1
|
Singh K, Oladipupo SS. An overview of CCN4 (WISP1) role in human diseases. J Transl Med 2024; 22:601. [PMID: 38937782 PMCID: PMC11212430 DOI: 10.1186/s12967-024-05364-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/01/2024] [Indexed: 06/29/2024] Open
Abstract
CCN4 (cellular communication network factor 4), a highly conserved, secreted cysteine-rich matricellular protein is emerging as a key player in the development and progression of numerous disease pathologies, including cancer, fibrosis, metabolic and inflammatory disorders. Over the past two decades, extensive research on CCN4 and its family members uncovered their diverse cellular mechanisms and biological functions, including but not limited to cell proliferation, migration, invasion, angiogenesis, wound healing, repair, and apoptosis. Recent studies have demonstrated that aberrant CCN4 expression and/or associated downstream signaling is key to a vast array of pathophysiological etiology, suggesting that CCN4 could be utilized not only as a non-invasive diagnostic or prognostic marker, but also as a promising therapeutic target. The cognate receptor of CCN4 remains elusive till date, which limits understanding of the mechanistic insights on CCN4 driven disease pathologies. However, as therapeutic agents directed against CCN4 begin to make their way into the clinic, that may start to change. Also, the pathophysiological significance of CCN4 remains underexplored, hence further research is needed to shed more light on its disease and/or tissue specific functions to better understand its clinical translational benefit. This review highlights the compelling evidence of overlapping and/or diverse functional and mechanisms regulated by CCN4, in addition to addressing the challenges, study limitations and knowledge gaps on CCN4 biology and its therapeutic potential.
Collapse
Affiliation(s)
- Kirti Singh
- Biotherapeutic Enabling Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46225, USA
| | - Sunday S Oladipupo
- Biotherapeutic Enabling Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46225, USA.
| |
Collapse
|
2
|
Zohud O, Lone IM, Nashef A, Iraqi FA. Towards system genetics analysis of head and neck squamous cell carcinoma using the mouse model, cellular platform, and clinical human data. Animal Model Exp Med 2023; 6:537-558. [PMID: 38129938 PMCID: PMC10757216 DOI: 10.1002/ame2.12367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Head and neck squamous cell cancer (HNSCC) is a leading global malignancy. Every year, More than 830 000 people are diagnosed with HNSCC globally, with more than 430 000 fatalities. HNSCC is a deadly diverse malignancy with many tumor locations and biological characteristics. It originates from the squamous epithelium of the oral cavity, oropharynx, nasopharynx, larynx, and hypopharynx. The most frequently impacted regions are the tongue and larynx. Previous investigations have demonstrated the critical role of host genetic susceptibility in the progression of HNSCC. Despite the advances in our knowledge, the improved survival rate of HNSCC patients over the last 40 years has been limited. Failure to identify the molecular origins of development of HNSCC and the genetic basis of the disease and its biological heterogeneity impedes the development of new therapeutic methods. These results indicate a need to identify more genetic factors underlying this complex disease, which can be better used in early detection and prevention strategies. The lack of reliable animal models to investigate the underlying molecular processes is one of the most significant barriers to understanding HNSCC tumors. In this report, we explore and discuss potential research prospects utilizing the Collaborative Cross mouse model and crossing it to mice carrying single or double knockout genes (e.g. Smad4 and P53 genes) to identify genetic factors affecting the development of this complex disease using genome-wide association studies, epigenetics, microRNA, long noncoding RNA, lncRNA, histone modifications, methylation, phosphorylation, and proteomics.
Collapse
Affiliation(s)
- Osayd Zohud
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel‐Aviv UniversityTel AvivIsrael
| | - Iqbal M. Lone
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel‐Aviv UniversityTel AvivIsrael
| | - Aysar Nashef
- Department of Oral and Maxillofacial SurgeryBaruch Padeh Medical CenterPoriyaIsrael
- Azrieli Faculty of MedicineBar‐Ilan UniversityRamat GanIsrael
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel‐Aviv UniversityTel AvivIsrael
| |
Collapse
|
3
|
Chang KS, Chen ST, Sung HC, Hsu SY, Lin WY, Hou CP, Lin YH, Feng TH, Tsui KH, Juang HH. WNT1 Inducible Signaling Pathway Protein 1 Is a Stroma-Specific Secreting Protein Inducing a Fibroblast Contraction and Carcinoma Cell Growth in the Human Prostate. Int J Mol Sci 2022; 23:ijms231911437. [PMID: 36232736 PMCID: PMC9570503 DOI: 10.3390/ijms231911437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/18/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
The WNT1 inducible signaling pathway protein 1 (WISP1), a member of the connective tissue growth factor family, plays a crucial role in several important cellular functions in a highly tissue-specific manner. Results of a RT-qPCR indicated that WISP1 expressed only in cells of the human prostate fibroblasts, HPrF and WPMY-1, but not the prostate carcinoma cells in vitro. Two major isoforms (WISP1v1 and WISP1v2) were identified in the HPrF cells determined by RT-PCR and immunoblot assays. The knock-down of a WISP1 blocked cell proliferation and contraction, while treating respectively with the conditioned medium from the ectopic WISP1v1- and WISPv2-overexpressed 293T cells enhanced the migration of HPrF cells. The TNFα induced WISP1 secretion and cell contraction while the knock-down of WISP1 attenuated these effects, although TNFα did not affect the proliferation of the HPrF cells. The ectopic overexpression of WISP1v1 but not WISP1v2 downregulated the N-myc downstream regulated 1 (NDRG1) while upregulating N-cadherin, slug, snail, and vimentin gene expressions which induced not only the cell proliferation and invasion in vitro but also tumor growth of prostate carcinoma cells in vivo. The results confirmed that WISP1 is a stroma-specific secreting protein, enhancing the cell migration and contraction of prostate fibroblasts, as well as the proliferation, invasion, and tumor growth of prostate carcinoma cells.
Collapse
Affiliation(s)
- Kang-Shuo Chang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Syue-Ting Chen
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Hsin-Ching Sung
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Shu-Yuan Hsu
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Wei-Yin Lin
- Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Chen-Pang Hou
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Yu-Hsiang Lin
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Tsui-Hsia Feng
- School of Nursing, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Ke-Hung Tsui
- Department of Urology, Shuang Ho Hospital, New Taipei City 235041, Taiwan
- TMU Research Center of Urology and Kidney, Department of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (K.-H.T.); (H.-H.J.); Tel.: +886-3-2118800 (ext. 5071) (H.-H.J.); Fax: +886-3-2118112 (H.-H.J.)
| | - Horng-Heng Juang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Taoyuan 33302, Taiwan
- Correspondence: (K.-H.T.); (H.-H.J.); Tel.: +886-3-2118800 (ext. 5071) (H.-H.J.); Fax: +886-3-2118112 (H.-H.J.)
