) nanosphere (referred to as PTA) was developed that can successfully mimic the activity of superoxide dismutase (SOD) by Mussel-inspired interface deposition strategy, for effective ROS scavenging and thus inhibition of ferroptosis to attenuate AKI. As anticipated, PTA mitigated oxidative stress and inhibited ferroptosis, as opposed to other modes of cell death such as pyroptosis or necrosis. Furthermore, PTA exhibited favorable biocompatibility and safeguarded the kidney against ferroptosis by enhancing the expression of SLC7a11/glutathione peroxidase 4(GPX4) and Nrf2/HO-1, while reducing the levels of ACSL4 protein in the ischemia and reperfusion injury (IRI)-induced AKI model. Moreover, PTA effectively suppressed aberrant expression of inflammatory factors. Overall, this study introduced antioxidative nanozymes in the form of mesoporous polyphenol nanospheres, showcasing exceptional therapeutic efficacy in addressing ROS-related diseases. This novel approach holds promise for clinical AKI treatment and broadens the scope of biomedical applications for nanozymes.
Collapse
Affiliation(s)
- Jingyue Qin
- Department of Kidney Transplantation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zepeng Li
- Department of Kidney Transplantation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Youyou Feng
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yingcong Guo
- Department of Kidney Transplantation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zhenting Zhao
- Department of Kidney Transplantation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Shirui Sun
- Department of Kidney Transplantation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jin Zheng
- Department of Kidney Transplantation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jing Zhang
- Department of Kidney Transplantation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yilei Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University Xi'an ,Shaanxi710061,China
| | - Jing Wei
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Chenguang Ding
- Department of Kidney Transplantation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Wujun Xue
- Department of Kidney Transplantation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
17
|
Luo R, Xu H, Lin Q, Chi J, Liu T, Jin B, Ou J, Xu Z, Peng T, Quan G, Lu C. Emerging Trends in Dissolving-Microneedle Technology for Antimicrobial Skin-Infection Therapies. Pharmaceutics 2024; 16:1188. [PMID: 39339224 PMCID: PMC11435303 DOI: 10.3390/pharmaceutics16091188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Skin and soft-tissue infections require significant consideration because of their prolonged treatment duration and propensity to rapidly progress, resulting in severe complications. The primary challenge in their treatment stems from the involvement of drug-resistant microorganisms that can form impermeable biofilms, as well as the possibility of infection extending deep into tissues, thereby complicating drug delivery. Dissolving microneedle patches are an innovative transdermal drug-delivery system that effectively enhances drug penetration through the stratum corneum barrier, thereby increasing drug concentration at the site of infection. They offer highly efficient, safe, and patient-friendly alternatives to conventional topical formulations. This comprehensive review focuses on recent advances and emerging trends in dissolving-microneedle technology for antimicrobial skin-infection therapy. Conventional antibiotic microneedles are compared with those based on emerging antimicrobial agents, such as quorum-sensing inhibitors, antimicrobial peptides, and antimicrobial-matrix materials. The review also highlights the potential of innovative microneedles incorporating chemodynamic, nanoenzyme antimicrobial, photodynamic, and photothermal antibacterial therapies. This review explores the advantages of various antimicrobial therapies and emphasizes the potential of their combined application to improve the efficacy of microneedles. Finally, this review analyzes the druggability of different antimicrobial microneedles and discusses possible future developments.
Collapse
Affiliation(s)
- Rui Luo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Department of Pharmacy, Jinan University, Guangzhou 511436, China
- Department of Pharmacy, College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Huihui Xu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Department of Pharmacy, Jinan University, Guangzhou 511436, China
- Department of Pharmacy, College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Qiaoni Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Department of Pharmacy, Jinan University, Guangzhou 511436, China
- Department of Pharmacy, College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Jiaying Chi
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Department of Pharmacy, Jinan University, Guangzhou 511436, China
- Department of Pharmacy, College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Tingzhi Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Department of Pharmacy, Jinan University, Guangzhou 511436, China
- Department of Pharmacy, College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Bingrui Jin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Department of Pharmacy, Jinan University, Guangzhou 511436, China
- Department of Pharmacy, College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Jiayu Ou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Department of Pharmacy, Jinan University, Guangzhou 511436, China
- Department of Pharmacy, College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Zejun Xu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Department of Pharmacy, Jinan University, Guangzhou 511436, China
- Department of Pharmacy, College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Tingting Peng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Department of Pharmacy, Jinan University, Guangzhou 511436, China
- Department of Pharmacy, College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Guilan Quan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Department of Pharmacy, Jinan University, Guangzhou 511436, China
- Department of Pharmacy, College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Chao Lu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Department of Pharmacy, Jinan University, Guangzhou 511436, China
- Department of Pharmacy, College of Pharmacy, Jinan University, Guangzhou 511436, China
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
18
|
Fang F, Chen X. Carrier-Free Nanodrugs: From Bench to Bedside. ACS NANO 2024; 18:23827-23841. [PMID: 39163559 DOI: 10.1021/acsnano.4c09027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Carrier-free nanodrugs with extraordinary active pharmaceutical ingredient (API) loading (even 100%), avoidable carrier-induced toxicity, and simple synthetic procedures are considered as one of the most promising candidates for disease theranostics. Substantial studies and the commercial success of "carrier-free" nanocrystals have demonstrated their strong clinical potential. However, their practical translations remain challenging and are impeded by unpredictable assembly processes, insufficient delivery efficiency, and an unclear in vivo fate. In this Perspective, we systematically outline the contemporary and emerging carrier-free nanodrugs based on diverse APIs, as well as highlight their opportunities and challenges in clinical translation. Looking ahead, further improvements in design and preparation, drug delivery, in vivo efficacy, and safety of carrier-free nanomedicines are essential to facilitate their translation from the bench to bedside.
Collapse
Affiliation(s)
- Fang Fang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| |
Collapse
|
19
|
Tiwari JN, Kumar K, Safarkhani M, Umer M, Vilian ATE, Beloqui A, Bhaskaran G, Huh YS, Han YK. Materials Containing Single-, Di-, Tri-, and Multi-Metal Atoms Bonded to C, N, S, P, B, and O Species as Advanced Catalysts for Energy, Sensor, and Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403197. [PMID: 38946671 DOI: 10.1002/advs.202403197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/08/2024] [Indexed: 07/02/2024]
Abstract
Modifying the coordination or local environments of single-, di-, tri-, and multi-metal atom (SMA/DMA/TMA/MMA)-based materials is one of the best strategies for increasing the catalytic activities, selectivity, and long-term durability of these materials. Advanced sheet materials supported by metal atom-based materials have become a critical topic in the fields of renewable energy conversion systems, storage devices, sensors, and biomedicine owing to the maximum atom utilization efficiency, precisely located metal centers, specific electron configurations, unique reactivity, and precise chemical tunability. Several sheet materials offer excellent support for metal atom-based materials and are attractive for applications in energy, sensors, and medical research, such as in oxygen reduction, oxygen production, hydrogen generation, fuel production, selective chemical detection, and enzymatic reactions. The strong metal-metal and metal-carbon with metal-heteroatom (i.e., N, S, P, B, and O) bonds stabilize and optimize the electronic structures of the metal atoms due to strong interfacial interactions, yielding excellent catalytic activities. These materials provide excellent models for understanding the fundamental problems with multistep chemical reactions. This review summarizes the substrate structure-activity relationship of metal atom-based materials with different active sites based on experimental and theoretical data. Additionally, the new synthesis procedures, physicochemical characterizations, and energy and biomedical applications are discussed. Finally, the remaining challenges in developing efficient SMA/DMA/TMA/MMA-based materials are presented.
Collapse
Affiliation(s)
- Jitendra N Tiwari
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 100715, Republic of Korea
| | - Krishan Kumar
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Danostia-San Sebastian, 20018, Spain
| | - Moein Safarkhani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, Incheon, 22212, Republic of Korea
- School of Chemistry, Damghan University, Damghan, 36716-45667, Iran
| | - Muhammad Umer
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| | - A T Ezhil Vilian
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 100715, Republic of Korea
| | - Ana Beloqui
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Danostia-San Sebastian, 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao, 48009, Spain
| | - Gokul Bhaskaran
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, Incheon, 22212, Republic of Korea
| | - Yun Suk Huh
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, Incheon, 22212, Republic of Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 100715, Republic of Korea
| |
Collapse
|
20
|
Wang L, Liu Z, Yao L, Liu S, Wang Q, Qu H, Wu Y, Mao Y, Zheng L. A Bioinspired Single-Atom Fe Nanozyme with Excellent Laccase-Like Activity for Efficient Aflatoxin B 1 Removal. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400629. [PMID: 38682737 DOI: 10.1002/smll.202400629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/10/2024] [Indexed: 05/01/2024]
Abstract
The applications of natural laccases are greatly restricted because of their drawbacks like poor biostability, high costs, and low recovery efficiency. M/NC single atom nanozymes (M/NC SAzymes) are presenting as great substitutes due to their superior enzyme-like activity, excellent selectivity and high stability. In this work, inspired by the catalytic active center of natural enzyme, a biomimetic Fe/NC SAzyme (Fe-SAzyme) with O2-Fe-N4 coordination is successfully developed, exhibiting excellent laccase-like activity. Compared with their natural counterpart, Fe-SAzyme has shown superior catalytic efficiency and excellent stability under a wide range of pH (3.0-9.0), temperature (4-80 °C) and NaCl strength (0-300 mm). Interestingly, density functional theory (DFT) calculations reveal that the high catalytic performance is attributed to the activation of O2 by O2-Fe-N4 sites, which weakened the O─O bonds in the oxygen-to-water oxidation pathway. Furthermore, Fe-SAzyme is successfully applied for efficient aflatoxin B1 removal based on its robust laccase-like catalytic activity. This work provides a strategy for the rational design of laccase-like SAzymes, and the proposed catalytic mechanism will help to understand the coordination environment effect of SAzymes on laccase-like catalytic processes.
