1
|
Kou FR, Li J, Wang ZH, Xu T, Qian JJ, Zhang EL, Zhang LJ, Shen L, Wang XC. Analysis of actionable gene fusions in a large cohort of Chinese patients with colorectal cancer. Gastroenterol Rep (Oxf) 2024; 12:goae092. [PMID: 39391592 PMCID: PMC11464618 DOI: 10.1093/gastro/goae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/17/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
Background The prevalence of gene fusion is extremely low in unselected patients with colorectal cancer (CRC). Published data on gene fusions are limited by relatively small sample sizes, with a primary focus on Western populations. This study aimed to analyse actionable gene fusions in a large consecutive Chinese CRC population. Methods This study included 5,534 consecutive CRC patients from the Genecast database. Genomic profiling was performed using a panel of 769 cancer-related genes. Data for 34 CRC patients with actionable gene fusions were also collected from cBioPortal and ChimerSeq. Results Among 5,534 CRC patients, 54 (0.98%) had actionable gene fusions, with NTRK1/2/3 being the most common fusion (0.38%), accounting for 38.9% (21/54) of those with fusions. Actionable gene fusion enrichment was higher in patients with microsatellite instability-high (MSI-H) (6.7% vs. 0.5%, P < 0.001), RAS/BRAF wildtype (2.0% vs. 0.2%, P < 0.001) and RNF43 mutation (7.7% vs. 0.4%, P < 0.001) than in patients with microsatellite stability/MSI-low, RAS/BRAF mutation and RNF43 wildtype, respectively. When these markers were combined, the fusion detection rate increased. Among patients with RAS/BRAF wildtype and MSI-H, fusions were detected in 20.3% of patients. The fusion detection rate further increased to 37.5% when RNF43 mutation was added. The fusion detection rate was also higher in colon cancer than in rectal cancer. No significant differences in clinical or molecular features were found in patients with actionable gene fusions between the Genecast, cBioPortal, and ChimerSeq databases. Conclusions Approximately 1% of the unselected Chinese CRC population carries actionable gene fusions, mostly involving NTRK. Actionable gene fusions are more prevalent in MSI-H, RAS/BRAF wildtype, or RNF43-mutated CRC, as well as in colon cancer. Mapping of these molecular markers can markedly increase the fusion detection rate, which can help clinicians select candidates for fusion testing and targeted therapy.
Collapse
Affiliation(s)
- Fu-Rong Kou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, P. R. China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Comprehensive Clinical Trial Ward, Peking University Cancer Hospital & Institute, Beijing, P. R. China
| | - Jian Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, P. R. China
| | - Zheng-Hang Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, P. R. China
| | - Ting Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, P. R. China
| | - Juan-Juan Qian
- Department of Medicine, Genecast Biotechnology Co., Ltd., Wuxi, Jiangsu, P. R. China
| | - En-Li Zhang
- Department of Medicine, Genecast Biotechnology Co., Ltd., Wuxi, Jiangsu, P. R. China
| | - Li-Jun Zhang
- Department of Medicine, Genecast Biotechnology Co., Ltd., Wuxi, Jiangsu, P. R. China
| | - Lin Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, P. R. China
| | - Xi-Cheng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, P. R. China
| |
Collapse
|
2
|
Hernandez S, Conde E, Molero A, Suarez-Gauthier A, Martinez R, Alonso M, Plaza C, Camacho C, Chantada D, Juaneda-Magdalena L, Garcia-Toro E, Saiz-Lopez P, Rojo F, Abad M, Boni V, Del Carmen S, Regojo RM, Sanchez-Frias ME, Teixido C, Paz-Ares L, Lopez-Rios F. Efficient Identification of Patients With NTRK Fusions Using a Supervised Tumor-Agnostic Approach. Arch Pathol Lab Med 2024; 148:318-326. [PMID: 37270803 DOI: 10.5858/arpa.2022-0443-oa] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 06/06/2023]
Abstract
CONTEXT.— The neurotrophic tropomyosin receptor kinase (NTRK) family gene rearrangements have been recently incorporated as predictive biomarkers in a "tumor-agnostic" manner. However, the identification of these patients is extremely challenging because the overall frequency of NTRK fusions is below 1%. Academic groups and professional organizations have released recommendations on the algorithms to detect NTRK fusions. The European Society for Medical Oncology proposal encourages the use of next-generation sequencing (NGS) if available, or alternatively immunohistochemistry (IHC) could be used for screening with NGS confirmation of all positive IHC results. Other academic groups have included histologic and genomic information in the testing algorithm. OBJECTIVE.— To apply some of these triaging strategies for a more efficient identification of NTRK fusions within a single institution, so pathologists can gain practical insight on how to start looking for NTRK fusions. DESIGN.— A multiparametric strategy combining histologic (secretory carcinomas of the breast and salivary gland; papillary thyroid carcinomas; infantile fibrosarcoma) and genomic (driver-negative non-small cell lung carcinomas, microsatellite instability-high colorectal adenocarcinomas, and wild-type gastrointestinal stromal tumors) triaging was put forward. RESULTS.— Samples from 323 tumors were stained with the VENTANA pan-TRK EPR17341 Assay as a screening method. All positive IHC cases were simultaneously studied by 2 NGS tests, Oncomine Comprehensive Assay v3 and FoundationOne CDx. With this approach, the detection rate of NTRK fusions was 20 times higher (5.57%) by only screening 323 patients than the largest cohort in the literature (0.30%) comprising several hundred thousand patients. CONCLUSIONS.— Based on our findings, we propose a multiparametric strategy (ie, "supervised tumor-agnostic approach") when pathologists start searching for NTRK fusions.