| |
Collapse
|
4
|
Fang F, Xu W, Zhang J, Gu J, Yang G. Ultrasound microbubble-mediated RNA interference targeting WNT1 inducible signaling pathway protein 1(WISP1) suppresses the proliferation and metastasis of breast cancer cells. Bioengineered 2022; 13:11050-11060. [PMID: 35481425 PMCID: PMC9208516 DOI: 10.1080/21655979.2022.2068738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
In the context of relatively sufficient research that annotated WNT1 inducible signaling pathway protein 1 (WISP1) as a promoting factor in tumor progression of breast cancer, and identified the effects of ultrasound microbubble technology on enhancing the transfection efficiency and achieving better gene interference, this study managed to investigate the effects of ultrasound microbubble-mediated siWISP1 transfection on proliferation and metastasis of breast cancer cells. To achieve our research objectives, the expression of WISP1 in breast cancer tissues was retrieved from GEPIA website, and the viability of breast cancer cells (SK-BR-3 and MCF7) was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay for ultrasound intensity screening. After the transfection of siWISP1 by ultrasound microbubble or lipofectamine 6000, the content of WISP1 secreted by cells was detected through Enzyme-linked immunosorbent assay (ELISA), and WISP1 expression in cells was determined by quantitative reverse transcription polymerase-chain reaction (qRT-PCR). Besides, the cell invasion, migration, and proliferation were evaluated by wound healing, transwell, and EdU assays, respectively. In accordance with experimental results, WISP1 was highly expressed in breast cancer tissues, and the 1 W/cm2 intensity was the onset of a notable decrease in cell viability. Compared with lipofectamine 6000 transfection, the transfection of siWISP1 mediated by ultrasound microbubble further reduced the expression of WISP1, and meanwhile suppressed cell invasion, migration, and proliferation. Collectively, ultrasound microbubble-mediated transfection of siWISP1 worked rather effectively in improving transfection efficiency and inhibiting the progression of breast cancer.
Collapse
Affiliation(s)
- Faying Fang
- Department of Special Examination, Maternal and Child Health Hospital of Chun'an County, Hangzhou, Zhejiang, China
| | - Weizhi Xu
- Department of Ultrasound, Sanmen People's Hospital, Taizhou, Zhejiang, China
| | - Jian Zhang
- Department of Ultrasound, Pingyi County Hospital of Traditional Chinese Medicine, Linyi, Shandong, China
| | - Jin Gu
- Department of Ultrasound, Chongqing Public Health Medical Center, Chongqing, Shandong, China
| | - Gaoyi Yang
- Department of Ultrasound, Sanmen People's Hospital, Taizhou, Zhejiang, China
| |
Collapse
|
5
|
Bruine de Bruin L, Clausen MJAM, Slagter-Menkema L, de Bock GH, Langendijk JA, van der Vegt B, van der Laan BFAM, Schuuring E. High DNMT1 Is Associated With Worse Local Control in Early-Stage Laryngeal Squamous Cell Carcinoma. Laryngoscope 2021; 132:801-805. [PMID: 34427325 PMCID: PMC9290472 DOI: 10.1002/lary.29833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022]
Abstract
Objectives/Hypothesis Early‐stage laryngeal squamous cell carcinoma (LSCC) has yielded local control rates of 75% after radiotherapy. DNA methylation, in which DNA methyltransferases play an important role, has influence on tumorigenesis. In this study, we investigated the association between the expression of DNA methyltransferase 1 (DNMT1) and local control in early‐stage LSCC treated with radiotherapy. Study Design Retrospective cohort study. Methods We analyzed a well‐defined homogeneous series of 125 LSCC patients treated with radiotherapy with curative intent. The association of immunohistochemical expression of DNMT1 with local control was evaluated using Cox proportional hazard regression models. Results With a median follow‐up of 58 months, 29 local recurrences (23%) were observed. On univariate analysis, worse local control was associated with high DNMT1 expression (hazard ratio [HR] 2.57, 95% confidence interval [CI] 1.10–6.01). Also, higher T‐stage (HR 2.48, 95% CI 1.06–5.80) and positive N‐status (HR 2.62, 95% CI 1.06–6.47) were associated with worse local control. Multivariate Cox regression demonstrated that high DNMT1 (HR 2.81; 95% CI 1.20–6.58) was independently associated with worse local control. Conclusions We found an association between high DNMT1 expression and worse local control in a homogeneous well‐defined cohort of early‐stage LSCC patients treated with definitive radiotherapy. The association between DNA methylation status as determined by DNMT1 expression and local control suggests that DNMT1 acts as a potential prognostic tumor marker in treatment decision‐making in early‐stage laryngeal carcinoma. Level of evidence NA Laryngoscope, 132:801–805, 2022
Collapse
Affiliation(s)
- Leonie Bruine de Bruin
- Department of Otorhinolaryngology/Head and Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martijn J A M Clausen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Lorian Slagter-Menkema
- Department of Otorhinolaryngology/Head and Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gertruida H de Bock
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Johannes A Langendijk
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bert van der Vegt
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bernard F A M van der Laan
- Department of Otorhinolaryngology/Head and Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ed Schuuring
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Janjanam J, Pano G, Wang R, Minden-Birkenmaier BA, Breeze-Jones H, Baker E, Garcin C, Clayton G, Shirinifard A, Zaske AM, Finkelstein D, Labelle M. Matricellular protein WISP2 is an endogenous inhibitor of collagen linearization and cancer metastasis. Cancer Res 2021; 81:5666-5677. [PMID: 34385183 DOI: 10.1158/0008-5472.can-20-3982] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 07/06/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022]
Abstract
Collagen remodeling contributes to many physiological and pathological processes. In primary tumors, the linearization of collagen fibers promotes cancer cell invasion and metastasis and is indicative of poor prognosis. However, it remains unknown whether there are endogenous inhibitors of collagen linearization that could be exploited therapeutically. Here, we show that collagen linearization is controlled by two secreted matricellular proteins with antagonistic functions. Specifically, WISP1 was secreted by cancer cells, bound to type I collagen (Col I), and linearized Col I via its cysteine-rich C-terminal (CT) domain. In contrast, WISP2, which lacks a CT domain, inhibited Col I linearization by preventing WISP1-Col I binding. Analysis of patient data revealed that WISP2 expression is lower in most solid tumors, in comparison to normal tissues. Consequently, genetic or pharmacological restoration of higher WISP2 levels impaired collagen linearization and prevented tumor cell invasion and metastasis in vivo in models of human and murine breast cancer. Thus, this study uncovers WISP2 as the first inhibitor of collagen linearization ever identified and reveals that collagen architecture can be normalized and metastasis inhibited by therapeutically restoring a high WISP2:WISP1 ratio.
Collapse
Affiliation(s)
| | - Glendin Pano
- Developmental Neurobiology, St. Jude Children's Research Hospital
| | - Ruishan Wang
- Developmental Neurobiology, St. Jude Children's Research Hospital
| | | | | | - Eleanor Baker
- Developmental Neurobiology, St. Jude Children's Research Hospital
| | - Cecile Garcin
- Developmental Neurobiology, St. Jude Children's Research Hospital
| | - Georgia Clayton
- Developmental Neurobiology, St. Jude Children's Research Hospital
| | | | - Ana Maria Zaske
- Department of Internal Medicine, UTHealth - The University of Texas Health Science Center at Houston
| | | | - Myriam Labelle
- Developmental Neurobiology, St. Jude Children's Research Hospital
| |
Collapse
|
7
|
Nikoloudaki G. Functions of Matricellular Proteins in Dental Tissues and Their Emerging Roles in Orofacial Tissue Development, Maintenance, and Disease. Int J Mol Sci 2021; 22:ijms22126626. [PMID: 34205668 PMCID: PMC8235165 DOI: 10.3390/ijms22126626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/04/2023] Open
Abstract
Matricellular proteins (MCPs) are defined as extracellular matrix (ECM) associated proteins that are important regulators and integrators of microenvironmental signals, contributing to the dynamic nature of ECM signalling. There is a growing understanding of the role of matricellular proteins in cellular processes governing tissue development as well as in disease pathogenesis. In this review, the expression and functions of different MP family members (periostin, CCNs, TSPs, SIBLINGs and others) are presented, specifically in relation to craniofacial development and the maintenance of orofacial tissues, including bone, gingiva, oral mucosa, palate and the dental pulp. As will be discussed, each MP family member has been shown to have non-redundant roles in development, tissue homeostasis, wound healing, pathology and tumorigenesis of orofacial and dental tissues.
