1
|
Zhan S, Qiu M, Wei X, Wei J, Qin L, Jiang B, Wen Q, Chen P, Lin Q, Wei X, Zhou Z, Jiang Y, Liang X, Li R, Liu Y, Yu H. Potentially functional genetic variants in ferroptosis-related CREB3 and GALNT14 genes predict survival of hepatitis B virus-related hepatocellular carcinoma. Cancer Med 2024; 13:e6848. [PMID: 38151984 PMCID: PMC10807646 DOI: 10.1002/cam4.6848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/19/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND Ferroptosis is a known crucial player in the development of cancers. However, the effect of single nucleotide polymorphisms (SNPs) in ferroptosis-related genes on survival in hepatitis B virus (HBV)-related hepatocellular carcinoma (HBV-HCC) patients remains unknown. METHODS We used two-stage multivariable Cox proportional hazards regression analyses to estimate the associations between 48,774 SNPs in 480 ferroptosis-related genes and overall survival (OS) of 866 HBV-HCC patients. RESULTS We identified that two potentially functional SNPs (CREB3 rs10814274 C > T and GALNT14 rs17010547 T > C) were significantly independently associated with the OS of HBV-HCC patients (CT + TT verse CC, hazards ratio (HR) = 0.77, 95% confidence interval (CI) = 0.67-0.89, p < 0.001 for rs10814274 and TC + CC verse TT, HR = 0.66, 95% CI = 0.53-0.82, p < 0.001 for rs17010547, respectively). Additional joint assessment of protective genotypes of these two SNPs showed that patients with 1-2 protective genotypes had a significantly better OS compared with those carrying 0 protective genotypes (HR = 0.56, 95% CI = 0.45-0.70, p < 0.001). Moreover, the expression quantitative trait loci (eQTL) analysis revealed that the survival-associated SNP rs10814274 T allele was significantly correlated with reduced CREB3 transcript levels in both normal liver tissues and whole blood cells, while the GALNT14 rs17010547 C allele had a significant correlation with increased GALNT14 transcript levels in whole blood cells. CONCLUSION These results suggest that genetic variants of CREB3 and GALNT14 may affect the survival of HBV-HCC patients, likely via transcriptional regulation of respective genes. However, further studies are required to confirm these findings.
Collapse
Affiliation(s)
- Shicheng Zhan
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningChina
- Department of Epidemiology and Health Statistics, School of Public HealthGuangxi Medical UniversityNanningChina
| | - Moqin Qiu
- Department of Respiratory OncologyGuangxi Medical University Cancer HospitalNanningChina
| | - Xueyan Wei
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningChina
- Department of Epidemiology and Health Statistics, School of Public HealthGuangxi Medical UniversityNanningChina
| | - Junjie Wei
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningChina
- Department of Epidemiology and Health Statistics, School of Public HealthGuangxi Medical UniversityNanningChina
| | - Liming Qin
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningChina
- Department of Epidemiology and Health Statistics, School of Public HealthGuangxi Medical UniversityNanningChina
| | - Binbin Jiang
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningChina
| | - Qiuping Wen
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningChina
| | - Peiqin Chen
- Editorial Department of Chinese Journal of Oncology Prevention and TreatmentGuangxi Medical University Cancer HospitalNanningChina
| | - Qiuling Lin
- Department of Clinical ResearchGuangxi Medical University Cancer HospitalNanningChina
| | - Xiaoxia Wei
- Department of Clinical ResearchGuangxi Medical University Cancer HospitalNanningChina
| | - Zihan Zhou
- Department of Cancer Prevention and ControlGuangxi Medical University Cancer HospitalNanningChina
| | - Yanji Jiang
- Scientific Research DepartmentGuangxi Medical University Cancer HospitalNanningChina
| | - Xiumei Liang
- Department of Disease Process ManagementGuangxi Medical University Cancer HospitalNanningChina
| | - Runwei Li
- Department of Civil Engineering, College of EngineeringNew Mexico State UniversityLas CrucesNew MexicoUSA
| | - Yingchun Liu
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningChina
- Key Cultivated Laboratory of Cancer Molecular Medicine of Guangxi Health CommissionGuangxi Medical University Cancer HospitalNanningChina
| | - Hongping Yu
- Department of Experimental ResearchGuangxi Medical University Cancer HospitalNanningChina
- Key Cultivated Laboratory of Cancer Molecular Medicine of Guangxi Health CommissionGuangxi Medical University Cancer HospitalNanningChina
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University)Ministry of EducationNanningChina
| |
Collapse
|
2
|
Holubekova V, Loderer D, Grendar M, Mikolajcik P, Kolkova Z, Turyova E, Kudelova E, Kalman M, Marcinek J, Miklusica J, Laca L, Lasabova Z. Differential gene expression of immunity and inflammation genes in colorectal cancer using targeted RNA sequencing. Front Oncol 2023; 13:1206482. [PMID: 37869102 PMCID: PMC10586664 DOI: 10.3389/fonc.2023.1206482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/24/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Colorectal cancer (CRC) is a heterogeneous disease caused by molecular changes, as driver mutations, gene methylations, etc., and influenced by tumor microenvironment (TME) pervaded with immune cells with both pro- and anti-tumor effects. The studying of interactions between the immune system (IS) and the TME is important for developing effective immunotherapeutic strategies for CRC. In our study, we focused on the analysis of expression profiles of inflammatory and immune-relevant genes to identify aberrant signaling pathways included in carcinogenesis, metastatic potential of tumors, and association of Kirsten rat sarcoma virus (KRAS) gene mutation. Methods A total of 91 patients were enrolled in the study. Using NGS, differential gene expression analysis of 11 tumor samples and 11 matching non-tumor controls was carried out by applying a targeted RNA panel for inflammation and immunity genes containing 475 target genes. The obtained data were evaluated by the CLC Genomics Workbench and R library. The significantly differentially expressed genes (DEGs) were analyzed in Reactome GSA software, and some selected DEGs were used for real-time PCR validation. Results