1
|
Braile M, Luciano N, Carlomagno D, Salvatore G, Orlandella FM. Insight into the Role of the miR-584 Family in Human Cancers. Int J Mol Sci 2024; 25:7448. [PMID: 39000555 PMCID: PMC11242779 DOI: 10.3390/ijms25137448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Among the non-coding RNAs, the aberrant expression of microRNAs (miRNAs) is well described in the oncology field. It is clear that the altered expression of miRNAs is crucial for a variety of processes such as proliferation, apoptosis, motility, angiogenesis and metastasis insurgence. Considering these aspects, RNA-based therapies and the use of miRNAs as non-invasive biomarkers for early diagnosis are underlined as promising opportunities against cancer death. In the era of precision medicine, significant progress in next-generation sequencing (NGS) techniques has broadened knowledge regarding the miRNAs expression profile in cancer tissues and in the blood of cancer patients. In this scenario, pre-clinical and clinical studies suggested that the members of the miR-584 family, i.e., miR-584-5p and -3p, are prominent players in cancer development and progression. Under some conditions, these miRNAs are under-expressed in cancer tissues acting as tumor suppressors, while in other conditions, they are overexpressed, acting as oncogenes increasing the aggressive behavior of cancer cells. The aim of this review is to provide a comprehensive and up-to-date overview on the expression, upstream genes, molecular targets and signaling pathways influenced by the miR-584 family (i.e., miR-584-3p and -5p) in various human solid and hematological cancers. To achieve this goal, 64 articles on this topic are discussed. Among these articles, 55 are focused on miR-584-5p, and it is outlined how this miRNA could be used in future applications as a potential new therapeutic strategy and diagnostic tool.
Collapse
Affiliation(s)
| | - Neila Luciano
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli “Federico II”, 80131 Naples, Italy;
| | - Davide Carlomagno
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, 80131 Naples, Italy;
| | - Giuliana Salvatore
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy;
- Dipartimento delle Scienze Mediche, Motorie e del Benessere, Università degli Studi di Napoli “Parthenope”, 80133 Naples, Italy
| | - Francesca Maria Orlandella
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy;
- Dipartimento delle Scienze Mediche, Motorie e del Benessere, Università degli Studi di Napoli “Parthenope”, 80133 Naples, Italy
| |
Collapse
|
2
|
Rigon M, Mutti L, Campanella M. Pleural mesothelioma (PMe): The evolving molecular knowledge of a rare and aggressive cancer. Mol Oncol 2024; 18:797-814. [PMID: 38459714 PMCID: PMC10994233 DOI: 10.1002/1878-0261.13591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/22/2023] [Accepted: 01/15/2024] [Indexed: 03/10/2024] Open
Abstract
Mesothelioma is a type of late-onset cancer that develops in cells covering the outer surface of organs. Although it can affect the peritoneum, heart, or testicles, it mainly targets the lining of the lungs, making pleural mesothelioma (PMe) the most common and widely studied mesothelioma type. PMe is caused by exposure to fibres of asbestos, which when inhaled leads to inflammation and scarring of the pleura. Despite the ban on asbestos by most Western countries, the incidence of PMe is on the rise, also facilitated by a lack of specific symptomatology and diagnostic methods. Therapeutic options are also limited to mainly palliative care, making this disease untreatable. Here we present an overview of biological aspects underlying PMe by listing genetic and molecular mechanisms behind its onset, aggressive nature, and fast-paced progression. To this end, we report on the role of deubiquitinase BRCA1-associated protein-1 (BAP1), a tumour suppressor gene with a widely acknowledged role in the corrupted signalling and metabolism of PMe. This review aims to enhance our understanding of this devastating malignancy and propel efforts for its investigation.
Collapse
Affiliation(s)
- Manuel Rigon
- Centre for Clinical Pharmacology and Precision Medicine William Harvey Research InstituteQueen Mary University of LondonUK
- Department of BiologyUniversity of Rome Tor VergataRomeItaly
| | - Luciano Mutti
- Department of Biotechnological and Applied Clinical SciencesDISCAB, L'Aquila UniversityL'AquilaItaly
- Temple University Sbarro Institute for Cancer Research and Molecular MedicinePhiladelphiaPAUSA
| | - Michelangelo Campanella
- Centre for Clinical Pharmacology and Precision Medicine William Harvey Research InstituteQueen Mary University of LondonUK
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
- Institute Gustave RoussyVillejuifFrance
| |
Collapse
|
3
|
Abd-Elmawla MA, Abdel Mageed SS, Al-Noshokaty TM, Elballal MS, Abulsoud AI, Elshaer SS, El-Husseiny AA, Fathi D, Midan HM, Rizk NI, Elrebehy MA, Sayed GA, Tabaa MME, Salman A, Mohammed OA, Ashraf A, Khidr EG, Khaled R, El-Dakroury WA, Helal GK, Moustafa YM, Doghish AS. Melodic maestros: Unraveling the role of miRNAs in the diagnosis, progression, and drug resistance of malignant pleural mesothelioma. Pathol Res Pract 2023; 250:154817. [PMID: 37713736 DOI: 10.1016/j.prp.2023.154817] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/03/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
Malignant pleural mesothelioma (MPM) is a highly lethal form of pleural cancer characterized by a scarcity of effective therapeutic interventions, resulting in unfavorable prognoses for afflicted individuals. Besides, many patients experience substantial consequences from being diagnosed in advanced stages. The available diagnostic, prognostic, and therapeutic options for MPM are restricted in scope. MicroRNAs (miRNAs) are a subset of small, noncoding RNA molecules that exert significant regulatory influence over several cellular processes within cell biology. A wide range of miRNAs have atypical expression patterns in cancer, serving specific functions as either tumor suppressors or oncomiRs. This review aims to collate, epitomize, and analyze the latest scholarly investigations on miRNAs that are believed to be implicated in the dysregulation leading to MPM. miRNAs are also discussed concerning their potential clinical usefulness as diagnostic and prognostic biomarkers for MPM. The future holds promising prospects for enhancing diagnostic, prognostic, and therapeutic modalities for MPM, with miRNAs emerging as a potential trigger for such advancements.
Collapse
Affiliation(s)
- Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ghadir A Sayed
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City 32897, Menoufia, Egypt
| | - Aya Salman
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Reem Khaled
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Gouda Kamel Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11231, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Yasser M Moustafa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
4
|
Cai Y, Liu P, Xu Y, Xia Y, Peng X, Zhao H, Chen Q. Biomarkers of obesity-mediated insulin resistance: focus on microRNAs. Diabetol Metab Syndr 2023; 15:167. [PMID: 37537674 PMCID: PMC10401761 DOI: 10.1186/s13098-023-01137-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/09/2023] [Indexed: 08/05/2023] Open
Abstract
Obesity and metabolic syndromes are becoming increasingly prevalent worldwide. Insulin resistance (IR) is a common complication of obesity. However, IR occurrence varies across individuals with obesity and may involve epigenetic factors. To rationalize the allocation of healthcare resources, biomarkers for the early risk stratification of individuals with obesity should be identified. MicroRNAs (miRNAs) are closely associated with metabolic diseases and involved in epigenetic regulation. In this review, we have summarized the changes in miRNA expression in the peripheral circulation and tissues of patients and animals with obesity-associated IR over the last 5 years and identified several candidate biomarkers that predict obesity-related IR. There are areas for improvement in existing studies. First, more than the predictive validity of a single biomarker is required, and a biomarker panel needs to be formed. Second, miRNAs are often studied in isolation and do not form a network of signaling pathways. We believe that early biomarkers can help clinicians accurately predict individuals prone to obesity-related IR at an early stage. Epigenetic regulation may be one of the underlying causes of different clinical outcomes in individuals with obesity. Future studies should focus on objectively reflecting the differences in miRNA profile expression in individuals with obesity-related IR, which may help identify more reliable biomarkers. Understanding the metabolic pathways of these miRNAs can help design new metabolic risk prevention and management strategies, and support the development of drugs to treat obesity and metabolic disorders.
Collapse
Affiliation(s)
- Yichen Cai
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumei Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuguo Xia
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Xiaowan Peng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haiyan Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
5
|
Sekido Y, Sato T. NF2 alteration in mesothelioma. FRONTIERS IN TOXICOLOGY 2023; 5:1161995. [PMID: 37180489 PMCID: PMC10168293 DOI: 10.3389/ftox.2023.1161995] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
The NF2 tumor suppressor gene is a frequent somatically mutated gene in mesothelioma, with 30%-40% mesotheliomas showing NF2 inactivation. NF2 encodes merlin, a member of the ezrin, radixin, and moesin (ERM) family of proteins that regulate cytoskeleton and cell signaling. Recent genome analysis revealed that NF2 alteration may be a late event in mesothelioma development, suggesting that NF2 mutation confers a more aggressive phenotype to mesothelioma cells and may not be directly caused by asbestos exposure. The Hippo tumor-suppressive and mTOR prooncogenic signaling pathways are crucial cell-signaling cascades regulated by merlin. Although the exact role and timing of NF2 inactivation in mesothelioma cells remain to be elucidated, targeting the NF2/merlin-Hippo pathway may be a new therapeutic strategy for patients with mesothelioma.
Collapse
Affiliation(s)
- Yoshitaka Sekido
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Molecular and Cellular Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tatsuhiro Sato
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
| |
Collapse
|
6
|
Lai H, Hu C, Qu M, Liu X, Xue Y, Xu P, Hao D. Mesothelioma Due to Workplace Exposure: A Comprehensive Bibliometric Analysis of Current Situation and Future Trends. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2833. [PMID: 36833533 PMCID: PMC9956900 DOI: 10.3390/ijerph20042833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Background: This article provides an overview of the current status and research progress of mesothelioma. Methods: A total of 2638 documents published from 1 January 2004 to 30 November 2022 were retrieved from the Web of Science Core Collection and analyzed via Microsoft Office Excel 2019, VOSviewer 1.6.18, and Tableau 2022.2. Results: There was an obvious increase in the number of publications regarding mesothelioma in the last 18 years, with the United States dominating the research field with 715 publications and 23,882 citations, while the University of Turin contributed the most (118). Occupational & Environmental Medicine was the most popular journal (80), with Corrado Magnani being the most prolific author (52) and Michele Carbone obtaining the most citations (4472). "Oncology" and "Health Science of Environment & Occupation" were the two main subjects, while the keywords "asbestos", "lung cancer", "gene expression", "apoptosis", "survival", and "cisplatin" were the most popular. Conclusions: The containment of mesothelioma calls for more participation from low- and middle-income countries, and further attention needs to be paid to clinical research.
Collapse
Affiliation(s)
- Hanpeng Lai
- Department of Occupational and Environmental Health, School of Public Health, Yangzhou University, Yangzhou 225009, China
| | - Chenglei Hu
- Department of Occupational and Environmental Health, School of Public Health, Yangzhou University, Yangzhou 225009, China
| | - Man Qu
- Department of Occupational and Environmental Health, School of Public Health, Yangzhou University, Yangzhou 225009, China
| | - Xing Liu
- Department of Occupational and Environmental Health, School of Public Health, Yangzhou University, Yangzhou 225009, China
| | - Yu Xue
- Department of Radiology and Functional Examination, Nanjing Prevention and Treatment Center for Occupational Diseases, Nanjing 210018, China
| | - Ping Xu
- Department of Radiology and Functional Examination, Nanjing Prevention and Treatment Center for Occupational Diseases, Nanjing 210018, China
| | - Dongdong Hao
- Lanzhou 7th Rest Center for Retired Cadre, Gansu Military Region, Lanzhou 730000, China
| |
Collapse
|
7
|
Chapel DB, Hornick JL, Barlow J, Bueno R, Sholl LM. Clinical and molecular validation of BAP1, MTAP, P53, and Merlin immunohistochemistry in diagnosis of pleural mesothelioma. Mod Pathol 2022; 35:1383-1397. [PMID: 35459788 PMCID: PMC9529776 DOI: 10.1038/s41379-022-01081-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/16/2022] [Accepted: 03/28/2022] [Indexed: 12/28/2022]
Abstract
BAP1 and MTAP immunostains play an important role in diagnosis of mesothelioma, but additional markers are needed to increase sensitivity. We analyzed 84 pleural mesotheliomas (51 epithelioid, 27 biphasic, 6 sarcomatoid) by a hybrid-capture next-generation sequencing (NGS) panel including complete coverage of coding and splicing regions for BAP1, CDKN2A/MTAP, NF2, and TP53 and correlated molecular findings with diagnostic immunostains for BAP1, MTAP, Merlin, and p53, respectively. Fifty-seven reactive mesothelial proliferations served as benign comparators. Loss of BAP1, MTAP, and Merlin protein expression were, respectively, 54%, 46%, and 52% sensitive and 100% specific for mesothelioma. Two-marker immunopanels of BAP1 + MTAP, BAP1 + Merlin, and MTAP + Merlin were 79%, 85%, and 71% sensitive for mesothelioma, while a three-marker immunopanel of BAP1 + MTAP + Merlin was 90% sensitive. Diffuse (mutant-pattern) p53 immunostaining was seen in only 6 (7%) tumors but represented the only immunohistochemical abnormality in 2 cases. Null-pattern p53 was not specific for malignancy. An immunopanel of BAP1 + MTAP + Merlin + p53 was 93% sensitive for mesothelioma, and panel NGS detected a pathogenic alteration in BAP1, MTAP, NF2, and/or TP53 in 95%. Together, 83 (99%) of 84 tumors showed a diagnostic alteration by either immunohistochemistry or panel NGS. Adding Merlin to the standard BAP1 + MTAP immunopanel increases sensitivity for mesothelioma without sacrificing specificity. p53 immunohistochemistry and panel NGS with complete coverage of BAP1, CDKN2A/MTAP, TP53, and NF2 may be useful in diagnostically challenging cases.