Collapse
Affiliation(s)
- Lei Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Zixuan Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Lili Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Shuai Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Qiuping Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Yuen Wu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yu Mao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| |
Collapse
|
21
|
Zhu B, Zhao Z, Cao S, Sun Y, Wang L, Huang S, Cheng C, Ma L, Qiu L. Highly spontaneous spin polarization engineering of single-atom artificial antioxidases towards efficient ROS elimination and tissue regeneration. NANOSCALE 2024; 16:15946-15959. [PMID: 39037714 DOI: 10.1039/d4nr02104e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The creation of atomic catalytic centers has emerged as a conducive path to design efficient nanobiocatalysts to serve as artificial antioxidases (AAOs) that can mimic the function of natural antioxidases to scavenge noxious reactive oxygen species (ROS) for protecting stem cells and promoting tissue regeneration. However, the fundamental mechanisms of diverse single-atom sites for ROS biocatalysis remain ambiguous. Herein, we show that highly spontaneous spin polarization mediates the hitherto unclear origin of H2O2-elimination activities in engineering ferromagnetic element (Fe, Co, Ni)-based AAOs with atomic centers. The experimental and theoretical results reveal that Fe-AAO exhibits the best catalase-like kinetics and turnover number, while Co-AAO shows the highest glutathione peroxidase-like activity and turnover number. Furthermore, our investigations prove that both Fe-AAO and Co-AAO can effectively secure the functions of stem cells in high ROS microenvironments and promote the repair of injured tendon tissue by scavenging H2O2 and other ROS. We believe that the proposed highly spontaneous spin polarization engineering of ferromagnetic element-based AAOs will provide essential guidance and practical opportunities for developing efficient AAOs for eliminating ROS, protecting stem cells, and accelerating tissue regeneration.
Collapse
Affiliation(s)
- Bihui Zhu
- Department of Medical Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Zhenyang Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Sujiao Cao
- Department of Medical Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yimin Sun
- West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Liyun Wang
- Department of Medical Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Songya Huang
- Department of Medical Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Lang Ma
- Department of Medical Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Li Qiu
- Department of Medical Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
22
|
Halmagyi TG, Noureen L, Szerlauth A, Szilagyi I. Engineering inorganic nanozyme architectures for decomposition of reactive oxygen species. Dalton Trans 2024; 53:14132-14138. [PMID: 39133078 DOI: 10.1039/d4dt01874e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Enzyme-mimicking nanomaterials (nanozymes) with antioxidant activity are at the forefront of research efforts towards biomedical and industrial applications. The selection of enzymatically active substances and their incorporation into novel inorganic nanozyme structures is critically important for this field of research. To this end, the fabrication of composites can be desirable as these can either exhibit multiple enzyme-like activities in a single material or show increased activity compared to the nanozyme components. Conversely, by modifying the structure of a nanomaterial, enzyme-like activities can be induced in formerly inert particles. We identify herein the three main routes of composite nanozyme synthesis, namely, surface functionalization of a particle with another compound, heteroaggregation of individual nanozymes, and modification of the bulk nanozyme structure to achieve optimal antioxidant activity. We discuss in particular the different inorganic support materials used in the synthesis of nanozyme architectures and the advantages brought forth by the use of composites.
Collapse
Affiliation(s)
- Tibor G Halmagyi
- MTA-SZTE Momentum Biocolloids Research Group, Department of Physical Chemistry and Materials Science, Interdisciplinary Centre of Excellence, University of Szeged, 6720 Szeged, Hungary.
| | - Laila Noureen
- MTA-SZTE Momentum Biocolloids Research Group, Department of Physical Chemistry and Materials Science, Interdisciplinary Centre of Excellence, University of Szeged, 6720 Szeged, Hungary.
| | - Adél Szerlauth
- MTA-SZTE Momentum Biocolloids Research Group, Department of Physical Chemistry and Materials Science, Interdisciplinary Centre of Excellence, University of Szeged, 6720 Szeged, Hungary.
| | - Istvan Szilagyi
- MTA-SZTE Momentum Biocolloids Research Group, Department of Physical Chemistry and Materials Science, Interdisciplinary Centre of Excellence, University of Szeged, 6720 Szeged, Hungary.
| |
Collapse
|
23
|
Li Z, Ding B, Li J, Chen H, Zhang J, Tan J, Ma X, Han D, Ma P, Lin J. Multi-Enzyme Mimetic MoCu Dual-Atom Nanozyme Triggering Oxidative Stress Cascade Amplification for High-Efficiency Synergistic Cancer Therapy. Angew Chem Int Ed Engl 2024:e202413661. [PMID: 39166420 DOI: 10.1002/anie.202413661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/22/2024]
Abstract
Single-atom nanozymes (SAzymes) with ultrahigh atom utilization efficiency have been extensively applied in reactive oxygen species (ROS)-mediated cancer therapy. However, the high energy barriers of reaction intermediates on single-atom sites and the overexpressed antioxidants in the tumor microenvironment restrict the amplification of tumor oxidative stress, resulting in unsatisfactory therapeutic efficacy. Herein, we report a multi-enzyme mimetic MoCu dual-atom nanozyme (MoCu DAzyme) with various catalytic active sites, which exhibits peroxidase, oxidase, glutathione (GSH) oxidase, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase mimicking activities. Compared with Mo SAzyme, the introduction of Cu atoms, formation of dual-atom sites, and synergetic catalytic effects among various active sites enhance substrate adsorption and reduce the energy barrier, thereby endowing MoCu DAzyme with stronger catalytic activities. Benefiting from the above enzyme-like activities, MoCu DAzyme can not only generate multiple ROS, but also deplete GSH and block its regeneration to trigger the cascade amplification of oxidative stress. Additionally, the strong optical absorption in the near-infrared II bio-window endows MoCu DAzyme with remarkable photothermal conversion performance. Consequently, MoCu DAzyme achieves high-efficiency synergistic cancer treatment incorporating collaborative catalytic therapy and photothermal therapy. This work will advance the therapeutic applications of DAzymes and provide valuable insights for nanocatalytic cancer therapy.
Collapse
Affiliation(s)
- Ziyao Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Hao Chen
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jiashi Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jia Tan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xinyu Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Di Han
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
24
|
Liu D, Sun S, Qiao H, Xin Q, Zhou S, Li L, Song N, Zhang L, Chen Q, Tian F, Mu X, Zhang S, Zhang J, Guo M, Wang H, Zhang XD, Zhang R. Ce 12V 6 Clusters with Multi-Enzymatic Activities for Sepsis Treatment. Adv Healthc Mater 2024:e2401581. [PMID: 39129228 DOI: 10.1002/adhm.202401581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/22/2024] [Indexed: 08/13/2024]
Abstract
Artificial enzymes, especially nanozymes, have attracted wide attention due to their controlled catalytic activity, selectivity, and stability. The rising Cerium-based nanozymes exhibit unique SOD-like activity, and Vanadium-based nanozymes always hold excellent GPx-like activity. However, most inflammatory diseases involve polymerase biocatalytic processes that require multi-enzyme activities. The nanocomposite can fulfill multi-enzymatic activity simultaneously, but large nanoparticles (>10 nm) cannot be excreted rapidly, leading to biosafety challenges. Herein, atomically precise Ce12V6 clusters with a size of 2.19 nm are constructed. The Ce12V6 clusters show excellent glutathione peroxidase (GPx) -like activity with a significantly lower Michaelis-Menten constant (Km, 0.0125 mM versus 0.03 mM of natural counterpart) and good activities mimic superoxide dismutase (SOD) and peroxidase (POD). The Ce12V6 clusters exhibit the ability to scavenge the ROS including O2 ·- and H2O2 via the cascade reactions of multi-enzymatic activities. Further, the Ce12V6 clusters modulate the proinflammatory cytokines including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) and consequently rescue the multi-organ failure in the lipopolysaccharide (LPS)-induced sepsis mouse model. With excellent biocompatibility, the Ce12V6 clusters show promise in the treatment of sepsis.
Collapse
Affiliation(s)
- Di Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Si Sun
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Huanhuan Qiao
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Qi Xin
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Sufei Zhou
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Lingxia Li
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Nan Song
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin, 300384, 18, China
| | - Lijie Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Qi Chen
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Fangzhen Tian
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Shaofang Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Jing Zhang
- Department of Cardiology Tianjin Chest Hospital, Tianjin University, Tianjin, 300222, China
| | - Meili Guo
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin, 300384, 18, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Ruiping Zhang
- The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
25
|
Gorgzadeh A, Amiri PA, Yasamineh S, Naser BK, Abdulallah KA. The potential use of nanozyme in aging and age-related diseases. Biogerontology 2024; 25:583-613. [PMID: 38466515 DOI: 10.1007/s10522-024-10095-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/17/2024] [Indexed: 03/13/2024]
Abstract
The effects of an increasingly elderly population are among the most far-reaching in 21st-century society. The growing healthcare expense is mainly attributable to the increased incidence of chronic illnesses that accompany longer life expectancies. Different ideas have been put up to explain aging, but it is widely accepted that oxidative damage to proteins, lipids, and nucleic acids contributes to the aging process. Increases in life expectancy in all contemporary industrialized cultures are accompanied by sharp increases in the prevalence of age-related diseases such as cardiovascular and neurological conditions, type 2 diabetes, osteoporosis, and cancer. Therefore, academic and public health authorities should prioritize the development of therapies to increase health span. Nanozyme (NZ)-like activity in nanomaterials has been identified as promising anti-aging nanomedicines. More than that, nanomaterials displaying catalytic activities have evolved as artificial enzymes with high structural stability, variable catalytic activity, and functional diversity for use in a wide range of biological settings, including those dealing with age-related disorders. Due to their inherent enzyme-mimicking qualities, enzymes have attracted significant interest in treating diseases associated with reactive oxygen species (ROS). The effects of NZs on aging and age-related disorders are summarized in this article. Finally, prospects and threats to enzyme research and use in aging and age-related disorders are offered.
