1
|
Tang H, Kang R, Liu J, Tang D. ATF4 in cellular stress, ferroptosis, and cancer. Arch Toxicol 2024; 98:1025-1041. [PMID: 38383612 DOI: 10.1007/s00204-024-03681-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024]
Abstract
Activating transcription factor 4 (ATF4), a member of the ATF/cAMP response element-binding (CREB) family, plays a critical role as a stress-induced transcription factor. It orchestrates cellular responses, particularly in the management of endoplasmic reticulum stress, amino acid deprivation, and oxidative challenges. ATF4's primary function lies in regulating gene expression to ensure cell survival during stressful conditions. However, when considering its involvement in ferroptosis, characterized by severe lipid peroxidation and pronounced endoplasmic reticulum stress, the ATF4 pathway can either inhibit or promote ferroptosis. This intricate relationship underscores the complexity of cellular responses to varying stress levels. Understanding the connections between ATF4, ferroptosis, and endoplasmic reticulum stress holds promise for innovative cancer therapies, especially in addressing apoptosis-resistant cells. In this review, we provide an overview of ATF4, including its structure, modifications, and functions, and delve into its dual role in both ferroptosis and cancer.
Collapse
Affiliation(s)
- Hu Tang
- DAMP Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jiao Liu
- DAMP Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
2
|
Ivanova VS, Davies J, Menter T, Wild D, Müller A, Krasniqi F, Stenner F, Papachristofilou A, Dirnhofer S, Tzankov A. Primary bone diffuse large B-cell lymphoma (PB-DLBCL): a distinct extranodal lymphoma of germinal centre origin, with a common EZB-like mutational profile and good prognosis. Histopathology 2024; 84:525-538. [PMID: 37965677 DOI: 10.1111/his.15096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/03/2023] [Accepted: 10/28/2023] [Indexed: 11/16/2023]
Abstract
AIMS Primary bone diffuse large B-cell lymphoma (PB-DLBCL) is not recognized as a separate entity by the current classification systems. Here we define and highlight its distinctive clinical presentation, morphology, phenotype, gene expression profile (GEP), and molecular genetics. METHODS We collected 27 respective cases and investigated their phenotype, performed gDNA panel sequencing covering 172 genes, and carried out fluorescence in situ hybridization to evaluate MYC, BCL2, and BCL6 translocations. We attempted to genetically subclassify cases using the Two-step classifier and performed GEP for cell-of-origin subtyping and in silico comparison to uncover up- and downregulated genes as opposed to other DLBCL. RESULTS Most cases (n = 22) were germinal centre B-cell-like (GCB) by immunohistochemistry and all by GEP. Additionally, PB-DLBCL had a mutational profile similar to follicular lymphoma and nodal GCB-DLBCL, with the exception of more frequent TP53 and B2M mutations. The GEP of PB-DLBCL was unique, and the frequency of BCL2 rearrangements was lower compared to nodal GCB-DLBCL. The Two-step classifier categorized eight of the cases as EZB, three as ST2, and one as MCD. CONCLUSION This study comprehensively characterizes PB-DLBCL as a separate entity with distinct clinical and morpho-molecular features. These insights may aid in developing tailored therapeutic strategies and shed light on its pathogenesis.
Collapse
Affiliation(s)
- Vanesa-Sindi Ivanova
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - John Davies
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
| | - Thomas Menter
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Damian Wild
- Divison of Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - Anne Müller
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Fatime Krasniqi
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
| | - Frank Stenner
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
| | | | - Stefan Dirnhofer
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alexandar Tzankov
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Wang G, Christensen L, Vasquez KM. Methods to Study Z-DNA-Induced Genetic Instability. Methods Mol Biol 2023; 2651:227-240. [PMID: 36892771 PMCID: PMC11658806 DOI: 10.1007/978-1-0716-3084-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Alternative DNA structures that differ from the canonical B-DNA double helix, including Z-DNA, have received much attention recently due to their impact on DNA metabolic processes, including replication, transcription, and genome maintenance. Non-B-DNA-forming sequences can also stimulate genetic instability associated with disease development and evolution. Z-DNA can stimulate different types of genetic instability events in different species, and several different assays have been established to detect Z-DNA-induced DNA strand breaks and mutagenesis in prokaryotic and eukaryotic systems. In this chapter, we will introduce some of these methods including Z-DNA-induced mutation screening and detection of Z-DNA-induced strand breaks in mammalian cells, yeast, and mammalian cell extracts. Results from these assays should provide better insight into the mechanisms of Z-DNA-related genetic instability in different eukaryotic model systems.