After prioritization, the most significant differences in gene expression were shown by the genes TNFRSF4, IRF7, IL6R, NR3CI, EIF2AK2, MIF, CCL5, TNFSF10, CCL20, CXCL11, RIPK2, and BLNK. Validation analyses on 91 samples showed a correlation between RNA-seq data and qPCR for TNFSF10, RIPK2, and BLNK gene expression. The top differently regulated signaling pathways between the studied groups (cancer vs. control, metastatic vs. primary CRC and KRAS positive and negative CRC) belong to immune system, signal transduction, disease, gene expression, DNA repair, and programmed cell death. Conclusion Analyzed data suggest the changes at more levels of CRC carcinogenesis, including surface receptors of epithelial or immune cells, its signal transduction pathways, programmed cell death modifications, alterations in DNA repair machinery, and cell cycle control leading to uncontrolled proliferation. This study indicates only basic molecular pathways that enabled the formation of metastatic cancer stem cells and may contribute to clarifying the function of the IS in the TME of CRC. A precise identification of signaling pathways responsible for CRC may help in the selection of personalized pharmacological treatment.
Collapse
Affiliation(s)
- Veronika Holubekova
- Laboratory of Genomics and Prenatal Diagnostics, Biomedical Center in Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Dusan Loderer
- Laboratory of Genomics and Prenatal Diagnostics, Biomedical Center in Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Marian Grendar
- Laboratory of Bioinformatics and Biostatistics, Biomedical Center in Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Mikolajcik
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin University Hospital, Martin, Slovakia
| | - Zuzana Kolkova
- Laboratory of Genomics and Prenatal Diagnostics, Biomedical Center in Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Eva Turyova
- Department of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Eva Kudelova
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin University Hospital, Martin, Slovakia
| | - Michal Kalman
- Department of Pathological Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovakia
| | - Juraj Marcinek
- Department of Pathological Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovakia
| | - Juraj Miklusica
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin University Hospital, Martin, Slovakia
| | - Ludovit Laca
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin University Hospital, Martin, Slovakia
| | - Zora Lasabova
- Department of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
3
|
Asghariazar V, Kadkhodayi M, Sarailoo M, Jolfayi AG, Baradaran B. MicroRNA-143 as a potential tumor suppressor in cancer: An insight into molecular targets and signaling pathways. Pathol Res Pract 2023; 250:154792. [PMID: 37689002 DOI: 10.1016/j.prp.2023.154792] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/25/2023] [Accepted: 09/02/2023] [Indexed: 09/11/2023]
Abstract
MicroRNAs (MiRNAs), which are highly conserved and small noncoding RNAs, negatively regulate gene expression and influence signaling pathways involved in essential biological activities, including cell proliferation, differentiation, apoptosis, and cell invasion. MiRNAs have received much attention in the past decade due to their significant roles in cancer development. In particular, microRNA-143 (miR-143) is recognized as a tumor suppressor and is downregulated in most cancers. However, it seems that miR-143 is upregulated in rare cases, such as prostate cancer stem cells, and acts as an oncogene. The present review will outline the current studies illustrating the impact of miR-143 expression levels on cancer progression and discuss its target genes and their relevant signaling pathways to discover a potential therapeutic way for cancer.
Collapse
Affiliation(s)
- Vahid Asghariazar
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Deputy of Research and Technology, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mahtab Kadkhodayi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Animal Biology, Faculty of Natural Sciences, The University of Tabriz, Tabriz, Iran
| | - Mehdi Sarailoo
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amir Ghaffari Jolfayi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Association of Genetic Polymorphisms and Serum Levels of miR-1-3p with Postoperative Mortality following Abdominal Aortic Aneurysm Repair. J Clin Med 2023; 12:jcm12030946. [PMID: 36769594 PMCID: PMC9917931 DOI: 10.3390/jcm12030946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Several miRNAs have been implicated in the clinical outcomes of cardiovascular disorders, but the role of miR-1-3p in abdominal aortic aneurysm (AAA) prognosis remains unclear. This study aimed to investigate the correlation of single nucleotide polymorphisms (SNPs) in pri-miR-1-3p and mature miR-1-3p expression with postoperative mortality of AAA patients. METHODS A total of 230 AAA patients who received AAA repair were recruited and followed up for 5 years. SNP genotyping was carried out using KASP method and relative expression of serum miR-1-3p was measured with qRT-PCR. RESULTS Multivariate Cox regression analyses showed that both rs2155975 and rs4591246 variant genotypes were associated with increased all-cause mortality of postoperative AAA patients after adjusting possible confounders. Patients who died tended to have lower baseline miR-1-3p expression (overall and for age < 65 years, aneurysm-related death or cardiac death subgroup) when compared to alive patients; further Cox regression yielded an independent relationship of preoperative low serum miR-1-3p levels with incidents of all-cause death. Patients carrying rs2155975 AG + GG or rs4591246 AG + AA genotype had a higher ratio of low miR-1-3p levels in contrast to those with AA or GG genotype, respectively. The Kaplan-Meier survival curves suggested that the combined genotype in rs2155975 or rs4591246 and low miR-1-3p levels could decrease the overall survival of AAA patients during 5-year follow-up. CONCLUSIONS This pilot study demonstrated the importance of rs2155975 and rs4591246 polymorphisms and baseline serum miR-1-3p levels as promising markers to predict mortality among patients following AAA repair.