Collapse
Affiliation(s)
- David B Chapel
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Department of Pathology, University of Michigan - Michigan Medicine, Ann Arbor, MI, 48109, USA.
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Julianne Barlow
- Department of Thoracic Surgery, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Raphael Bueno
- Department of Thoracic Surgery, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Advanced Molecular Diagnostics, Brigham and Women's Hospital, Boston, MA, 02115, USA
| |
Collapse
|
8
|
Cui J, Kang X, Shan Y, Zhang M, Gao Y, Wu W, Chen L. miR-1227-3p participates in the development of fetal growth restriction via regulating trophoblast cell proliferation and apoptosis. Sci Rep 2022; 12:6374. [PMID: 35430618 PMCID: PMC9013361 DOI: 10.1038/s41598-022-10127-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
Fetal growth restriction (FGR) is a common obstetric disease, which is harmful to the pregnant women and fetuses. It has many influencing factors, but the specific etiology is not clear. MiRNA plays an important role in the fetal growth and development. In this article, we use TaqMan Low-Density Array to screen and analyze the differently expressed miRNAs in FGR-affected placenta (n = 40) and the normal placenta (n = 40). A total of 139 abnormally expressed miRNAs in the FGR-affected placenta were identified, and miR-1227-3p was the most highly downregulated miRNA. Importantly, miR-1227-3p may promote the proliferation in HTR-8/SVneo cells, while inhibited the apoptosis of HTR-8/SVneo cells. DAVID was used to analyze the pathway enrichment of target genes of miR-1227-3p to predict its mechanism of action. Furthermore, the putative targets of miR-1227-3p were predicted using the TargetScan, PicTar, DIANA LAB, and miRWalk database. The potential expression of target genes of miR-1227-3p, including PRKAB2, AKT1, PIK3R3, and MKNK1 were significantly increased in FGR-affected placenta. Taken together, miR-1227-3p may participate in the development of FGR via regulating trophoblast cell proliferation and apoptosis by targeting genes involved in the insulin pathway. MiR-1227-3p may have a potential clinical value in the prevention and treatment of FGR, we need to study further to prove its value in the future.
Collapse
|
9
|
Scholtz B, Horváth J, Tar I, Kiss C, Márton IJ. Salivary miR-31-5p, miR-345-3p, and miR-424-3p Are Reliable Biomarkers in Patients with Oral Squamous Cell Carcinoma. Pathogens 2022; 11:pathogens11020229. [PMID: 35215172 PMCID: PMC8876825 DOI: 10.3390/pathogens11020229] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 12/27/2022] Open
Abstract
If not detected early, oral squamous cell carcinoma (OSCC) has very poor prognosis, emphasizing the need for reliable early diagnostics. Saliva is considered a promising surrogate biosample for OSCC detection, because it comes into contact with many cells of the tumor mass, providing a comprehensive sampling of tumor-specific biomolecules. Although several protein- and RNA-based salivary biomarkers have been proposed for the detection of OSCC, the results of the studies show large differences. Our goal was to clarify which salivary microRNAs (miRNA) show reliably high expression in the saliva of OSCC patients, to be used as cancer-specific biomarkers, and potentially as early diagnostic biomarkers. Based on a detailed literature search, we selected six miRNAs commonly overexpressed in OSCC, and analyzed their expression in saliva samples of cancer patients and controls by real-time quantitative PCR. Our results suggest that miR-345 and miR-31-5p are consistently upregulated salivary biomarkers for OSCC, and a three-miRNA panel of miR-345, miR-31-5p, and miR-424-3p can distinguish cancer and control patients with high sensitivity.
Collapse
Affiliation(s)
- Beáta Scholtz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: ; Tel.: +36-30-634-6065; Fax: +36-52-314-989
| | - József Horváth
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary;
| | - Ildikó Tar
- Department of Oral Medicine, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary;
| | - Csongor Kiss
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Ildikó J. Márton
- Department of Restorative Dentistry, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary;
| |
Collapse
|
10
|
Bahreini F, Rayzan E, Rezaei N. MicroRNAs and Diabetes Mellitus Type 1. Curr Diabetes Rev 2022; 18:e021421191398. [PMID: 33588736 DOI: 10.2174/1573399817666210215111201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/11/2020] [Accepted: 01/07/2021] [Indexed: 11/22/2022]
Abstract
Type 1 diabetes mellitus is a multifactorial, progressive, autoimmune disease with a strong genetic feature that can affect multiple organs, including the kidney, eyes, and nerves. Early detection of type 1 diabetes can help critically to avoid serious damages to these organs. MicroRNAs are small RNA molecules that act in post-transcriptional gene regulation by attaching to the complementary sequence in the 3'-untranslated region of their target genes. Alterations in the expression of microRNA coding genes are extensively reported in several diseases, such as type 1 diabetes. Presenting non-invasive biomarkers for early detection of type 1 diabetes by quantifying microRNAs gene expression level can be a significant step in biotechnology and medicine. This review discusses the area of microRNAs dysregulation in type 1 diabetes and affected molecular mechanisms involved in pancreatic islet cell formation and dysregulation in the expression of inflammatory elements as well as pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Farbod Bahreini
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Elham Rayzan
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Emerging Role of miR-345 and Its Effective Delivery as a Potential Therapeutic Candidate in Pancreatic Cancer and Other Cancers. Pharmaceutics 2021; 13:pharmaceutics13121987. [PMID: 34959269 PMCID: PMC8707074 DOI: 10.3390/pharmaceutics13121987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with high mortality, poor prognosis, and palliative treatments, due to the rapid upregulation of alternative compensatory pathways and desmoplastic reaction. miRNAs, small non-coding RNAs, have been recently identified as key players regulating cancer pathogenesis. Dysregulated miRNAs are associated with molecular pathways involved in tumor development, metastasis, and chemoresistance in PDAC, as well as other cancers. Targeted treatment strategies that alter miRNA levels in cancers have promising potential as therapeutic interventions. miRNA-345 (miR-345) plays a critical role in tumor suppression and is differentially expressed in various cancers, including pancreatic cancer (PC). The underlying mechanism(s) and delivery strategies of miR-345 have been investigated by us previously. Here, we summarize the potential therapeutic roles of miR-345 in different cancers, with emphasis on PDAC, for miRNA drug discovery, development, status, and implications. Further, we focus on miRNA nanodelivery system(s), based on different materials and nanoformulations, specifically for the delivery of miR-345.
Collapse
|
12
|
Hiltbrunner S, Mannarino L, Kirschner MB, Opitz I, Rigutto A, Laure A, Lia M, Nozza P, Maconi A, Marchini S, D’Incalci M, Curioni-Fontecedro A, Grosso F. Tumor Immune Microenvironment and Genetic Alterations in Mesothelioma. Front Oncol 2021; 11:660039. [PMID: 34249695 PMCID: PMC8261295 DOI: 10.3389/fonc.2021.660039] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare and fatal disease of the pleural lining. Up to 80% of the MPM cases are linked to asbestos exposure. Even though its use has been banned in the industrialized countries, the cases continue to increase. MPM is a lethal cancer, with very little survival improvements in the last years, mirroring very limited therapeutic advances. Platinum-based chemotherapy in combination with pemetrexed and surgery are the standard of care, but prognosis is still unacceptably poor with median overall survival of approximately 12 months. The genomic landscape of MPM has been widely characterized showing a low mutational burden and the impairment of tumor suppressor genes. Among them, BAP1 and BLM are present as a germline inactivation in a small subset of patients and increases predisposition to tumorigenesis. Other studies have demonstrated a high frequency of mutations in DNA repair genes. Many therapy approaches targeting these alterations have emerged and are under evaluation in the clinic. High-throughput technologies have allowed the detection of more complex molecular events, like chromotripsis and revealed different transcriptional programs for each histological subtype. Transcriptional analysis has also paved the way to the study of tumor-infiltrating cells, thus shedding lights on the crosstalk between tumor cells and the microenvironment. The tumor microenvironment of MPM is indeed crucial for the pathogenesis and outcome of this disease; it is characterized by an inflammatory response to asbestos exposure, involving a variety of chemokines and suppressive immune cells such as M2-like macrophages and regulatory T cells. Another important feature of MPM is the dysregulation of microRNA expression, being frequently linked to cancer development and drug resistance. This review will give a detailed overview of all the above mentioned features of MPM in order to improve the understanding of this disease and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Stefanie Hiltbrunner
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, University of Zurich, Zurich, Switzerland
| | - Laura Mannarino
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | | | - Isabelle Opitz
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Angelica Rigutto
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, University of Zurich, Zurich, Switzerland
| | - Alexander Laure
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, University of Zurich, Zurich, Switzerland
| | - Michela Lia
- Mesothelioma Unit, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Paolo Nozza
- Department of Pathology, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Antonio Maconi
- Infrastruttura Ricerca Formazione Innovazione (IRFI), Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Sergio Marchini
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | - Maurizio D’Incalci
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | - Alessandra Curioni-Fontecedro
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, University of Zurich, Zurich, Switzerland
| | - Federica Grosso
- Mesothelioma Unit, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
- Translational Medicine, Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| |
Collapse
|
13
|
Li K, Han F, Wu Y, Wang X. miR-340 Promotes Retinoblastoma Cell Proliferation, Migration and Invasion Through Targeting WIF1. Onco Targets Ther 2021; 14:3635-3648. [PMID: 34113129 PMCID: PMC8187089 DOI: 10.2147/ott.s302800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/07/2021] [Indexed: 11/23/2022] Open
Abstract
Background MicroRNAs (miRNAs) function as important regulators of gene expression involved in tumor pathogenesis, including retinoblastoma. However, the expression profiles and potential roles in retinoblastoma are still largely unclear. Material and Methods Differentially expressed miRNAs (DEmiRs) and genes (DEGs) in retinoblastoma were extracted from Gene Expression Omnibus (GEO) repository. Expression levels of miR-340 and WIF1 were detected in retinoblastoma tissues and cell lines by qRT-PCR. Both gain-of-function and loss-of-function experiments were performed to explore the effects of miR-340 on cell proliferation, migration and invasion. Bioinformatics analysis and luciferase reporter assay were used to explore the interaction between miR-340 and WIF1. Results A total of 11 DEmiRs were identified in retinoblastoma tissue and blood samples. Among them, we validated that miR-340 was the most highly expressed miRNA and correlated with tumor size, ICRB stage and optic nerve invasion. miR-340 was observed to enhance the proliferation, migration and invasion capacity of retinoblastoma cells. We then identified 26 DEGs from 3 retinoblastoma GEO datasets and subsequently constructed a miRNA–mRNA regulatory network. Further analysis revealed that WIF1 was a direct target of miR-340. Moreover, overexpression of WIF1 could repress retinoblastoma progression induced by miR-340 in vitro and in vivo. Conclusion Collectively, miR-340 functioned as an oncomiRNA to promote retinoblastoma cell proliferation, migration and invasion via regulating WIF1. Our data also provided multiple miRNAs and genes that may contribute to a better understanding of retinoblastoma pathogenesis.