Collapse
Affiliation(s)
- Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX, USA
| | - Laura Christensen
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX, USA.
| |
Collapse
|
4
|
Bansal A, Kaushik S, Kukreti S. Non-canonical DNA structures: Diversity and disease association. Front Genet 2022; 13:959258. [PMID: 36134025 PMCID: PMC9483843 DOI: 10.3389/fgene.2022.959258] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
A complete understanding of DNA double-helical structure discovered by James Watson and Francis Crick in 1953, unveil the importance and significance of DNA. For the last seven decades, this has been a leading light in the course of the development of modern biology and biomedical science. Apart from the predominant B-form, experimental shreds of evidence have revealed the existence of a sequence-dependent structural diversity, unusual non-canonical structures like hairpin, cruciform, Z-DNA, multistranded structures such as DNA triplex, G-quadruplex, i-motif forms, etc. The diversity in the DNA structure depends on various factors such as base sequence, ions, superhelical stress, and ligands. In response to these various factors, the polymorphism of DNA regulates various genes via different processes like replication, transcription, translation, and recombination. However, altered levels of gene expression are associated with many human genetic diseases including neurological disorders and cancer. These non-B-DNA structures are expected to play a key role in determining genetic stability, DNA damage and repair etc. The present review is a modest attempt to summarize the available literature, illustrating the occurrence of non-canonical structures at the molecular level in response to the environment and interaction with ligands and proteins. This would provide an insight to understand the biological functions of these unusual DNA structures and their recognition as potential therapeutic targets for diverse genetic diseases.
Collapse
Affiliation(s)
- Aparna Bansal
- Nucleic Acid Research Lab, Department of Chemistry, University of Delhi, Delhi, India
- Department of Chemistry, Hansraj College, University of Delhi, Delhi, India
| | - Shikha Kaushik
- Nucleic Acid Research Lab, Department of Chemistry, University of Delhi, Delhi, India
- Department of Chemistry, Rajdhani College, University of Delhi, New Delhi, India
| | - Shrikant Kukreti
- Nucleic Acid Research Lab, Department of Chemistry, University of Delhi, Delhi, India
- *Correspondence: Shrikant Kukreti,
| |
Collapse
|
5
|
Bianchi N, Doneda L, Elli L, Taccioli C, Vaira V, Scricciolo A, Lombardo V, Terrazzan A, Colapietro P, Terranova L, Bergamini C, Vecchi M, Scaramella L, Nandi N, Roncoroni L. Circulating microRNAs Suggest Networks Associated with Biological Functions in Aggressive Refractory Type 2 Celiac Disease. Biomedicines 2022; 10:biomedicines10061408. [PMID: 35740429 PMCID: PMC9219665 DOI: 10.3390/biomedicines10061408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 02/08/2023] Open
Abstract
Despite following a gluten-free diet, which is currently the only effective therapy for celiac disease, about 5% of patients can develop serious complications, which in the case of refractory type 2 could evolve towards intestinal lymphoma. In this study, we have identified a set of 15 microRNAs in serum discriminating between the two types of refractory disease. Upregulated miR-770-5p, miR-181b-2-3p, miR-1193, and miR-1226-3p could be useful for the better stratification of patients and the monitoring of disease development, while miR-490-3p was found to be dysregulated in patients with refractory type 1. Finally, by using bioinformatic tools applied to the analysis of the targets of dysregulated microRNAs, we have completed a more precise assessment of their functions. These mainly include the pathway of response to Transforming Growth Factor β cell-cell signaling by Wnt; epigenetic regulation, especially novel networks associated with transcriptional and post-transcriptional alterations; and the well-known inflammatory profiles.
Collapse
Affiliation(s)
- Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, Street L. Borsari 46, 44121 Ferrara, Italy; (N.B.); (A.T.)
| | - Luisa Doneda
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Street Pascal 36, 20133 Milan, Italy; (L.D.); (L.R.)
| | - Luca Elli
- Center for Prevention and Diagnosis of Celiac Disease, Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.S.); (V.L.); (M.V.); (L.S.); (N.N.)
- Correspondence:
| | - Cristian Taccioli
- Department of Animal Medicine, Production and Health, University of Padova, 35020 Legnaro, Italy;
| | - Valentina Vaira
- Division of Pathology, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Street F. Sforza 35, 20122 Milan, Italy;
- Department of Pathophysiology and Transplantation, University of Milan, Street F. Sforza 35, 20122 Milan, Italy;
| | - Alice Scricciolo
- Center for Prevention and Diagnosis of Celiac Disease, Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.S.); (V.L.); (M.V.); (L.S.); (N.N.)
| | - Vincenza Lombardo
- Center for Prevention and Diagnosis of Celiac Disease, Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.S.); (V.L.); (M.V.); (L.S.); (N.N.)
| | - Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, Street L. Borsari 46, 44121 Ferrara, Italy; (N.B.); (A.T.)
| | - Patrizia Colapietro
- Department of Pathophysiology and Transplantation, University of Milan, Street F. Sforza 35, 20122 Milan, Italy;
| | - Leonardo Terranova
- Respiratory Unit and Cystic Fibrosis Adult Center, Internal Medicine Department, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Street F. Sforza 35, 20122 Milan, Italy;
| | - Carlo Bergamini
- Department of Neuroscience and Rehabilitation, University of Ferrara, Street L. Borsari 46, 44121 Ferrara, Italy;
| | - Maurizio Vecchi
- Center for Prevention and Diagnosis of Celiac Disease, Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.S.); (V.L.); (M.V.); (L.S.); (N.N.)
- Department of Pathophysiology and Transplantation, University of Milan, Street F. Sforza 35, 20122 Milan, Italy;
| | - Lucia Scaramella
- Center for Prevention and Diagnosis of Celiac Disease, Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.S.); (V.L.); (M.V.); (L.S.); (N.N.)
| | - Nicoletta Nandi
- Center for Prevention and Diagnosis of Celiac Disease, Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.S.); (V.L.); (M.V.); (L.S.); (N.N.)