Collapse
|
5
|
Hu YM, Ran R, Yang C, Liu SM. The diagnostic and prognostic implications of PRKRA expression in HBV-related hepatocellular carcinoma. Infect Agent Cancer 2022; 17:34. [PMID: 35729579 PMCID: PMC9211784 DOI: 10.1186/s13027-022-00430-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/08/2022] [Indexed: 11/24/2022] Open
Abstract
Background Hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) accounts for more than half of total HCC patients in developing countries. Currently, HBV-related HCC diagnosis and prognosis still lack specific biomarkers. Here, we investigated if PRKRA expression in peripheral blood could be a potential biomarker for the diagnosis/prognosis of HBV-related HCC. Methods The expression of PRKRA in HBV-related HCC was firstly analyzed using TCGA and GEO databases. The results were confirmed in a validation cohort including 152 blood samples from 77 healthy controls and 75 HCC patients, 60 of which were infected with HBV. The potential diagnostic and prognostic values of PRKRA were also evaluated by the area under the receiver operator characteristic curve (AUROC) and Kaplan–Meier method, respectively. Results PRKRA was significantly upregulated in HCC patients, especially in those with HBV infections. In addition, the combination of PRKRA expression in peripheral blood with serum AFP and CEA levels displayed a better diagnostic performance (AUROC = 0.908, 95% CI 0.844–0.972; p < 0.001). Notably, when serum AFP is less than 200 ng/mL, PRKRA expression demonstrated better diagnostic capability. Furthermore, PRKRA expression levels were associated with expression of EIF2AK2 and inflammatory cytokine genes. Conclusions Triple combination testing of blood PRKRA expression, serum AFP and CEA levels could be a noninvasive strategy for diagnosis; and the elevation of PRKRA expression could predicate poor prognosis for HBV-related HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s13027-022-00430-6.
Collapse
Affiliation(s)
- Yi-Min Hu
- Department of Clinical Laboratory, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| | - Ruoxi Ran
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Chaoqi Yang
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Song-Mei Liu
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China.
| |
Collapse
|
6
|
Lu YJ, Yang Y, Hu TH, Duan WM. Identification of key genes and pathways at the downstream of S100PBP in pancreatic cancer cells by integrated bioinformatical analysis. Transl Cancer Res 2022; 10:806-816. [PMID: 35116411 PMCID: PMC8799081 DOI: 10.21037/tcr-20-2531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
Background The aim of the present study was to identify key genes and pathways downstream of S100PPBP in pancreatic cancer cells. Methods The microarray datasets GSE35196 (S100PBP knockdown) and GSE35198 (S100PBP overexpression) were downloaded from the Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) were obtained separately from GEO2R, and heatmaps showing clustering analysis of DEGs were generated using R software. Gene Ontology and pathway enrichment analyses were performed for identified DEGs using the Database for Annotation, Visualization, and Integrated Discovery and Kyoto Encyclopedia of Genes and Genomes, respectively. A protein-protein interaction (PPI) network was created using the Search Tool for the Retrieval of Interacting Genes and Cytoscape software. Relevant expression datasets of key identified genes were downloaded from The Cancer Genome Atlas, and overall survival (OS) analysis was performed with R software. Finally, Gene Expression Profiling Interactive Analysis was used to evaluate the expression of key DEGs in pancreatic cancer tissues. Results A total of 34 DEGs (11 upregulated and 23 downregulated) were screened out from the two datasets. Gene Ontology enrichment analysis revealed that the identified DEGs were mainly functionally enriched in ATPase activity, production of siRNA involved in RNA interference, and production of miRNAs involved in gene silencing by miRNA. The pathway enrichment analysis of the identified DEGs showed enrichment mainly in apoptosis, non-homologous end-joining, and miRNA pathways in cancer. The protein–protein interaction network was composed of 21 nodes and 30 edges. After survival analysis and gene expression analysis, 4 genes associated with poor prognosis were selected, including LMNB1, PRKRA, SEPT2, and XRCC5. Conclusions LMNB1, PRKRA, SEPT2, and XRCC5 could be key downstream genes of the S100PBP gene in the inhibition of pancreatic cancer cell adhesion.