Collapse
Affiliation(s)
- Georgia Nikoloudaki
- Schulich Dentistry Department, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; ; Tel.: +1-519-661-2111 (ext. 81102)
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| |
Collapse
|
8
|
Song D, Wang L, Su K, Wu H, Li J. WISP1 aggravates cell metastatic potential by abrogating TGF- β-Smad2/3-dependent epithelial-to-mesenchymal transition in laryngeal squamous cell carcinoma. Exp Biol Med (Maywood) 2021; 246:1244-1252. [PMID: 33593111 DOI: 10.1177/1535370221992703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Laryngeal squamous cell cancer (LSCC) is a common carcinoma with high morbidity and mortality. Metastasis constitutes the major cause of death and poor prognosis among patients with LSCC. Recent evidence confirms critical function of Wnt1-inducible signaling protein 1 (WISP1) in several cancers. However, its contribution in LSCC metastasis remains unclear. Specimens of tumor tissues and adjacent normal mucosa were collected from patients with LSCC. The mRNA and protein levels were determined using quantitative real-time PCR and Western blot, respectively. RNA interference was applied to silence the expression of WISP1 and TGF-β, and recombinant adenovirus was used to overexpress WISP1 in human LSCC cell line TU212 cells. Cell invasion and migration were determined by transwell assay. High expression of WISP1 was observed in LSCC tissues, especially in those from metastatic groups. Ectopic expression of WISP1 enhanced invasion and migration of TU212 cells. On the contrary, WISP1 knockdown reduced numbers of invasive and migrated cells. Additionally, elevation of WISP1 depressed the expression of epithelial marker E-cadherin and increased levels of mesenchymal marker vimentin in TU212 cells, whereas WISP suppression yielded the opposite effects. Further analysis corroborated that WISP1 overexpression enhanced activation of TGF-β-Smad signaling by increasing expression of TGF-β1, p-Smad2, and p-Smad3, which was abrogated following WISP1 down-regulation. Moreover, TGF-β1 exposure facilitated LSCC cell invasion and migration. Notably, blockage of the TGF-β-Smad pathway by si-TGF-β overturned WISP-1-evoked epithelial-to-mesenchymal transition (EMT), and subsequent cell invasion and migration. These findings highlight the pro-metastatic function of WISP1 in LSCC by regulating cell invasion and migration via TGF-β-Smad-mediated EMT, supporting a promising invention target for LSCC therapy.
Collapse
Affiliation(s)
- Dandan Song
- Department of Otolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Liang Wang
- Department of Otolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Ke Su
- Department of Otolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Huanhuan Wu
- Department of Otolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Junli Li
- Department of Otolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| |
Collapse
|
9
|
Chen LM, Xiang L, Sun WJ, Zhai YJ, Gao S, Fan YC, Wang K. Diagnostic Value of the Hypomethylation of the WISP1 Promoter in Patients with Hepatocellular Carcinoma Associated with Hepatitis B Virus. TOHOKU J EXP MED 2020; 252:297-307. [PMID: 33239483 DOI: 10.1620/tjem.252.297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Wnt1-inducible signaling pathway protein 1 (WISP1) regulates cell proliferation, differentiation, adhesion, migration and survival. Abnormal WISP1 expression is associated with the carcinogenesis of hepatocellular carcinoma (HCC). Aberrant DNA methylation is one of the major epigenetic alterations in HCC. However, the methylation status of the WISP1 promoter is still unclear. We therefore aimed to determine the methylation status of the WISP1 promoter and evaluate its clinical value in HCC. The study enrolled 251 participants, including 123 participants with HCC, 90 participants with chronic hepatitis B (CHB) and 38 healthy controls (HCs). WISP1 methylation status, mRNA levels and plasma soluble WISP1 were detected by methylation-specific polymerase chain reaction (MSP), quantitative real-time PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA), respectively. We found that the methylation frequency of WISP1 in patients with HCC was significantly lower than that in patients with CHB and HCs, while the relative expression levels of WISP1 mRNA were markedly higher in patients with HCC than in patients with CHB and HCs. Furthermore, the plasma soluble WISP1 in patients with HCC was obviously lower than in that in patients with CHB and HCs. Alpha-fetoprotein (AFP) is a widely recognized biomarker to diagnose HCC which lacks enough sensitivity and specificity. WISP1 promoter methylation status combined with AFP significantly improved the diagnostic ability in discriminating HCC from CHB compared with AFP or WISP1 methylation status alone. In conclusion, hypomethylation of the WISP1 gene promoter may serve as a noninvasive biomarker for detecting HBV-associated HCC.
Collapse
Affiliation(s)
- La-Mei Chen
- Department of Hepatology, Qilu Hospital of Shandong University
| | - Lin Xiang
- Department of Hepatology, Qilu Hospital of Shandong University
| | - Wei-Juan Sun
- Department of Hepatology, Qilu Hospital of Shandong University
| | - Yu-Jia Zhai
- Department of Hepatology, Qilu Hospital of Shandong University
| | - Shuai Gao
- Department of Hepatology, Qilu Hospital of Shandong University.,Institute of Hepatology, Shandong University
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital of Shandong University.,Institute of Hepatology, Shandong University.,Shenzhen Research Institute of Shandong University
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University.,Institute of Hepatology, Shandong University.,Shenzhen Research Institute of Shandong University
| |
Collapse
|
10
|
Chang AC, Lien MY, Tsai MH, Hua CH, Tang CH. WISP-1 Promotes Epithelial-Mesenchymal Transition in Oral Squamous Cell Carcinoma Cells Via the miR-153-3p/Snail Axis. Cancers (Basel) 2019; 11:cancers11121903. [PMID: 31795469 PMCID: PMC6966565 DOI: 10.3390/cancers11121903] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 01/06/2023] Open
Abstract
Around half of all patients with oral squamous cell carcinoma (OSCC) present with lymphatic metastasis, a strong predictor of poor survival. Improving survival rates depends on preventing the first step in the “invasion-metastasis cascade,” epithelial-to-mesenchymal transition (EMT), and developing antilymphangiogenesis therapies that antagonize lymphatic metastasis. The extracellular matrix-related protein WISP-1 (WNT1-inducible signaling pathway protein-1) stimulates bone remodeling and tumor progression. We have previously reported that WISP-1 promotes OSCC cell migration and lymphangiogenesis induced by vascular endothelial growth factor C (VEGF-C). This investigation sought to determine the role of WISP-1 in regulating EMT in OSCC. Our analysis of oral cancer data from The Cancer Genome Atlas (TCGA) database revealed significant and positive associations between levels of WISP-1 expression and clinical disease stage, as well as regional lymph node metastasis. We also found higher levels of WISP-1 expression in serum samples obtained from patients with OSCC compared with samples from healthy controls. In a series of in vitro investigations, WISP-1 activated EMT signaling via the FAK/ILK/Akt and Snail signaling transduction pathways and downregulated miR-153-3p expression in OSCC cells. Our findings detail how WISP-1 promotes EMT via the miR-153-3p/Snail axis in OSCC cells.