- Department of Pathophysiology and Transplantation, University of Milan, Street F. Sforza 35, 20122 Milan, Italy;
| | - Leda Roncoroni
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Street Pascal 36, 20133 Milan, Italy; (L.D.); (L.R.)
| |
Collapse
|
6
|
Ikeda Y, Taniguchi K, Nagase N, Tsuji A, Kitagishi Y, Matsuda S. Reactive oxygen species may influence on the crossroads of stemness, senescence, and carcinogenesis in a cell via the roles of APRO family proteins. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2021.00062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Excessive reactive oxygen species (ROS) may cause oxidative stress which is involved in aging and in the pathogenesis of various human diseases. Whereas unregulated levels of the ROS may be harmful, regulated basal level of ROS are even necessary to support cellular functions as a second messenger for homeostasis under physiological conditions. Therefore, redox medicine could develop as a new therapeutic concept for human health-benefits. Here, we introduce the involvement of ROS on the crossroads of stemness, senescence, and carcinogenesis in a stem cell and cancer cell biology. Amazingly, the anti-proliferative (APRO) family anti-proliferative proteins characterized by immediate early growth responsive genes may also be involved in the crossroads machinery. The biological functions of APRO proteins (APROs) seem to be quite intricate, however, which might be a key modulator of microRNAs (miRNAs). Given the crucial roles of ROS and APROs for pathophysiological functions, upcoming novel therapeutics should include vigilant modulation of the redox state. Next generation of medicine including regenerative medicine and/or cancer therapy will likely comprise strategies for altering the redox environment with the APROs via the modulation of miRNAs as well as with the regulation of ROS of cells in a sustainable manner.
Collapse
Affiliation(s)
- Yuka Ikeda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Kurumi Taniguchi
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Nozomi Nagase
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Ai Tsuji
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
7
|
Cho IJ, Kim D, Kim EO, Jegal KH, Kim JK, Park SM, Zhao R, Ki SH, Kim SC, Ku SK. Cystine and Methionine Deficiency Promotes Ferroptosis by Inducing B-Cell Translocation Gene 1. Antioxidants (Basel) 2021; 10:antiox10101543. [PMID: 34679678 PMCID: PMC8532826 DOI: 10.3390/antiox10101543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/26/2022] Open
Abstract
Ferroptosis is a type of programmed necrosis triggered by iron-dependent lipid peroxidation. We investigated the role of B-cell translocation gene 1 (BTG1) in cystine and methionine deficiency (CST/Met (−))-mediated cell death. CST/Met (−) depleted reduced and oxidized glutathione in hepatocyte-derived cells, increased prostaglandin-endoperoxide synthase 2 expression, and promoted reactive oxygen species accumulation and lipid peroxidation, as well as necrotic cell death. CST/Met (−)-mediated cell death and lipid peroxidation was specifically inhibited by pretreatment with ferroptosis inhibitors. In parallel with cell death, CST/Met (−) blocked global protein translation and increased the expression of genes associated with the integrated stress response. Moreover, CST/Met (−) significantly induced BTG1 expression. Using a BTG1 promoter-harboring reporter gene and siRNA, activating transcription factor 4 (ATF4) was identified as an essential transcription factor for CST/Met (−)-mediated BTG1 induction. Although knockout of BTG1 in human HAP1 cells did not affect the accumulation of reactive oxygen species induced by CST/Met (−), BTG1 knockout significantly decreased the induction of genes associated with the integrated stress response, and reduced lipid peroxidation and cell death in response to CST/Met (−). The results demonstrate that CST/Met (−) induces ferroptosis by activating ATF4-dependent BTG1 induction.
Collapse
Affiliation(s)
- Il-Je Cho
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea; (I.-J.C.); (D.K.); (E.-O.K.); (K.-H.J.); (J.-K.K.); (S.-M.P.)
| | - Doyeon Kim
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea; (I.-J.C.); (D.K.); (E.-O.K.); (K.-H.J.); (J.-K.K.); (S.-M.P.)
| | - Eun-Ok Kim
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea; (I.-J.C.); (D.K.); (E.-O.K.); (K.-H.J.); (J.-K.K.); (S.-M.P.)
| | - Kyung-Hwan Jegal
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea; (I.-J.C.); (D.K.); (E.-O.K.); (K.-H.J.); (J.-K.K.); (S.-M.P.)
- Digital Health Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
| | - Jae-Kwang Kim
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea; (I.-J.C.); (D.K.); (E.-O.K.); (K.-H.J.); (J.-K.K.); (S.-M.P.)
- Korean Medicine-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea
| | - Sang-Mi Park
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea; (I.-J.C.); (D.K.); (E.-O.K.); (K.-H.J.); (J.-K.K.); (S.-M.P.)
| | - Rongjie Zhao
- Department of Psychopharmacology, Qiqihar Medical University, Qiqihar 161006, China;
| | - Sung-Hwan Ki
- College of Pharmacy, Chosun University, Gwangju 61452, Korea;
| | - Sang-Chan Kim
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea; (I.-J.C.); (D.K.); (E.-O.K.); (K.-H.J.); (J.-K.K.); (S.-M.P.)