Collapse
Affiliation(s)
| | - Paria Arab Amiri
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | | | | |
Collapse
|
26
|
Wu H, Chen J, Lin P, Su Y, Li H, Xiao W, Peng J. Nanozyme-Catalyzed Colorimetric Detection of the Total Antioxidant Capacity in Body Fluids by Paper-Based Microfluidic Chips. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39857-39866. [PMID: 39018518 DOI: 10.1021/acsami.4c07835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Total antioxidants play a crucial role in human health, and detection of the total antioxidant capacity (TAC) has broad application prospects in fields such as food safety, environmental assessment, and disease diagnosis. However, a long detection time, cumbersome steps, high cost, reliance on professional equipment, and nonportability still remain significant challenges. In this work, an efficient strategy of point-of-care testing (POCT) of the TAC in body fluids by nanozyme-catalyzed colorimetric paper-based microfluidic sensors is proposed. The paper-based microfluidic sensors coupled with a smartphone can reduce testing costs and provide portability. The nanozyme prepared by the solvothermal method presents Michaelis constants of 0.11 and 0.129 mM for H2O2 and TMB, respectively. A method for immobilizing nanozymes and chromogenic agents on a paper-based microfluidic chip is established. Based on smartphone photography and image grayscale extraction, the TAC can be qualitatively detected with a detection limit and linear range of 33.4 and 50-700 μM, respectively. Furthermore, the proposed sensor can realize the one-step quantitative analysis of the TAC in body fluids (blood, saliva, and sweat) within 15 min. The proposed nanozyme-catalyzed colorimetric paper-based microfluidic sensors presented in this study exhibit promising application prospects in the fields of biochemical analysis and POCT.
Collapse
Affiliation(s)
- Hongjiao Wu
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology, Panyu District, Guangzhou 510006, China
| | - Jiaqi Chen
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology, Panyu District, Guangzhou 510006, China
| | - Pengcheng Lin
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology, Panyu District, Guangzhou 510006, China
| | - Yiqian Su
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology, Panyu District, Guangzhou 510006, China
| | - Huiqin Li
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology, Panyu District, Guangzhou 510006, China
| | - Wei Xiao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Jianhui Peng
- Department of Quality Management, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| |
Collapse
|
27
|
Lin FL, Guo XY, Shen HR, Guo XM, Dai Y, Zheng QH, Chen JC, Xu QX, Zhang Y, He SB, Chen W. Laminarin-modulated osmium nanozymes with high substrate-affinity and selective peroxidase-like behavior engineered colorimetric assay for hydroxyl radical scavenging capacity estimation. Mikrochim Acta 2024; 191:488. [PMID: 39066796 DOI: 10.1007/s00604-024-06571-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
Hydroxyl radical (·OH) scavenging capacity (HOSC) estimation is essential for evaluating antioxidants, natural extracts, or drugs against clinical diseases. While nanozymes offer advantages in related applications, they still face limitations in activity and selectivity. In response, this work showcases the fabrication of laminarin-modulated osmium (laminarin-Os) nanoclusters (1.45 ± 0.05 nm), functioning as peroxidase-like nanozymes within a colorimetric assay tailored for rational HOSC estimation. This study validates both the characterization and remarkable stability of laminarin-Os. By leveraging the abundant surface negative charges of laminarin-Os and the surface hydroxyls of laminarin, oxidation reactions are facilitated, augmenting laminarin-Os's affinity for 3,3',5,5'-tetramethylbenzidine (TMB) (KM = 0.04 mM). This enables the laminarin-Os-based colorimetric assay to respond to ·OH more effectively than citrate-, albumin-, or other polysaccharides-based Os. In addition, experimental results also validate the selective peroxidase-like behavior of laminarin-Os under acidic conditions. Antioxidants like ascorbic acid, glutathione, tannic acid, and cysteine inhibit absorbance at 652 nm in the colorimetric platform using laminarin-Os's peroxidase-like activity. Compared with commercial kits, this assay demonstrates superior sensitivity (e.g., responds to ascorbic acid 0.01-0.075 mM, glutathione 1-15 µg/mL, tannic acid 0.5-5 µM, and monoammonium glycyrrhizinate cysteine 1.06-10.63 µM) and HOSC testing for glutathione, tannic acid, and monoammonium glycyrrhizinate cysteine. Overall, this study introduces a novel Os nanozyme with exceptional TMB affinity and ·OH selectivity, paving the way for HOSC estimation in biomedical research, pharmaceutical analysis, drug quality control, and beyond.
Collapse
Affiliation(s)
- Feng-Lin Lin
- Department of Pharmacy, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, China
| | - Xiao-Yun Guo
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| | - Huan-Ran Shen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| | - Xiu-Mei Guo
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Yun Dai
- Department of Pharmacy, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, China
| | - Qiong-Hua Zheng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| | - Jin-Cheng Chen
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Qiu-Xia Xu
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Yin Zhang
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China.
| | - Shao-Bin He
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China.
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China.
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China.
| |
Collapse
|
28
|
Xin Q, Zhang S, Sun S, Song N, Zhe Y, Tian F, Zhang S, Guo M, Zhang XD, Zhang J, Wang H, Zhang R. Multienzyme Active Nanozyme for Efficient Sepsis Therapy through Modulating Immune and Inflammation Inhibition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36047-36062. [PMID: 38978477 DOI: 10.1021/acsami.4c04994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Sepsis, a life-threatening condition caused by a dysregulated immune response to infection, leads to systemic inflammation, immune dysfunction, and multiorgan damage. Various oxidoreductases play a very important role in balancing oxidative stress and modulating the immune response, but they are stored inconveniently, environmentally unstable, and expensive. Herein, we develop multifunctional artificial enzymes, CeO2 and Au/CeO2 nanozymes, exhibiting five distinct enzyme-like activities, namely, superoxide dismutase, catalase, glutathione peroxidase, peroxidase, and oxidase. These artificial enzymes have been used for the biocatalytic treatment of sepsis via inhibiting inflammation and modulating immune responses. These nanozymes significantly reduce reactive oxygen species and proinflammatory cytokines, achieving multiorgan protection. Notably, CeO2 and Au/CeO2 nanozymes with enzyme-mimicking activities can be particularly effective in restoring immunosuppression and maintaining homeostasis. The redox nanozyme offers a promising dual-protective strategy against sepsis-induced inflammation and organ dysfunction, paving the way for biocatalytic-based immunotherapies for sepsis and related inflammatory diseases.
Collapse
Affiliation(s)
- Qi Xin
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China
| | - Shaofang Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Si Sun
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Nan Song
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Yadong Zhe
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Fangzhen Tian
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shu Zhang
- Department of Neurosurgery and Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Meili Guo
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Jianning Zhang
- Department of Neurosurgery and Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Ruiping Zhang
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Taiyuan 030032, China
| |
Collapse
|
29
|
Bu W, Shi Y, Huang X, Wu S, Jiang L, Pan C, Li D, Xu Z, Wang H, Chen H, Du J. Rescue of nucleus pulposus cells from an oxidative stress microenvironment via glutathione-derived carbon dots to alleviate intervertebral disc degeneration. J Nanobiotechnology 2024; 22:412. [PMID: 38997713 PMCID: PMC11241859 DOI: 10.1186/s12951-024-02683-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024] Open
Abstract
The senescence of nucleus pulposus (NP) cells (NPCs), which is induced by the anomalous accumulation of reactive oxygen species (ROS), is a major cause of intervertebral disc degeneration (IVDD). In this research, glutathione-doped carbon dots (GSH-CDs), which are novel carbon dot antioxidant nanozymes, were successfully constructed to remove large amounts of ROS for the maintenance of NP tissue at the physical redox level. After significantly scavenging endogenous ROS via exerting antioxidant activities, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and total antioxidant capacity, GSH-CDs with good biocompatibility have been demonstrated to effectively improve mitochondrial dysfunction and rescue NPCs from senescence, catabolism, and inflammatory factors in vivo and in vitro. In vivo imaging data and histomorphological indicators, such as the disc height index (DHI) and Pfirrmann grade, demonstrated prominent improvements in the progression of IVDD after the topical application of GSH-CDs. In summary, this study investigated the GSH-CDs nanozyme, which possesses excellent potential to inhibit the senescence of NPCs with mitochondrial lesions induced by the excessive accumulation of ROS and improve the progression of IVDD, providing potential therapeutic options for clinical treatment.
Collapse
Affiliation(s)
- Wenzhen Bu
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Yu Shi
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Xueping Huang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Shang Wu
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
| | - Letao Jiang
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
| | - Chun Pan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Dandan Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Zhuobin Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Huihui Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China.
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, China.
| | - Hao Chen
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China.