Collapse
Affiliation(s)
- Yu-Jie Lu
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Yang
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ting-Hui Hu
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei-Ming Duan
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
7
|
Szczyrek M, Grenda A, Kuźnar-Kamińska B, Krawczyk P, Sawicki M, Batura-Gabryel H, Mlak R, Szudy-Szczyrek A, Krajka T, Krajka A, Milanowski J. Methylation of DROSHA and DICER as a Biomarker for the Detection of Lung Cancer. Cancers (Basel) 2021; 13:cancers13236139. [PMID: 34885248 PMCID: PMC8657200 DOI: 10.3390/cancers13236139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary To identify possible biomarkers for early detection of lung cancer we assessed the methylation status of genes related to carcinogenesis, DICER and DROSHA, in lung cancer patients and healthy volunteers. The relative level of methylation of DROSHA was significantly lower and DICER significantly higher in cancer patients. The relative level of methylation of DROSHA was significantly higher in patients with early-stage NSCLC (IA-IIIA) and could discriminate them from healthy people with a sensitivity of 71% and specificity of 76% for the first region and with a sensitivity of 60% and specificity of 85% for the second region. Analysis of the first region of the DICER enabled the distinction of NSCLC patients from healthy individuals with a sensitivity of 96% and specificity of 60%. The results indicate that the assessment of DICER and DROSHA methylation status can potentially be used as a biomarker for the early detection of lung cancer. Abstract Background: Lung cancer is the leading cause of cancer-related deaths. Early diagnosis may improve the prognosis. Methods: Using quantitative methylation-specific real-time PCR (qMSP-PCR), we assessed the methylation status of two genes (in two subsequent regions according to locations in their promoter sequences) related to carcinogenesis, DICER and DROSHA, in 101 plasma samples (obtained prior to the treatment) of lung cancer patients and 45 healthy volunteers. Results: The relative level of methylation of DROSHA was significantly lower (p = 0.012 for first and p < 0.00001 for the second region) and DICER significantly higher (p = 0.029 for the first region) in cancer patients. The relative level of methylation of DROSHA was significantly (p = 0.037) higher in patients with early-stage NSCLC (IA-IIIA) and could discriminate them from healthy people with a sensitivity of 71% and specificity of 76% (AUC = 0.696, 95% CI: 0.545–0.847, p = 0.011) for the first region and with a sensitivity of 60% and specificity of 85% (AUC = 0.795, 95% CI: 0.689–0.901, p < 0.0001) for the second region. Methylation analysis of the first region of the DICER enabled the distinction of NSCLC patients from healthy individuals with a sensitivity of 96% and specificity of 60% (AUC = 0.651, 95% CI: 0.517–0.785, p = 0.027). The limitations of the study include its small sample size, preliminary nature, being an observational type of study, and the lack of functional experiments allowing for the explanation of the biologic backgrounds of the observed associations. Conclusion: The obtained results indicate that the assessment of DICER and DROSHA methylation status can potentially be used as a biomarker for the early detection of lung cancer.
Collapse
Affiliation(s)
- Michał Szczyrek
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-950 Lublin, Poland; (A.G.); (P.K.); (J.M.)
- Correspondence:
| | - Anna Grenda
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-950 Lublin, Poland; (A.G.); (P.K.); (J.M.)
| | - Barbara Kuźnar-Kamińska
- Department of Pulmonology, Allergology and Respiratory Oncology, University of Medical Sciences in Poznan, 60-569 Poznan, Poland; (B.K.-K.); (H.B.-G.)
| | - Paweł Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-950 Lublin, Poland; (A.G.); (P.K.); (J.M.)
| | - Marek Sawicki
- Department of Thoracic Surgery, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Halina Batura-Gabryel
- Department of Pulmonology, Allergology and Respiratory Oncology, University of Medical Sciences in Poznan, 60-569 Poznan, Poland; (B.K.-K.); (H.B.-G.)
| | - Radosław Mlak
- Department of Human Physiology, Medical University of Lublin, 20-080 Lublin, Poland;
| | - Aneta Szudy-Szczyrek
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-081 Lublin, Poland;
| | - Tomasz Krajka
- Division of Mathematics, Department of Production Computerisation and Robotisation, Lublin University of Technology, 20-618 Lublin, Poland;
| | - Andrzej Krajka
- Institute of Computer Science, Maria Curie-Sklodowska University, 20-033 Lublin, Poland;
| | - Janusz Milanowski
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-950 Lublin, Poland; (A.G.); (P.K.); (J.M.)
| |
Collapse
|
8
|
Kanope T, Pimenta EM, Veneroso C, Coelho D, Oliveira LF, Silami-Garcia E, Morandi RF, Carvalho MRS, Rosse IC. Is lin28a polymorphism associated with endurance performance in soccer players? SPORT SCIENCES FOR HEALTH 2021. [DOI: 10.1007/s11332-021-00812-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Du H, Liu L, Liu H, Luo S, Patz EF, Glass C, Su L, Du M, Christiani DC, Wei Q. Genetic variants of DOCK2, EPHB1 and VAV2 in the natural killer cell-related pathway are associated with non-small cell lung cancer survival. Am J Cancer Res 2021; 11:2264-2277. [PMID: 34094683 PMCID: PMC8167686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023] Open
Abstract
Although natural killer (NK) cells are a known major player in anti-tumor immunity, the effect of genetic variation in NK-associated genes on survival in patients with non-small cell lung cancer (NSCLC) remains unknown. Here, in 1,185 with NSCLC cases of a discovery dataset, we evaluated associations of 28,219 single nucleotide polymorphisms (SNPs) in 276 NK-associated genes with their survival. These patients were from the reported genome-wide association study (GWAS) from the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. We further validated the findings in an additional 984 cases from the Harvard Lung Cancer Susceptibility (HLCS) Study. We identified three SNPs (i.e., DOCK2 rs261083 G>C, VAV2 rs2519996 C>T and EPHB1 rs36215 A>G) to be independently associated with overall survival (OS) in NSCLC cases with adjusted hazards ratios (HRs) of 1.16 (95% confidence interval [CI] = 1.07-1.26, P = 3.34×10-4), 1.28 (1.12-1.47, P = 4.57×10-4) and 0.75 (0.67-0.83, P = 1.50×10-7), respectively. Additional joint assessment of the unfavorable genotypes of the three SNPs showed significant associations with OS and disease-specific survival of NSCLC cases in the PLCO dataset (P trend<0.0001 and <0.0001, respectively). Moreover, the survival-associated DOCK2 rs261083 C allele had a significant correlation with reduced DOCK2 transcript levels in lung adenocarcinoma (LUAD), while the rs36215 G allele was significantly correlated with reduced EPHB1 transcript levels in lymphoblastoid cell lines in the 1000 Genomes Project. These results revealed that DOCK2 and EPHB1 genetic variants may be prognostic biomarkers of NSCLC survival, likely via transcription regulation of respective genes.