Collapse
Affiliation(s)
- Susana Hernandez
- From the Department of Pathology, 12 de Octubre University Hospital, Research Institute 12 de Octubre University Hospital (i+12), Madrid, Spain (Hernandez, Alonso)
| | - Esther Conde
- the Department of Pathology, 12 de Octubre University Hospital, Universidad Complutense de Madrid, Research Institute 12 de Octubre University Hospital (i+12), CIBERONC, Madrid, Spain (Conde, Lopez-Rios)
| | - Aida Molero
- the Department of Pathology, Segovia General Hospital, Segovia, Spain (Molero)
| | - Ana Suarez-Gauthier
- the Department of Pathology, Jimenez Diaz Foundation University Hospital, Madrid, Spain (Suarez-Gauthier)
| | - Rebeca Martinez
- the Department of Pathology, Health Diagnostic-Grupo Quiron Salud, Madrid, Spain (Martinez)
| | - Marta Alonso
- From the Department of Pathology, 12 de Octubre University Hospital, Research Institute 12 de Octubre University Hospital (i+12), Madrid, Spain (Hernandez, Alonso)
| | - Carlos Plaza
- the Department of Pathology, Clinico San Carlos University Hospital, Madrid, Spain (Plaza)
| | - Carmen Camacho
- the Department of Pathology, Insular Materno-Infantil University Hospital, Las Palmas de Gran Canaria, Spain (Camacho)
| | - Debora Chantada
- the Department of Pathology, Alvaro Cunqueiro Hospital, Vigo, Spain (Chantada, Juaneda-Magdalena)
| | - Laura Juaneda-Magdalena
- the Department of Pathology, Alvaro Cunqueiro Hospital, Vigo, Spain (Chantada, Juaneda-Magdalena)
| | - Enrique Garcia-Toro
- the Department of Pathology, Burgos University Hospital, Burgos, Spain (Garcia-Toro, Saiz-Lopez)
| | - Patricia Saiz-Lopez
- the Department of Pathology, Burgos University Hospital, Burgos, Spain (Garcia-Toro, Saiz-Lopez)
| | - Federico Rojo
- the Institute of Health Research-Jimenez Diaz Foundation, CIBERONC, Madrid, Spain (Rojo)
| | - Mar Abad
- the Department of Pathology, Salamanca University Hospital, Salamanca, Spain (Abad)
| | - Valentina Boni
- NEXT Oncology Madrid, Quiron Salud Madrid University Hospital, Madrid, Spain (Boni)
| | - Sofia Del Carmen
- the Department of Pathology, Marques de Valdecilla University Hospital, Santander, Spain (del Carmen)
| | - Rita Maria Regojo
- the Department of Pathology, La Paz University Hospital, Madrid, Spain (Regojo)
| | | | - Cristina Teixido
- the Department of Pathology, Thoracic Oncology Unit, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain (Teixido)
| | - Luis Paz-Ares
- the Department of Oncology, 12 de Octubre University Hospital, Department of Medicine, Universidad Complutense de Madrid, Research Institute 12 de Octubre University Hospital (i+12), CIBERONC, Madrid, Spain (Paz-Ares)
| | - Fernando Lopez-Rios
- the Department of Pathology, 12 de Octubre University Hospital, Universidad Complutense de Madrid, Research Institute 12 de Octubre University Hospital (i+12), CIBERONC, Madrid, Spain (Conde, Lopez-Rios)
| |
Collapse
|
3
|
Pivovarcikova K, Pitra T, Alaghehbandan R, Buchova K, Steiner P, Hajkova V, Ptakova N, Subrt I, Skopal J, Svajdler P, Farcas M, Slisarenko M, Michalova K, Strakova Peterikova A, Hora M, Michal M, Daum O, Svajdler M, Hes O. Lynch syndrome-associated upper tract urothelial carcinoma frequently occurs in patients older than 60 years: an opportunity to revisit urology clinical guidelines. Virchows Arch 2023; 483:517-526. [PMID: 37612527 DOI: 10.1007/s00428-023-03626-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023]
Abstract
Upper tract urothelial carcinoma (UTUC) is the third most common malignancy associated with Lynch syndrome (LS). The current European urology guidelines recommend screening for LS in patients with UTUC up to the age of 60 years. In this study, we examined a cohort of patients with UTUC for potential association with LS in order to establish the sensitivity of current guidelines in detecting LS. A total of 180 patients with confirmed diagnosis of UTUC were enrolled in the study during a 12-year period (2010-2022). Loss of DNA-mismatch repair proteins (MMRp) expression was identified in 15/180 patients (8.3%). Germline analysis was eventually performed in 8 patients confirming LS in 5 patients (2.8%), including 4 germline mutations in MSH6 and 1 germline mutation in MSH2. LS-related UTUC included 3 females and 2 males, with a mean age of 66.2 years (median 71 years, range 46-75 years). Four of five LS patients (all with MSH6 mutation) were older than 65 years (mean age 71.3, median 72 years). Our findings indicate that LS-associated UTUCs can occur in patients with LS older than 60 years. In contrast to previous studies which used mainly highly pre-selected populations with already diagnosed LS, the most frequent mutation in our cohort involved MSH6 gene. All MSH6 mutation carriers were > 65 years, and UTUC was the first LS manifestation in 2/4 patients. Using current screening guidelines, a significant proportion of patients with LS-associated UTUC may be missed. We suggest universal immunohistochemical MMRp screening for all UTUCs, regardless of age and clinical history.