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China.
| | - Jianwei Du
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China.
| |
Collapse
|
30
|
Zhu Y, Zhang Y, He S, Yi S, Feng H, Xia X, Fang X, Gong X, Zhao P. Integrating single-nucleus RNA sequencing and spatial transcriptomics to elucidate a specialized subpopulation of astrocytes, microglia and vascular cells in brains of mouse model of lipopolysaccharide-induced sepsis-associated encephalopathy. J Neuroinflammation 2024; 21:169. [PMID: 38961424 PMCID: PMC11223438 DOI: 10.1186/s12974-024-03161-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Understanding the mechanism behind sepsis-associated encephalopathy (SAE) remains a formidable task. This study endeavors to shed light on the complex cellular and molecular alterations that occur in the brains of a mouse model with SAE, ultimately unraveling the underlying mechanisms of this condition. METHODS We established a murine model using intraperitoneal injection of lipopolysaccharide (LPS) in wild type and Anxa1-/- mice and collected brain tissues for analysis at 0-hour, 12-hour, 24-hour, and 72-hour post-injection. Utilizing advanced techniques such as single-nucleus RNA sequencing (snRNA-seq) and Stereo-seq, we conducted a comprehensive characterization of the cellular responses and molecular patterns within the brain. RESULTS Our study uncovered notable temporal differences in the response to LPS challenge between Anxa1-/- (annexin A1 knockout) and wild type mice, specifically at the 12-hour and 24-hour time points following injection. We observed a significant increase in the proportion of Astro-2 and Micro-2 cells in these mice. These cells exhibited a colocalization pattern with the vascular subtype Vas-1, forming a distinct region known as V1A2M2, where Astro-2 and Micro-2 cells surrounded Vas-1. Moreover, through further analysis, we discovered significant upregulation of ligands and receptors such as Timp1-Cd63, Timp1-Itgb1, Timp1-Lrp1, as well as Ccl2-Ackr1 and Cxcl2-Ackr1 within this region. In addition, we observed a notable increase in the expression of Cd14-Itgb1, Cd14-Tlr2, and Cd14-C3ar1 in regions enriched with Micro-2 cells. Additionally, Cxcl10-Sdc4 showed broad upregulation in brain regions containing both Micro-2 and Astro-2 cells. Notably, upon LPS challenge, there was an observed increase in Anxa1 expression in the mouse brain. Furthermore, our study revealed a noteworthy increase in mortality rates following Anxa1 knockdown. However, we did not observe substantial differences in the types, numbers, or distribution of other brain cells between Anxa1-/- and wildtype mice over time. Nevertheless, when comparing the 24-hour post LPS injection time point, we observed a significant decrease in the proportion and distribution of Micro-2 and Astro-2 cells in the vicinity of blood vessels in Anxa1-/- mice. Additionally, we noted reduced expression levels of several ligand-receptor pairs including Cd14-Tlr2, Cd14-C3ar1, Cd14-Itgb1, Cxcl10-Sdc4, Ccl2-Ackr1, and Cxcl2-Ackr1. CONCLUSIONS By combining snRNA-seq and Stereo-seq techniques, our study successfully identified a distinctive cellular colocalization, referred to as a special pathological niche, comprising Astro-2, Micro-2, and Vas-1 cells. Furthermore, we observed an upregulation of ligand-receptor pairs within this niche. These findings suggest a potential association between this cellular arrangement and the underlying mechanisms contributing to SAE or the increased mortality observed in Anxa1 knockdown mice.
Collapse
Grants
- 2021A1515012429 Natural Science Foundation of Guangdong Province, China
- 211102114530659 Shaoguan Municipal Science and Technology Program, China
- 20221807 Shaoguan Engineering Research Center for Research and Development of Molecular and Cellular Technology in Rapid Diagnosis of Infectious Diseases and Cancer Program, China
- KEYANSHEN (2023) 01 Research Fund for Joint Laboratory for Digital and Precise Detection of Clinical Pathogens, Yuebei People's Hospital Affiliated to Shantou University Medical College, China
- RS202001 Research Project for Outstanding Scholar of Yuebei People's Hospital, Shantou University Medical College, China
- Research Fund for Joint Laboratory for Digital and Precise Detection of Clinical Pathogens, Yuebei People’s Hospital Affiliated to Shantou University Medical College, China
- Research Project for Outstanding Scholar of Yuebei People’s Hospital, Shantou University Medical College, China
Collapse
Affiliation(s)
- Yanyan Zhu
- Department of Laboratory Medicine, Yuebei People's Hospital, Shantou University Medical College, No 133, Huimin Road South, Wujiang District, Shaoguan, 512025, China
- Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People's Hospital, Shantou University Medical College, Shaoguan, 512025, China
- Research Center for Interdisciplinary & High-quality Innovative Development in Laboratory Medicine, Shaoguan, 512025, China
- Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People's Hospital, Shantou University Medical College, Shaoguan, 512025, China
- Shaoguan Municipal Quality Control Center for Surveillance of Bacterial Resistance, Shaoguan, 512025, China
- Shaoguan Engineering Research Center for Research and Development of Molecular and Cellular Technology in Rapid Diagnosis of Infectious Diseases and Cancer, Shaoguan, 512025, China
| | - Yin Zhang
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Sheng He
- Department of Laboratory Medicine, Yuebei People's Hospital, Shantou University Medical College, No 133, Huimin Road South, Wujiang District, Shaoguan, 512025, China
- Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People's Hospital, Shantou University Medical College, Shaoguan, 512025, China
- Research Center for Interdisciplinary & High-quality Innovative Development in Laboratory Medicine, Shaoguan, 512025, China
- Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People's Hospital, Shantou University Medical College, Shaoguan, 512025, China
- Shaoguan Municipal Quality Control Center for Surveillance of Bacterial Resistance, Shaoguan, 512025, China
- Shaoguan Engineering Research Center for Research and Development of Molecular and Cellular Technology in Rapid Diagnosis of Infectious Diseases and Cancer, Shaoguan, 512025, China
| | - Sanjun Yi
- Department of Laboratory Medicine, Yuebei People's Hospital, Shantou University Medical College, No 133, Huimin Road South, Wujiang District, Shaoguan, 512025, China
- Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People's Hospital, Shantou University Medical College, Shaoguan, 512025, China
- Research Center for Interdisciplinary & High-quality Innovative Development in Laboratory Medicine, Shaoguan, 512025, China
- Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People's Hospital, Shantou University Medical College, Shaoguan, 512025, China
- Shaoguan Municipal Quality Control Center for Surveillance of Bacterial Resistance, Shaoguan, 512025, China
- Shaoguan Engineering Research Center for Research and Development of Molecular and Cellular Technology in Rapid Diagnosis of Infectious Diseases and Cancer, Shaoguan, 512025, China
| | - Hao Feng
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Jiaxing, 314001, China
| | - Xianzhu Xia
- Department of Laboratory Medicine, Yuebei People's Hospital, Shantou University Medical College, No 133, Huimin Road South, Wujiang District, Shaoguan, 512025, China
- Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People's Hospital, Shantou University Medical College, Shaoguan, 512025, China
- Research Center for Interdisciplinary & High-quality Innovative Development in Laboratory Medicine, Shaoguan, 512025, China
| | | | - Xiaoqian Gong
- Yuebei People's Hospital, Shantou University Medical College, Shaoguan, 512025, China.
| | - Pingsen Zhao
- Department of Laboratory Medicine, Yuebei People's Hospital, Shantou University Medical College, No 133, Huimin Road South, Wujiang District, Shaoguan, 512025, China.
- Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People's Hospital, Shantou University Medical College, Shaoguan, 512025, China.
- Research Center for Interdisciplinary & High-quality Innovative Development in Laboratory Medicine, Shaoguan, 512025, China.
- Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People's Hospital, Shantou University Medical College, Shaoguan, 512025, China.
- Shaoguan Municipal Quality Control Center for Surveillance of Bacterial Resistance, Shaoguan, 512025, China.
- Shaoguan Engineering Research Center for Research and Development of Molecular and Cellular Technology in Rapid Diagnosis of Infectious Diseases and Cancer, Shaoguan, 512025, China.
| |
Collapse
|
31
|
Ma Y, Yi S, Gao C, Yang M, Feng D, Ren Y, Ge H. Al 2O 3-Stabilized Pt Nanozymes: Peroxidase Mimetics and Application in Glucose Detection. Chempluschem 2024; 89:e202300609. [PMID: 38031890 DOI: 10.1002/cplu.202300609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/01/2023]
Abstract
As promising alternatives for natural enzymes, much attention has been paid to nanozymes. And our recent study showed that the medium acid sites on the support are the active sites for the adsorption and oxidation of the substrate. Thus, in this work, due to the abundance of medium acid sites, Al2O3 was chosen as the support to prepare Pt/Al2O3 nanozymes. Through the Pt/Al2O3 samples, we further proved that the distribution of the Pt clusters and the amount of the medium acid sites can significantly influence the peroxidase-like activity. Then the Pt/Al2O3 sample was used for the detection of glucose. And as low as 0.96 μM glucose could be detected with a linear range from 5-60 μM via our method. This work showed the great potential applications of the easily prepared Pt/Al2O3 samples in varieties of simple, robust, and easy-to-make analytical approaches in the future.