Collapse
Affiliation(s)
- Kun Li
- Department of Pediatric Ophthalmology, Cangzhou Central Hospital, Cangzhou, 061001, People's Republic of China
| | - Fengmei Han
- Department of Pediatric Ophthalmology, Cangzhou Central Hospital, Cangzhou, 061001, People's Republic of China
| | - Yanping Wu
- Department of Pediatric Ophthalmology, Cangzhou Central Hospital, Cangzhou, 061001, People's Republic of China
| | - Xue Wang
- Department of Pediatric Ophthalmology, Cangzhou Central Hospital, Cangzhou, 061001, People's Republic of China
| |
Collapse
|
14
|
Lettieri S, Bortolotto C, Agustoni F, Lococo F, Lancia A, Comoli P, Corsico AG, Stella GM. The Evolving Landscape of the Molecular Epidemiology of Malignant Pleural Mesothelioma. J Clin Med 2021; 10:jcm10051034. [PMID: 33802313 PMCID: PMC7959144 DOI: 10.3390/jcm10051034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 12/21/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare and aggressive malignancy that most commonly affects the pleural lining of the lungs. It has a strong association with exposure to biopersistent fibers, mainly asbestos (80% of cases) and—in specific geographic regions—erionite, zeolites, ophiolites, and fluoro-edenite. Individuals with a chronic exposure to asbestos generally have a long latency with no or few symptoms. Then, when patients do become symptomatic, they present with advanced disease and a worse overall survival (about 13/15 months). The fibers from industrial production not only pose a substantial risk to workers, but also to their relatives and to the surrounding community. Modern targeted therapies that have shown benefit in other human tumors have thus far failed in MPM. Overall, MPM has been listed as orphan disease by the European Union. However, molecular high-throughput profiling is currently unveiling novel biomarkers and actionable targets. We here discuss the natural evolution, mainly focusing on the novel concept of molecular epidemiology. The application of innovative endpoints, quantification of genetic damages, and definition of genetic susceptibility are reviewed, with the ultimate goal to point out new tools for screening of exposed subject and for designing more efficient diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Sara Lettieri
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (A.G.C.)
| | - Chandra Bortolotto
- Department of Intensive Medicine, Unit of Radiology, IRCCS Policlinico San Matteo Foundation, University of Pavia Medical School, 27100 Pavia, Italy;
| | - Francesco Agustoni
- Department of Medical Sciences and Infective Diseases, Unit of Oncology, IRCCS Policlinico San Matteo Foundation, University of Pavia Medical School, 27100 Pavia, Italy;
| | - Filippo Lococo
- Thoracic Unit, Catholic University of the Sacred Heart, Fondazione Policinico A. Gemelli, 00100 Rome, Italy;
| | - Andrea Lancia
- Department of Intensive Medicine, Unit of Radiation Therapy, IRCCS Policlinico San Matteo Foundation, University of Pavia Medical School, 27100 Pavia, Italy;
| | - Patrizia Comoli
- Cell Factory and Pediatric Hematology-Oncology Unit, IRCCS Fondazione Policlinico San Matteo, 27100 Pavia, Italy;
| | - Angelo G. Corsico
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (A.G.C.)
| | - Giulia M. Stella
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation, University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (A.G.C.)
- Correspondence:
| |
Collapse
|
15
|
Jet T, Gines G, Rondelez Y, Taly V. Advances in multiplexed techniques for the detection and quantification of microRNAs. Chem Soc Rev 2021; 50:4141-4161. [PMID: 33538706 DOI: 10.1039/d0cs00609b] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNA detection is currently a crucial analytical chemistry challenge: almost 2000 papers were referenced in PubMed in 2018 and 2019 for the keywords "miRNA detection method". MicroRNAs are potential biomarkers for multiple diseases including cancers, neurodegenerative and cardiovascular diseases. Since miRNAs are stably released in bodily fluids, they are of prime interest for the development of non-invasive diagnosis methods, such as liquid biopsies. Their detection is however challenging, as high levels of sensitivity, specificity and robustness are required. The analysis also needs to be quantitative, since the aim is to detect miRNA concentration changes. Moreover, a high multiplexing capability is also of crucial importance, since the clinical potential of miRNAs probably lays in our ability to perform parallel mapping of multiple miRNA concentrations and recognize typical disease signature from this profile. A plethora of biochemical innovative detection methods have been reported recently and some of them provide new solutions to the problem of sensitive multiplex detection. In this review, we propose to analyze in particular the new developments in multiplexed approaches to miRNA detection. The main aspects of these methods (including sensitivity and specificity) will be analyzed, with a particular focus on the demonstrated multiplexing capability and potential of each of these methods.
Collapse
Affiliation(s)
- Thomas Jet
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, CNRS SNC5096, Equipe Labellisée Ligue Nationale Contre le Cancer, F-75006 Paris, France.
| | | | | | | |
Collapse
|
16
|
Hiraku Y, Watanabe J, Kaneko A, Ichinose T, Murata M. MicroRNA expression in lung tissues of asbestos-exposed mice: Upregulation of miR-21 and downregulation of tumor suppressor genes Pdcd4 and Reck. J Occup Health 2021; 63:e12282. [PMID: 34679210 PMCID: PMC8535435 DOI: 10.1002/1348-9585.12282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 08/18/2021] [Accepted: 09/04/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Asbestos causes lung cancer and malignant mesothelioma in humans, but the precise mechanism has not been well understood. MicroRNA (miRNA) is a short non-coding RNA that suppresses gene expression and participates in human diseases including cancer. In this study, we examined the expression levels of miRNA and potential target genes in lung tissues of asbestos-exposed mice by microarray analysis. METHODS We intratracheally administered asbestos (chrysotile and crocidolite, 0.05 or 0.2 mg/instillation) to 6-week-old ICR male mice four times weekly. We extracted total RNA from lung tissues and performed microarray analysis for miRNA and gene expression. We also carried out real-time polymerase chain reaction (PCR), Western blotting, and immunohistochemistry to confirm the results of microarray analysis. RESULTS Microarray analysis revealed that the expression levels of 14 miRNAs were significantly changed by chrysotile and/or crocidolite (>2-fold, P < .05). Especially, miR-21, an oncogenic miRNA, was significantly upregulated by both chrysotile and crocidolite. In database analysis, miR-21 was predicted to target tumor suppressor genes programmed cell death 4 (Pdcd4) and reversion-inducing-cysteine-rich protein with kazal motifs (Reck). Although real-time PCR showed that Pdcd4 was not significantly downregulated by asbestos exposure, Western blotting and immunohistochemistry revealed that PDCD4 expression was reduced especially by chrysotile. Reck was significantly downregulated by chrysotile in real-time PCR and immunohistochemistry. CONCLUSIONS This is the first study demonstrating that miR-21 was upregulated and corresponding tumor suppressor genes were downregulated in lung tissues of asbestos-exposed animals. These molecular events are considered to be an early response to asbestos exposure and may contribute to pulmonary toxicity and carcinogenesis.
Collapse
Grants
- 23659328 Ministry of Education, Culture, Sports, Science and Technology, Japan
- 24390153 Ministry of Education, Culture, Sports, Science and Technology, Japan
- 15H04784 Ministry of Education, Culture, Sports, Science and Technology, Japan
- 18H03038 Ministry of Education, Culture, Sports, Science and Technology, Japan
- Grants-in-Aid for Scientific Research
Collapse
Affiliation(s)
- Yusuke Hiraku
- Department of Environmental HealthUniversity of Fukui School of Medical SciencesEiheijiFukuiJapan
- Department of Environmental and Molecular MedicineMie University Graduate School of MedicineTsuMieJapan
| | - Jun Watanabe
- Department of Environmental and Molecular MedicineMie University Graduate School of MedicineTsuMieJapan
| | - Akira Kaneko
- Department of Environmental and Molecular MedicineMie University Graduate School of MedicineTsuMieJapan
| | - Takamichi Ichinose
- Department of Health SciencesOita University of Nursing and Health SciencesOitaJapan
| | - Mariko Murata
- Department of Environmental and Molecular MedicineMie University Graduate School of MedicineTsuMieJapan
| |
Collapse
|
17
|
Viscardi G, Di Natale D, Fasano M, Brambilla M, Lobefaro R, De Toma A, Galli G. Circulating biomarkers in malignant pleural mesothelioma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:434-451. [PMID: 36046389 PMCID: PMC9400735 DOI: 10.37349/etat.2020.00028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive tumor strictly connected to asbestos exposure. Prognosis is dismal as diagnosis commonly occurs in advanced stage. Radiological screenings have not proven to be effective and also pathological diagnosis may be challenging. In the era of precision oncology, validation of robust non-invasive biomarkers for screening of asbestos-exposed individuals, assessment of prognosis and prediction of response to treatments remains an important unmet clinical need. This review provides an overview on current understanding and possible applications of liquid biopsy in MPM, mostly focused on the utility as diagnostic and prognostic test.
Collapse
Affiliation(s)
- Giuseppe Viscardi
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy 2Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy
| | - Davide Di Natale
- Department of Translational Medical Sciences, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy
| | - Morena Fasano
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy
| | - Marta Brambilla
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy
| | - Riccardo Lobefaro
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy
| | - Alessandro De Toma
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy
| | - Giulia Galli
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy
| |
Collapse
|
18
|
Han YQ, Xu SC, Zheng WQ, Hu ZD. Diagnostic value of microRNAs for malignant pleural mesothelioma: A mini-review. Thorac Cancer 2020; 12:8-12. [PMID: 33225621 PMCID: PMC7779186 DOI: 10.1111/1759-7714.13746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 01/12/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a type of cancer originating from the pleura with high aggressiveness and poor prognosis. A timely diagnosis is crucial to improve its prognosis. Laboratory biomarkers have significant advantages of reduced invasiveness, low cost, and are observer‐independent, and therefore represent a promising diagnostic tool for MPM. MicroRNA is a family of non‐coding RNA that regulates gene expression at the post‐transcriptional level. Accumulated studies showed that microRNA, either in tissue, circulating, and body fluid, has potential diagnostic value for various disorders. Here, we reviewed the diagnostic value of microRNA for MPM.
Collapse
Affiliation(s)
- Yan-Qiu Han
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Shang-Cheng Xu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing, 400060, China
| | - Wen-Qi Zheng
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Zhi-De Hu
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| |
Collapse
|
19
|
Ke R, Lv L, Zhang S, Zhang F, Jiang Y. Functional mechanism and clinical implications of MicroRNA-423 in human cancers. Cancer Med 2020; 9:9036-9051. [PMID: 33174687 PMCID: PMC7724490 DOI: 10.1002/cam4.3557] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 08/16/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs play a vital role in the regulatory mechanisms of tumorigenesis. Current research indicates that microRNA-423 (miR-423) is abnormally expressed in various human tumors and participates in multiple signaling pathways of cancer progression. In most studies, miR-423 was confirmed as oncomiR, while a few contradictory reports considered miR-423 as an anticancer miRNA. The paradoxical role in cancer may hinder the application of miR-423 as a diagnostic and therapeutic target. Simultaneously, the interaction mechanism between miR-423 and lncRNA also needs attention. In this review, we have summarized the dual role of aberrant miR-423 expression and its mechanisms in tumorigenesis, and the therapeutic potential of miR-423 in human tumors.