Collapse
Affiliation(s)
- Hailei Du
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200025, P. R. China
- Duke Cancer Institute, Duke University Medical CenterDurham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of MedicineDurham, NC 27710, USA
| | - Lihua Liu
- Duke Cancer Institute, Duke University Medical CenterDurham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of MedicineDurham, NC 27710, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical CenterDurham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of MedicineDurham, NC 27710, USA
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of MedicineDurham, NC 27710, USA
| | - Edward F Patz
- Duke Cancer Institute, Duke University Medical CenterDurham, NC 27710, USA
- Departments of Radiology, Pharmacology and Cancer Biology, Duke University Medical CenterDurham, NC 27710, USA
| | - Carolyn Glass
- Duke Cancer Institute, Duke University Medical CenterDurham, NC 27710, USA
- Department of Pathology, Duke University School of MedicineDurham, NC 27710, USA
| | - Li Su
- Departments of Environmental Health and Epidemiology, Harvard TH Chan School of Public HealthBoston, MA 02115, USA
| | - Mulong Du
- Departments of Environmental Health and Epidemiology, Harvard TH Chan School of Public HealthBoston, MA 02115, USA
| | - David C Christiani
- Departments of Environmental Health and Epidemiology, Harvard TH Chan School of Public HealthBoston, MA 02115, USA
- Department of Medicine, Massachusetts General HospitalBoston, MA 02114, USA
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical CenterDurham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of MedicineDurham, NC 27710, USA
- Department of Medicine, Duke University School of MedicineDurham, NC 27710, USA
- Duke Global Health Institute, Duke UniversityDurham, Durham, NC 27710, USA
| |
Collapse
|
10
|
Yang Z, Deng Y, Zhang K, Bai Y, Zhu J, Zhang J, Cheng J, Li L, He J, Wang W. LIN28A polymorphisms and hepatoblastoma susceptibility in Chinese children. J Cancer 2021; 12:1373-1378. [PMID: 33531982 PMCID: PMC7847658 DOI: 10.7150/jca.52621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatoblastoma (HB) is the most prevalent primary hepatic cancer in children aged 6 months to 3 years. LIN28A is recurrently mutated in various diseases, and critically involved in tumorigenesis. However, a limited number of studies have examined the involvement of LIN28A polymorphisms in HB risk. We used the TaqMan assay to genotype four LIN28A polymorphisms (rs3811464 G>A, rs3811463 T>C, rs34787247 G>A, and rs11247957 G>A) in 275 Chinese children with HB and 1018 cancer-free controls from five medical centers in China. Their association with HB risk was evaluated on the basis of odds ratio (OR) and corresponding 95% confidence interval (CI). Overall, no significant associations were found in single locus and combine analysis. Interestingly, in the stratified analysis, we found that subjects with 1-3 risk genotypes were more likely to develop HB in patients ≥17 months of age (adjusted OR=1.76, 95% CI=1.04-2.98, P=0.034). The rs3811464 GA/AA genotypes were associated with decrease HB risk in patients with clinical stage III+IV disease (adjusted OR=0.50, 95% CI=0.26-0.96, P=0.038). Our results suggest that the LIN28A polymorphisms have a weak association with HB susceptibility in the Chinese children. LIN28A rs3811464 G>A may decrease HB risk in stage III+IV patients which need further validations with larger samples and different ethnicities.