Collapse
Affiliation(s)
- Yawen Ma
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, P. R. China
| | - Siwen Yi
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, P. R. China
| | - Chuhan Gao
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xi'an, P. R. China
| | - Man Yang
- School of Materials Science and Engineering, Xi'an University of Technology, 710048, Xi'an, P. R. China
| | - Dan Feng
- Analytical & Testing Center, Northwestern Polytechnical University, 710072, Xi'an, P. R. China
| | - Yujing Ren
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, P. R. China
| | - Huibin Ge
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, P. R. China
| |
Collapse
|
32
|
Yin M, Lei D, Liu Y, Qin T, Gao H, Lv W, Liu Q, Qin L, Jin W, Chen Y, Liang H, Wang B, Gao M, Zhang J, Lu J. NIR triggered polydopamine coated cerium dioxide nanozyme for ameliorating acute lung injury via enhanced ROS scavenging. J Nanobiotechnology 2024; 22:321. [PMID: 38849841 PMCID: PMC11162040 DOI: 10.1186/s12951-024-02570-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
Acute lung injury (ALI) is a life threatening disease in critically ill patients, and characterized by excessive reactive oxygen species (ROS) and inflammatory factors levels in the lung. Multiple evidences suggest that nanozyme with diversified catalytic capabilities plays a vital role in this fatal lung injury. At present, we developed a novel class of polydopamine (PDA) coated cerium dioxide (CeO2) nanozyme (Ce@P) that acts as the potent ROS scavenger for scavenging intracellular ROS and suppressing inflammatory responses against ALI. Herein, we aimed to identify that Ce@P combining with NIR irradiation could further strengthen its ROS scavenging capacity. Specifically, NIR triggered Ce@P exhibited the most potent antioxidant and anti-inflammatory behaviors in lipopolysaccharide (LPS) induced macrophages through decreasing the intracellular ROS levels, down-regulating the levels of TNF-α, IL-1β and IL-6, up-regulating the level of antioxidant cytokine (SOD-2), inducing M2 directional polarization (CD206 up-regulation), and increasing the expression level of HSP70. Besides, we performed intravenous (IV) injection of Ce@P in LPS induced ALI rat model, and found that it significantly accumulated in the lung tissue for 6 h after injection. It was also observed that Ce@P + NIR presented the superior behaviors of decreasing lung inflammation, alleviating diffuse alveolar damage, as well as promoting lung tissue repair. All in all, it has developed the strategy of using Ce@P combining with NIR irradiation for the synergistic enhanced treatment of ALI, which can serve as a promising therapeutic strategy for the clinical treatment of ROS derived diseases as well.
Collapse
Affiliation(s)
- Mingjing Yin
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Doudou Lei
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yalan Liu
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Tao Qin
- Department of Intensive Care Unit, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, China
| | - Huyang Gao
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Wenquan Lv
- Department of Emergency, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, Guangxi, 530022, China
| | - Qianyue Liu
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Lian Qin
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Weiqian Jin
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yin Chen
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Hao Liang
- College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Bailei Wang
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Ming Gao
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Jianfeng Zhang
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China.
| | - Junyu Lu
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China.
| |
Collapse
|
33
|
An K, Li X, Chen J, Zhang S, Xiao J, Wang Q, Qiu H. Deep eutectic solvent-assisted synthesis of La-Ce hybrid nanorods for the colorimetric determination of tetracycline in foods. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3551-3561. [PMID: 38780040 DOI: 10.1039/d4ay00412d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Tetracycline (TC) as a broad-spectrum antibiotic, is widely used in the prevention and treatment of various bacterial diseases. However, its abuse in the livestock industry may lead to interference in human microecology, thereby causing various side effects. In this study, deep eutectic solvents (DESs) were synthesized using L-(-)-threonine (L-(-)-Thr) and cerium nitrate hexahydrate (Ce(NO3)3·6H2O), and later lanthanum nitrate hexahydrate (La(NO3)3·6H2O) was doped to synthesize La-Ce hybrid nanorods. These nanorods can be used for the determination of TC with high sensitivity and selectivity by the colorimetric method. This approach has a linear response to TC between 0.05 μM and 10 μM, with a detection limit of 0.016 μM. In this system, good dispersion provides the substance with a distinct peroxidase activity, which is used to create a colorimetric sensor for detecting TC. Mechanism studies show that the superoxide radical generated by the La-Ce nanomembrane plays a key role in peroxidase catalysis. Finally, the practicality of the method was verified by the determination of TC in food products (milk, pork and honey), which demonstrated that a good recovery rate can be obtained (91.4-102%).
Collapse
Affiliation(s)
- Kaigang An
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830000, China
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Xin Li
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Shuang Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Jing Xiao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Qing Wang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830000, China
| | - Hongdeng Qiu
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830000, China
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
34
|
Wang L, Zhang L, Chen F, Li Q, Zhu B, Tang Y, Yang Z, Cheng C, Qiu L, Ma L. Polymerized Network-Based Artificial Peroxisome Reprogramming Macrophages for Photoacoustic Imaging-Guided Treatment of Rheumatoid Arthritis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25856-25868. [PMID: 38726921 DOI: 10.1021/acsami.4c04000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Artificial peroxisomes (AP) with enzyme-mimetic catalytic activity and recruitment ability have drawn a great deal of attention in fabricating protocell systems for scavenging reactive oxygen species (ROS), modulating the inflammatory microenvironment, and reprogramming macrophages, which is of great potential in treating inflammatory diseases such as rheumatoid arthritis (RA). Herein, a macrophage membrane-cloaked Cu-coordinated polyphthalocyanine-based AP (CuAP) is prepared with a macrocyclic conjugated polymerized network and embedded Cu-single atomic active center, which mimics the catalytic activity and coordination environment of natural superoxide dismutase and catalase, possesses the inflammatory recruitment ability of macrophages, and performs photoacoustic imaging (PAI)-guided treatment. The results of both in vitro cellular and in vivo animal experiments demonstrated that the CuAP under ultrasound and microbubbles could efficiently scavenge excess ROS in cells and tissues, modulate microenvironmental inflammatory cytokines such as interleukin-1β, tumor necrosis factor-α, and arginase-1, and reprogram macrophages by polarization of M1 (proinflammatory phenotype) to M2 (anti-inflammatory phenotype). We believe this study offers a proof of concept for engineering multifaceted AP and a promising approach for a PAI-guided treatment platform for RA.
Collapse
Affiliation(s)
- Liyun Wang
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lingyan Zhang
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fan Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Qian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Bihui Zhu
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuanjiao Tang
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhengbao Yang
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Li Qiu
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lang Ma
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
35
|
Fu Z, Fan K, He X, Wang Q, Yuan J, Lim KS, Tang JN, Xie F, Cui X. Single-Atom-Based Nanoenzyme in Tissue Repair. ACS NANO 2024; 18:12639-12671. [PMID: 38718193 DOI: 10.1021/acsnano.4c00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Since the discovery of ferromagnetic nanoparticles Fe3O4 that exhibit enzyme-like activity in 2007, the research on nanoenzymes has made significant progress. With the in-depth study of various nanoenzymes and the rapid development of related nanotechnology, nanoenzymes have emerged as a promising alternative to natural enzymes. Within nanozymes, there is a category of metal-based single-atom nanozymes that has been rapidly developed due to low cast, convenient preparation, long storage, less immunogenicity, and especially higher efficiency. More importantly, single-atom nanozymes possess the capacity to scavenge reactive oxygen species through various mechanisms, which is beneficial in the tissue repair process. Herein, this paper systemically highlights the types of metal single-atom nanozymes, their catalytic mechanisms, and their recent applications in tissue repair. The existing challenges are identified and the prospects of future research on nanozymes composed of metallic nanomaterials are proposed. We hope this review will illuminate the potential of single-atom nanozymes in tissue repair, encouraging their sequential clinical translation.
Collapse
Affiliation(s)
- Ziliang Fu
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Kexin Fan
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Xingjian He
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jie Yuan
- Department of Cardiology, Shenzhen People's Hospital, Shenzhen, Guangdong 518001, China
| | - Khoon S Lim
- School of Medical Sciences, University of Sydney, NSW 2006, Australia
| | - Jun-Nan Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Fangxi Xie
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai, Guangdong 519082, China
| | - Xiaolin Cui
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
36
|
Dai Y, Guo Y, Tang W, Chen D, Xue L, Chen Y, Guo Y, Wei S, Wu M, Dai J, Wang S. Reactive oxygen species-scavenging nanomaterials for the prevention and treatment of age-related diseases. J Nanobiotechnology 2024; 22:252. [PMID: 38750509 PMCID: PMC11097501 DOI: 10.1186/s12951-024-02501-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024] Open
Abstract
With increasing proportion of the elderly in the population, age-related diseases (ARD) lead to a considerable healthcare burden to society. Prevention and treatment of ARD can decrease the negative impact of aging and the burden of disease. The aging rate is closely associated with the production of high levels of reactive oxygen species (ROS). ROS-mediated oxidative stress in aging triggers aging-related changes through lipid peroxidation, protein oxidation, and DNA oxidation. Antioxidants can control autoxidation by scavenging free radicals or inhibiting their formation, thereby reducing oxidative stress. Benefiting from significant advances in nanotechnology, a large number of nanomaterials with ROS-scavenging capabilities have been developed. ROS-scavenging nanomaterials can be divided into two categories: nanomaterials as carriers for delivering ROS-scavenging drugs, and nanomaterials themselves with ROS-scavenging activity. This study summarizes the current advances in ROS-scavenging nanomaterials for prevention and treatment of ARD, highlights the potential mechanisms of the nanomaterials used and discusses the challenges and prospects for their applications.
Collapse
Affiliation(s)
- Yun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Yifan Guo
- Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Ying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| |
Collapse
|
37
|
Chen J, Su Y, Yu W, Li H, Yin T, Lin P. Microfluidic chemistry assisted synthesis of cobalt quantum dot embedded nitrogen doped carbon with oxidase-like properties toward ascorbic acid detection. Colloids Surf B Biointerfaces 2024; 239:113953. [PMID: 38729021 DOI: 10.1016/j.colsurfb.2024.113953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/26/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
Ascorbic acid (AA) is a powerful antioxidant in food safety and disease treatment. It is of great significance to develop a low-cost, high-stability, and easy-to-operate colorimetric method for quantitative detection of AA in food or human body. Although various nanozymes have been developed for the colorimetric detection of AA, the size regulation of the catalytic center of nanozymes remains a challenge. In this work, we propose a combined strategy of flow chemistry synthesis and pyrolysis to realize the controllable adjustment of the catalytic center size of nanozymes. Zinc-cobalt zeolitic imidazole frameworks (ZnCo-ZIFs) with different sizes are synthesized by flow chemistry. Nitrogen-doped carbon materials with different Co catalytic centers (80 nm-10 nm) are then obtained by pyrolysis of ZnCo-ZIFs precursors. Among them, cobalt quantum dot embedded nitrogen-doped carbon (Co QDs/N-C) exhibits excellent oxidase activity, with Vmax and Km of 4.19 × 10-7 M s-1 and 0.12 mM. Therefore, a simple, low-cost, and stable colorimetric method for the detection of AA is established with a good linear relationship (3-500 μM) and low detection limit (0.40 μM). This work has certain guiding significance for the size regulation of catalytic center of nanozyme, and the detection method has broad application prospects in biochemical sensing field.