- Correspondence: (S.-C.K.); (S.-K.K.); Tel.: +82-53-819-1862 (S.-C.K.); +82-53-819-1549 (S.-K.K.)
| | - Sae-Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea; (I.-J.C.); (D.K.); (E.-O.K.); (K.-H.J.); (J.-K.K.); (S.-M.P.)
- Correspondence: (S.-C.K.); (S.-K.K.); Tel.: +82-53-819-1862 (S.-C.K.); +82-53-819-1549 (S.-K.K.)
| |
Collapse
|
8
|
Deshpande M, Romanski PA, Rosenwaks Z, Gerhardt J. Gynecological Cancers Caused by Deficient Mismatch Repair and Microsatellite Instability. Cancers (Basel) 2020; 12:E3319. [PMID: 33182707 PMCID: PMC7697596 DOI: 10.3390/cancers12113319] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/30/2020] [Accepted: 11/07/2020] [Indexed: 01/05/2023] Open
Abstract
Mutations in mismatch repair genes leading to mismatch repair (MMR) deficiency (dMMR) and microsatellite instability (MSI) have been implicated in multiple types of gynecologic malignancies. Endometrial carcinoma represents the largest group, with approximately 30% of these cancers caused by dMMR/MSI. Thus, testing for dMMR is now routine for endometrial cancer. Somatic mutations leading to dMMR account for approximately 90% of these cancers. However, in 5-10% of cases, MMR protein deficiency is due to a germline mutation in the mismatch repair genes MLH1, MSH2, MSH6, PMS2, or EPCAM. These germline mutations, known as Lynch syndrome, are associated with an increased risk of both endometrial and ovarian cancer, in addition to colorectal, gastric, urinary tract, and brain malignancies. So far, gynecological cancers with dMMR/MSI are not well characterized and markers for detection of MSI in gynecological cancers are not well defined. In addition, currently advanced endometrial cancers have a poor prognosis and are treated without regard to MSI status. Elucidation of the mechanism causing dMMR/MSI gynecological cancers would aid in diagnosis and therapeutic intervention. Recently, a new immunotherapy was approved for the treatment of solid tumors with MSI that have recurred or progressed after failing traditional treatment strategies. In this review, we summarize the MMR defects and MSI observed in gynecological cancers, their prognostic value, and advances in therapeutic strategies to treat these cancers.
Collapse
Affiliation(s)
- Madhura Deshpande
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA; (M.D.); (P.A.R.); (Z.R.)
| | - Phillip A. Romanski
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA; (M.D.); (P.A.R.); (Z.R.)
| | - Zev Rosenwaks
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA; (M.D.); (P.A.R.); (Z.R.)
| | - Jeannine Gerhardt
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA; (M.D.); (P.A.R.); (Z.R.)
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
9
|
Del Mundo IMA, Vasquez KM, Wang G. Modulation of DNA structure formation using small molecules. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2019; 1866:118539. [PMID: 31491448 PMCID: PMC6851491 DOI: 10.1016/j.bbamcr.2019.118539] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/20/2019] [Accepted: 08/24/2019] [Indexed: 02/06/2023]
Abstract
Genome integrity is essential for proper cell function such that genetic instability can result in cellular dysfunction and disease. Mutations in the human genome are not random, and occur more frequently at "hotspot" regions that often co-localize with sequences that have the capacity to adopt alternative (i.e. non-B) DNA structures. Non-B DNA-forming sequences are mutagenic, can stimulate the formation of DNA double-strand breaks, and are highly enriched at mutation hotspots in human cancer genomes. Thus, small molecules that can modulate the conformations of these structure-forming sequences may prove beneficial in the prevention and/or treatment of genetic diseases. Further, the development of molecular probes to interrogate the roles of non-B DNA structures in modulating DNA function, such as genetic instability in cancer etiology are warranted. Here, we discuss reported non-B DNA stabilizers, destabilizers, and probes, recent assays to identify ligands, and the potential biological applications of these DNA structure-modulating molecules.
Collapse
Affiliation(s)
- Imee M A Del Mundo
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA.
| | - Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA
| |
Collapse
|
10
|
Kaushal S, Freudenreich CH. The role of fork stalling and DNA structures in causing chromosome fragility. Genes Chromosomes Cancer 2019; 58:270-283. [PMID: 30536896 DOI: 10.1002/gcc.22721] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/13/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022] Open
Abstract
Alternative non-B form DNA structures, also called secondary structures, can form in certain DNA sequences under conditions that produce single-stranded DNA, such as during replication, transcription, and repair. Direct links between secondary structure formation, replication fork stalling, and genomic instability have been found for many repeated DNA sequences that cause disease when they expand. Common fragile sites (CFSs) are known to be AT-rich and break under replication stress, yet the molecular basis for their fragility is still being investigated. Over the past several years, new evidence has linked both the formation of secondary structures and transcription to fork stalling and fragility of CFSs. How these two events may synergize to cause fragility and the role of nuclease cleavage at secondary structures in rare and CFSs are discussed here. We also highlight evidence for a new hypothesis that secondary structures at CFSs not only initiate fragility but also inhibit healing, resulting in their characteristic appearance.