Collapse
Affiliation(s)
- Kristyna Pivovarcikova
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Alej Svobody 80, 304 60, Pilsen, Czech Republic.
- Biopticka Laborator S.R.O., Pilsen, Czech Republic.
| | - Tomas Pitra
- Department of Urology, Faculty of Medicine in Plzeň, Charles University in Prague, Pilsen, Czech Republic
| | - Reza Alaghehbandan
- Cleveland Clinic, Department of Anatomic Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland, OH, USA
| | - Karolina Buchova
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Alej Svobody 80, 304 60, Pilsen, Czech Republic
| | - Petr Steiner
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Alej Svobody 80, 304 60, Pilsen, Czech Republic
- Biopticka Laborator S.R.O., Pilsen, Czech Republic
| | - Veronika Hajkova
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Alej Svobody 80, 304 60, Pilsen, Czech Republic
- Biopticka Laborator S.R.O., Pilsen, Czech Republic
| | - Nikola Ptakova
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Alej Svobody 80, 304 60, Pilsen, Czech Republic
- Biopticka Laborator S.R.O., Pilsen, Czech Republic
| | - Ivan Subrt
- Department of Medical Genetics, Faculty of Medicine in Plzeň, Charles University in Prague, Pilsen, Czech Republic
| | - Josef Skopal
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Alej Svobody 80, 304 60, Pilsen, Czech Republic
| | - Peter Svajdler
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Alej Svobody 80, 304 60, Pilsen, Czech Republic
- Cytopathos S. R. O., Bratislava, Slovakia
| | - Mihaela Farcas
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Alej Svobody 80, 304 60, Pilsen, Czech Republic
- Onco Team Diagnostic, Bucharest, Romania
| | - Maryna Slisarenko
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Alej Svobody 80, 304 60, Pilsen, Czech Republic
| | - Kvetoslava Michalova
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Alej Svobody 80, 304 60, Pilsen, Czech Republic
- Biopticka Laborator S.R.O., Pilsen, Czech Republic
| | - Andrea Strakova Peterikova
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Alej Svobody 80, 304 60, Pilsen, Czech Republic
- Biopticka Laborator S.R.O., Pilsen, Czech Republic
| | - Milan Hora
- Department of Urology, Faculty of Medicine in Plzeň, Charles University in Prague, Pilsen, Czech Republic
| | - Michal Michal
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Alej Svobody 80, 304 60, Pilsen, Czech Republic
- Biopticka Laborator S.R.O., Pilsen, Czech Republic
| | - Ondrej Daum
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Alej Svobody 80, 304 60, Pilsen, Czech Republic
- Biopticka Laborator S.R.O., Pilsen, Czech Republic
| | - Marian Svajdler
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Alej Svobody 80, 304 60, Pilsen, Czech Republic
- Biopticka Laborator S.R.O., Pilsen, Czech Republic
- Cytopathos S. R. O., Bratislava, Slovakia
| | - Ondrej Hes
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Alej Svobody 80, 304 60, Pilsen, Czech Republic
- Biopticka Laborator S.R.O., Pilsen, Czech Republic
| |
Collapse
|
4
|
Mulkidjan RS, Saitova ES, Preobrazhenskaya EV, Asadulaeva KA, Bubnov MG, Otradnova EA, Terina DM, Shulga SS, Martynenko DE, Semina MV, Belogubova EV, Tiurin VI, Amankwah PS, Martianov AS, Imyanitov EN. ALK, ROS1, RET and NTRK1-3 Gene Fusions in Colorectal and Non-Colorectal Microsatellite-Unstable Cancers. Int J Mol Sci 2023; 24:13610. [PMID: 37686416 PMCID: PMC10488195 DOI: 10.3390/ijms241713610] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
This study aimed to conduct a comprehensive analysis of actionable gene rearrangements in tumors with microsatellite instability (MSI). The detection of translocations involved tests for 5'/3'-end expression imbalance, variant-specific PCR and RNA-based next generation sequencing (NGS). Gene fusions were detected in 58/471 (12.3%) colorectal carcinomas (CRCs), 4/69 (5.8%) gastric cancers (GCs) and 3/65 (4.6%) endometrial cancers (ECs) (ALK: 8; RET: 12; NTRK1: 24; NTRK2: 2; NTRK3: 19), while none of these alterations were observed in five cervical carcinomas (CCs), four pancreatic cancers (PanCs), three cholangiocarcinomas (ChCs) and two ovarian cancers (OCs). The highest frequency of gene rearrangements was seen in KRAS/NRAS/BRAF wild-type colorectal carcinomas (53/204 (26%)). Surprisingly, as many as 5/267 (1.9%) KRAS/NRAS/BRAF-mutated CRCs also carried tyrosine kinase fusions. Droplet digital PCR (ddPCR) analysis of the fraction of KRAS/NRAS/BRAF mutated gene copies in kinase-rearranged tumors indicated that there was simultaneous co-occurrence of two activating events in cancer cells, but not genetic mosaicism. CRC patients aged above 50 years had a strikingly higher frequency of translocations as compared to younger subjects (56/365 (15.3%) vs. 2/106 (1.9%), p = 0.002), and this difference was particularly pronounced for tumors with normal KRAS/NRAS/BRAF status (52/150 (34.7%) vs. 1/54 (1.9%), p = 0.001). There were no instances of MSI in 56 non-colorectal tumors carrying ALK, ROS1, RET or NTRK1 rearrangements. An analysis of tyrosine kinase gene translocations is particularly feasible in KRAS/NRAS/BRAF wild-type microsatellite-unstable CRCs, although other categories of tumors with MSI also demonstrate moderate occurrence of these events.