Collapse
Affiliation(s)
- An-Chen Chang
- School and Medicine, China Medical University, Taichung 404, Taiwan; (A.-C.C.); (M.-H.T.)
| | - Ming-Yu Lien
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan;
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan
| | - Ming-Hsui Tsai
- School and Medicine, China Medical University, Taichung 404, Taiwan; (A.-C.C.); (M.-H.T.)
- Department of Otolaryngology, China Medical University Hospital, Taichung 404, Taiwan;
| | - Chun-Hung Hua
- Department of Otolaryngology, China Medical University Hospital, Taichung 404, Taiwan;
| | - Chih-Hsin Tang
- School and Medicine, China Medical University, Taichung 404, Taiwan; (A.-C.C.); (M.-H.T.)
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung 413, Taiwan
- Correspondence:
| |
Collapse
|
11
|
Gaździcka J, Gołąbek K, Strzelczyk JK, Ostrowska Z. Epigenetic Modifications in Head and Neck Cancer. Biochem Genet 2019; 58:213-244. [PMID: 31712935 PMCID: PMC7113219 DOI: 10.1007/s10528-019-09941-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common human malignancy in the world, with high mortality and poor prognosis for patients. Among the risk factors are tobacco and alcohol intake, human papilloma virus, and also genetic and epigenetic modifications. Many studies show that epigenetic events play an important role in HNSCC development and progression, including DNA methylation, chromatin remodeling, histone posttranslational covalent modifications, and effects of non-coding RNA. Epigenetic modifications may influence silencing of tumor suppressor genes by promoter hypermethylation, regulate transcription by microRNAs and changes in chromatin structure, or induce genome instability through hypomethylation. Moreover, getting to better understand aberrant patterns of methylation may provide biomarkers for early detection and diagnosis, while knowledge about target genes of microRNAs may improve the therapy of HNSCC and extend overall survival. The aim of this review is to present recent studies which demonstrate the role of epigenetic regulation in the development of HNSCC.
Collapse
Affiliation(s)
- Jadwiga Gaździcka
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Str., 41-808, Zabrze, Katowice, Poland.
| | - Karolina Gołąbek
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Str., 41-808, Zabrze, Katowice, Poland
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Str., 41-808, Zabrze, Katowice, Poland
| | - Zofia Ostrowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Str., 41-808, Zabrze, Katowice, Poland
| |
Collapse
|
12
|
Jia H, Janjanam J, Wu SC, Wang R, Pano G, Celestine M, Martinot O, Breeze‐Jones H, Clayton G, Garcin C, Shirinifard A, Zaske AM, Finkelstein D, Labelle M. The tumor cell-secreted matricellular protein WISP1 drives pro-metastatic collagen linearization. EMBO J 2019; 38:e101302. [PMID: 31294477 PMCID: PMC6694215 DOI: 10.15252/embj.2018101302] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 06/13/2019] [Accepted: 06/19/2019] [Indexed: 01/07/2023] Open
Abstract
Collagen linearization is a hallmark of aggressive tumors and a key pathogenic event that promotes cancer cell invasion and metastasis. Cell-generated mechanical tension has been proposed to contribute to collagen linearization in tumors, but it is unknown whether other mechanisms play prominent roles in this process. Here, we show that the secretome of cancer cells is by itself able to induce collagen linearization independently of cell-generated mechanical forces. Among the tumor cell-secreted factors, we find a key role in this process for the matricellular protein WISP1 (CCN4). Specifically, WISP1 directly binds to type I collagen to promote its linearization in vitro (in the absence of cells) and in vivo in tumors. Consequently, WISP1-induced type I collagen linearization facilitates tumor cell invasion and promotes spontaneous breast cancer metastasis, without significantly affecting gene expression. Furthermore, higher WISP1 expression in tumors from cancer patients correlates with faster progression to metastatic disease and poor prognosis. Altogether, these findings reveal a conceptually novel mechanism whereby pro-metastatic collagen linearization critically depends on a cancer cell-secreted factor.
Collapse
Affiliation(s)
- Hong Jia
- Department of Developmental NeurobiologyComprehensive Cancer Center, Solid Tumor ProgramSt. Jude Children's Research HospitalMemphisTNUSA
| | - Jagadeesh Janjanam
- Department of Developmental NeurobiologyComprehensive Cancer Center, Solid Tumor ProgramSt. Jude Children's Research HospitalMemphisTNUSA
| | - Sharon C Wu
- Department of Developmental NeurobiologyComprehensive Cancer Center, Solid Tumor ProgramSt. Jude Children's Research HospitalMemphisTNUSA
| | - Ruishan Wang
- Department of Developmental NeurobiologyComprehensive Cancer Center, Solid Tumor ProgramSt. Jude Children's Research HospitalMemphisTNUSA
| | - Glendin Pano
- Department of Developmental NeurobiologyComprehensive Cancer Center, Solid Tumor ProgramSt. Jude Children's Research HospitalMemphisTNUSA
| | - Marina Celestine
- Department of Developmental NeurobiologyComprehensive Cancer Center, Solid Tumor ProgramSt. Jude Children's Research HospitalMemphisTNUSA
| | - Ophelie Martinot
- Department of Developmental NeurobiologyComprehensive Cancer Center, Solid Tumor ProgramSt. Jude Children's Research HospitalMemphisTNUSA
| | - Hannah Breeze‐Jones
- Department of Developmental NeurobiologyComprehensive Cancer Center, Solid Tumor ProgramSt. Jude Children's Research HospitalMemphisTNUSA
| | - Georgia Clayton
- Department of Developmental NeurobiologyComprehensive Cancer Center, Solid Tumor ProgramSt. Jude Children's Research HospitalMemphisTNUSA
| | - Cecile Garcin
- Department of Developmental NeurobiologyComprehensive Cancer Center, Solid Tumor ProgramSt. Jude Children's Research HospitalMemphisTNUSA
| | - Abbas Shirinifard
- Department of Developmental NeurobiologyComprehensive Cancer Center, Solid Tumor ProgramSt. Jude Children's Research HospitalMemphisTNUSA
| | - Ana Maria Zaske
- Division of CardiologyDepartment of Internal MedicineUTHealth – The University of Texas Health Science Center at HoustonHoustonTXUSA
| | - David Finkelstein
- Department of Computational BiologySt. Jude Children's Research HospitalMemphisTNUSA
| | - Myriam Labelle
- Department of Developmental NeurobiologyComprehensive Cancer Center, Solid Tumor ProgramSt. Jude Children's Research HospitalMemphisTNUSA
| |
Collapse
|
13
|
Budach V, Tinhofer I. Novel prognostic clinical factors and biomarkers for outcome prediction in head and neck cancer: a systematic review. Lancet Oncol 2019; 20:e313-e326. [DOI: 10.1016/s1470-2045(19)30177-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 01/16/2023]
|
14
|
Liu Y, Song Y, Ye M, Hu X, Wang ZP, Zhu X. The emerging role of WISP proteins in tumorigenesis and cancer therapy. J Transl Med 2019; 17:28. [PMID: 30651114 PMCID: PMC6335850 DOI: 10.1186/s12967-019-1769-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/02/2019] [Indexed: 12/14/2022] Open
Abstract
Accumulated evidence has demonstrated that WNT1 inducible signaling pathway protein (WISP) genes, which belong to members of the CCN growth factor family, play a pivotal role in tumorigenesis and progression of a broad spectrum of human cancers. Mounting studies have identified that WISP proteins (WISP1-3) exert different biological functions in various human malignancies. Emerging evidence indicates that WISP proteins are critically involved in cell proliferation, apoptosis, invasion and metastasis in cancers. Because the understanding of a direct function of WISP proteins in cancer development and progression has begun to emerge, in this review article, we describe the physiological function of WISP proteins in a variety of human cancers. Moreover, we highlight the current understanding of how the WISP protein is involved in tumorigenesis and cancer progression. Furthermore, we discuss that targeting WISP proteins could be a promising strategy for the treatment of human cancers. Hence, the regulation of WISP proteins could improve treatments for cancer patients.