Collapse
Affiliation(s)
- RuiSheng Ke
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China.,The Fuzong Clinical Medical College of Fujian Medical University, Fuzhou City, China
| | - LiZhi Lv
- The Fuzong Clinical Medical College of Fujian Medical University, Fuzhou City, China.,Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou City, China
| | - SiYu Zhang
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - FuXing Zhang
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yi Jiang
- The Fuzong Clinical Medical College of Fujian Medical University, Fuzhou City, China.,Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou City, China
| |
Collapse
|
20
|
Pass HI, Alimi M, Carbone M, Yang H, Goparaju CM. Mesothelioma Biomarkers: Discovery in Search of Validation. Thorac Surg Clin 2020; 30:395-423. [PMID: 33012429 DOI: 10.1016/j.thorsurg.2020.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Malignant pleural mesothelioma (MPM) is an asbestos-related neoplasm that can only be treated successfully when correctly diagnosed and treated early. The asbestos-exposed population is a high-risk group that could benefit from sensitive and specific blood- or tissue-based biomarkers. We review recent work with biomarker development in MPM and literature of the last 20 years on the most promising blood- and tissue-based biomarkers. Proteomic, genomic, and epigenomic platforms are covered. SMRP is the only validated blood-based biomarker with diagnostic, monitoring and prognostic value. To strengthen development and testing of MPM biomarkers, cohorts for validation must be established by enlisting worldwide collaborations.
Collapse
Affiliation(s)
- Harvey I Pass
- Research, Department of Cardiothoracic Surgery, General Thoracic Surgery, NYU Langone Medical Center, 530 First Avenue, 9V, New York, NY 10016, USA.
| | - Marjan Alimi
- Department of Cardiothoracic Surgery, NYU Langone Medical Center, 530 First Avenue, 9V, New York, NY 10016, USA
| | - Michele Carbone
- Department of Thoracic Oncology, John A. Burns School of Medicine, University of Hawaii Cancer Center, 701 Ilalo Street, Room 437, Honolulu, HI 96813, USA
| | - Haining Yang
- Department of Thoracic Oncology, John A. Burns School of Medicine, University of Hawaii Cancer Center, 701 Ilalo Street, Room 437, Honolulu, HI 96813, USA
| | - Chandra M Goparaju
- Department of Cardiothoracic Surgery, NYU Langone Medical Center, 530 First Avenue, 9V, New York, NY 10016, USA
| |
Collapse
|
21
|
Abstract
Malignant pleural mesothelioma (MPM) is a rare, aggressive malignancy of the pleural lining associated with asbestos exposure in greater than 80% of cases. It is characterized by molecular heterogeneity both between patients and within individual tumors. Next-generation sequencing technology and novel computational techniques have resulted in a greater understanding of the epigenetic, genetic, and transcriptomic hallmarks of MPM. This article reviews these features and discusses the implications of advances in MPM molecular biology in clinical practice.
Collapse
|
22
|
Pass HI, Alimi M, Carbone M, Yang H, Goparaju CM. Mesothelioma Biomarkers: A Review Highlighting Contributions from the Early Detection Research Network. Cancer Epidemiol Biomarkers Prev 2020; 29:2524-2540. [PMID: 32699075 DOI: 10.1158/1055-9965.epi-20-0083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/22/2020] [Accepted: 07/07/2020] [Indexed: 11/16/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an asbestos-related neoplasm, which can be treated successfully only if correctly diagnosed and treated in early stages. The asbestos-exposed population serves as a high-risk group that could benefit from sensitive and specific blood- or tissue-based biomarkers. This review details the recent work with biomarker development in MPM and the contributions of the NCI Early Detection Research Network Biomarker Developmental Laboratory of NYU Langone Medical Center. The literature of the last 20 years was reviewed to comment on the most promising of the blood- and tissue-based biomarkers. Proteomic, genomic, and epigenomic platforms as well as novel studies such as "breath testing" are covered. Soluble mesothelin-related proteins (SMRP) have been characterized extensively and constitute an FDA-approved biomarker in plasma with diagnostic, monitoring, and prognostic value in MPM. Osteopontin is found to be a valuable prognostic biomarker for MPM, while its utility in diagnosis is slightly lower. Other biomarkers, such as calretinin, fibulin 3, and High-Mobility Group Box 1 (HMGB1), remain under study and need international validation trials with large cohorts of cases and controls to demonstrate any utility. The EDRN has played a key role in the development and testing of MPM biomarkers by enlisting collaborations all over the world. A comprehensive understanding of previously investigated biomarkers and their utility in screening and early diagnosis of MPM will provide guidance for further future research.See all articles in this CEBP Focus section, "NCI Early Detection Research Network: Making Cancer Detection Possible."
Collapse
Affiliation(s)
- Harvey I Pass
- Department of Cardiothoracic Surgery, NYU Langone Medical Center, New York, New York.
| | - Marjan Alimi
- Department of Cardiothoracic Surgery, NYU Langone Medical Center, New York, New York
| | - Michele Carbone
- John A. Burns School of Medicine, Department of Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Haining Yang
- John A. Burns School of Medicine, Department of Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Chandra M Goparaju
- Department of Cardiothoracic Surgery, NYU Langone Medical Center, New York, New York
| |
Collapse
|
23
|
miR-615 Fine-Tunes Growth and Development and Has a Role in Cancer and in Neural Repair. Cells 2020; 9:cells9071566. [PMID: 32605009 PMCID: PMC7408929 DOI: 10.3390/cells9071566] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/21/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that function as epigenetic modulators regulating almost any gene expression. Similarly, other noncoding RNAs, as well as epigenetic modifications, can regulate miRNAs. This reciprocal interaction forms a miRNA-epigenetic feedback loop, the deregulation of which affects physiological processes and contributes to a great diversity of diseases. In the present review, we focus on miR-615, a miRNA highly conserved across eutherian mammals. It is involved not only during embryogenesis in the regulation of growth and development, for instance during osteogenesis and angiogenesis, but also in the regulation of cell growth and the proliferation and migration of cells, acting as a tumor suppressor or tumor promoter. It therefore serves as a biomarker for several types of cancer, and recently has also been found to be involved in reparative processes and neural repair. In addition, we present the pleiad of functions in which miR-615 is involved, as well as their multiple target genes and the multiple regulatory molecules involved in its own expression. We do this by introducing in a comprehensible way the reported knowledge of their actions and interactions and proposing an integral view of its regulatory mechanisms.
Collapse
|
24
|
Okazaki Y, Chew SH, Nagai H, Yamashita Y, Ohara H, Jiang L, Akatsuka S, Takahashi T, Toyokuni S. Overexpression of miR-199/214 is a distinctive feature of iron-induced and asbestos-induced sarcomatoid mesothelioma in rats. Cancer Sci 2020; 111:2016-2027. [PMID: 32248600 PMCID: PMC7293088 DOI: 10.1111/cas.14405] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022] Open
Abstract
Malignant mesothelioma (MM) is one of the most lethal tumors in humans. The onset of MM is linked to exposure to asbestos, which generates reactive oxygen species (ROS). ROS are believed to be derived from the frustrated phagocytosis and the iron in asbestos. To explore the pathogenesis of MM, peritoneal MM was induced in rats by the repeated intraperitoneal injection of iron saccharate and nitrilotriacetate. In the present study, we used microarray techniques to screen the microRNA (miR) expression profiles of these MM. We observed that the histological subtype impacted the hierarchical clustering of miR expression profiles and determined that miR-199/214 is a distinctive feature of iron saccharate-induced sarcomatoid mesothelioma (SM). Twist1, a transcriptional regulator of the epithelial-mesenchymal transition, has been shown to activate miR-199/214 transcription; thus, the expression level of Twist1 was examined in iron-induced and asbestos-induced mesotheliomas in rats. Twist1 was exclusively expressed in iron saccharate-induced SM but not in the epithelioid subtype. The Twist1-miR-199/214 axis is activated in iron saccharate-induced and asbestos-induced SM. The expression levels of miR-214 and Twist1 were correlated in an asbestos-induced MM cell line, suggesting that the Twist1-miR-199/214 axis is preserved. MeT5A, an immortalized human mesothelial cell line, was used for the functional analysis of miR. The overexpression of miR-199/214 promoted cellular proliferation, mobility and phosphorylation of Akt and ERK in MeT5A cells. These results indicate that miR-199/214 may affect the aggressive biological behavior of SM.
Collapse
Affiliation(s)
- Yasumasa Okazaki
- Department of Pathology and Biological ResponsesNagoya University Graduate School of MedicineNagoyaJapan
| | - Shan Hwu Chew
- Department of Pathology and Biological ResponsesNagoya University Graduate School of MedicineNagoyaJapan
| | - Hirotaka Nagai
- Department of Pathology and Biological ResponsesNagoya University Graduate School of MedicineNagoyaJapan
| | - Yoriko Yamashita
- Department of Pathology and Biological ResponsesNagoya University Graduate School of MedicineNagoyaJapan
| | - Hiroki Ohara
- Department of Pathology and Biological ResponsesNagoya University Graduate School of MedicineNagoyaJapan
| | - Li Jiang
- Department of Pathology and Biological ResponsesNagoya University Graduate School of MedicineNagoyaJapan
| | - Shinya Akatsuka
- Department of Pathology and Biological ResponsesNagoya University Graduate School of MedicineNagoyaJapan
| | - Takashi Takahashi
- Division of Molecular CarcinogenesisNagoya University Graduate School of MedicineNagoyaJapan
- Aichi Cancer Center Research InstituteNagoyaJapan
| | - Shinya Toyokuni
- Department of Pathology and Biological ResponsesNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
25
|
Mir-30b-5p Promotes Proliferation, Migration, and Invasion of Breast Cancer Cells via Targeting ASPP2. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7907269. [PMID: 32420372 PMCID: PMC7210518 DOI: 10.1155/2020/7907269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/06/2020] [Accepted: 01/16/2020] [Indexed: 12/18/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtypes of breast cancer, which has few effective targeted therapies. Various sources of evidence confirm that microRNAs (miRNAs) contribute to the progression and metastasis of human breast cancer. However, the molecular mechanisms underlying the changes in miRNAs expression and the regulation of miRNAs functions have not been well clarified. In this study, we found that the expression of miR-30b-5p was upregulated in breast cancer tissues and breast cancer cell lines, compared to paracancer tissues and normal breast cell lines. Moreover, induced overexpression of miR-30b-5p promoted the MDA-MB-231 and HCC 1937 cell growth, migration, and invasion and reduced the cellular apoptosis. Further studies confirmed that miR-30b-5p could directly target ASPP2 and then activate the AKT signaling pathway. Our results suggested that miR-30b-5p could act as a tumor promoter in TNBC. The newly identified miR-30b-5p/ASPP2/AKT axis represents a novel therapeutic strategy for treating TNBC.
Collapse
|
26
|
Sturchio E, Berardinelli MG, Boccia P, Zanellato M, Gioiosa S. MicroRNAs diagnostic and prognostic value as predictive markers for malignant mesothelioma. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2020; 75:471-482. [PMID: 32308151 DOI: 10.1080/19338244.2020.1747966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Malignant mesothelioma is an aggressive tumor resistant to current therapies with a latency period ranging between 20 and 60 years, caused by inhalation of asbestos fibers, that continues to represent a social and healthcare issue. The high percentage of people exposed to asbestos for professional or environmental reasons is associated with the high biopersistence of its fibers and with its widespread use in the last century. Approximately 20-40% of men report an occupational history that might have caused the workplace exposure (criteria Helsinki, 1997). Some authors are evaluating the possible use of bioindicators as a screening and early diagnosis tool. In this regard, the use of microRNAs has been proposed as powerful diagnostic and prognostic biomarkers for many tumors and human diseases. This review focuses on the current state of knowledge on the key role of microRNAs expression as new malignant mesothelioma biomarkers, in early clinical diagnostic applications.