Collapse
Affiliation(s)
- Rimma S. Mulkidjan
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia; (R.S.M.)
| | - Evgeniya S. Saitova
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia; (R.S.M.)
| | - Elena V. Preobrazhenskaya
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia; (R.S.M.)
- Department of Medical Genetics, St. Petersburg Pediatric Medical University, 194100 St. Petersburg, Russia
| | - Karimat A. Asadulaeva
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia; (R.S.M.)
| | - Mikhail G. Bubnov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia; (R.S.M.)
| | - Ekaterina A. Otradnova
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia; (R.S.M.)
| | - Darya M. Terina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia; (R.S.M.)
| | - Sofia S. Shulga
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia; (R.S.M.)
| | - Darya E. Martynenko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia; (R.S.M.)
| | - Maria V. Semina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia; (R.S.M.)
| | - Evgeniya V. Belogubova
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia; (R.S.M.)
| | - Vladislav I. Tiurin
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia; (R.S.M.)
| | - Priscilla S. Amankwah
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia; (R.S.M.)
| | - Aleksandr S. Martianov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia; (R.S.M.)
- Department of Medical Genetics, St. Petersburg Pediatric Medical University, 194100 St. Petersburg, Russia
| | - Evgeny N. Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia; (R.S.M.)
- Department of Medical Genetics, St. Petersburg Pediatric Medical University, 194100 St. Petersburg, Russia
| |
Collapse
|
5
|
R OM, J W, T F, C M, A W, N S, Z K. Mismatch Repair Screening of Gastrointestinal Cancers: The Impact on Lynch Syndrome Detection and Immunotherapy. J Gastrointest Cancer 2023; 54:768-775. [PMID: 36018445 PMCID: PMC9415243 DOI: 10.1007/s12029-022-00859-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Mismatch repair immunohistochemistry (MMR IHC) or microsatellite instability (MSI) testing is now routinely performed in patients with colorectal cancer (CRC) to select those requiring Lynch syndrome testing. MMR IHC is also carried out on CRC and upper gastrointestinal (GI) cancers to select patients for immunotherapy. We review the Royal Marsden Hospital's pathway of molecular to germline testing for Lynch syndrome in the context of NICE guidance and the National Test Directory. METHODS We conducted (i) a retrospective audit of adherence to NICE guidance DG27 for patients diagnosed with CRC March 2017-August 2018 and (ii) a retrospective service evaluation of MMR IHC/Lynch syndrome testing in patients diagnosed with upper GI cancers January 2019-2020. RESULTS Of 394 patients with CRC, 346 (87.8%) had MMR IHC testing. Thirty-eight of 346 (10.9%) were MMR deficient (MMR-D) and 5 (1.4%) were found to have pathogenic germline variants causing Lynch syndrome. Of 405 patients with upper GI cancers, 221 (54.6%) had MMR IHC testing. Ten of 221 (4.5%) were MMR-D and 1 (0.5%) had a pathogenic germline variant causing Lynch syndrome. DISCUSSION This study highlights the small but significant number of patients, with CRC or upper GI cancers, which were caused by Lynch syndrome. It also highlights weaknesses in our testing pathway that limit access to germline testing. As MMR testing increases, it is important that clinicians are aware that patients with MMR-D tumours require reflex somatic testing or referral for germline testing. We have incorporated the guidelines into a pathway for use in clinics and multidisciplinary teams.
Collapse
Affiliation(s)
- Openshaw M R
- Royal Marsden Hospital, Cancer Genetics Unit, London, UK.
- Queen Elizabeth Hospital Birmingham, Cancer Centre, Birmingham, UK.