Collapse
Affiliation(s)
- Yi Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Yizuo Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Miaomiao Ye
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Xiaoli Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Z Peter Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China. .,Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, 233030, Anhui, China. .,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA.
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
15
|
Zhao C, Zou H, Zhang J, Wang J, Liu H. An integrated methylation and gene expression microarray analysis reveals significant prognostic biomarkers in oral squamous cell carcinoma. Oncol Rep 2018; 40:2637-2647. [PMID: 30226546 PMCID: PMC6151890 DOI: 10.3892/or.2018.6702] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/05/2018] [Indexed: 12/01/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a life-threatening disease with a poor prognosis. Although previous studies have reported that the methylation of certain genes is associated with the pathogenesis of OSCC, the methylation of genes that have relevance to OSCC progression is not clearly documented. The present study aimed to gain insights into the mechanisms underlying DNA methylation regulation associated with OSCC progression and to identify potential prognostic markers for OSCC treatment. DNA methylation dataset GSE41114 and gene expression dataset GSE74530 were downloaded from the Gene Expression Omnibus database. The global methylation status of OSCC tumor samples and normal control samples was determined, and differentially methylated genes (DMGs) in OSCC samples compared with control samples were identified. The mRNA expression data were then integrated to identify differentially expressed genes (DEGs) in OSCC samples compared with control samples. Overlapping genes between DEGs and DMGs were identified, and functional enrichment analysis was performed. In addition, survival analysis of the overlapping genes was performed to screen genes with prognostic significance in OSCC. A total of 40,115 differential methylation CpG sites spanning 3,360 DMGs were identified; CpG sites in the promoter, gene body and intergenic regions were generally highly hypermethylated or hypomethylated. Additionally, 508 DEGs in OSCC samples were identified, including 332 upregulated and 176 downregulated genes. A total of 82 overlapping genes between DEGs and DMGs were found, which were mainly involved in protein metabolism, regulation of the metabolic process and the immune system. Additionally, differential methylation or expression of several genes, including fibroblast activation protein α (FAP), interferon α inducible protein 27 (IFI27), laminin subunit γ2 (LAMC2), matrix metallopeptidase 1 (MMP1), serine peptidase inhibitor Kazal-type 5 (SPINK5) and zinc finger protein 662 (ZNF662), was significantly associated with the survival of OSCC patients, and their differential expression in OSCC patients was further confirmed by reverse transcription-quantitative polymerase chain reaction in OSCC and normal oral cell lines. Overall, FAP, IFI27, LAMC2, MMP1, SPINK5 and ZNF662 genes caused by epigenetic changes via DNA methylation may be associated with the development and progression of OSCC, and should be valuable OSCC therapeutic biomarkers.
Collapse
Affiliation(s)
- Chenguang Zhao
- Department of Emergency, Tianjin Stomatological Hospital, Tianjin 300041, P.R. China
| | - Huiru Zou
- Central Laboratory, Tianjin Stomatological Hospital, Tianjin 300041, P.R. China
| | - Jun Zhang
- Department of Oral and Maxillofacial Surgery, Tianjin Stomatological Hospital, Tianjin 300041, P.R. China
| | - Jinhui Wang
- Department of Emergency, Tianjin Stomatological Hospital, Tianjin 300041, P.R. China
| | - Hao Liu
- Department of Oral and Maxillofacial Surgery, Tianjin Stomatological Hospital, Tianjin 300041, P.R. China
| |
Collapse
|
16
|
Abstract
CCN proteins are secreted into the extracellular environment where they interact with both components of the extracellular matrix and with cell surface receptors to regulate cellular function. Through these interactions, CCNs act as extracellular ligands to activate intracellular signal transduction pathways. CCN4/WISP-1, like other CCNs, plays multiple physiologic roles in development and also participates in pathogenesis. CCN4 is of particular interest with respect to cancer, showing promise as a biomarker or prognostic factor as well as a potential therapeutic target. This review focuses on recent work addressing the role of CCN4 in cancer. While CCN4 has been identified as an oncogene in a number of cancers, where it enhances cell migration and promoting epithelial-mesenchymal transition, there are other cancers where CCN4 appears to play an inhibitory role. The mechanisms underlying these differences in cellular response have not yet been delineated, but are an active area of investigation. The expression and activities of CCN4 splice variants are likewise an emerging area for study. CCN4 acts as an autocrine factor that regulates the cancer cells from which it is secreted. However, CCN4 is also a paracrine factor that is secreted by stromal fibroblasts, and can affect the function of vascular endothelial cells. In summary, current evidence is abundant in regard to establishing potential roles for CCN4 in oncogenesis, but much remains to be learned about the functions of this fascinating protein as both an autocrine and paracrine regulator in the tumor microenvironment.