Collapse
Affiliation(s)
- Jiaqi Chen
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology, Panyu District, Guangzhou 510006, China
| | - Yiqian Su
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology, Panyu District, Guangzhou 510006, China
| | - Weitai Yu
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology, Panyu District, Guangzhou 510006, China
| | - Huiqin Li
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology, Panyu District, Guangzhou 510006, China
| | - Tao Yin
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology, Panyu District, Guangzhou 510006, China.
| | - Pengcheng Lin
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology, Panyu District, Guangzhou 510006, China.
| |
Collapse
|
38
|
Gao Y, Zhu Z, Chen Z, Guo M, Zhang Y, Wang L, Zhu Z. Machine learning in nanozymes: from design to application. Biomater Sci 2024; 12:2229-2243. [PMID: 38497247 DOI: 10.1039/d4bm00169a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Nanozymes, a distinctive class of nanomaterials endowed with enzyme-like activity and kinetics akin to enzyme-catalysed reactions, present several advantages over natural enzymes, including cost-effectiveness, heightened stability, and adjustable activity. However, the conventional trial-and-error methodology for developing novel nanozymes encounters growing challenges as research progresses. The advent of artificial intelligence (AI), particularly machine learning (ML), has ushered in innovative design approaches for researchers in this domain. This review delves into the burgeoning role of ML in nanozyme research, elucidating the advancements achieved through ML applications. The review explores successful instances of ML in nanozyme design and implementation, providing a comprehensive overview of the evolving landscape. A roadmap for ML-assisted nanozyme research is outlined, offering a universal guideline for research in this field. In the end, the review concludes with an analysis of challenges encountered and anticipates future directions for ML in nanozyme research. The synthesis of knowledge in this review aims to foster a cross-disciplinary study, propelling the revolutionary field forward.
Collapse
Affiliation(s)
- Yubo Gao
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
| | - Zhicheng Zhu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
| | - Zhen Chen
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
| | - Meng Guo
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
| | - Yiqing Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
| | - Lina Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
| | - Zhiling Zhu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
| |
Collapse
|
39
|
Qiao W, Chen J, Zhou H, Hu C, Dalangood S, Li H, Yang D, Yang Y, Gui J. A Single-Atom Manganese Nanozyme Mn-N/C Promotes Anti-Tumor Immune Response via Eliciting Type I Interferon Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305979. [PMID: 38308189 PMCID: PMC11005736 DOI: 10.1002/advs.202305979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/17/2024] [Indexed: 02/04/2024]
Abstract
Tumor microenvironment (TME)-induced nanocatalytic therapy is a promising strategy for cancer treatment, but the low catalytic efficiency limits its therapeutic efficacy. Single-atom catalysts (SACs) are a new type of nanozyme with incredible catalytic efficiency. Here, a single-atom manganese (Mn)-N/C nanozyme is constructed. Mn-N/C catalyzes the conversion of cellular H2O2 to ∙OH through a Fenton-like reaction and enables the sufficient generation of reactive oxygen species (ROS), which induces immunogenic cell death (ICD) of tumor cells and significantly promotes CD8+T anti-tumor immunity. Moreover, RNA sequencing analysis reveals that Mn-N/C treatment activates type I interferon (IFN) signaling, which is critical for Mn-N/C-mediated anti-tumor immune response. Mechanistically, the release of cytosolic DNA and Mn2+ triggered by Mn-N/C collectively activates the cGAS-STING pathway, subsequently stimulating type I IFN induction. A highly efficient single-atom nanozyme, Mn-N/C, which enhances anti-tumor immune response and exhibits synergistic therapeutic effects when combined with the anti-PD-L1 blockade, is proposed.
Collapse
Affiliation(s)
- Wen Qiao
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Jingqi Chen
- Institute of Molecular Medicine (IMM)Renji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Huayuan Zhou
- Institute of Molecular Medicine (IMM)Renji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Cegui Hu
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Sumiya Dalangood
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Hanjun Li
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Dandan Yang
- Evergrande Center for Immunologic DiseasesAnn Romney Center for Neurologic DiseasesHarvard Medical School and Mass General BrighamBostonMA02115USA
| | - Yu Yang
- Institute of Molecular Medicine (IMM)Renji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Jun Gui
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| |
Collapse
|
40
|
Karthika V, Badrinathan Sridharan, Nam JW, Kim D, Gyun Lim H. Neuromodulation by nanozymes and ultrasound during Alzheimer's disease management. J Nanobiotechnology 2024; 22:139. [PMID: 38555420 PMCID: PMC10981335 DOI: 10.1186/s12951-024-02406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with complex pathogenesis and effective clinical treatment strategies for this disease remain elusive. Interestingly, nanomedicines are under extensive investigation for AD management. Currently, existing redox molecules show highly bioactive property but suffer from instability and high production costs, limiting clinical application for neurological diseases. Compared with natural enzymes, artificial enzymes show high stability, long-lasting catalytic activity, and versatile enzyme-like properties. Further, the selectivity and performance of artificial enzymes can be modulated for neuroinflammation treatments through external stimuli. In this review, we focus on the latest developments of metal, metal oxide, carbon-based and polymer based nanozymes and their catalytic mechanisms. Recent developments in nanozymes for diagnosing and treating AD are emphasized, especially focusing on their potential to regulate pathogenic factors and target sites. Various applications of nanozymes with different stimuli-responsive features were discussed, particularly focusing on nanozymes for treating oxidative stress-related neurological diseases. Noninvasiveness and focused application to deep body regions makes ultrasound (US) an attractive trigger mechanism for nanomedicine. Since a complete cure for AD remains distant, this review outlines the potential of US responsive nanozymes to develop future therapeutic approaches for this chronic neurodegenerative disease and its emergence in AD management.
Collapse
Affiliation(s)
- Viswanathan Karthika
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Badrinathan Sridharan
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Ji Won Nam
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Daehun Kim
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hae Gyun Lim
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
41
|
Fan H, Zheng J, Xie J, Liu J, Gao X, Yan X, Fan K, Gao L. Surface Ligand Engineering Ruthenium Nanozyme Superior to Horseradish Peroxidase for Enhanced Immunoassay. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300387. [PMID: 37086206 DOI: 10.1002/adma.202300387] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Nanozymes have great potential to be used as an alternative to natural enzymes in a variety of fields. However, low catalytic activity compared with natural enzymes limits their practical use. It is still challenging to design nanozymes comparable to their natural counterparts in terms of the specific activity. In this study, a surface engineering strategy is employed to improve the specific activity of Ru nanozymes using charge-transferrable ligands such as polystyrene sulfonate (PSS). PSS-modified Ru nanozyme exhibits a peroxidase-like specific activity of up to 2820 U mg-1 , which is twice that of horseradish peroxidase (1305 U mg-1 ). Mechanism studies suggest that PSS readily accepts negative charge from Ru, thus reducing the affinity between Ru and ·OH. Importantly, the modified Ru-peroxidase nanozyme is successfully used to develop an immunoassay for human alpha-fetoprotein and achieves a 140-fold increase in detection sensitivity compared with traditional horseradish-peroxidase-based enzyme-linked immunosorbent assay. Therefore, this work provides a feasible route to design nanozymes with high specific activity that meets the practical use as an alternative to natural enzymes.
Collapse
Affiliation(s)
- Huizhen Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiajia Zheng
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiaying Xie
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
42
|
Zhang L, Wang H, Qu X. Biosystem-Inspired Engineering of Nanozymes for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211147. [PMID: 36622946 DOI: 10.1002/adma.202211147] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Nanozymes with intrinsic enzyme-mimicking activities have shown great potential to become surrogates of natural enzymes in many fields by virtue of their advantages of high catalytic stability, ease of functionalization, and low cost. However, due to the lack of predictable descriptors, most of the nanozymes reported in the past have been obtained mainly through trial-and-error strategies, and the catalytic efficacy, substrate specificity, as well as practical application effect under physiological conditions, are far inferior to that of natural enzymes. To optimize the catalytic efficacies and functions of nanozymes in biomedical settings, recent studies have introduced biosystem-inspired strategies into nanozyme design. In this review, recent advances in the engineering of biosystem-inspired nanozymes by leveraging the refined catalytic structure of natural enzymes, simulating the behavior changes of natural enzymes in the catalytic process, and mimicking the specific biological processes or living organisms, are introduced. Furthermore, the currently involved biomedical applications of biosystem-inspired nanozymes are summarized. More importantly, the current opportunities and challenges of the design and application of biosystem-inspired nanozymes are discussed. It is hoped that the studies of nanozymes based on bioinspired strategies will be beneficial for constructing the new generation of nanozymes and broadening their biomedical applications.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Huan Wang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
43
|
McHugh EA, Liopo AV, Mendoza K, Robertson CS, Wu G, Wang Z, Chen W, Beckham JL, Derry PJ, Kent TA, Tour JM. Oxidized Activated Charcoal Nanozymes: Synthesis, and Optimization for In Vitro and In Vivo Bioactivity for Traumatic Brain Injury. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211239. [PMID: 36940058 PMCID: PMC10509328 DOI: 10.1002/adma.202211239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Carbon-based superoxide dismutase (SOD) mimetic nanozymes have recently been employed as promising antioxidant nanotherapeutics due to their distinct properties. The structural features responsible for the efficacy of these nanomaterials as antioxidants are, however, poorly understood. Here, the process-structure-property-performance properties of coconut-derived oxidized activated charcoal (cOAC) nano-SOD mimetics are studied by analyzing how modifications to the nanomaterial's synthesis impact the size, as well as the elemental and electrochemical properties of the particles. These properties are then correlated to the in vitro antioxidant bioactivity of poly(ethylene glycol)-functionalized cOACs (PEG-cOAC). Chemical oxidative treatment methods that afford smaller, more homogeneous cOAC nanoparticles with higher levels of quinone functionalization show enhanced protection against oxidative damage in bEnd.3 murine endothelioma cells. In an in vivo rat model of mild traumatic brain injury (mTBI) and oxidative vascular injury, PEG-cOACs restore cerebral perfusion rapidly to the same extent as the former nanotube-derived PEG-hydrophilic carbon clusters (PEG-HCCs) with a single intravenous injection. These findings provide a deeper understanding of how carbon nanozyme syntheses can be tailored for improved antioxidant bioactivity, and set the stage for translation of medical applications.