| | - Williams J
- Royal Marsden Hospital, Cancer Genetics Unit, London, UK
| | - Foo T
- Royal Marsden Hospital, Cancer Genetics Unit, London, UK
| | - Moss C
- Royal Marsden Hospital, Cancer Genetics Unit, London, UK
| | - Wotherspoon A
- Royal Marsden Hospital, Gastrointestinal Histopathology Unit, London, UK
| | - Starling N
- Royal Marsden Hospital, Gastrointestinal Medical Oncology Unit, London, UK
| | - Kemp Z
- Royal Marsden Hospital, Cancer Genetics Unit, London, UK
| |
Collapse
|
6
|
Ziranu P, Pretta A, Pozzari M, Maccioni A, Badiali M, Fanni D, Lai E, Donisi C, Persano M, Gerosa C, Puzzoni M, Bardanzellu F, Ambu R, Pusceddu V, Dubois M, Cerrone G, Migliari M, Murgia S, Spanu D, Pretta G, Aimola V, Balconi F, Murru S, Faa G, Scartozzi M. CDX-2 expression correlates with clinical outcomes in MSI-H metastatic colorectal cancer patients receiving immune checkpoint inhibitors. Sci Rep 2023; 13:4397. [PMID: 36928082 PMCID: PMC10020482 DOI: 10.1038/s41598-023-31538-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) showed efficacy in metastatic colorectal cancer (mCRC) with mismatch-repair deficiency or high microsatellite instability (dMMR-MSI-H). Unfortunately, a patient's subgroup did not benefit from immunotherapy. Caudal-related homeobox transcription factor 2 (CDX-2) would seem to influence immunotherapy's sensitivity, promoting the chemokine (C-X-C motif) ligand 14 (CXCL14) expression. Therefore, we investigated CDX-2 role as a prognostic-predictive marker in patients with mCRC MSI-H. We retrospectively collected data from 14 MSI-H mCRC patients treated with ICIs between 2019 and 2021. The primary endpoint was the 12-month progression-free-survival (PFS) rate. The secondary endpoints were overall survival (OS), PFS, objective response rate (ORR), and disease control rate (DCR). The PFS rate at 12 months was 81% in CDX-2 positive patients vs 0% in CDX-2 negative patients (p = 0.0011). The median PFS was not reached (NR) in the CDX-2 positive group versus 2.07 months (95%CI 2.07-10.8) in CDX-2 negative patients (p = 0.0011). Median OS was NR in CDX-2-positive patients versus 2.17 months (95% Confidence Interval [CI] 2.17-18.7) in CDX2-negative patients (p = 0.026). All CDX-2-positive patients achieved a disease response, one of them a complete response. Among CDX-2-negative patients, one achieved stable disease, while the other progressed rapidly (ORR: 100% vs 0%, p = 0.0005; DCR: 100% vs 50%, p = 0.02). Twelve patients received 1st-line pembrolizumab (11 CDX-2 positive and 1 CDX-2 negative) not reaching median PFS, while two patients (1 CDX-2 positive and 1 CDX-2 negative) received 3rd-line pembrolizumab reaching a median PFS of 10.8 months (95% CI, 10.8-12.1; p = 0.036). Although our study reports results on a small population, the prognostic role of CDX-2 in CRC seems confirmed and could drive a promising predictive role in defining the population more sensitive to immunotherapy treatment. Modulating the CDX-2/CXCL14 axis in CDX-2-negative patients could help overcome primary resistance to immunotherapy.
Collapse
Affiliation(s)
- Pina Ziranu
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Andrea Pretta
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Marta Pozzari
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Antonio Maccioni
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Manuela Badiali
- Genetic and Genomic Laboratory, Pediatric Children Hospital A. Cao ASL8, Cagliari, Italy
| | - Daniela Fanni
- Division of Pathology, Department of Medical Sciences and Public Health, University Hospital and University of Cagliari, Cagliari, Italy
| | - Eleonora Lai
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Clelia Donisi
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Mara Persano
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Clara Gerosa
- Division of Pathology, Department of Medical Sciences and Public Health, University Hospital and University of Cagliari, Cagliari, Italy
| | - Marco Puzzoni
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Fabio Bardanzellu
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Rossano Ambu
- Division of Pathology, Department of Medical Sciences and Public Health, University Hospital and University of Cagliari, Cagliari, Italy
| | - Valeria Pusceddu
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Marco Dubois
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Giulia Cerrone
- Division of Pathology, Department of Medical Sciences and Public Health, University Hospital and University of Cagliari, Cagliari, Italy
| | - Marco Migliari
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Sara Murgia
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Dario Spanu
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Gianluca Pretta
- Science Department, King's School Hove, Hangleton Way, Hove, BN3 8BN, UK
| | - Valentina Aimola
- Division of Pathology, Department of Medical Sciences and Public Health, University Hospital and University of Cagliari, Cagliari, Italy
| | - Francesca Balconi
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Stefania Murru
- Genetic and Genomic Laboratory, Pediatric Children Hospital A. Cao ASL8, Cagliari, Italy
| | - Gavino Faa
- Division of Pathology, Department of Medical Sciences and Public Health, University Hospital and University of Cagliari, Cagliari, Italy
| | - Mario Scartozzi
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy.