Collapse
Affiliation(s)
- Simran Kaushal
- Department of Biology, Tufts University, Medford, Massachusetts
| | - Catherine H Freudenreich
- Department of Biology, Tufts University, Medford, Massachusetts.,Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts
| |
Collapse
|
11
|
Yan W, Li SX, Gao H, Yang W. Identification of B-cell translocation gene 1-controlled gene networks in diffuse large B-cell lymphoma: A study based on bioinformatics analysis. Oncol Lett 2019; 17:2825-2835. [PMID: 30854058 PMCID: PMC6365947 DOI: 10.3892/ol.2019.9900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023] Open
Abstract
B-cell translocation gene 1 (BTG1) is a member of the BTG/transducer of Erb family. The present study evaluated the impact of BTG1 gene expression on the clinical outcome of diffuse large B-cell lymphoma (DLBCL) and investigated potential mechanisms using the Gene Expression Omnibus (GEO) database. The gene expression profile datasets GSE31312, GSE10846, GSE65420 and GSE87371 were downloaded from the GEO database. BTG1 expression and clinicopathological data were obtained from the GSE31312 dataset. In 498 cases, the expression of BTG1 in DLBCL was associated with treatment response (χ2=19.020; P<0.001) and International Prognostic Index score (χ2=5.320; P=0.025). Using the Kaplan-Meier method, it was identified that the expression of BTG1 was associated with overall survival (OS) and progression-free survival (PFS) times. Univariate and multivariate Cox regression analysis demonstrated that BTG1 was an independent predictive factor for OS and PFS. From the overlapping analysis of 407 BTG1-associated genes and 22,187 DLBCL-associated genes, 401 genes were identified as BTG1-associated DLBCL genes. Pathway analysis revealed that BTG1-associated DLBCL genes were associated with cancer progression and DLBCL signaling pathways. Subsequently, a protein-protein interaction network was constructed of the BTG1-associated genes, which consisted of 235 genes and 601 interactions. Additionally, 24 genes with high degrees in the network were identified as hub genes, which included genes associated with ‘ribosome’ [ribosomal protein (RP) L11, RPL3, RPS29, RPL19, RPL15 and RPL12], ‘cell cycle’ (ubiquitin carboxyl extension protein 52, ATM and Ras homolog family member H), ‘mitogen-activated protein kinase pathway’ (mitogen-activated protein kinase 1), ‘histone modification’ (ASH1-like protein) and ‘transcription/translation’ (eukaryotic translation initiation factor 3 subunit E, eukaryotic translation elongation factor 1 δ, transcription termination factor 1, cAMP responsive element binding protein 1 and RNA polymerase II subunit F). In conclusion, BTG1 may serve as a predictive biomarker for DLBCL prognosis. Additionally, bioinformatics analysis indicated that BTG1 may exhibit key functions in the progression and development of DLBCL.
Collapse
Affiliation(s)
- Wei Yan
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| | - Shawn Xiang Li
- International College, China Medical University, Shenyang, Liaoning 110022, P.R. China
| | - Hongyu Gao
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| | - Wei Yang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| |
Collapse
|
12
|
Yuniati L, Scheijen B, van der Meer LT, van Leeuwen FN. Tumor suppressors BTG1 and BTG2: Beyond growth control. J Cell Physiol 2018; 234:5379-5389. [PMID: 30350856 PMCID: PMC6587536 DOI: 10.1002/jcp.27407] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 08/22/2018] [Indexed: 01/21/2023]
Abstract
Since the identification of B‐cell translocation gene 1 (BTG1) and BTG2 as antiproliferation genes more than two decades ago, their protein products have been implicated in a variety of cellular processes including cell division, DNA repair, transcriptional regulation and messenger RNA stability. In addition to affecting differentiation during development and in the adult, BTG proteins play an important role in maintaining homeostasis under conditions of cellular stress. Genomic profiling of B‐cell leukemia and lymphoma has put BTG1 and BTG2 in the spotlight, since both genes are frequently deleted or mutated in these malignancies, pointing towards a role as tumor suppressors. Moreover, in solid tumors, reduced expression of BTG1 or BTG2 is often correlated with malignant cell behavior and poor treatment outcome. Recent studies have uncovered novel roles for BTG1 and BTG2 in genotoxic and integrated stress responses, as well as during hematopoiesis. This review summarizes what is currently known about the roles of BTG1 and BTG2 in these and other cellular processes. In addition, we will highlight the molecular mechanisms and biological consequences of BTG1 and BTG2 deregulation during cancer progression and elaborate on the potential clinical implications of these findings.