Collapse
Affiliation(s)
- Emily A McHugh
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Anton V Liopo
- Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Street, Houston, TX, 77030, USA
| | - Kimberly Mendoza
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Claudia S Robertson
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Gang Wu
- Hematology, Internal Medicine, University of Texas McGovern Medical School-Houston, Houston, TX, 77030, USA
| | - Zhe Wang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Weiyin Chen
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Jacob L Beckham
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Paul J Derry
- Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Street, Houston, TX, 77030, USA
- EnMed, School of Engineering Medicine, Texas A&M University, 1020 W. Holcombe Blvd, Houston, TX, 77030, USA
| | - Thomas A Kent
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Street, Houston, TX, 77030, USA
- Stanley H. Appel Department of Neurology and Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - James M Tour
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- NanoCarbon Center and the Welch Institute for Advanced Materials, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| |
Collapse
|
44
|
Li W, Xin H, Gao W, Yuan P, Ni F, Ma J, Sun J, Xiao J, Tian G, Liu L, Zhang G. NIR-IIb fluorescence antiangiogenesis copper nano-reaper for enhanced synergistic cancer therapy. J Nanobiotechnology 2024; 22:73. [PMID: 38374027 PMCID: PMC10877799 DOI: 10.1186/s12951-024-02343-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/12/2024] [Indexed: 02/21/2024] Open
Abstract
The formation of blood vessel system under a relatively higher Cu2+ ion level is an indispensable precondition for tumor proliferation and migration, which was assisted in forming the tumor immune microenvironment. Herein, a copper ions nano-reaper (LMDFP) is rationally designed not only for chelating copper ions in tumors, but also for combination with photothermal therapy (PTT) to improve antitumor efficiency. Under 808 nm laser irradiation, the fabricated nano-reaper converts light energy into thermal energy to kill tumor cells and promotes the release of D-penicillamine (DPA) in LMDFP. Photothermal properties of LMDFP can cause tumor ablation in situ, which further induces immunogenic cell death (ICD) to promote systematic antitumor immunity. The released DPA exerts an anti-angiogenesis effect on the tumor through chelating copper ions, and inhibits the expression of programmed death ligand 1 (PD-L1), which synergizes with PTT to enhance antitumor immunity and inhibit tumor metastasis. Meanwhile, the nanoplatform can emit near-infrared-IIb (NIR-IIb) fluorescence under 980 nm excitation, which can be used to track the nano-reaper and determine the optimal time point for PTT. Thus, the fabricated nano-reaper shows powerful potential in inhibiting tumor growth and metastasis, and holds great promise for the application of copper nanochelator in precise tumor treatment.
Collapse
Affiliation(s)
- Wenling Li
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China
| | - Huan Xin
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China
| | - Wenjuan Gao
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China
| | - Pengjun Yuan
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China
| | - Feixue Ni
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China
| | - Jingyi Ma
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China
| | - Jingrui Sun
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China
| | - Jianmin Xiao
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China
| | - Geng Tian
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China.
| | - Lu Liu
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China.
| | - Guilong Zhang
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P.R. China.
| |
Collapse
|
45
|
Li S, Chen Z, Wang M, Yang F, Zhang S, Qiao C, Chu W, Yue W. Ultrasmall Cu 2O@His Nanozymes with RONS Scavenging Capability for Anti-inflammatory Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3116-3125. [PMID: 38224533 DOI: 10.1021/acsami.3c15083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
High concentrations of reactive oxygen and nitrogen species (RONS) are key characteristics of inflammatory sites. Scavenging RONS at the site of inflammation is an effective therapeutic strategy. This study introduces ultrasmall Cu2O@His nanoparticles with RONS-scavenging ability for the treatment of inflammatory bowel disease (IBD) in mice. The strong coordination between the nitrogen atom in histidine (His) and copper enhances the dispersion and stability of Cu2O@His. Due to their small size and large surface area, Cu2O@His exhibits outstanding RONS-clearing ability. Importantly, Cu2O@His can target mitochondrial sites and repair damaged mitochondria. With excellent dispersion and scavenging RONS ability, Cu2O@His demonstrates good efficacy in treating mouse IBD. This work provides a new paradigm for developing nanozymes with an ultrasmall size and multiple scavenging RONS abilities.
Collapse
Affiliation(s)
- Shuaiwen Li
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Zihui Chen
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Minyu Wang
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Feng Yang
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Shuqi Zhang
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Cairong Qiao
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Weihua Chu
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wanqing Yue
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 210009, People's Republic of China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, People's Republic of China
| |
Collapse
|
46
|
Liu S, Sun Y, Ye J, Li C, Wang Q, Liu M, Cui Y, Wang C, Jin G, Fu Y, Xu J, Liang X. Targeted Delivery of Active Sites by Oxygen Vacancy-Engineered Bimetal Silicate Nanozymes for Intratumoral Aggregation-Potentiated Catalytic Therapy. ACS NANO 2024; 18:1516-1530. [PMID: 38172073 DOI: 10.1021/acsnano.3c08780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Biodegradable silicate nanoconstructs have aroused tremendous interest in cancer therapeutics due to their variable framework composition and versatile functions. Nevertheless, low intratumoral retention still limits their practical application. In this study, oxygen vacancy (OV)-enriched bimetallic silicate nanozymes with Fe-Ca dual active sites via modification of oxidized sodium alginate and gallic acid (GA) loading (OFeCaSA-V@GA) were developed for targeted aggregation-potentiated therapy. The band gap of silica markedly decreased from 2.76 to 1.81 eV by codoping of Fe3+ and Ca2+, enabling its excitation by a 650 nm laser to generate reactive oxygen species. The OV that occurred in the hydrothermal synthetic stage of OFeCaSA-V@GA can anchor the metal ions to form an atomic phase, offering a massive fabrication method of single-atom nanozymes. Density functional theory results reveal that the Ca sites can promote the adsorption of H2O2, and Fe sites can accelerate the dissociation of H2O2, thereby realizing a synergetic catalytic effect. More importantly, the targeted delivery of metal ions can induce a morphological transformation at tumor sites, leading to high retention (the highest retention rate is 36.3%) of theranostic components in tumor cells. Thus, this finding may offer an ingenious protocol for designing and engineering highly efficient and long-retention nanodrugs.
Collapse
Affiliation(s)
- Shuang Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
- Guangxi Medical University Cancer Hospital, Nanning, 530021, P. R. China
| | - Yu Sun
- Heilongjiang Vocational Institute Ecological Engineering, Harbin, 150040, P. R. China
| | - Jin Ye
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Chunsheng Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Qiang Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Mengting Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Yujie Cui
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Chen Wang
- Guangxi Medical University Cancer Hospital, Nanning, 530021, P. R. China
| | - Guanqiao Jin
- Guangxi Medical University Cancer Hospital, Nanning, 530021, P. R. China
| | - Yujie Fu
- College of Forestry, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Jiating Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Xinqiang Liang
- Guangxi Medical University Cancer Hospital, Nanning, 530021, P. R. China
| |
Collapse
|
47
|
Zhong Y, Li X, Qi P, Sun C, Wang Z. A light-controlled single-atom nanozyme hydrogels for glutathione depletion mediated low-dose radiotherapy. NANOTECHNOLOGY 2024; 35:135102. [PMID: 38134437 DOI: 10.1088/1361-6528/ad183e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/22/2023] [Indexed: 12/24/2023]
Abstract
Due to the unique ability to mimic natural enzymes, single-atom nanoenzymes (SAE) have garnered significant attention and research in tumor therapy. However, their efficacy often faces challenges in terms of drug delivery methods, and the research regarding their applications in radiotherapy is scarce. Herein, we introduce a light-controlled SAE hydrogel platform (SH) for glutathione-depletion-mediated low-dose radiotherapy. The SH incorporates a Cu single-atom enzyme (CuSA), and upon irradiation with 1064 nm near-infrared light, the CuSA can convert light energy into heat, which in turn degrades the hydrogel, enabling the release of CuSA into tumor cells or tissues. The diffused CuSA not only can facilitate the conversion of H2O2into hydroxyl radicals (•OH), but also can effectively depletes cellular glutathione. This leads to increased sensitivity of tumor cells to radiotherapy, resulting in enhanced cytotoxicity even at low doses. The animal study results further confirmed the good tumor-killing efficacy of this SH system. To the best of our knowledge, this stands as the pioneering report on leveraging a single-atom enzyme for GSH depletion-mediated low-dose radiotherapy.