| |
Collapse
|
7
|
Akhoundova D, Hussung S, Sivakumar S, Töpfer A, Rechsteiner M, Kahraman A, Arnold F, Angst F, Britschgi C, Zoche M, Moch H, Weber A, Sokol E, Fritsch RM. ROS1 genomic rearrangements are rare actionable drivers in microsatellite stable colorectal cancer. Int J Cancer 2022; 151:2161-2171. [PMID: 36053834 PMCID: PMC9804412 DOI: 10.1002/ijc.34257] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 01/05/2023]
Abstract
c-Ros oncogene 1, receptor tyrosine kinase (ROS1) genomic rearrangements have been reported previously in rare cases of colorectal cancer (CRC), yet little is known about the frequency, molecular characteristics, and therapeutic vulnerabilities of ROS1-driven CRC. We analyzed a clinical dataset of 40 589 patients with CRC for ROS1 genomic rearrangements and their associated genomic characteristics (Foundation Medicine, Inc [FMI]). We moreover report the disease course and treatment response of an index patient with ROS1-rearranged metastatic CRC. ROS1 genomic rearrangements were identified in 34 (0.08%) CRC samples. GOPC-ROS1 was the most common ROS1 fusion identified (11 samples), followed by TTC28-ROS1 (3 samples). Four novel 5' gene partners of ROS1 were identified (MCM9, SRPK1, EPHA6, P4HA1). Contrary to previous reports on fusion-positive CRC, ROS1-rearrangements were found exclusively in microsatellite stable (MSS) CRCs. KRAS mutations were significantly less abundant in ROS1-rearranged vs ROS1 wild type cases. The index patient presented with chemotherapy-refractory metastatic right-sided colon cancer harboring GOPC-ROS1. Molecularly targeted treatment with crizotinib induced a rapid and sustained partial response. After 15 months on crizotinib disseminated tumor progression occurred and KRAS Q61H emerged in tissue and liquid biopsies. ROS1 rearrangements define a small, yet therapeutically actionable molecular subgroup of MSS CRC. In summary, the high prevalence of GOPC-ROS1 and noncanonical ROS1 fusions pose diagnostic challenges. We advocate NGS-based comprehensive molecular profiling of MSS CRCs that are wild type for RAS and BRAF and patient enrollment in precision trials.
Collapse
Affiliation(s)
- Dilara Akhoundova
- Department of Medical Oncology and HematologyUniversity Hospital of ZurichZurichSwitzerland
| | - Saskia Hussung
- Department of Medical Oncology and HematologyUniversity Hospital of ZurichZurichSwitzerland
| | - Smruthy Sivakumar
- Cancer Genomics ResearchFoundation Medicine, IncCambridgeMassachusettsUSA
| | - Antonia Töpfer
- Department of Pathology and Molecular PathologyUniversity Hospital of ZurichZurichSwitzerland
| | - Markus Rechsteiner
- Department of Pathology and Molecular PathologyUniversity Hospital of ZurichZurichSwitzerland
| | - Abdullah Kahraman
- Department of Pathology and Molecular PathologyUniversity Hospital of ZurichZurichSwitzerland
| | - Fabian Arnold
- Department of Pathology and Molecular PathologyUniversity Hospital of ZurichZurichSwitzerland
| | - Florian Angst
- Institute of Diagnostic and Interventional RadiologyUniversity Hospital of ZurichZurichSwitzerland
| | - Christian Britschgi
- Department of Medical Oncology and HematologyUniversity Hospital of ZurichZurichSwitzerland
| | - Martin Zoche
- Department of Pathology and Molecular PathologyUniversity Hospital of ZurichZurichSwitzerland
| | - Holger Moch
- Department of Pathology and Molecular PathologyUniversity Hospital of ZurichZurichSwitzerland
| | - Achim Weber
- Department of Pathology and Molecular PathologyUniversity Hospital of ZurichZurichSwitzerland
| | - Ethan Sokol
- Cancer Genomics ResearchFoundation Medicine, IncCambridgeMassachusettsUSA
| | - Ralph M. Fritsch
- Department of Medical Oncology and HematologyUniversity Hospital of ZurichZurichSwitzerland
| |
Collapse
|
8
|
Buchler T. Microsatellite Instability and Metastatic Colorectal Cancer - A Clinical Perspective. Front Oncol 2022; 12:888181. [PMID: 35574322 PMCID: PMC9097548 DOI: 10.3389/fonc.2022.888181] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/31/2022] [Indexed: 12/15/2022] Open
Abstract
Approximately 4-5% of patients with metastatic colorectal cancer (mCRC) have mismatch repair deficient (dMMR)/microsatellite instability-high (MSI-H) tumours. These tumours present challenges in the clinical practice due to variant response to fluoropyrimidine-based chemotherapy and, perhaps, also non-immunologic targeted therapies. Recently, a breakthrough in the treatment of dMMR/MSI-H mCRC has been achieved with several clinical trials showing dramatic long-term benefit of immunotherapy using checkpoint inhibitors. Nevertheless, several questions remain regarding the optimisation of immunotherapy regimens and the use of biomarkers to identify populations set to derive the greatest benefit from immunotherapy. Combination regimens and/or the use of immunotherapy as a maintenance after induction non-immunologic systemic therapy may be the way forward to improve outcomes.