Collapse
Affiliation(s)
- Mary P Nivison
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA,
| | - Kathryn E Meier
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA,
| |
Collapse
|
17
|
|
18
|
Boeve K, Schepman K, Schuuring E, Roodenburg J, Halmos G, Dijk B, Boorsma R, Visscher J, Brouwers A, Vegt B, Witjes M. High sensitivity and negative predictive value of sentinel lymph node biopsy in a retrospective early stage oral cavity cancer cohort in the Northern Netherlands. Clin Otolaryngol 2018; 43:1080-1087. [DOI: 10.1111/coa.13107] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2018] [Indexed: 02/05/2023]
Affiliation(s)
- K. Boeve
- Department of Oral and Maxillofacial Surgery University of Groningen University Medical Center Groningen Groningen The Netherlands
- Department of Pathology & Medical Biology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - K.P. Schepman
- Department of Oral and Maxillofacial Surgery University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - E. Schuuring
- Department of Pathology & Medical Biology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - J.L.N. Roodenburg
- Department of Oral and Maxillofacial Surgery University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - G.B. Halmos
- Department of Otorhinolaryngology/Head & Neck Surgery University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - B.A.C. Dijk
- Department of Epidemiology University of Groningen University Medical Center Groningen Groningen The Netherlands
- Department of Research Comprehensive Cancer Organization The Netherlands (IKNL) Utrecht The Netherlands
| | | | - J.G.A.M. Visscher
- Department of Oral and Maxillofacial Surgery Medical Center Leeuwarden Leeuwarden The Netherlands
| | - A.H. Brouwers
- Department of Nuclear Medicine & Molecular Imaging University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - B. Vegt
- Department of Pathology & Medical Biology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - M.J.H. Witjes
- Department of Oral and Maxillofacial Surgery University of Groningen University Medical Center Groningen Groningen The Netherlands
| |
Collapse
|
19
|
Wang R, van Leeuwen RW, Boers A, Klip HG, de Meyer T, Steenbergen RDM, van Criekinge W, van der Zee AGJ, Schuuring E, Wisman GBA. Genome-wide methylome analysis using MethylCap-seq uncovers 4 hypermethylated markers with high sensitivity for both adeno- and squamous-cell cervical carcinoma. Oncotarget 2018; 7:80735-80750. [PMID: 27738327 PMCID: PMC5348351 DOI: 10.18632/oncotarget.12598] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/29/2016] [Indexed: 12/23/2022] Open
Abstract
Background Cytology-based screening methods for cervical adenocarcinoma (ADC) and to a lesser extent squamous-cell carcinoma (SCC) suffer from low sensitivity. DNA hypermethylation analysis in cervical scrapings may improve detection of SCC, but few methylation markers have been described for ADC. We aimed to identify novel methylation markers for the early detection of both ADC and SCC. Results Genome-wide methylation profiling for 20 normal cervices, 6 ADC and 6 SCC using MethylCap-seq yielded 53 candidate regions hypermethylated in both ADC and SCC. Verification and independent validation of the 15 most significant regions revealed 5 markers with differential methylation between 17 normals and 13 cancers. Quantitative methylation-specific PCR on cervical cancer scrapings resulted in detection rates ranging between 80% and 92% while between 94% and 99% of control scrapings tested negative. Four markers (SLC6A5, SOX1, SOX14 and TBX20) detected ADC and SCC with similar sensitivity. In scrapings from women referred with an abnormal smear (n=229), CIN3+ sensitivity was between 36% and 71%, while between 71% and 93% of adenocarcinoma in situ (AdCIS) were detected; and CIN0/1 specificity was between 88% and 98%. Compared to hrHPV, the combination SOX1/SOX14 showed a similar CIN3+ sensitivity (80% vs. 75%, respectively, P>0.2), while specificity improved (42% vs. 84%, respectively, P < 10-5). Conclusion SOX1 and SOX14 are methylation biomarkers applicable for screening of all cervical cancer types.
Collapse
Affiliation(s)
- Rong Wang
- Department of Gynecologic Oncology, University of Groningen, University Medical Centre Groningen, Cancer Research Centre Groningen, Groningen, The Netherlands.,Department of Laboratory Medicine, Tianjin Medical University, Tianjin, China
| | - Robert W van Leeuwen
- Department of Gynecologic Oncology, University of Groningen, University Medical Centre Groningen, Cancer Research Centre Groningen, Groningen, The Netherlands
| | - Aniek Boers
- Department of Gynecologic Oncology, University of Groningen, University Medical Centre Groningen, Cancer Research Centre Groningen, Groningen, The Netherlands
| | - Harry G Klip
- Department of Gynecologic Oncology, University of Groningen, University Medical Centre Groningen, Cancer Research Centre Groningen, Groningen, The Netherlands
| | - Tim de Meyer
- Department of Mathematical Modeling, Statistics and Bio-informatics, University of Ghent, Ghent, Belgium
| | | | - Wim van Criekinge
- Department of Mathematical Modeling, Statistics and Bio-informatics, University of Ghent, Ghent, Belgium
| | - Ate G J van der Zee
- Department of Gynecologic Oncology, University of Groningen, University Medical Centre Groningen, Cancer Research Centre Groningen, Groningen, The Netherlands
| | - Ed Schuuring
- Department of Pathology, University of Groningen, University Medical Centre Groningen, Cancer Research Centre Groningen, Groningen, The Netherlands
| | - G Bea A Wisman
- Department of Gynecologic Oncology, University of Groningen, University Medical Centre Groningen, Cancer Research Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
20
|
Epigenetic Modifications and Head and Neck Cancer: Implications for Tumor Progression and Resistance to Therapy. Int J Mol Sci 2017; 18:ijms18071506. [PMID: 28704968 PMCID: PMC5535996 DOI: 10.3390/ijms18071506] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous carcinoma (HNSCC) is the sixth most prevalent cancer and one of the most aggressive malignancies worldwide. Despite continuous efforts to identify molecular markers for early detection, and to develop efficient treatments, the overall survival and prognosis of HNSCC patients remain poor. Accumulated scientific evidences suggest that epigenetic alterations, including DNA methylation, histone covalent modifications, chromatin remodeling and non-coding RNAs, are frequently involved in oral carcinogenesis, tumor progression, and resistance to therapy. Epigenetic alterations occur in an unsystematic manner or as part of the aberrant transcriptional machinery, which promotes selective advantage to the tumor cells. Epigenetic modifications also contribute to cellular plasticity during tumor progression and to the formation of cancer stem cells (CSCs), a small subset of tumor cells with self-renewal ability. CSCs are involved in the development of intrinsic or acquired therapy resistance, and tumor recurrences or relapse. Therefore, the understanding and characterization of epigenetic modifications associated with head and neck carcinogenesis, and the prospective identification of epigenetic markers associated with CSCs, hold the promise for novel therapeutic strategies to fight tumors. In this review, we focus on the current knowledge on epigenetic modifications observed in HNSCC and emerging Epi-drugs capable of sensitizing HNSCC to therapy.
Collapse
|
21
|
Tomar T, Alkema NG, Schreuder L, Meersma GJ, de Meyer T, van Criekinge W, Klip HG, Fiegl H, van Nieuwenhuysen E, Vergote I, Widschwendter M, Schuuring E, van der Zee AGJ, de Jong S, Wisman GBA. Methylome analysis of extreme chemoresponsive patients identifies novel markers of platinum sensitivity in high-grade serous ovarian cancer. BMC Med 2017; 15:116. [PMID: 28641578 PMCID: PMC5481993 DOI: 10.1186/s12916-017-0870-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/06/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Despite an early response to platinum-based chemotherapy in advanced stage high-grade serous ovarian cancer (HGSOC), the majority of patients will relapse with drug-resistant disease. Aberrant epigenetic alterations like DNA methylation are common in HGSOC. Differences in DNA methylation are associated with chemoresponse in these patients. The objective of this study was to identify and validate novel epigenetic markers of chemoresponse using genome-wide analysis of DNA methylation in extreme chemoresponsive HGSOC patients. METHODS Genome-wide next-generation sequencing was performed on methylation-enriched tumor DNA of two HGSOC patient groups with residual disease, extreme responders (≥18 months progression-free survival (PFS), n = 8) and non-responders (≤6 months PFS, n = 10) to platinum-based chemotherapy. DNA methylation and expression data of the same patients were integrated to create a gene list. Genes were validated on an independent cohort of extreme responders (n = 21) and non-responders (n = 31) using pyrosequencing and qRT-PCR. In silico validation was performed using publicly available DNA methylation (n = 91) and expression (n = 208) datasets of unselected advanced stage HGSOC patients. Functional validation of FZD10 on chemosensitivity was carried out in ovarian cancer cell lines using siRNA-mediated silencing. RESULTS Integrated genome-wide methylome and expression analysis identified 45 significantly differentially methylated and expressed genes between two chemoresponse groups. Four genes FZD10, FAM83A, MYO18B, and MKX were successfully validated in an external set of extreme chemoresponsive HGSOC patients. High FZD10 and MKX methylation were related with extreme responders and high FAM83A and MYO18B methylation with non-responders. In publicly available advanced stage HGSOC datasets, FZD10 and MKX methylation levels were associated with PFS. High FZD10 methylation was strongly associated with improved PFS in univariate analysis (hazard ratio (HR) = 0.43; 95% CI, 0.27-0.71; P = 0.001) and multivariate analysis (HR = 0.39; 95% CI, 0.23-0.65; P = 0.003). Consistently, low FZD10 expression was associated with improved PFS (HR = 1.36; 95% CI, 0.99-1.88; P = 0.058). FZD10 silencing caused significant sensitization towards cisplatin treatment in survival assays and apoptosis assays. CONCLUSIONS By applying genome-wide integrated methylome analysis on extreme chemoresponsive HGSOC patients, we identified novel clinically relevant, epigenetically-regulated markers of platinum-sensitivity in HGSOC patients. The clinical potential of these markers in predictive and therapeutic approaches has to be further validated in prospective studies.