Collapse
Affiliation(s)
- Yang Zhong
- Department of Radiation Oncology, Anhui No.2 Provincial People's Hospital, Hefei, Anhui 230011, People's Republic of China
| | - Xiaopeng Li
- Department of Radiation Oncology, Anhui No.2 Provincial People's Hospital, Hefei, Anhui 230011, People's Republic of China
| | - Pengyuan Qi
- Department of Electronic Science and Technology, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Chenglong Sun
- Department of Radiation Oncology, Anhui No.2 Provincial People's Hospital, Hefei, Anhui 230011, People's Republic of China
| | - Zhanggui Wang
- Department of Radiation Oncology, Anhui No.2 Provincial People's Hospital, Hefei, Anhui 230011, People's Republic of China
| |
Collapse
|
48
|
Geng H, Chen J, Tu K, Tuo H, Wu Q, Guo J, Zhu Q, Zhang Z, Zhang Y, Huang D, Zhang M, Xu Q. Carbon dot nanozymes as free radicals scavengers for the management of hepatic ischemia-reperfusion injury by regulating the liver inflammatory network and inhibiting apoptosis. J Nanobiotechnology 2023; 21:500. [PMID: 38129928 PMCID: PMC10734184 DOI: 10.1186/s12951-023-02234-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Hepatic ischemia-reperfusion injury (HIRI) is a pathophysiological process during liver transplantation, characterized by insufficient oxygen supply and subsequent restoration of blood flow leading to an overproduction of reactive oxygen species (ROS), which in turn activates the inflammatory response and leads to cellular damage. Therefore, reducing excess ROS production in the hepatic microenvironment would provide an effective way to mitigate oxidative stress injury and apoptosis during HIRI. Nanozymes with outstanding free radical scavenging activities have aroused great interest and enthusiasm in oxidative stress treatment. RESULTS We previously demonstrated that carbon-dots (C-dots) nanozymes with SOD-like activity could serve as free radicals scavengers. Herein, we proposed that C-dots could protect the liver from ROS-mediated inflammatory responses and apoptosis in HIRI, thereby improving the therapeutic effect. We demonstrated that C-dots with anti-oxidative stress and anti-inflammatory properties improved the survival of L-02 cells under H2O2 and LPS-treated conditions. In the animal model, Our results showed that the impregnation of C-dots could effectively scavenge ROS and reduce the expression of inflammatory cytokines, such as IL-1β, IL-6, IL-12, and TNF-α, resulting in a profound therapeutic effect in the HIRI. To reveal the potential therapeutic mechanism, transcriptome sequencing was performed and the relevant genes were validated, showing that the C-dots exert hepatoprotective effects by modulating the hepatic inflammatory network and inhibiting apoptosis. CONCLUSIONS With negligible systemic toxicity, our findings substantiate the potential of C-dots as a therapeutic approach for HIRI, thereby offering a promising intervention strategy for clinical implementation.
Collapse
Affiliation(s)
- Haoge Geng
- Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Jiayu Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Hang Tuo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Qingsong Wu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Jinhui Guo
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, 266071, China
| | - Qingwei Zhu
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, 266071, China
| | - Zhe Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yujie Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Dongsheng Huang
- Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Qiuran Xu
- Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
49
|
Zhang Z, Yang T, Wang J, Yu Z, Qiao Y, Wang C, Yue Z, Wu H. Hollow Mesoporous Molybdenum Single-Atom Nanozyme-Based Reactor for Enhanced Cascade Catalytic Antibacterial Therapy. Int J Nanomedicine 2023; 18:7209-7223. [PMID: 38076729 PMCID: PMC10710243 DOI: 10.2147/ijn.s438278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Purpose The remarkable peroxidase-like activity of single-atom nanozymes (SAzymes) allows them to catalyze the conversion of H2O2 to •OH, rendering them highly promising for antibacterial applications. However, their practical in vivo application is hindered by the near-neutral pH and insufficient H2O2 levels present in physiological systems. This study was aimed at developing a SAzyme-based nanoreactor and investigating its in vivo antibacterial activity. Methods We developed a hollow mesoporous molybdenum single-atom nanozyme (HMMo-SAzyme) using a controlled chemical etching approach and pyrolysis strategy. The HMMo-SAzyme not only exhibited excellent catalytic activity but also served as an effective nanocarrier. By loading glucose oxidase (GOx) with HMMo-SAzyme and encapsulating it with hyaluronic acid (HA), a nanoreactor (HMMo/GOx@HA) was constructed as glucose-triggered cascade catalyst for combating bacterial infection in vivo. Results Hyaluronidase (HAase) at the site of infection degraded HA, allowing GOx to convert glucose into gluconic acid and H2O2. An acid environment significantly enhanced the catalytic activity of HMMo-SAzyme to promote the further catalytic conversion of H2O2 to •OH for bacterial elimination. In vitro and in vivo experiments demonstrated that the nanoreactor had excellent antibacterial activity and negligible biological toxicity. Conclusion This study represents a significant advancement in developing a cascade catalytic system with high efficiency based on hollow mesoporous SAzyme, promising the advancement of biological applications of SAzyme.
Collapse
Affiliation(s)
- Zhijun Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, People’s Republic of China
- Department of Medicine Chemistry and Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi’an, People’s Republic of China
| | - Tiehong Yang
- Department of Medicine Chemistry and Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi’an, People’s Republic of China
| | - Jingwei Wang
- Department of Medicine Chemistry and Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi’an, People’s Republic of China
| | - Zhe Yu
- Department of Medicine Chemistry and Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi’an, People’s Republic of China
| | - Youbei Qiao
- Department of Medicine Chemistry and Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi’an, People’s Republic of China
| | - Chaoli Wang
- Department of Medicine Chemistry and Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi’an, People’s Republic of China
| | - Zhenggang Yue
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, People’s Republic of China
| | - Hong Wu
- Department of Medicine Chemistry and Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi’an, People’s Republic of China
| |
Collapse
|
50
|
Zhang J, Yang Y, Qin F, Hu T, Zhao X, Zhao S, Cao Y, Gao Z, Zhou Z, Liang R, Tan C, Qin Y. Catalyzing Generation and Stabilization of Oxygen Vacancies on CeO 2-x Nanorods by Pt Nanoclusters as Nanozymes for Catalytic Therapy. Adv Healthc Mater 2023; 12:e2302056. [PMID: 37708844 PMCID: PMC11468536 DOI: 10.1002/adhm.202302056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/09/2023] [Indexed: 09/16/2023]
Abstract
Although CeO2 nanomaterials have been widely explored as nanozymes for catalytic therapy, they still suffer from relatively low activities. Herein, the catalyzing generation and stabilization of oxygen vacancies on CeO2 nanorods by Pt nanoclusters via H2 gas reduction under mild temperature (350 °C) to obtain Pt/CeO2- x , which can serve as a highly efficient nanozyme for catalytic cancer therapy, is reported. The deposited Pt on CeO2 by the atomic layer deposition technique not only can serve as the catalyst to generate oxygen vacancies under mild temperature reduction through the hydrogen spillover effect, but also can stabilize the generated oxygen vacancies. Meanwhile, the oxygen vacancies also provide anchoring sites for Pt forming strong metal-support interactions and thus preventing their agglomerations. Importantly, the Pt/CeO2- x reduced at 350 °C (Pt/CeO2- x -350R) exhibits excellent enzyme-mimicking catalytic activity for generation of reactive oxygen species (e.g., ·OH) as compared to other control samples, including CeO2 , Pt/CeO2 , and Pt/CeO2- x reduced at other temperatures, thus achieving excellent performance for tumor-specific catalytic therapy to efficiently eliminate cancer cells in vitro and ablate tumors in vivo. The excellent enzyme-mimicking catalytic activity of Pt/CeO2- x -350R originates from the good catalytic activities of oxygen vacancy-rich CeO2- x and Pt nanoclusters.
Collapse
Affiliation(s)
- Jiankang Zhang
- Interdisciplinary Research Center of Biology and CatalysisSchool of Life SciencesNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Yu Yang
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Fengmin Qin
- Interdisciplinary Research Center of Biology and CatalysisSchool of Life SciencesNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Tingting Hu
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Xinshuo Zhao
- College of Chemistry and Chemical EngineeringHenan Key Laboratory of Function‐Oriented Porous MaterialsLuoyang Normal UniversityLuoyang471934P. R. China
| | - Shichao Zhao
- State Key Laboratory of Coal ConversionInstitute of Coal ChemistryChinese Academy of SciencesTaiyuan030001P. R. China
| | - Yueqiang Cao
- State Key Laboratory of Chemical EngineeringSchool of Chemical EngineeringEast China University of Science and TechnologyShanghai200237P. R. China
| | - Zhe Gao
- State Key Laboratory of Coal ConversionInstitute of Coal ChemistryChinese Academy of SciencesTaiyuan030001P. R. China
| | - Zhan Zhou
- College of Chemistry and Chemical EngineeringHenan Key Laboratory of Function‐Oriented Porous MaterialsLuoyang Normal UniversityLuoyang471934P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
- Quzhou Institute for Innovation in Resource Chemical EngineeringQuzhou324000P. R. China
| | - Chaoliang Tan
- Department Electrical and Electronic EngineeringThe University of Hong KongPokfulam RoadHong KongSAR999077P. R. China
| | - Yong Qin
- Interdisciplinary Research Center of Biology and CatalysisSchool of Life SciencesNorthwestern Polytechnical UniversityXi'an710072P. R. China
- State Key Laboratory of Coal ConversionInstitute of Coal ChemistryChinese Academy of SciencesTaiyuan030001P. R. China
| |
Collapse
|