Collapse
Affiliation(s)
- Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Yuyao Deng
- Department of Clinical Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Keren Zhang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Yuzuo Bai
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Institute of Pediatrics Research, Yunnan Medical Center for Pediatric Diseases, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
- ✉ Corresponding author: Weilin Wang, Department of Pediatric Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang110004, Liaoning, China, ; or Jing He, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou 510623, Guangdong, China,
| | - Weilin Wang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
- ✉ Corresponding author: Weilin Wang, Department of Pediatric Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang110004, Liaoning, China, ; or Jing He, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou 510623, Guangdong, China,
| |
Collapse
|
11
|
Hu W, Tang J, Zhang Z, Tang Q, Yan Y, Wang P, Wang X, Liu Q, Guo X, Jin M, Zhang Y, Di R, Chu M. Polymorphisms in the ASMT and ADAMTS1 gene may increase litter size in goats. Vet Med Sci 2020; 6:775-787. [PMID: 32529744 PMCID: PMC7738733 DOI: 10.1002/vms3.301] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Prolificacy of most local goat breeds in China is low. Jining Grey goat is one of the most prolific goat breeds in China, it is an important goat breed for the rural economy. ASMT (acetylserotonin O‐methyltransferase) and ADAMTS1 (ADAM metallopeptidase with thrombospondin type 1 motif) are essential for animal reproduction. Single nucleotide polymorphisms (SNPs) of ASMT and ADAMTS1 genes in the highly prolific breed (Jining Grey goats), medium prolific breed (Boer goats and Guizhou White goats) and low prolific breeds (Angora goats, Liaoning Cashmere goats and Inner Mongolia Cashmere goats) were detected by polymerase chain reaction‐restriction fragment length polymorphism and sequencing. Two SNPs (g.158122T>C, g.158700G>A) of ASMT gene and two SNPs (g.7979798A>G, g.7979477C>T) of ADAMTS1 gene were identified. For g.158122T>C of ASMT gene, further analysis revealed that genotype TC or CC had 0.66 (p < 0.05) or 0.75 (p < 0.05) kids more than those with genotype TT in Jining Grey goats. No significant difference (p > 0.05) was found in litter size between TC and CC genotypes. The SNP (g.158122T>C) caused a p.Tyr298His change and this SNP mutation resulted in changes in protein binding sites and macromolecule‐binding sites. The improvement in reproductive performance may be due to changes in the structure of ASMT protein. For g.7979477C>T of ADAMTS1 gene, Jining Grey does with genotype CT or TT had 0.82 (p < 0.05) or 0.86 (p < 0.05) more kids than those with genotype CC. No significant difference (p > 0.05) was found in litter size between CT or TT genotypes. These results preliminarily indicated that C allele (g.158122T>C) of ASMT gene and T allele (g.7979477C>T) of ADAMTS1 gene are potential molecular markers which could improve litter size of Jining Grey goats and be used in goat breeding.
Collapse
Affiliation(s)
- Wenping Hu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Jishun Tang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China.,Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, PR China
| | - Zhuangbiao Zhang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Qianqian Tang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Yan Yan
- Bioengineering College, Chongqing University, Chongqing, PR China
| | - Pinqing Wang
- Bioengineering College, Chongqing University, Chongqing, PR China
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Qiuyue Liu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Xiaofei Guo
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Mei Jin
- College of Life Science, Liaoning Normal University, Dalian, PR China
| | - Yingjie Zhang
- College of Animal Science and Technology, Agricultural University of Hebei, Baoding, PR China
| | - Ran Di
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| |
Collapse
|
12
|
MicroRNA Biogenesis Pathway Genes Are Deregulated in Colorectal Cancer. Int J Mol Sci 2019; 20:ijms20184460. [PMID: 31510013 PMCID: PMC6770105 DOI: 10.3390/ijms20184460] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 01/02/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression. Each step of their production and maturation has to be strictly regulated, as any disruption of control mechanisms may lead to cancer. Thus, we have measured the expression of 19 genes involved in miRNAs biogenesis pathway in tumor tissues of 239 colorectal cancer (CRC) patients, 17 CRC patients with liver metastases and 239 adjacent tissues using real-time PCR. Subsequently, the expression of analyzed genes was correlated with the clinical-pathological features as well as with the survival of patients. In total, significant over-expression of all analyzed genes was observed in tumor tissues as well as in liver metastases except for LIN28A/B. Furthermore, it was shown that the deregulated levels of some of the analyzed genes significantly correlate with tumor stage, grade, location, size and lymph node positivity. Finally, high levels of DROSHA and TARBP2 were associated with shorter disease-free survival, while the over-expression of XPO5, TNRC6A and DDX17 was detected in tissues of patients with shorter overall survival and poor prognosis. Our data indicate that changed levels of miRNA biogenesis genes may contribute to origin as well as progression of CRC; thus, these molecules could serve as potential therapeutic targets.
Collapse
|
13
|
Ding HX, Lv Z, Yuan Y, Xu Q. MiRNA Polymorphisms and Cancer Prognosis: A Systematic Review and Meta-Analysis. Front Oncol 2018; 8:596. [PMID: 30619739 PMCID: PMC6300499 DOI: 10.3389/fonc.2018.00596] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022] Open
Abstract
Background: Accumulating studies have focused on the relationship between miRNAs polymorphisms and cancer prognosis. However, the results are conflicting and unconvincing. This systematic review and meta-analysis was conducted to explore the relationship between miRNAs polymorphisms and cancer prognosis, aiming to seek for markers with cancer prognostic function. Methods: Hazard ratio of overall survival, disease-free survival (DFS) and recurrence-free survival were calculated to evaluate the association between miRNAs polymorphisms and cancer prognosis by using Stata software 11.0. Results: We systematically reviewed the association of 17 miRNAs SNPs with cancer prognosis including 24,721 samples. It was shown that 6 miRNAs SNPs (miR-608 rs4919510, miR-492 rs2289030, miR-378 rs1076064, miR-499 rs4919510, miR-149 rs2292832, miR-196a2 rs11614913) were associated with better cancer overall survival (OS) while let-7i rs10877887 was associated with poor OS; the homozygous and heterozygote genotype of miR-423 were related to poor cancer relapse-free survival (RFS) when compared with the wild genotype; miR-146 rs2910164 was linked to favorable cancer DFS while miR-196a2 rs11614913 was associated with poor DFS. Conclusions: In summary, let-7i rs10877887, miR-608 rs4919510, miR-492 rs2289030, miR-378 rs1076064, miR-423 rs6505162, miR-499 rs4919510, miR-149 rs2292832, miR-146 rs2910164, and miR-196a2 rs11614913 might serve as potential biomarkers for cancer prognosis.