Collapse
Affiliation(s)
- Elena Sturchio
- Department of Technological Innovation and Safety of Plants, Product and Anthropic Settlements (DIT), Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Maria Grazia Berardinelli
- Department of Technological Innovation and Safety of Plants, Product and Anthropic Settlements (DIT), Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Priscilla Boccia
- Department of Technological Innovation and Safety of Plants, Product and Anthropic Settlements (DIT), Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Miriam Zanellato
- Department of Technological Innovation and Safety of Plants, Product and Anthropic Settlements (DIT), Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Silvia Gioiosa
- SCAI-Super Computing Applications and Innovation Department, CINECA, Rome, Italy
| |
Collapse
|
27
|
Functional effects of differentially expressed microRNAs in A549 cells exposed to MWCNT-7 or crocidolite. Toxicol Lett 2020; 328:7-18. [PMID: 32311379 DOI: 10.1016/j.toxlet.2020.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/30/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023]
Abstract
Multi-walled carbon nanotubes (MWCNT) are engineered nanomaterials widely used in industrial and biomedical applications. Yet, MWCNT inhalation may induce pulmonary adverse effects, and the MWCNT-7 (Mitsui-7) has been classified as possibly carcinogenic to humans. However, its molecular mechanisms of action are poorly understood and there are no biomarkers of exposure for occupational monitoring. Several pulmonary diseases, including lung cancer, have been associated with alterations in microRNA expression that are used as biomarkers of disease progression, and differentially-expressed microRNAs (DE miRNAs) can also allow understanding the molecular effects induced by a toxicant. In this study, we identify DE miRNAs in A549 alveolar epithelial cells following 24 h exposure to MWCNT-7 or crocidolite, as well as their enriched cellular functional pathways. These indicate that both materials change cell survival, differentiation and proliferative properties under the influence of AMPK, FoxO, TGF-β and Hippo pathways, and their metabolic activity and cell-to-cell communication. In addition, MWCNT-7 affects the actin cytoskeleton, ubiquitin mediated proteolysis, and ECM-receptor interactions; crocidolite the PI3K-Akt and mTOR pathways, endocytosis, and central carbon metabolism. Since deregulation of these pathways may be related to carcinogenesis, an interaction network of DE miRNAs and corresponding target cancer-related genes was constructed, highlighting the carcinogenic potential of Mitsui-7.
Collapse
|
28
|
Kooshkaki O, Rezaei Z, Rahmati M, Vahedi P, Derakhshani A, Brunetti O, Baghbanzadeh A, Mansoori B, Silvestris N, Baradaran B. MiR-144: A New Possible Therapeutic Target and Diagnostic/Prognostic Tool in Cancers. Int J Mol Sci 2020; 21:ijms21072578. [PMID: 32276343 PMCID: PMC7177921 DOI: 10.3390/ijms21072578] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are small and non-coding RNAs that display aberrant expression in the tissue and plasma of cancer patients when tested in comparison to healthy individuals. In past decades, research data proposed that miRNAs could be diagnostic and prognostic biomarkers in cancer patients. It has been confirmed that miRNAs can act either as oncogenes by silencing tumor inhibitors or as tumor suppressors by targeting oncoproteins. MiR-144s are located in the chromosomal region 17q11.2, which is subject to significant damage in many types of cancers. In this review, we assess the involvement of miR-144s in several cancer types by illustrating the possible target genes that are related to each cancer, and we also briefly describe the clinical applications of miR-144s as a diagnostic and prognostic tool in cancers.
Collapse
Affiliation(s)
- Omid Kooshkaki
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
- Department of Immunology, Birjand University of Medical Sciences, Birjand 9717853577, Iran
| | - Zohre Rezaei
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
- Department of Biology, University of Sistan and Baluchestan, Zahedan 9816745845, Iran
| | - Meysam Rahmati
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran;
| | - Parviz Vahedi
- Department of Anatomical Sciences, Maragheh University of Medical Sciences, Maragheh 5165665931, Iran;
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (A.D.); (A.B.)
| | - Oronzo Brunetti
- Medical Oncology Unit—IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (A.D.); (A.B.)
| | - Behzad Mansoori
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark;
| | - Nicola Silvestris
- Medical Oncology Unit—IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
- Department of Biomedical Sciences and Human Oncology DIMO—University of Bari, 70124 Bari, Italy
- Correspondence: (N.S.); (B.B.); Tel.: +39-0805555419 (N.S.); +98-413-3371440 (B.B.)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (A.D.); (A.B.)
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
- Correspondence: (N.S.); (B.B.); Tel.: +39-0805555419 (N.S.); +98-413-3371440 (B.B.)
| |
Collapse
|
29
|
Xiao M, Guo J, Xie L, Yang C, Gong L, Wang Z, Cai J. Let-7e Suppresses DNA Damage Repair and Sensitizes Ovarian Cancer to Cisplatin through Targeting PARP1. Mol Cancer Res 2019; 18:436-447. [PMID: 31722968 DOI: 10.1158/1541-7786.mcr-18-1369] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/26/2019] [Accepted: 11/07/2019] [Indexed: 11/16/2022]
Abstract
Increased DNA damage repair is one of the mechanisms implicated in cisplatin resistance. Our previous study indicated that the deregulation of let-7e promoted cisplatin resistance and that let-7e could suppress DNA double-strand break repair in ovarian cancer. In this study, we further characterized the role of let-7e in DNA damage repair and cisplatin resistance in ovarian cancer, and investigated the underlying mechanisms. The alkaline and neutral comet assay indicated that let-7e impeded both DNA single- and double-strand break repairs through downregulating its target gene PARP1. In vitro and in vivo experiments provided evidence that the let-7e-PARP1-DNA repair axis was involved in the modulation of cisplatin sensitivity in ovarian cancer. Contrary to let-7e, PARP1 was overexpressed in cisplatin-resistant ovarian cancer tissues, and patients with high PARP1 expression exhibited poor progression-free survival (PFS) and overall survival (OS). Multivariate logistic and Cox regression analyses showed that let-7e and FIGO stage were independent prognostic factors for PFS and OS, whereas let-7e and PARP1 were able to independently predict chemotherapy response. Taken together, our results indicated that low expression of let-7e promoted DNA single- and double-strand break repairs and subsequently contributed to cisplatin resistance by relieving the suppression on PARP1 in ovarian cancer. IMPLICATIONS: Targeting the let-7e-PARP1-DNA repair axis might be an effective strategy for the treatment of chemoresistant ovarian cancer.
Collapse
Affiliation(s)
- Man Xiao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianfeng Guo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lisha Xie
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Yang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lanqing Gong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
30
|
Li J, Fu Z, Jiang H, Chen L, Wu X, Ding H, Xia Y, Wang X, Tang Q, Wu W. IGF2-derived miR-483-3p contributes to macrosomia through regulating trophoblast proliferation by targeting RB1CC1. Mol Hum Reprod 2019; 24:444-452. [PMID: 29939354 DOI: 10.1093/molehr/gay027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/22/2018] [Indexed: 12/18/2022] Open
Abstract
STUDY QUESTION What is the role of insulin-like growth factor 2 (IGF2)-derived miR-483-3p in macrosomia? SUMMARY ANSWER IGF2-derived intronic miR-483-3p is overexpressed in macrosomia placentas, and miR-483-3p prompts HTR-8/SVneo extravillous trophoblast cell line proliferation through down-regulation of its target RB1 inducible coiled-coil 1 (RB1CC1). WHAT IS KNOWN ALREADY Macrosomia is a common pregnancy-associated disease and causes a number of adverse maternal and perinatal outcomes. The development of macrosomia is reportedly attributable to over proliferation of the placental cells. MicroRNAs (miRNAs) play an important role in the development of fetal and placenta by regulating their target genes. Here, we investigated the role of IGF2-derived intronic miR-483-3p in macrosomia. STUDY DESIGN, SIZE, DURATION The expression of IGF2, miR-483-3p and its target gene in placental tissues from 30 pregnant women who had macrosomia was compared to those of 30 gestation-matched healthy pregnant controls. For in vitro studies, the human first trimester extravillous trophoblast cell line, HTR-8/SVneo cell was used. PARTICIPANTS/MATERIALS, SETTING, METHODS Placenta tissues were collected from pregnant women who had macrosomia without diabetes or other complications (n = 30) and healthy pregnant controls (n = 30). HTR-8/SVneo cells were transfected with specific miRNA mimics or inhibitors. MiRNA and mRNA isolated from placenta tissues or cells were measured by quantitative real-time PCR. Protein was measured by western blot. Cell proliferation was assayed using a colorimetric proliferation assay method. Cell cycle and apoptosis were analyzed by flow cytometry. The putative targets of miR-483-3p were predicted using the TargetScan, miRanda, miRDB and DIANA algorithms. Dual luciferase reporter assay was used to measure the relationship of miR-483-3p and RB1CC1. MAIN RESULTS AND THE ROLE OF CHANCE IGF2-derived miR-483-3p was overexpressed in macrosomia placentas. miR-483-3p promoted proliferation in HTR-8/SVneo cells and had a positive relationship with its host gene IGF2. Subsequently, RB1CC1 was confirmed as a direct target of miR-483-3p, which may be an important mediator of cell growth regulation for miR-483-3p. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION The level of IGF2 and its intronic miR-483-3p in the serum of these participants was not investigated. Further studies are required to understand the mechanisms underlying the cause of the increase of IGF2 and miR-483-3p in macrosomia. WIDER IMPLICATIONS OF THE FINDINGS These findings give a new insight into the role of intronic miRNA and its host gene in the development of macrosomia. Furthermore, it may offer a new target for prognostic and therapeutic intervention for macrosomia. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by awards from National Natural Science Foundation of China (Nos. 81401213, 81673217, 81703260), Jiangsu Provincial Medical Youth Talent (No. QNRC2016110), Jiangsu Overseas Visiting Scholar Program for University Prominent Young & Middle-aged Teachers and Presidents, the Priority Academic Program for the Development of Jiangsu Higher Education Institutions (Public Health and Preventive Medicine), the Education Department of Jiangsu Province (No. 16KJB330010), the Science and Technology Department of Jiangsu Province (No. BK20160227), the China Postdoctoral Science Foundation funded project (No. 2016M601892). The authors declare no competing financial interests.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ziqiang Fu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hua Jiang
- State Key Laboratory of Reproductive Medicine, Department of Gynecology, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Liping Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Xian Wu
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, USA
| | - Hongjuan Ding
- State Key Laboratory of Reproductive Medicine, Department of Obstetrics, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiuqin Tang
- State Key Laboratory of Reproductive Medicine, Department of Obstetrics, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
31
|
Kittelmann S, McGregor AP. Modulation and Evolution of Animal Development through microRNA Regulation of Gene Expression. Genes (Basel) 2019; 10:genes10040321. [PMID: 31027314 PMCID: PMC6523689 DOI: 10.3390/genes10040321] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/20/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022] Open
Abstract
microRNAs regulate gene expression by blocking the translation of mRNAs and/or promoting their degradation. They, therefore, play important roles in gene regulatory networks (GRNs) by modulating the expression levels of specific genes and can tune GRN outputs more broadly as part of feedback loops. These roles for microRNAs provide developmental buffering on one hand but can facilitate evolution of development on the other. Here we review how microRNAs can modulate GRNs during animal development as part of feedback loops and through their individual or combinatorial targeting of multiple different genes in the same network. We then explore how changes in the expression of microRNAs and consequently targets can facilitate changes in GRNs that alter development and lead to phenotypic evolution. The reviewed studies exemplify the key roles played by microRNAs in the regulation and evolution of gene expression during developmental processes in animals.
Collapse
Affiliation(s)
- Sebastian Kittelmann
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| |
Collapse
|
32
|
Abstract
Esophageal cancer (EC) is an extremely aggressive cancer with one of the highest mortality rates. The cancer is generally only diagnosed at the later stages and has a poor 5-year survival rate due to the limited treatment options. China and South Africa are two countries with a very high prevalence rate of EC. EC rates in South Africa have been on the increase, and esophageal squamous cell carcinoma is the predominant subtype and a primary cause of cancer-related deaths in the black and male mixed ancestry populations in South Africa. The incidence of EC is highest in the Eastern Cape Province, especially in the rural areas such as the Transkei, where the consumption of foods contaminated with Fusarium verticillioides is thought to play a major contributing role to the incidence of EC. China is responsible for almost half of all new cases of EC globally. In China, the prevalence of EC varies greatly. However, the two main areas of high prevalence are the southern Taihang Mountain area (Linxian, Henan Province) and the north Jiangsu area. In both countries, environmental toxins play a major role in increasing the chance that an individual will develop EC. These associative factors include tobacco use, alcohol consumption, nutritional deficiencies and exposure to environmental toxins. However, genetic polymorphisms also play a role in predisposing individuals to EC. These include single-nucleotide polymorphisms that can be found in both protein-coding genes and in non-coding sequences such as miRNAs. The aim of this review is to summarize the contribution of genetic polymorphisms to EC in South Africa and to compare and contrast this to the genetic polymorphisms observed in EC in the most comprehensively studied population group, the Chinese.