Collapse
Affiliation(s)
- Tomas Buchler
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czechia
| |
Collapse
|
9
|
Ukkola I, Nummela P, Kero M, Tammio H, Tuominen J, Kairisto V, Kallajoki M, Haglund C, Peltomäki P, Kytölä S, Ristimäki A. Gene fusions and oncogenic mutations in MLH1 deficient and BRAFV600E wild-type colorectal cancers. Virchows Arch 2022; 480:807-817. [PMID: 35237889 PMCID: PMC9023403 DOI: 10.1007/s00428-022-03302-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/19/2022] [Accepted: 02/05/2022] [Indexed: 01/09/2023]
Abstract
Gene fusions can act as oncogenic drivers and offer targets for cancer therapy. Since fusions are rare in colorectal cancer (CRC), their universal screening seems impractical. Our aim was to investigate gene fusions in 62 CRC cases with deficient MLH1 (dMLH1) and BRAFV600E wild-type (wt) status from a consecutive real-life series of 2079 CRCs. First, gene fusions were analysed using a novel FusionPlex Lung v2 RNA-based next-generation sequencing (NGS) panel, and these results were compared to a novel Idylla GeneFusion assay and pan-TRK immunohistochemistry (IHC). NGS detected seven (7/62, 11%) NTRK1 fusions (TPM3::NTRK1, PLEKHA6::NTRK1 and LMNA::NTRK1, each in two cases, and IRF2BP2::NTRK1 in one case). In addition, two ALK, four RET and seven BRAF fusions were identified. Idylla detected seven NTRK1 expression imbalances, in line with the NGS results (overall agreement 100%). Furthermore, Idylla detected the two NGS-identified ALK rearrangements as one specific ALK fusion and one ALK expression imbalance, whilst only two of the four RET fusions were discovered. However, Idylla detected several expression imbalances of ALK (n = 7) and RET (n = 1) that were found to be fusion negative with the NGS. Pan-TRK IHC showed clearly detectable, fusion partner-dependent staining patterns in the seven NTRK1 fusion cases. Overall agreement for pan-TRK antibody clone EPR17341 was 98% and for A7H6R 100% when compared to the NGS. Of the 62 CRCs, 43 were MLH1 promoter hypermethylated (MLH1ph) and 39 were RASwt. All fusion cases were both MLH1ph and RASwt. Our results show that kinase fusions (20/30, 67%) and most importantly targetable NTRK1 fusions (7/30, 23%) are frequent in CRCs with dMLH1/BRAFV600Ewt/MLH1ph/RASwt. NGS was the most comprehensive method in finding the fusions, of which a subset can be screened by Idylla or IHC, provided that the result is confirmed by NGS.
Collapse
Affiliation(s)
- Iiris Ukkola
- Department of Pathology, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, P.O. Box 400, 00029, HUS, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pirjo Nummela
- Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mia Kero
- Department of Pathology, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, P.O. Box 400, 00029, HUS, Helsinki, Finland
| | - Hanna Tammio
- Department of Genetics, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Jenni Tuominen
- Department of Genomics, Laboratory of Molecular Haematology and Pathology, Turku University Central Hospital, Turku, Finland
| | - Veli Kairisto
- Department of Genomics, Laboratory of Molecular Haematology and Pathology, Turku University Central Hospital, Turku, Finland
| | - Markku Kallajoki
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
| | - Caj Haglund
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Translational Cancer Medicine Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Päivi Peltomäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Soili Kytölä
- Department of Genetics, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Ari Ristimäki
- Department of Pathology, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, P.O. Box 400, 00029, HUS, Helsinki, Finland.
- Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
10
|
Rahi H, Olave MC, Fritchie KJ, Greipp PT, Halling KC, Kipp BR, Graham RP. Gene Fusions in Gastrointestinal Tract cancers. Genes Chromosomes Cancer 2022; 61:285-297. [PMID: 35239225 DOI: 10.1002/gcc.23035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/10/2022] Open
Abstract
Fusion genes have been identified a wide array of human neoplasms including hematologic and solid tumors, including gastrointestinal tract neoplasia. A fusion gene is the product of parts of two genes which are joined together following a deletion, translocation or chromosomal inversion. Together with single nucleotide variants, insertions, deletions, and amplification, fusion genes represent one of the key genomic mechanisms for tumor development. Detecting fusions in the clinic is accomplished by a variety of techniques including break-apart fluorescence in situ hybridization (FISH), reverse transcription-polymerase chain reaction (RT-PCR), and next-generation sequencing (NGS). Some recurrent gene fusions have been successfully targeted by small molecule or monoclonal antibody therapies (i.e. targeted therapies), while others are used for as biomarkers for diagnostic and prognostic purposes. The purpose of this review article is to discuss the clinical utility of detection of gene fusions in carcinomas and neoplasms arising primarily in the digestive system. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hamed Rahi
- Division of Laboratory of Genetics and Genomics, Mayo Clinic, Rochester, MN, USA
| | - Maria C Olave
- Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - Karen J Fritchie
- Division of Anatomic Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - Patricia T Greipp
- Division of Laboratory of Genetics and Genomics, Mayo Clinic, Rochester, MN, USA
| | - Kevin C Halling
- Division of Laboratory of Genetics and Genomics, Mayo Clinic, Rochester, MN, USA.,Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - Benjamin R Kipp
- Division of Laboratory of Genetics and Genomics, Mayo Clinic, Rochester, MN, USA.,Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - Rondell P Graham
- Division of Laboratory of Genetics and Genomics, Mayo Clinic, Rochester, MN, USA.,Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
11
|
Lengyel CG. Microsatellite Instability as a Predictor of Outcomes in Colorectal Cancer in the Era of Immune-Checkpoint Inhibitors. Curr Drug Targets 2021; 22:968-976. [PMID: 33970843 DOI: 10.2174/1389450122666210325121322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/15/2020] [Accepted: 01/08/2021] [Indexed: 11/22/2022]
Abstract
The microsatellite instable phenotype resulting from errors in DNA mismatch repair proteins accounts for as far as 15 to 20% of non-hereditary colon cancers but is scarce in rectal cancer. It has been shown that the increased existence of tumor-specific neoantigens in hypermutated tumors is correlated with higher tumor-infiltrating lymphocytes (TILs) and overexpression of immune checkpoint receptors and ligands, mainly PD-1 and PD-L1. In particular, the data gained up to now gives evidence that neoantigen recognition constitutes a dominant component in the course of immunotherapies. This review's primary objective is to describe current approvals and summarize present knowledge about the outcomes of immuno-oncology treatment of microsatellite instable colorectal cancer (CRC). The secondary objective is to give a narrative report about testing methodologies, prognostics, and the predictive value of microsatellite instability. For this purpose, a literature review was performed, focusing on published clinical trial results, ongoing clinical trials and timelines, testing methods, and prognostic and predictive value of MSI. Following four recent FDA approvals of immunotherapy of MSI-high CRC, further work should be warranted by pathology societies towards standardization and rising concordance and reproducibility across the IHC/MSI testing landscape in order to facilitate professionals to offer better survival options for patients with CRC.