Collapse
Affiliation(s)
- Han-Xi Ding
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, China
| | - Zhi Lv
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, China
| | - Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, China
| |
Collapse
|
14
|
Alidoust M, Hamzehzadeh L, Rivandi M, Pasdar A. Polymorphisms in non-coding RNAs and risk of colorectal cancer: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2018; 132:100-110. [PMID: 30447914 DOI: 10.1016/j.critrevonc.2018.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 07/23/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) has been regarded as a common cancer due to its prevailing incidence in both males and females. Recently, non-coding RNAs used as biomarkers for screening, diagnosis and prognosis of different cancers have been under the focus of attention. As a result of this, the aim of this study was to systematically review articles that investigated the SNPs in genes related to microRNAs and long non-coding RNAs to assess the genetic susceptibility of colorectal cancer risk. The outcome is presented as the results of a meta-analysis. We systematically searched PubMed, Web of Science, and Scopus to identify relevant studies published up to 20/5/2017. These included eligible studies consisting of 23,581 patients and 22,697 controls. The conferred risk was estimated and presented using odds ratios (ORs) and 95% confidence intervals (CI). The Hardy-Weinberg equilibrium (HWE) was assessed by the goodness-of-fit chi-square test in all studies. The power of each study was also calculated based on the available results. Out of 27 different microRNAs which had published results, although most of the studies were under powered, miR-146a and miR-196a were amongst the most studied microRNAs. For five miRNAs (miR-196a, miR-146a, miR-27a, miR-499 and miR-149) which we performed a meta-analysis, miR-27a and miR-149 gene polymorphisms were associated with susceptibility to CRC. Other miRNAs did not show any effect on the CRC risk. Overall, significant association between miR-149 rs2292832 and susceptibility to cancer was identified in a recessive genetic model, TT/ (TC + CC) (OR = 1.19, 95% CI = 1.02-1.39, P = 0.02). On the other hand, rs895819 (miR-27a) GG carriers were more susceptible to CRC (OR = 1.47, 95% CI = 1.21-1.78, P = <0.05) in a recessive genetic model. Analysis of the data based on race revealed that rs2910164 (miR-146a) polymorphism may decrease the risk of CRC among Europeans, in a co dominant model [OR = 0.81, 95% CI 0.66-0.99, p = 0.04], but not among Asians. In conclusion, certain miRNAs (miR-27a and miR-149) may affect the CRC risk and can be regarded as genetic markers amongst different populations. LncRNAs still have to be studied more to reach a conclusion for their association with CRC risk.
Collapse
Affiliation(s)
- Maryam Alidoust
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Hamzehzadeh
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Rivandi
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Pasdar
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Division of Applied Medicine, Medical School, University of Aberdeen, Foresterhill, Aberdeen, UK.
| |
Collapse
|
15
|
Qu Y, Zhang N. miR-365b-3p inhibits the cell proliferation and migration of human coronary artery smooth muscle cells by directly targeting ADAMTS1 in coronary atherosclerosis. Exp Ther Med 2018; 16:4239-4245. [PMID: 30402161 DOI: 10.3892/etm.2018.6720] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022] Open
Abstract
Abnormal proliferation and migration of vascular smooth muscle cells serves a crucial role in the development of atherosclerosis. Previous studies have suggested that some microRNAs (miRs) are involved in this process; however, the associated underlying molecular mechanism is unclear. In present study, human coronary artery smooth muscle cells (HCASMCs) were used to explore the function of miR-365b-3p in the coronary atherosclerosis. It was indicated that platelet-derived growth factor-BB (PDGF-BB) treatment inhibited miR-365b-3p expression and upregulated the expression of a disintegrin and metalloproteinase with thrombospondin motifs 1 (ADAMTS1) in HCASMCs. Subsequently, miR-365b-3p mimic was transfected in HCASMCs to explore the function of this miR. The results of reverse transcription-quantitative polymerase chain reaction and western blot analysis indicated that overexpression of miR-365b-3p significantly downregulated ADAMTS1 expression. Functional assay results revealed that overexpression of miR-365b-3p significantly attenuated PDGF-BB-induced proliferation and migration of HCASMCs. Furthermore, the dual-luciferase reporter assay results confirmed that ADAMTS1 is a direct target gene of miR-365b-3p. This discovery proposed a novel channel of communication between ADAMTS1 and HCASMCs, and suggests a potential therapeutic approach for coronary atherosclerosis.