Collapse
Affiliation(s)
- Laurensia Yuniati
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands.,Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Blanca Scheijen
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laurens T van der Meer
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank N van Leeuwen
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
13
|
BTG1 low expression in pancreatic ductal adenocarcinoma is associated with a poorer prognosis. Int J Biol Markers 2017; 33:189-194. [PMID: 29076521 DOI: 10.5301/ijbm.5000310] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE BTG1 is a member of the TOB/BTG protein family, which is a transducer of ErbB-2 and TOB2. It is known to inhibit tumor genesis, but its role in pancreatic ductal adenocarcinoma (PDAC) is still unknown. The purpose of this study is to investigate the expression of BTG1 protein in PDAC and to determine its prognostic significance. METHODS Immunohistochemistry is used to determine the protein expression of the BTG1 gene in 79 surgically resected PDAC. The association of BTG1 expression with all the patients' clinicopathologic parameters, including survival, was analyzed using statistical software. RESULTS High BTG1 expression was observed in 27.8% (22/79) of the PDAC tissues, which was significantly lower than the 58.2% (46/79) of corresponding normal adjacent noncancerous tissues by immunohistochemical staining (p<0.001).Through the stratified analysis, we found a significant difference of BTG1 expression in peri-neural invasion (p = 0.002), T stage (p = 0.000), N stage (p = 0.018), and tumor, node, and metastasis stage (p = 0.000). Univariate and multivariate Cox analysis revealed that BTG1 expression status was an independent prognostic factor in PDAC (p = 0.027). Moreover, overall survival was better in PDAC cases with higher rather than lower BTG1 expression (p = 0.027). CONCLUSIONS This study demonstrated for the first time that lower expression of BTG1 might be involved in the progression of PDAC, suggesting that BTG1 might be a novel prognostic marker and a target for therapy.
Collapse
|
14
|
Liu R, Cheng Q, Wang X, Chen H, Wang W, Zhang H, Wang L, Song L. The B-cell translocation gene 1 (CgBTG1) identified in oyster Crassostrea gigas exhibit multiple functions in immune response. FISH & SHELLFISH IMMUNOLOGY 2017; 61:68-78. [PMID: 27940367 DOI: 10.1016/j.fsi.2016.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/26/2016] [Accepted: 12/02/2016] [Indexed: 06/06/2023]
Abstract
B-cell translocation gene 1 (BTG1) is a member of the anti-proliferative gene family, which plays important roles in regulation of cell cycle. In the present study, a B-cell translocation gene 1 molecule homologue (designed CgBTG1) are identified and characterized in oyster Crassostrea gigas. CgBTG1 contains a conserved BTG domain with Box A and Box B motifs, and it shares high similarities with both BTG1 and BTG2 proteins in vertebrates. CgBTG1 mRNA is predominantly expressed in hemocytes, and its expression level in hemocytes is significantly up-regulated at 6 h (5.40-fold, p < 0.01) post Vibrio splendidus stimulation. The apoptosis rate of oyster hemocytes is significantly decreased (p < 0.05) after CgBTG1 interfered by dsRNA (dsCgBTG1). This is indicated that CgBTG1 participated in the regulation of oyster hemocytes apoptosis. Furthermore, CgBTG1 could also induce the apoptosis of cancer cells (HeLa, A549 and BEL7402) in vitro. Compared with normal oysters, both vessel-like structures and muscle fibers in CgBTG1 interfered oysters are severely damaged after V. splendidus challenge in paraffin section, considering that CgBTG1 possessed an analogous feature of angiogenesis for maintenance of vessel-like structures in adductor muscle of oyster. The results suggests that CgBTG1 is a multi-functional molecule involved in the immune response of C. gigas against pathogen infection, which provides more clues for intensive studies of BTG family proteins in invertebrates.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qi Cheng
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiudan Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weilin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
15
|
Effects of Replication and Transcription on DNA Structure-Related Genetic Instability. Genes (Basel) 2017; 8:genes8010017. [PMID: 28067787 PMCID: PMC5295012 DOI: 10.3390/genes8010017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/21/2016] [Accepted: 12/26/2016] [Indexed: 12/20/2022] Open
Abstract
Many repetitive sequences in the human genome can adopt conformations that differ from the canonical B-DNA double helix (i.e., non-B DNA), and can impact important biological processes such as DNA replication, transcription, recombination, telomere maintenance, viral integration, transposome activation, DNA damage and repair. Thus, non-B DNA-forming sequences have been implicated in genetic instability and disease development. In this article, we discuss the interactions of non-B DNA with the replication and/or transcription machinery, particularly in disease states (e.g., tumors) that can lead to an abnormal cellular environment, and how such interactions may alter DNA replication and transcription, leading to potential conflicts at non-B DNA regions, and eventually result in genetic stability and human disease.
Collapse
|
16
|
Wang G, Zhao J, Vasquez KM. Detection of cis- and trans-acting Factors in DNA Structure-Induced Genetic Instability Using In silico and Cellular Approaches. Front Genet 2016; 7:135. [PMID: 27532010 PMCID: PMC4969553 DOI: 10.3389/fgene.2016.00135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/15/2016] [Indexed: 11/13/2022] Open
Abstract
Sequences that can adopt alternative DNA structures (i.e., non-B DNA) are very abundant in mammalian genomes, and recent studies have revealed many important biological functions of non-B DNA structures in chromatin remodeling, DNA replication, transcription, and genetic instability. Here, we provide results from an in silico web-based search engine coupled with cell-based experiments to characterize the roles of non-B DNA conformations in genetic instability in eukaryotes. The purpose of this article is to illustrate strategies that can be used to identify and interrogate the biological roles of non-B DNA structures, particularly on genetic instability. We have included unpublished data using a short H-DNA-forming sequence from the human c-MYC promoter region as an example, and identified two different mechanisms of H-DNA-induced genetic instability in yeast and mammalian cells: a DNA replication-related model of mutagenesis; and a replication-independent cleavage model. Further, we identified candidate proteins involved in H-DNA-induced genetic instability by using a yeast genetic screen. A combination of in silico and cellular methods, as described here, should provide further insight into the contributions of non-B DNA structures in biological functions, genetic evolution, and disease development.