Collapse
Affiliation(s)
- Mohammed Alaouna
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Rodney Hull
- Research, Innovation & Engagements Portfolio, Mangosuthu University of Technology, Durban, South Africa,
| | - Clement Penny
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Zodwa Dlamini
- Research, Innovation & Engagements Portfolio, Mangosuthu University of Technology, Durban, South Africa,
| |
Collapse
|
33
|
Nguyen VT, Le BH, Seo YJ. T7 exo-mediated FRET-breaking combined with DSN–RNAse–TdT for the detection of microRNA with ultrahigh signal-amplification. Analyst 2019; 144:3216-3220. [DOI: 10.1039/c9an00303g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A DSN–RNAse–TdT–T7 exo probing system allows the detection of miRNA 21 with very high sensitivity (LOD = 2.57 fM) and selectivity—the result of (i) avoiding the false-positive signal from miRNA reacting with TdT polymerase and (ii) signal amplification occurring through a FRET-breaking mechanism involving T7 exo.
Collapse
Affiliation(s)
- Van Thang Nguyen
- Department of Bioactive Material Sciences
- Chonbuk National University
- South Korea
| | - Binh Huy Le
- Department of Bioactive Material Sciences
- Chonbuk National University
- South Korea
| | - Young Jun Seo
- Department of Bioactive Material Sciences
- Chonbuk National University
- South Korea
- Department of Chemistry
- Chonbuk National University
| |
Collapse
|
34
|
Lo Russo G, Tessari A, Capece M, Galli G, de Braud F, Garassino MC, Palmieri D. MicroRNAs for the Diagnosis and Management of Malignant Pleural Mesothelioma: A Literature Review. Front Oncol 2018; 8:650. [PMID: 30622932 PMCID: PMC6308141 DOI: 10.3389/fonc.2018.00650] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/10/2018] [Indexed: 12/17/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare and aggressive tumor with a variable incidence among different countries. Occupational asbestos exposure is the most important etiological factor and a very long latency period is widely reported. In the early phase of the disease, clinical signs are absent or not specific. For this reason, the diagnosis is frequently achieved only in the advanced stages. The histopathological diagnosis per se is also very complex, and no known factor can predict the prognosis with certainty. Nonetheless, current survival rates remain very low, despite the use of standard treatments, which include surgery, chemotherapy and radiotherapy. The identification of new prognostic and/or diagnostic biomarkers, and the discovery of therapeutic targets is a priority and could lead to a real significant impact on the management of malignant pleural mesothelioma. In this scenario, the role of microRNAs is becoming increasingly relevant, with the promise of a quick translation in the current clinical practice. Despite the relative novelty of this field, the number of works and candidate microRNAs that are present in literature is striking. Unfortunately, to date the microRNAs with the most clinical relevance for MPM are still matter of debate, probably due to the variety of approaches, techniques, and collected samples. Although specific microRNAs (e.g., let-7, miR-15 and miR-16, miR-21, miR-34a, and the miR-200 family) have been reported several times from different groups, the heterogeneity of published data reinforces the need of more comprehensive and unified studies on this topic. In this review we collect and discuss the studies focused on the involvement of microRNAs in different aspects of MPM, from their biological role in tumorigenesis and progression, to their possible application as diagnostic, prognostic and predictive biomarkers. Lastly, we examine their potential value as for the design of therapeutic approaches that could benefit MPM patients.
Collapse
Affiliation(s)
- Giuseppe Lo Russo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Anna Tessari
- Department of Cancer Biology and Genetics, the Ohio State University, Columbus, OH, United States
| | - Marina Capece
- Department of Cancer Biology and Genetics, the Ohio State University, Columbus, OH, United States
| | - Giulia Galli
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo de Braud
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Marina Chiara Garassino
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Dario Palmieri
- Department of Cancer Biology and Genetics, the Ohio State University, Columbus, OH, United States
| |
Collapse
|
35
|
Biersack B. Relations between approved platinum drugs and non-coding RNAs in mesothelioma. Noncoding RNA Res 2018; 3:161-173. [PMID: 30809599 PMCID: PMC6260483 DOI: 10.1016/j.ncrna.2018.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/29/2018] [Indexed: 12/23/2022] Open
Abstract
Malignant mesothelioma diseases feature an increasing risk due to their severe forms and their association with asbestos exposure. Platinum(II) complexes such as cisplatin and carboplatin are clinically approved for the therapy of mesothelioma often in combination with antimetabolites such as pemetrexed or gemcitabine. It was observed that pathogenic properties of mesothelioma cells and the response of mesothelioma tumors towards platinum-based drugs are strongly influenced by non-coding RNAs, in particular, by small microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). These non-coding RNAs controlled drug sensitivity and the development of tumor resistance towards platinum drugs. An overview of the interactions between platinum drugs and non-coding RNAs is given and the influence of non-coding RNAs on platinum drug efficacy in mesothelioma is discussed. Suitable non-coding RNA-modulating agents with potentially beneficial effects on cisplatin treatment of mesothelioma diseases are mentioned. The understanding of mesothelioma diseases concerning the interactions of non-coding RNAs and platinum drugs will optimize existing therapy schemes and pave the way to new treatment options in future.
Collapse
Key Words
- ABC, ATP-binding cassette
- AKBA, 3-acetyl-11-keto-β-boswellic acid
- AKI, acute kidney injury
- Anticancer drugs
- Bcl-2, B-cell lymphoma 2
- CAF, cancer-associated fibroblast
- CBDCA, cyclobutane-1,1-dicarboxylate
- Carboplatin
- Cisplatin
- DADS, diallyl sulfide
- DHA, docosahexaenoic acid
- DIM, 3,3′-diindolylmethane
- DMPM, diffuse malignant peritoneal mesothelioma
- EGCG, epigallocatechin-3-gallate
- EMT, epithelial-mesenchymal transition
- HOTAIR, HOX transcript antisense RNA
- I3C, indole-3-carbinol
- Long non-coding RNA
- MALAT1, metastasis-associated lung adenocarcinoma transcript 1
- MPM, malignant pleural mesothelioma
- MRP1, multidrug resistance protein 1
- Mesothelioma
- MicroRNA
- NSCLC, non-small cell lung cancer
- NaB, sodium butyrate
- PDCD4, programmed cell death 4
- PEG, polyethylene glycole
- PEITC, phenethylisothiocyanate
- PTEN, phosphatase and tensin homolog
- RA, retinoic acid
- SAHA, suberoylanilide hydroxamic acid
- SFN, sulforaphane
- TNBC, triple-negative breast cancer
- TSA, trichostatin A
Collapse
|
36
|
Hofbauer SL, de Martino M, Lucca I, Haitel A, Susani M, Shariat SF, Klatte T. A urinary microRNA (miR) signature for diagnosis of bladder cancer. Urol Oncol 2018; 36:531.e1-531.e8. [PMID: 30322728 DOI: 10.1016/j.urolonc.2018.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/30/2018] [Accepted: 09/07/2018] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Bladder cancer (BC) is diagnosed by cystoscopy, which is invasive, costly and causes considerable patient discomfort. MicroRNAs (miR) are dysregulated in BC and may serve as non-invasive urine markers for primary diagnostics and monitoring. The purpose of this study was to identify a urinary miR signature that predicts the presence of BC. METHODS For the detection of potential urinary miR markers, expression of 384 different miRs was analyzed in 16 urine samples from BC patients and controls using a Taqman™ Human MicroRNA Array (training set). The identified candidate gene signature was subsequently validated in an independent cohort of 202 urine samples of patients with BC and controls with microscopic hematuria. The final miR signature was developed from a multivariable logistic regression model. RESULTS Analysis of the training set identified 14 candidate miRs for further analysis within the validation set. Using backward stepwise elimination, we identified a subset of 6 miRs (let-7c, miR-135a, miR-135b, miR-148a, miR-204, miR-345) that distinguished BC from controls with an area under the curve of 88.3%. The signature was most accurate in diagnosing high-grade non-muscle invasive BC (area under the curve = 92.9%), but was capable to identify both low-grade and high-grade disease as well as non-muscle and muscle-invasive BC with high accuracies. CONCLUSIONS We identified a 6-gene miR signature that can accurately predict the presence of BC from urine samples, independent of stage and grade. This signature represents a simple urine assay that may help reducing costs and morbidity associated with invasive diagnostics.
Collapse
Affiliation(s)
- Sebastian L Hofbauer
- Department of Urology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Michela de Martino
- Department of Urology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Ilaria Lucca
- Department of Urology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Andrea Haitel
- Institute of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | - Martin Susani
- Institute of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | - Shahrokh F Shariat
- Department of Urology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Tobias Klatte
- Department of Urology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| |
Collapse
|
37
|
Wang J, Sun X. MicroRNA-375 inhibits the proliferation, migration and invasion of kidney cancer cells by triggering apoptosis and modulation of PDK1 expression. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 62:227-233. [PMID: 30098579 DOI: 10.1016/j.etap.2018.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 07/28/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
Kidney cancer is one of the deadly cancers and is the cause of significant number of deaths worldwide. The treatments used for the treatment of kidney cancer are limited and associated with number of side effects. Therefore, there is need for the development of new drug options or to identify novel therapeutic targets for the treatment of kidney cancer. In this study we investigated the potential of miR-375 as the therapeutic target for the treatment of Kidney cancer. The results revealed that miR-375 is significantly downregulated in the Kidney cancer cells. To investigate the role therapeutic potential of miR-375, one kidney cancer cell line (A-498) was selected for further experimentation. It was observed that overexpression of miR-375 inhibits A-498 kidney cancer proliferation by induction of apoptosis. In addition, overexpression of miR-375 causes suppression of migration and invasion of the A-498 kidney cancers cells. Bioinformatic analysis revealed PDK1 to be putative target of miR-375 in Kidney cancer cells. The western blot analysis revealed the expression of PDK1 to be significantly upregulated in Kidney cancer cells and overexpression of miR-375 in A-498 cells caused inhibition of PDK1 preventing the phosphorylation of AKT (Thr308 and Ser473). Additionally, inhibition of PDK1 had similar effects as that of miR-375 overexpression on cell proliferation of A-498 kidney cancer cells. The inhibition of miR-375 expression could not rescue the effects of PDK-1 suppression on A-498 cell proliferation. In contrary, overexpression of PKD1 in A-498 cells transfected with miR-375 mimics could nullify the effects of miR-375 on proliferation of the A-498 cells. Taken together, we conclude that miR-375 regulates cell proliferation, migration and invasion of A-498 kidney cancer cells and may prove to be an important therapeutic target.
Collapse
Affiliation(s)
- Jinling Wang
- Department of Kidney, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Xiuju Sun
- Department of Kidney, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China.
| |
Collapse
|
38
|
Sage AP, Martinez VD, Minatel BC, Pewarchuk ME, Marshall EA, MacAulay GM, Hubaux R, Pearson DD, Goodarzi AA, Dellaire G, Lam WL. Genomics and Epigenetics of Malignant Mesothelioma. High Throughput 2018; 7:E20. [PMID: 30060501 PMCID: PMC6163664 DOI: 10.3390/ht7030020] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/19/2018] [Accepted: 07/25/2018] [Indexed: 12/11/2022] Open
Abstract
Malignant mesothelioma is an aggressive and lethal asbestos-related disease. Diagnosis of malignant mesothelioma is particularly challenging and is further complicated by the lack of disease subtype-specific markers. As a result, it is especially difficult to distinguish malignant mesothelioma from benign reactive mesothelial proliferations or reactive fibrosis. Additionally, mesothelioma diagnoses can be confounded by other anatomically related tumors that can invade the pleural or peritoneal cavities, collectively resulting in delayed diagnoses and greatly affecting patient management. High-throughput analyses have uncovered key genomic and epigenomic alterations driving malignant mesothelioma. These molecular features have the potential to better our understanding of malignant mesothelioma biology as well as to improve disease diagnosis and patient prognosis. Genomic approaches have been instrumental in identifying molecular events frequently occurring in mesothelioma. As such, we review the discoveries made using high-throughput technologies, including novel insights obtained from the analysis of the non-coding transcriptome, and the clinical potential of these genetic and epigenetic findings in mesothelioma. Furthermore, we aim to highlight the potential of these technologies in the future clinical applications of the novel molecular features in malignant mesothelioma.