Collapse
|
12
|
Uguen A, Csanyi-Bastien M, Sabourin JC, Penault-Llorca F, Adam J. [How to test for NTRK gene fusions: A practical approach for pathologists]. Ann Pathol 2021; 41:387-398. [PMID: 33846022 DOI: 10.1016/j.annpat.2021.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/06/2021] [Accepted: 03/10/2021] [Indexed: 11/29/2022]
Abstract
The recent availability of targeted anti-TRK therapies represents a new opportunity to treat patients with advanced cancers harboring NTRK gene fusions. In this article, we present an update on the practical modalities of implementing a "NTRK testing" to search for these fusions in view of the performances and availability of the different testing methods and the epidemiological characteristics of the tumors liable to present the NTRK1, NTRK2 or NTRK3 gene fusions.
Collapse
Affiliation(s)
- Arnaud Uguen
- Inserm, CHU de Brest, LBAI, UMR1227, Université Brest, 29200 Brest, France; Service d'anatomie et cytologie pathologiques, CHRU Brest, 29200 Brest, France.
| | | | | | - Frédérique Penault-Llorca
- Inserm U1240, département d'anatomie et de cytologie pathologiques, centre Jean-Perrin, université Clermont-Auvergne, 63011 Clermont-Ferrand, France
| | - Julien Adam
- Service d'anatomie et cytologie pathologiques, Hôpital Saint-Joseph, 75014 Paris, France
| |
Collapse
|
13
|
Conde E, Hernandez S, Sanchez E, Regojo RM, Camacho C, Alonso M, Martinez R, Lopez-Rios F. Pan-TRK Immunohistochemistry: An Example-Based Practical Approach to Efficiently Identify Patients With NTRK Fusion Cancer. Arch Pathol Lab Med 2020; 145:1031-1040. [PMID: 33112951 DOI: 10.5858/arpa.2020-0400-ra] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2020] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Food and Drug Administration-approved TRK inhibitors with impressive overall response rates are now available for patients with multiple cancer types that harbor NTRK rearrangements, yet the identification of NTRK fusions remains a difficult challenge. These alterations are highly recurrent in extremely rare malignancies or can be detected in exceedingly small subsets of common tumor types. A 2-step approach has been proposed, involving a screening by immunohistochemistry (IHC) followed by a confirmatory method (fluorescence in situ hybridization, reverse transcriptase-polymerase chain reaction, or next-generation sequencing) in cases expressing the protein. However, there is no interpretation guide for any of the available IHC clones. OBJECTIVE.— To provide a pragmatic update on the use of pan-TRK IHC. Selected examples of the different IHC staining patterns across multiple histologies are shown. DATA SOURCES.— Primary literature review with PubMed, combined with personal diagnostic and research experience. CONCLUSIONS.— In-depth knowledge of pan-TRK IHC will help pathologists implement a rational approach to the detection of NTRK fusions in human malignancies.
Collapse
Affiliation(s)
- Esther Conde
- From Pathology and Laboratory of Therapeutic Targets, Hospital Universitario HM Sanchinarro, HMHospitales, CIBERONC, Madrid, Spain (Conde, Lopez-Rios)
| | - Susana Hernandez
- Pathology and Laboratory of Therapeutic Targets, Hospital Universitario HM Sanchinarro, HMHospitales, Madrid, Spain (Hernandez, Sanchez, Alonso, Martinez)
| | - Elena Sanchez
- Pathology and Laboratory of Therapeutic Targets, Hospital Universitario HM Sanchinarro, HMHospitales, Madrid, Spain (Hernandez, Sanchez, Alonso, Martinez)
| | | | - Carmen Camacho
- Pathology, Complejo Hospitalario Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, Spain (Camacho). Conde and Hernandez contributed equally as co-first authors
| | - Marta Alonso
- Pathology and Laboratory of Therapeutic Targets, Hospital Universitario HM Sanchinarro, HMHospitales, Madrid, Spain (Hernandez, Sanchez, Alonso, Martinez)
| | - Rebeca Martinez
- Pathology and Laboratory of Therapeutic Targets, Hospital Universitario HM Sanchinarro, HMHospitales, Madrid, Spain (Hernandez, Sanchez, Alonso, Martinez)
| | - Fernando Lopez-Rios
- From Pathology and Laboratory of Therapeutic Targets, Hospital Universitario HM Sanchinarro, HMHospitales, CIBERONC, Madrid, Spain (Conde, Lopez-Rios)
| |
Collapse
|