Collapse
Affiliation(s)
- Tushar Tomar
- Department of Gynecologic Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands
| | - Nicolette G Alkema
- Department of Gynecologic Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands
| | - Leroy Schreuder
- Department of Gynecologic Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands
| | - Gert Jan Meersma
- Department of Gynecologic Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands
| | - Tim de Meyer
- Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Ghent, Belgium
| | - Wim van Criekinge
- Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Ghent, Belgium
| | - Harry G Klip
- Department of Gynecologic Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands
| | - Heidi Fiegl
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Els van Nieuwenhuysen
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Ignace Vergote
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Martin Widschwendter
- Department of Women's Cancer, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
| | - Ed Schuuring
- Department of Medical Biology and Pathology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ate G J van der Zee
- Department of Gynecologic Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands
| | - Steven de Jong
- Department of Medical Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands.
| | - G Bea A Wisman
- Department of Gynecologic Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
22
|
Kumar A, Sarode SC, Sarode GS, Majumdar B, Patil S, Sharma NK. Beyond gene dictation in oral squamous cell carcinoma progression and its therapeutic implications. TRANSLATIONAL RESEARCH IN ORAL ONCOLOGY 2017. [DOI: 10.1177/2057178x17701463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Ajay Kumar
- Cancer and Translational Research Lab, Dr D.Y. Patil Biotechnology and Bioinformatics Institute, Dr D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Sachin C Sarode
- Department of Oral Pathology, Dr D.Y. Patil Dental College and Research, Pimpri, Pune, Maharashtra, India
| | - Gargi S Sarode
- Department of Oral Pathology, Dr D.Y. Patil Dental College and Research, Pimpri, Pune, Maharashtra, India
| | - Barnali Majumdar
- Department of Oral Pathology and Microbiology, Bhojia Dental College and Hospital, Baddi, Himachal Pradesh, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr D.Y. Patil Biotechnology and Bioinformatics Institute, Dr D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| |
Collapse
|
23
|
Biomarkers in diagnosis and therapy of oral squamous cell carcinoma: A review of the literature. J Craniomaxillofac Surg 2017; 45:722-730. [DOI: 10.1016/j.jcms.2017.01.033] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 12/22/2016] [Accepted: 01/30/2017] [Indexed: 12/26/2022] Open
|
24
|
Lau HK, Wu ER, Chen MK, Hsieh MJ, Yang SF, Wang LY, Chou YE. Effect of genetic variation in microRNA binding site in WNT1-inducible signaling pathway protein 1 gene on oral squamous cell carcinoma susceptibility. PLoS One 2017; 12:e0176246. [PMID: 28426731 PMCID: PMC5398667 DOI: 10.1371/journal.pone.0176246] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/23/2017] [Indexed: 01/24/2023] Open
Abstract
Background Oral squamous cell carcinoma (OSCC), which is the most common head and neck cancer, accounts for 1%–2% of all human malignancies and is characterized by poor prognosis and reduced survival rates. WNT1-inducible signaling pathway protein 1 (WISP1), a cysteine-rich protein belonging to the Cyr61, CTGF, Nov (CCN) family of matricellular proteins, has many developmental functions and may be involved in carcinogenesis. This study investigated WISP1 single-nucleotide polymorphisms (SNPs) to elucidate OSCC susceptibility and clinicopathologic characteristics. Methodology/Principal findings Real-time polymerase chain reaction was used to analyze 6 SNPs of WISP1 in 900 OSCC patients and 1200 cancer-free controls. The results showed that WISP1 rs2929970 polymorphism carriers with at least one G allele were susceptible to OSCC. Moreover, compared with smokers, non-smoker patients with higher frequencies of WISP1 rs2929970 (AG + GG) variants had a late stage (stages III and IV) and a large tumor size. In addition, OSCC patients who were betel quid chewers and carried WISP1 rs16893344 (CT + TT) variants had a low risk of lymph node metastasis. Conclusion Our results demonstrate that a joint effect of WISP1 rs2929970 with smoking as well as WISP1 rs16893344 with betel nut chewing causally contributes to the occurrence of OSCC. WISP1 polymorphism may serve as a marker or a therapeutic target in OSCC.