Collapse
Affiliation(s)
- Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute Austin, TX, USA
| | - Junhua Zhao
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute Austin, TX, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute Austin, TX, USA
| |
Collapse
|
17
|
Micheli L, Ceccarelli M, Farioli-Vecchioli S, Tirone F. Control of the Normal and Pathological Development of Neural Stem and Progenitor Cells by the PC3/Tis21/Btg2 and Btg1 Genes. J Cell Physiol 2015; 230:2881-90. [DOI: 10.1002/jcp.25038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/05/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Laura Micheli
- Institute of Cell Biology and Neurobiology; National Research Council; Fondazione S.Lucia Rome Italy
| | - Manuela Ceccarelli
- Institute of Cell Biology and Neurobiology; National Research Council; Fondazione S.Lucia Rome Italy
| | - Stefano Farioli-Vecchioli
- Institute of Cell Biology and Neurobiology; National Research Council; Fondazione S.Lucia Rome Italy
| | - Felice Tirone
- Institute of Cell Biology and Neurobiology; National Research Council; Fondazione S.Lucia Rome Italy
| |
Collapse
|
18
|
Javadekar SM, Raghavan SC. Snaps and mends: DNA breaks and chromosomal translocations. FEBS J 2015; 282:2627-45. [PMID: 25913527 DOI: 10.1111/febs.13311] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/29/2015] [Accepted: 04/23/2015] [Indexed: 01/11/2023]
Abstract
Integrity in entirety is the preferred state of any organism. The temporal and spatial integrity of the genome ensures continued survival of a cell. DNA breakage is the first step towards creation of chromosomal translocations. In this review, we highlight the factors contributing towards the breakage of chromosomal DNA. It has been well-established that the structure and sequence of DNA play a critical role in selective fragility of the genome. Several non-B-DNA structures such as Z-DNA, cruciform DNA, G-quadruplexes, R loops and triplexes have been implicated in generation of genomic fragility leading to translocations. Similarly, specific sequences targeted by proteins such as Recombination Activating Genes and Activation Induced Cytidine Deaminase are involved in translocations. Processes that ensure the integrity of the genome through repair may lead to persistence of breakage and eventually translocations if their actions are anomalous. An insufficient supply of nucleotides and chromatin architecture may also play a critical role. This review focuses on a range of events with the potential to threaten the genomic integrity of a cell, leading to cancer.
Collapse
Affiliation(s)
- Saniya M Javadekar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
19
|
Thys RG, Lehman CE, Pierce LCT, Wang YH. DNA secondary structure at chromosomal fragile sites in human disease. Curr Genomics 2015; 16:60-70. [PMID: 25937814 PMCID: PMC4412965 DOI: 10.2174/1389202916666150114223205] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/09/2015] [Accepted: 01/14/2015] [Indexed: 11/22/2022] Open
Abstract
DNA has the ability to form a variety of secondary structures that can interfere with normal cellular processes, and many of these structures have been associated with neurological diseases and cancer. Secondary structure-forming sequences are often found at chromosomal fragile sites, which are hotspots for sister chromatid exchange, chromosomal translocations, and deletions. Structures formed at fragile sites can lead to instability by disrupting normal cellular processes such as DNA replication and transcription. The instability caused by disruption of replication and transcription can lead to DNA breakage, resulting in gene rearrangements and deletions that cause disease. In this review, we discuss the role of DNA secondary structure at fragile sites in human disease.
Collapse
Affiliation(s)
- Ryan G Thys
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Christine E Lehman
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| |
Collapse
|
20
|
Abstract
Repetitive genomic sequences can adopt a number of alternative DNA structures that differ from the canonical B-form duplex (i.e. non-B DNA). These non-B DNA-forming sequences have been shown to have many important biological functions related to DNA metabolic processes; for example, they may have regulatory roles in DNA transcription and replication. In addition to these regulatory functions, non-B DNA can stimulate genetic instability in the presence or absence of DNA damage, via replication-dependent and/or replication-independent pathways. This review focuses on the interactions of non-B DNA conformations with DNA repair proteins and how these interactions impact genetic instability.