Collapse
Affiliation(s)
- Yunfei Qu
- Department of Cardiac Vascular Surgery, Chongqing Three Gorges Central Hospital, Chongqing 404000, P.R. China
| | - Ning Zhang
- Department of General Medicine, Chongqing Three Gorges Central Hospital, Chongqing 404000, P.R. China
| |
Collapse
|
16
|
Krause K, Kopp BT, Tazi MF, Caution K, Hamilton K, Badr A, Shrestha C, Tumin D, Hayes D, Robledo-Avila F, Hall-Stoodley L, Klamer BG, Zhang X, Partida-Sanchez S, Parinandi NL, Kirkby SE, Dakhlallah D, McCoy KS, Cormet-Boyaka E, Amer AO. The expression of Mirc1/Mir17-92 cluster in sputum samples correlates with pulmonary exacerbations in cystic fibrosis patients. J Cyst Fibros 2018; 17:454-461. [PMID: 29241629 PMCID: PMC5995663 DOI: 10.1016/j.jcf.2017.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/27/2017] [Accepted: 11/16/2017] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a multi-organ disorder characterized by chronic sino-pulmonary infections and inflammation. Many patients with CF suffer from repeated pulmonary exacerbations that are predictors of worsened long-term morbidity and mortality. There are no reliable markers that associate with the onset or progression of an exacerbation or pulmonary deterioration. Previously, we found that the Mirc1/Mir17-92a cluster which is comprised of 6 microRNAs (Mirs) is highly expressed in CF mice and negatively regulates autophagy which in turn improves CF transmembrane conductance regulator (CFTR) function. Therefore, here we sought to examine the expression of individual Mirs within the Mirc1/Mir17-92 cluster in human cells and biological fluids and determine their role as biomarkers of pulmonary exacerbations and response to treatment. METHODS Mirc1/Mir17-92 cluster expression was measured in human CF and non-CF plasma, blood-derived neutrophils, and sputum samples. Values were correlated with pulmonary function, exacerbations and use of CFTR modulators. RESULTS Mirc1/Mir17-92 cluster expression was not significantly elevated in CF neutrophils nor plasma when compared to the non-CF cohort. Cluster expression in CF sputum was significantly higher than its expression in plasma. Elevated CF sputum Mirc1/Mir17-92 cluster expression positively correlated with pulmonary exacerbations and negatively correlated with lung function. Patients with CF undergoing treatment with the CFTR modulator Ivacaftor/Lumacaftor did not demonstrate significant change in the expression Mirc1/Mir17-92 cluster after six months of treatment. CONCLUSIONS Mirc1/Mir17-92 cluster expression is a promising biomarker of respiratory status in patients with CF including pulmonary exacerbation.
Collapse
Affiliation(s)
- Kathrin Krause
- Department of Microbial Infection and Immunity, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA
| | - Benjamin T Kopp
- Department of Pediatrics, Columbus, OH, USA; Nationwide Children's Hospital, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA
| | - Mia F Tazi
- Department of Microbial Infection and Immunity, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kyle Caution
- Department of Microbial Infection and Immunity, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kaitlin Hamilton
- Department of Microbial Infection and Immunity, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA
| | - Asmaa Badr
- Department of Microbial Infection and Immunity, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA
| | - Chandra Shrestha
- Department of Pediatrics, Columbus, OH, USA; Nationwide Children's Hospital, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA
| | - Dmitry Tumin
- Department of Anesthesiology & Pain Medicine, Columbus, OH, USA; Nationwide Children's Hospital, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA
| | - Don Hayes
- Department of Pediatrics, Columbus, OH, USA; Nationwide Children's Hospital, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA
| | - Frank Robledo-Avila
- Department of Pediatrics, Columbus, OH, USA; Nationwide Children's Hospital, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA
| | - Luanne Hall-Stoodley
- Department of Microbial Infection and Immunity, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA
| | - Brett G Klamer
- Center for Biostatistics, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA
| | - Xiaoli Zhang
- Center for Biostatistics, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA
| | - Santiago Partida-Sanchez
- Department of Pediatrics, Columbus, OH, USA; Nationwide Children's Hospital, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA
| | - Narasimham L Parinandi
- Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA
| | - Stephen E Kirkby
- Department of Pediatrics, Columbus, OH, USA; Nationwide Children's Hospital, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA
| | - Duaa Dakhlallah
- Microbiology, Immunology and Cell Biology Department, West Virginia University, Morgantown, WV, USA
| | - Karen S McCoy
- Department of Pediatrics, Columbus, OH, USA; Nationwide Children's Hospital, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA
| | - Estelle Cormet-Boyaka
- Department of Veterinary Biosciences, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH, USA
| | - Amal O Amer
- Department of Microbial Infection and Immunity, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
17
|
Moszyńska A, Gebert M, Collawn JF, Bartoszewski R. SNPs in microRNA target sites and their potential role in human disease. Open Biol 2017; 7:170019. [PMID: 28381629 PMCID: PMC5413909 DOI: 10.1098/rsob.170019] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 03/08/2017] [Indexed: 12/14/2022] Open
Abstract
In the post-genomic era, the goal of personalized medicine is to determine the correlation between genotype and phenotype. Developing high-throughput genotyping technologies such as genome-wide association studies (GWAS) and the 1000 Genomes Project (http://www.internationalgenome.org/about/#1000G_PROJECT) has dramatically enhanced our ability to map where changes in the genome occur on a population level by identifying millions of single nucleotide polymorphisms (SNPs). Polymorphisms, particularly those within the coding regions of proteins and at splice junctions, have received the most attention, but it is also now clear that polymorphisms in the non-coding regions are important. In these non-coding regions, the enhancer and promoter regions have received the most attention, whereas the 3'-UTR regions have until recently been overlooked. In this review, we examine how SNPs affect microRNA-binding sites in these regions, and how mRNA stability changes can lead to disease pathogenesis.
Collapse
Affiliation(s)
- Adrianna Moszyńska
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Magdalena Gebert
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rafał Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|