Collapse
Affiliation(s)
- Hon-Kit Lau
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Anaesthesiology, Asia University Hospital, Taichung, Taiwan
| | - Edie-Rosmin Wu
- Division of General Surgery, Department of Surgery, Tungs’ Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Mu-Kuan Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Ming-Ju Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Lyu-Yao Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ying-Erh Chou
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
25
|
Tomar T, de Jong S, Alkema NG, Hoekman RL, Meersma GJ, Klip HG, van der Zee AG, Wisman GBA. Genome-wide methylation profiling of ovarian cancer patient-derived xenografts treated with the demethylating agent decitabine identifies novel epigenetically regulated genes and pathways. Genome Med 2016; 8:107. [PMID: 27765068 PMCID: PMC5072346 DOI: 10.1186/s13073-016-0361-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/04/2016] [Indexed: 01/21/2023] Open
Abstract
Background In high-grade serous ovarian cancer (HGSOC), intrinsic and/or acquired resistance against platinum-containing chemotherapy is a major obstacle for successful treatment. A low frequency of somatic mutations but frequent epigenetic alterations, including DNA methylation in HGSOC tumors, presents the cancer epigenome as a relevant target for innovative therapy. Patient-derived xenografts (PDXs) supposedly are good preclinical models for identifying novel drug targets. However, the representativeness of global methylation status of HGSOC PDXs compared to their original tumors has not been evaluated so far. Aims of this study were to explore how representative HGSOC PDXs are of their corresponding patient tumor methylome and to evaluate the effect of epigenetic therapy and cisplatin on putative epigenetically regulated genes and their related pathways in PDXs. Methods Genome-wide analysis of the DNA methylome of HGSOC patients with their corresponding PDXs, from different generations, was performed using Infinium 450 K methylation arrays. Furthermore, we analyzed global methylome changes after treatment of HGSOC PDXs with the FDA approved demethylating agent decitabine and cisplatin. Findings were validated by bisulfite pyrosequencing with subsequent pathway analysis. Publicly available datasets comprising HGSOC patients were used to analyze the prognostic value of the identified genes. Results Only 0.6–1.0 % of all analyzed CpGs (388,696 CpGs) changed significantly (p < 0.01) during propagation, showing that HGSOC PDXs were epigenetically stable. Treatment of F3 PDXs with decitabine caused a significant reduction in methylation in 10.6 % of CpG sites in comparison to untreated PDXs (p < 0.01, false discovery rate <10 %). Cisplatin treatment had a marginal effect on the PDX methylome. Pathway analysis of decitabine-treated PDX tumors revealed several putative epigenetically regulated pathways (e.g., the Src family kinase pathway). In particular, the C-terminal Src kinase (CSK) gene was successfully validated for epigenetic regulation in different PDX models and ovarian cancer cell lines. Low CSK methylation and high CSK expression were both significantly associated (p < 0.05) with improved progression-free survival and overall survival in HGSOC patients. Conclusions HGSOC PDXs resemble the global epigenome of patients over many generations and can be modulated by epigenetic drugs. Novel epigenetically regulated genes such as CSK and related pathways were identified in HGSOC. Our observations encourage future application of PDXs for cancer epigenome studies. Electronic supplementary material The online version of this article (doi:10.1186/s13073-016-0361-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tushar Tomar
- Department of Gynecologic Oncology, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen, 9700 RB, The Netherlands
| | - Steven de Jong
- Medical Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Nicolette G Alkema
- Department of Gynecologic Oncology, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen, 9700 RB, The Netherlands
| | - Rieks L Hoekman
- Department of Gynecologic Oncology, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen, 9700 RB, The Netherlands
| | - Gert Jan Meersma
- Department of Gynecologic Oncology, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen, 9700 RB, The Netherlands
| | - Harry G Klip
- Department of Gynecologic Oncology, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen, 9700 RB, The Netherlands
| | - Ate Gj van der Zee
- Department of Gynecologic Oncology, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen, 9700 RB, The Netherlands
| | - G Bea A Wisman
- Department of Gynecologic Oncology, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen, 9700 RB, The Netherlands.
| |
Collapse
|
26
|
Clausen MJAM, Melchers LJ, Mastik MF, Slagter-Menkema L, Groen HJM, Laan BFAMVD, van Criekinge W, de Meyer T, Denil S, van der Vegt B, Wisman GBA, Roodenburg JLN, Schuuring E. RAB25 expression is epigenetically downregulated in oral and oropharyngeal squamous cell carcinoma with lymph node metastasis. Epigenetics 2016; 11:653-663. [PMID: 27379752 PMCID: PMC5048719 DOI: 10.1080/15592294.2016.1205176] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Oral and oropharyngeal squamous cell carcinoma (OOSCC) have a low survival rate, mainly due to metastasis to the regional lymph nodes. For optimal treatment of these metastases, a neck dissection is required; however, inaccurate detection methods results in under- and over-treatment. New DNA prognostic methylation biomarkers might improve lymph node metastases detection. To identify epigenetically regulated genes associated with lymph node metastases, genome-wide methylation analysis was performed on 6 OOSCC with (pN+) and 6 OOSCC without (pN0) lymph node metastases and combined with a gene expression signature predictive for pN+ status in OOSCC. Selected genes were validated using an independent OOSCC cohort by immunohistochemistry and pyrosequencing, and on data retrieved from The Cancer Genome Atlas. A two-step statistical selection of differentially methylated sequences revealed 14 genes with increased methylation status and mRNA downregulation in pN+ OOSCC. RAB25, a known tumor suppressor gene, was the highest-ranking gene in the discovery set. In the validation sets, both RAB25 mRNA (P = 0.015) and protein levels (P = 0.012) were lower in pN+ OOSCC. RAB25 mRNA levels were negatively correlated with RAB25 methylation levels (P < 0.001) but RAB25 protein expression was not. Our data revealed that promoter methylation is a mechanism resulting in downregulation of RAB25 expression in pN+ OOSCC and decreased expression is associated with lymph node metastasis. Detection of RAB25 methylation might contribute to lymph node metastasis diagnosis and serve as a potential new therapeutic target in OOSCC.
Collapse
Affiliation(s)
- M J A M Clausen
- a Departments of Pathology , University of Groningen, University Medical Center Groningen , Groningen , the Netherlands.,b Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen , Groningen , the Netherlands
| | - L J Melchers
- a Departments of Pathology , University of Groningen, University Medical Center Groningen , Groningen , the Netherlands.,b Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen , Groningen , the Netherlands
| | - M F Mastik
- a Departments of Pathology , University of Groningen, University Medical Center Groningen , Groningen , the Netherlands
| | - L Slagter-Menkema
- a Departments of Pathology , University of Groningen, University Medical Center Groningen , Groningen , the Netherlands.,c Otorhinolaryngology/Head & Neck Surgery, University of Groningen, University Medical Center Groningen , Groningen , the Netherlands
| | - H J M Groen
- d Pulmonary Diseases, University of Groningen, University Medical Center Groningen , Groningen , the Netherlands
| | - B F A M van der Laan
- c Otorhinolaryngology/Head & Neck Surgery, University of Groningen, University Medical Center Groningen , Groningen , the Netherlands
| | - W van Criekinge
- e Department of Mathematical Modeling , Statistics and Bioinformatics, Ghent University , Ghent , Belgium
| | - T de Meyer
- e Department of Mathematical Modeling , Statistics and Bioinformatics, Ghent University , Ghent , Belgium
| | - S Denil
- f Gynecologic Oncology, University of Groningen, University Medical Center Groningen , Groningen , the Netherlands
| | - B van der Vegt
- a Departments of Pathology , University of Groningen, University Medical Center Groningen , Groningen , the Netherlands
| | - G B A Wisman
- f Gynecologic Oncology, University of Groningen, University Medical Center Groningen , Groningen , the Netherlands
| | - J L N Roodenburg
- b Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen , Groningen , the Netherlands
| | - E Schuuring
- a Departments of Pathology , University of Groningen, University Medical Center Groningen , Groningen , the Netherlands
| |
Collapse
|
27
|
Verma M. Genome-wide association studies and epigenome-wide association studies go together in cancer control. Future Oncol 2016; 12:1645-64. [PMID: 27079684 PMCID: PMC5551540 DOI: 10.2217/fon-2015-0035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/22/2016] [Indexed: 02/07/2023] Open
Abstract
Completion of the human genome a decade ago laid the foundation for: using genetic information in assessing risk to identify individuals and populations that are likely to develop cancer, and designing treatments based on a person's genetic profiling (precision medicine). Genome-wide association studies (GWAS) completed during the past few years have identified risk-associated single nucleotide polymorphisms that can be used as screening tools in epidemiologic studies of a variety of tumor types. This led to the conduct of epigenome-wide association studies (EWAS). This article discusses the current status, challenges and research opportunities in GWAS and EWAS. Information gained from GWAS and EWAS has potential applications in cancer control and treatment.
Collapse
Affiliation(s)
- Mukesh Verma
- Methods & Technologies Branch, Epidemiology & Genomics Research Program, Division of Cancer Control & Population Sciences, National Cancer Institute (NCI), NIH, 9609 Medical Center Drive, Suite 4E102, Rockville, MD 20850, USA
| |
Collapse
|