Collapse
Affiliation(s)
- Adam P Sage
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.
- Canadian Environmental Exposures in Cancer (CE2C) Network, Dalhousie University, P.O. BOX 15000, Halifax, NS B3H 4R2, Canada.
| | - Victor D Martinez
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.
- Canadian Environmental Exposures in Cancer (CE2C) Network, Dalhousie University, P.O. BOX 15000, Halifax, NS B3H 4R2, Canada.
| | - Brenda C Minatel
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.
- Canadian Environmental Exposures in Cancer (CE2C) Network, Dalhousie University, P.O. BOX 15000, Halifax, NS B3H 4R2, Canada.
| | - Michelle E Pewarchuk
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.
| | - Erin A Marshall
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.
- Canadian Environmental Exposures in Cancer (CE2C) Network, Dalhousie University, P.O. BOX 15000, Halifax, NS B3H 4R2, Canada.
| | - Gavin M MacAulay
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.
| | - Roland Hubaux
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.
| | - Dustin D Pearson
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Departments of Biochemistry & Molecular Biology and Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Aaron A Goodarzi
- Canadian Environmental Exposures in Cancer (CE2C) Network, Dalhousie University, P.O. BOX 15000, Halifax, NS B3H 4R2, Canada.
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Departments of Biochemistry & Molecular Biology and Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Graham Dellaire
- Canadian Environmental Exposures in Cancer (CE2C) Network, Dalhousie University, P.O. BOX 15000, Halifax, NS B3H 4R2, Canada.
- Departments of Pathology and Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Wan L Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.
- Canadian Environmental Exposures in Cancer (CE2C) Network, Dalhousie University, P.O. BOX 15000, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
39
|
Chen Q, Yang Z, Pan G, Ding H, Jiang D, Huang J, Liu W. Tumor suppressor miR-449a inhibits the development of gastric cancer via down-regulation of SGPL1. RSC Adv 2018; 8:26020-26028. [PMID: 35541941 PMCID: PMC9082876 DOI: 10.1039/c8ra02722f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/23/2018] [Indexed: 12/02/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that are known to participate in the regulation of many physiological and pathological processes, which can indirectly influence the development of malignant behaviors. Numerous studies have demonstrated that miR-449a plays important roles in human carcinogenesis. However, its precise functional and regulatory roles remain unclear. In this study, we mainly explored the functional role of miR-449a in gastric cancer (GC). The expression levels of miR-449a in 98 cases of GC tissues and cell lines were determined by qRT-PCR. The possible mechanisms of miR-449a in GC cells were explored by fluorescence reporter assay. miR-449a expression was significantly lower in GC tissues compared to matched para-carcinoma tissues and was associated with tumor differentiation. Furthermore, in vitro knockdown of miR-449a by siRNA significantly inhibited MKN-28 cell proliferation, migration and invasion as well as tumorigenesis via inducing G0/G1 arrest of GC cells. In addition, we identified SGPL1 as a target of miR-449a and demonstrated that miR-449a regulated SGPL1 expression via binding its 3′-UTR region. The experiments indicated that miR-449a functions as a novel tumor suppressor in GC and its anti-oncogenic activity may involve its inhibition of the target gene SGPL1. These findings suggested that miR-449a may be a promising candidate for the development of antitumor drugs targeting GC. MicroRNAs (miRNAs) are small noncoding RNAs that are known to participate in the regulation of many physiological and pathological processes, which can indirectly influence the development of malignant behaviors.![]()
Collapse
Affiliation(s)
- Qian Chen
- Department of General Surgery, Minhang Hospital, Fudan University No. 170, Xinsong Road, Minhang District Shanghai 201199 China
| | - Zhen Yang
- Department of General Surgery, Minhang Hospital, Fudan University No. 170, Xinsong Road, Minhang District Shanghai 201199 China
| | - Gaofeng Pan
- Department of General Surgery, Minhang Hospital, Fudan University No. 170, Xinsong Road, Minhang District Shanghai 201199 China
| | - Hongjian Ding
- Department of General Surgery, Minhang Hospital, Fudan University No. 170, Xinsong Road, Minhang District Shanghai 201199 China
| | - Daowen Jiang
- Department of General Surgery, Minhang Hospital, Fudan University No. 170, Xinsong Road, Minhang District Shanghai 201199 China
| | - Jianfang Huang
- Department of Infection Diseases, The Fifth People's Hospital Affiliated to Fudan University Shanghai 201199 China
| | - Weiyan Liu
- Department of General Surgery, Minhang Hospital, Fudan University No. 170, Xinsong Road, Minhang District Shanghai 201199 China
| |
Collapse
|
40
|
The Glucose-Regulated MiR-483-3p Influences Key Signaling Pathways in Cancer. Cancers (Basel) 2018; 10:cancers10060181. [PMID: 29867024 PMCID: PMC6025222 DOI: 10.3390/cancers10060181] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 02/06/2023] Open
Abstract
The hsa-mir-483 gene, located within the IGF2 locus, transcribes for two mature microRNAs, miR-483-5p and miR-483-3p. This gene, whose regulation is mediated by the the CTNNB1/USF1 complex, shows an independent expression from its host gene IGF2. The miR-483-3p affects the Wnt/β-catenin, the TGF-β, and the TP53 signaling pathways by targeting several genes as CTNNB1, SMAD4, IGF1, and BBC3. Accordingly, miR-483-3p is associated with various tissues specific physiological properties as insulin and melanin production, as well as with cellular physiological functions such as wounding, differentiation, proliferation, and survival. Deregulation of miR-483-3p is observed in different types of cancer, and its overexpression can inhibit the pro-apoptotic pathway induced by the TP53 target effectors. As a result, the oncogenic characteristics of miR-483-3p are linked to the effect of some of the most relevant cancer-related genes, TP53 and CTNNB1, as well as to one of the most important cancer hallmark: the aberrant glucose metabolism of tumor cells. In this review, we summarize the recent findings regarding the miR-483-3p, to elucidate its functional role in physiological and pathological contexts, focusing overall on its involvement in cancer and in the TP53 pathway.
Collapse
|
41
|
Zhao R, Liu Q, Lou C. MicroRNA-299-3p regulates proliferation, migration and invasion of human ovarian cancer cells by modulating the expression of OCT4. Arch Biochem Biophys 2018; 651:21-27. [PMID: 29758200 DOI: 10.1016/j.abb.2018.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/25/2018] [Accepted: 05/09/2018] [Indexed: 02/08/2023]
Abstract
Ovarian cancer is among the most prevalent and lethal types of cancers in women. Several factors such as late diagnosis, unavailability of the reliable biomarkers, frequent relapses and dearth of efficient therapeutic targets form bottleneck in the treatment of ovarian cancers. In this study we investigated the potential of less studied miR-299-3p as the therapeutic target for the treatment of ovarian cancer. The results of the present investigation revealed that miR-299 is significantly upregulated in the ovarian cancers and suppression of its expression inhibits the proliferation by induction of apoptosis as well suppresses migration and invasion of the SKOV3 cancers cells. Further, OCT-4 was found to be putative target of miR-99-3p in ovarian cancer and inhibition of OCT-4 had similar effects as that of miR-299 inhibition on cell migration and invasion. Intriguingly, even overexpression of miR-299-3p could not rescue the effects of OCT-4 suppression on SKOV3 cell proliferation, migration and invasion. On contrary, overexpression of OCT-4 in SKOV3 cells transfected with miR-299-3p transfected could nullify the effects of miR-200-3p on proliferation, migration and invasion of the SKOV3 cells. Taken together, miR-299-3p regulated cell proliferation and metastasis by modulating the expression of OCT-4 and as such may prove to be an important therapeutic target.
Collapse
Affiliation(s)
- Ruiyan Zhao
- Department of Obstetrics and Gynecology, The Third People's Hospital of Jinan, Jinan, Shandong 250132, China.
| | - Qiyong Liu
- Department of Cardiology, The Third People's Hospital of Jinan, Jinan, Shandong 250132, China
| | - Chunxiang Lou
- Department of Obstetrics and Gynecology, The Third People's Hospital of Jinan, Jinan, Shandong 250132, China
| |
Collapse
|
42
|
Lin Z, Zhou Z, Guo H, He Y, Pang X, Zhang X, Liu Y, Ao X, Li P, Wang J. Long noncoding RNA gastric cancer-related lncRNA1 mediates gastric malignancy through miRNA-885-3p and cyclin-dependent kinase 4. Cell Death Dis 2018; 9:607. [PMID: 29789536 PMCID: PMC5964145 DOI: 10.1038/s41419-018-0643-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/04/2018] [Accepted: 04/12/2018] [Indexed: 01/17/2023]
Abstract
Gastric cancer (GC) is one of the most common malignancy and the third leading cancer-related death in China. Long noncoding RNAs (lncRNAs) have been implicated in numerous tumors, including GC, however, the mechanism of many functional lncRNAs is still unclear. In this study, we identified the abundantly expressed lncRNA, RP11-290F20.3, in GC cells and patient tumor tissues. We named this lncRNA as GC-related lncRNA1 (GCRL1), which could regulate gastric cell proliferation and metastasis, both in vitro and in vivo. Mechanistically, miRNA-885-3p (miR-885-3p) could inhibit the cell proliferation and metastasis in GC by negatively regulating the expression of cyclin-dependent kinase 4 (CDK4) at the post-transcriptional level. Further, GCRL1 promoted the cell proliferation and metastasis by sponging miR-885-3p and hence, positively regulating CDK4 in GC cells. Taken together, our results demonstrate a novel regulatory axis of malignant cell proliferation and invasion in GC, comprising GCRL1, miR-885-3p, and CDK4, which may serve as a potential therapeutic target in GC.
Collapse
Affiliation(s)
- Zhijuan Lin
- Center for Tumor Molecular Biology, Institute for Translational Medicine, Qingdao University, Qingdao, 266021, China.,Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, China
| | - Zhixia Zhou
- Center for Tumor Molecular Biology, Institute for Translational Medicine, Qingdao University, Qingdao, 266021, China
| | - Hang Guo
- Department of Anesthesiology, PLA Army General Hospital, Beijing, 100700, China
| | - Yuqi He
- Department of Gastroenterology, PLA Army General Hospital, Beijing, 100700, China
| | - Xin Pang
- Center for Tumor Molecular Biology, Institute for Translational Medicine, Qingdao University, Qingdao, 266021, China
| | - Xumei Zhang
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, 261041, China
| | - Ying Liu
- Center for Tumor Molecular Biology, Institute for Translational Medicine, Qingdao University, Qingdao, 266021, China
| | - Xiang Ao
- Center for Tumor Molecular Biology, Institute for Translational Medicine, Qingdao University, Qingdao, 266021, China
| | - Peifeng Li
- Center for Tumor Molecular Biology, Institute for Translational Medicine, Qingdao University, Qingdao, 266021, China.
| | - Jianxun Wang
- Center for Tumor Molecular Biology, Institute for Translational Medicine, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
43
|
Chen R, Zheng Y, Zhuo L, Wang S. The association between miR-423 rs6505162 polymorphism and cancer susceptibility: a systematic review and meta-analysis. Oncotarget 2018; 8:40204-40213. [PMID: 28418884 PMCID: PMC5522323 DOI: 10.18632/oncotarget.16319] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/13/2017] [Indexed: 02/07/2023] Open
Abstract
The association between miR-423 polymorphism (C > A) and the risk of different cancers are still controversial. We performed a meta-analysis to clarify its association with multiple cancer risks. PubMed and Embase (as of 10th September, 2016) were searched. A total of 17 studies from 16 articles, consisting of 8,582 cases and 10,291 controls, were finally qualified and enrolled in this meta-analysis. The pooled results showed that the miR-423 AA genotype was associated with decreased cancer risk under the recessive model (odds ratio [OR] = 0.87, 95% confidence interval [CI]: 0.78~0.98, P = 0.020). However, this association became non-significant after excluding the study with the smallest odds ratio. Subgroup analyses revealed a significant decrease in risk of lung cancer (dominant model: OR = 0.73, 95 % CI: 0.60~0.89, P = 0.002; recessive model: OR = 0.59, 95 % CI: 0.37~0.95, P = 0.031). Our study indicates that miR-423 rs6505162 might be associated with a reduced risk of cancers, however, this finding need to be evaluated further in larger samples, especially subgroup analyses. In addition, cancer-specific functional studies are especially needed to reveal the underlying mechanisms between miR-423 and the etiology of cancer.
Collapse
Affiliation(s)
- Ru Chen
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yonglan Zheng
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Lin Zhuo
- Department of Epidemiology and Bio-statistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Shengfeng Wang
- Department of Epidemiology and Bio-statistics, School of Public Health, Peking University Health Science Center, Beijing, China
| |
Collapse
|
44
|
Epigenetic silencing of miR-483-3p promotes acquired gefitinib resistance and EMT in EGFR-mutant NSCLC by targeting integrin β3. Oncogene 2018; 37:4300-4312. [PMID: 29717264 PMCID: PMC6072709 DOI: 10.1038/s41388-018-0276-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/21/2018] [Accepted: 03/12/2018] [Indexed: 12/20/2022]
Abstract
All lung cancers patients with epidermal growth factor receptor (EGFR) mutation inevitably develop acquired resistance to EGFR tyrosine kinase inhibitors (TKI). In up to 30% of cases, the mechanism underlying acquired resistance remains unknown. MicroRNAs (miRNAs) is a group of small non-coding RNAs commonly dysregulated in human cancers and have been implicated in therapy resistance. The aim of this study was to understand the roles of novel miRNAs in acquired EGFR TKI resistance in EGFR-mutant non-small cell lung cancer (NSCLC). Here, we reported the evidence of miR-483-3p silencing and epithelial-to-mesenchymal transition (EMT) phenotype in both in vitro and in vivo EGFR-mutant NSCLC models with acquired resistance to gefitinib. In those tumor models, forced expression of miR-483-3p efficiently increased sensitivity of gefitinib-resistant lung cancer cells to gefitinib by inhibiting proliferation and promoting apoptosis. Moreover, miR-483-3p reversed EMT and inhibited migration, invasion, and metastasis of gefitinib-resistant lung cancer cells. Mechanistically, miR-483-3p directly targeted integrin β3, and thus repressed downstream FAK/Erk signaling pathway. Furthermore, the silencing of miR-483-3p in gefitinib-resistant lung cancer cells was due to hypermethylation of its own promoter. Taken together, our data identify miR-483-3p as a promising target for combination therapy to overcome acquired EGFR TKI resistance in EGFR-mutant NSCLC.
Collapse
|
45
|
Wang J, Liu L, Sun Y, Xue Y, Qu J, Pan S, Li H, Qu H, Wang J, Zhang J. miR-615-3p promotes proliferation and migration and inhibits apoptosis through its potential target CELF2 in gastric cancer. Biomed Pharmacother 2018; 101:406-413. [PMID: 29501762 DOI: 10.1016/j.biopha.2018.02.104] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 02/16/2018] [Accepted: 02/22/2018] [Indexed: 01/23/2023] Open
Abstract
Gastric cancer incidence is relatively higher in China than that in developed countries; however, molecular mechanisms considering the initiation and progression of gastric cancer are still unclear. For decades, numerous microRNAs have been found to regulate a wide range of biological functions in gastric cancer. However, the oncogenic function of miR-615-3p in gastric cancer has not been reported to date. With the help of gene and microRNA chips in 10 patients, we were able to screen differential expressed genes and microRNAs compared with normal gastric tissues. After that, online bioinformatics analysis tools were used to predict microRNAs' potential targets. As a result, miR-615-3p and its potential target, CELF2, were selected for further experiments. QRT-PCR and western blot results indicated the aberrant high expression of miR-615-3p and low expression of CELF2 in gastric cancer both in vivo and in vitro. Moreover, miR-615-3p expression correlated to T and M stage. Up regulation of miR-615-3p inhibited the apoptosis, promoted proliferation and migration and led to the down-regulation of CELF2. Meanwhile, down-regulation of miR-615-3p resulted in anti-tumor effects. Immunochemistry staining of CELF2 showed its association with T, N and M stage. In addition, overexpression of CELF2 could reverse miR-615-3p's oncogenic functions stated before. These findings indicate that miR-615-3p promotes gastric cancer proliferation and migration by suppressing CELF2 expression for the first time, providing clues for future clinical practices.
Collapse
Affiliation(s)
- Jizhao Wang
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lin Liu
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yumo Xue
- Department of Hepatology Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jingkun Qu
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shupei Pan
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Huajing Li
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hangying Qu
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jiansheng Wang
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Jia Zhang
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
46
|
Furlong HC, Stämpfli MR, Gannon AM, Foster WG. Identification of microRNAs as potential markers of ovarian toxicity. J Appl Toxicol 2018; 38:744-752. [PMID: 29377183 PMCID: PMC5901046 DOI: 10.1002/jat.3583] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 11/30/2017] [Indexed: 12/17/2022]
Abstract
Exposure to environmental toxicants has been associated with ovarian dysfunction yet sensitive biomarkers of adverse effect are lacking. We previously demonstrated that cigarette smoke exposure induced decreased relative ovarian weight, increased follicle loss and granulosa cell autophagy in mice. We postulate that cigarette smoke exposure will induce changes in the epigenome that can be used to reveal potential sensitive biomarkers of ovarian toxicity. Therefore, we evaluated differences in expression of 940 microRNAs (miRNAs), environmentally responsive small non-coding genes that regulate expression of genes at the post-transcriptional level, in ovarian tissue from 8-week-old female C57BL/6 mice exposed to room air or cigarette smoke 5 days per week for 8 weeks. A total of 152 miRNAs were dysregulated in expression, 17 of which were examined with quantitative polymerase chain reaction analysis. Using an online miRNA database tool, complete lists of predicted miRNA gene targets were generated, 12 of which were measured for their expression levels with quantitative polymerase chain reaction. An online bioinformatics resource database, DAVID generated functional classification lists of the target genes and their associated biological pathways. Results of the present pilot study suggest that miR-379, miR-15b, miR-691, miR-872 and miR-1897-5p are potentially useful markers of ovarian toxicity and dysfunction. Examination of the expression pattern of the target mRNA for these miRNA species demonstrated that cigarette smoke exposure induced significant changes that affect mitogen-activated protein kinase signaling pathways. We therefore suggest that miRNAs could serve as sensitive markers of ovarian toxicity and elucidate affected pathways.
Collapse
Affiliation(s)
- Hayley C. Furlong
- Department of Obstetrics and GynecologyMcMaster UniversityHamiltonOntarioCanada
| | - Martin R. Stämpfli
- Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonOntarioCanada
| | - Anne M. Gannon
- Department of Obstetrics and GynecologyMcMaster UniversityHamiltonOntarioCanada
| | - Warren G. Foster
- Department of Obstetrics and GynecologyMcMaster UniversityHamiltonOntarioCanada
| |
Collapse
|
47
|
A subset of microRNAs defining the side population of a human malignant mesothelioma cell line. Oncotarget 2018; 8:42847-42856. [PMID: 28467812 PMCID: PMC5522110 DOI: 10.18632/oncotarget.17086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/22/2017] [Indexed: 01/04/2023] Open
Abstract
This study was performed to investigate the global expression profile of microRNAs in distinct subpopulations of a human malignant mesothelioma cell line. Total RNAs were isolated from the sorted side population and non-side population of MS1. The RNAs were subjected to analysis using Affymetrix GeneChip microRNA Arrays. After data extraction and normalization, a subset of microRNAs defining cell subpopulations was identified using bioinformatics softwares. Based on the criteria of 2-fold difference and the p-value of < 0.05, a total of 95 microRNAs were differentially expressed in the side population compared to the non-side population. Functional ontology revealed that target genes of the miRNAs were categorized into various gene ontology terms, such as stem cell maintenance, cell proliferation, programmed cell death, cell migration, and cellular response to stress. The Kyoto Encyclopedia of Genes and Genomes analysis showed that ErbB-2 receptor tyrosine kinases signaling pathway was the most represented. Integrated analysis of MiRTarBase and RNA-seq identified 12 target genes of microRNAs defining side population, including DDIT4 and ROCK2. The present study indicates that a distinct set of microRNAs may be critically involved in the generation and maintenance of heterogeneous subpopulations of cancer cells. They could be a plausible target for the eradication of more aggressive cancer cell subpopulations.
Collapse
|
48
|
Nicolè L, Cappellesso R, Sanavia T, Guzzardo V, Fassina A. MiR-21 over-expression and Programmed Cell Death 4 down-regulation features malignant pleural mesothelioma. Oncotarget 2018; 9:17300-17308. [PMID: 29707109 PMCID: PMC5915117 DOI: 10.18632/oncotarget.24644] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 02/27/2018] [Indexed: 12/26/2022] Open
Abstract
Background Differential diagnosis between malignant pleural mesothelioma (MPM) and benign mesothelial conditions is still challenging and there is a lack of useful markers. Programmed cell death 4 (PDCD4) is a well-known tumor suppressor gene in several cancers, its post-transcriptional activity is directly controlled by miR-21, whose over-expression has been recently reported in MPM compared to normal mesothelium. Aim of this study was to test this suppressor gene as a possible new marker of malignant transformation in mesothelial cells, as well as a new prognostic marker. Methods PDCD4 nuclear expression was assessed by immunohistochemistry (IHC) in 40 non-neoplastic pleural (NNP) and 40 MPM formalin-fixed and paraffin-embedded specimens. PDCD4 and miR-21 expressions were analyzed by qRT-PCR in all cases. In situ hybridization (ISH) of miR-21 was performed in 5 representative cases of both groups. The prognostic relevance of PDCD4 was assessed in a public available gene expression dataset. Results IHC showed that PDCD4 nuclear expression was significantly lower in MPM than in NNP. PDCD4 was down-regulated, whereas miR-21 was over-expressed in MPM cases compared to NNP ones. ISH detected miR-21 only in MPM specimens. Down-expression of PDCD4 was found significantly associated with short overall survival in publicly available data. Conclusions These findings highlighted a switch between PDCD4 and miR-21 expression in MPM. Further studies should assess the diagnostic reliability of these two markers for MPM in biopsy and effusion specimens.
Collapse
Affiliation(s)
- Lorenzo Nicolè
- Department of Medicine, Surgical Pathology & Cytopathology Unit, University of Padova, Padova, Italy
| | - Rocco Cappellesso
- Department of Medicine, Surgical Pathology & Cytopathology Unit, University of Padova, Padova, Italy
| | - Tiziana Sanavia
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Vincenza Guzzardo
- Department of Medicine, Surgical Pathology & Cytopathology Unit, University of Padova, Padova, Italy
| | - Ambrogio Fassina
- Department of Medicine, Surgical Pathology & Cytopathology Unit, University of Padova, Padova, Italy
| |
Collapse
|
49
|
|
50
|
Targeting the Hippo Pathway Is a New Potential Therapeutic Modality for Malignant Mesothelioma. Cancers (Basel) 2018; 10:cancers10040090. [PMID: 29565815 PMCID: PMC5923345 DOI: 10.3390/cancers10040090] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 12/14/2022] Open
Abstract
Malignant mesothelioma (MM) constitutes a very aggressive tumor that arises from the pleural or peritoneal cavities and is highly refractory to conventional therapies. Several key genetic alterations are associated with the development and progression of MM including mutations of the CDKN2A/ARF, NF2, and BAP1 tumor-suppressor genes. Notably, activating oncogene mutations are very rare; thus, it is difficult to develop effective inhibitors to treat MM. The NF2 gene encodes merlin, a protein that regulates multiple cell-signaling cascades including the Hippo pathway. MMs also exhibit inactivation of Hippo pathway components including LATS1/2, strongly suggesting that merlin-Hippo pathway dysregulation plays a key role in the development and progression of MM. Furthermore, Hippo pathway inactivation has been shown to result in constitutive activation of the YAP1/TAZ transcriptional coactivators, thereby conferring malignant phenotypes to mesothelial cells. Critical YAP1/TAZ target genes, including prooncogenic CCDN1 and CTGF, have also been shown to enhance the malignant phenotypes of MM cells. Together, these data indicate the Hippo pathway as a therapeutic target for the treatment of MM, and support the development of new strategies to effectively target the activation status of YAP1/TAZ as a promising therapeutic modality for this formidable disease.
Collapse
|