Collapse
Affiliation(s)
- Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States.
| |
Collapse
|
21
|
Al-Maawali A, Marshall CR, Scherer SW, Dupuis L, Mendoza-Londono R, Stavropoulos DJ. Clinical characteristics in patients with interstitial deletions of chromosome region 12q21-q22 and identification of a critical region associated with keratosis pilaris. Am J Med Genet A 2013; 164A:796-800. [PMID: 24375972 DOI: 10.1002/ajmg.a.36356] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 10/07/2013] [Indexed: 11/08/2022]
Abstract
We report on a male patient with a submicroscopic 1.21 Mb de novo deletion at 12q21.33-q22 with global developmental delay, characteristic facial features, and keratosis pilaris. Thus far, five other cases with a 12q de novo deletion including this segment have been reported; our case represents the smallest de novo deletion within this chromosome region. High resolution SNP microarray analysis showed a deletion of RefSeq genes BTG1 and LOC256021, and partial deletion of DCN. We propose that BTG1 is a critical gene for the development of the distinctive keratosis pilaris observed in patients with interstitial deletion of 12q21-q22, and suggest candidate genes that may contribute to dysmorphic features and global developmental delay.
Collapse
Affiliation(s)
- Almundher Al-Maawali
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Zhao Y, Gou WF, Chen S, Takano Y, Xiu YL, Zheng HC. BTG1 expression correlates with the pathogenesis and progression of ovarian carcinomas. Int J Mol Sci 2013; 14:19670-80. [PMID: 24084718 PMCID: PMC3821579 DOI: 10.3390/ijms141019670] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 12/22/2022] Open
Abstract
BTG (B-cell translocation gene) can inhibit cell proliferation, metastasis, and angiogenesis and regulate cell cycle progression and differentiation in a variety of cell types. We aimed to clarify the role of BTG1 in ovarian carcinogenesis and progression. A BTG1-expressing plasmid was transfected into ovarian carcinoma cells and their phenotypes and related proteins were examined. BTG1 mRNA expression was detected in ovarian normal tissue (n = 17), ovarian benign tumors (n = 12), and ovarian carcinoma (n = 64) using real-time RT-PCR. Ectopic BTG1 expression resulted in lower growth rate, high cisplatin sensitivity, G1 arrest, apoptosis, and decreased migration and invasion. Phosphoinositide 3-kinase, protein kinase B, Bcl-xL, survivin, vascular endothelial growth factor, and matrix metalloproteinase-2 mRNA and protein expression was reduced in transfectants as compared to control cells. There was higher expression of BTG1 mRNA in normal tissue than in carcinoma tissue (p = 0.001) and in benign tumors than in carcinoma tissue (p = 0.027). BTG1 mRNA expression in International Federation of Gynecology and Obstetrics (FIGO) stage I/II ovarian carcinomas was higher than that in FIGO stage III/IV ovarian carcinomas (p = 0.038). Altered BTG1 expression might play a role in the pathogenesis and progression of ovarian carcinoma by modulating proliferation, migration, invasion, the cell cycle, and apoptosis.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China; E-Mails: (Y.Z.); (S.C.); (Y.-L.X.)
| | - Wen-Feng Gou
- Department of Biochemistry and Molecular Biology, Institute of Pathology and Pathophysiology, College of Basic Medicine, China Medical University, Shenyang 110001, China; E-Mail:
| | - Shuo Chen
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China; E-Mails: (Y.Z.); (S.C.); (Y.-L.X.)
| | - Yasuo Takano
- Clinical Cancer Institute, Kanagawa Cancer Center, Yokohama 241-0815, Japan; E-Mail:
| | - Yin-Ling Xiu
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China; E-Mails: (Y.Z.); (S.C.); (Y.-L.X.)
| | - Hua-Chuan Zheng
- Department of Biochemistry and Molecular Biology, Institute of Pathology and Pathophysiology, College of Basic Medicine, China Medical University, Shenyang 110001, China; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-187-0406-7718
| |
Collapse
|
23
|
Vasquez KM, Wang G. The yin and yang of repair mechanisms in DNA structure-induced genetic instability. Mutat Res 2013; 743-744:118-131. [PMID: 23219604 PMCID: PMC3661696 DOI: 10.1016/j.mrfmmm.2012.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 11/21/2012] [Accepted: 11/24/2012] [Indexed: 01/14/2023]
Abstract
DNA can adopt a variety of secondary structures that deviate from the canonical Watson-Crick B-DNA form. More than 10 types of non-canonical or non-B DNA secondary structures have been characterized, and the sequences that have the capacity to adopt such structures are very abundant in the human genome. Non-B DNA structures have been implicated in many important biological processes and can serve as sources of genetic instability, implicating them in disease and evolution. Non-B DNA conformations interact with a wide variety of proteins involved in replication, transcription, DNA repair, and chromatin architectural regulation. In this review, we will focus on the interactions of DNA repair proteins with non-B DNA and their roles in genetic instability, as the proteins and DNA involved in such interactions may represent plausible targets for selective therapeutic intervention.
Collapse
Affiliation(s)
- Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States.
| | - Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States
| |
Collapse
|
24
|
BTG1 deletions do not predict outcome in Down syndrome acute lymphoblastic leukemia. Leukemia 2012; 27:251-2. [DOI: 10.1038/leu.2012.199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
25
|
Cer RZ, Bruce KH, Donohue DE, Temiz NA, Mudunuri US, Yi M, Volfovsky N, Bacolla A, Luke BT, Collins, Stephens RM. Searching for non-B DNA-forming motifs using nBMST (non-B DNA motif search tool). CURRENT PROTOCOLS IN HUMAN GENETICS 2012; Chapter 18:Unit 18.7.1-22. [PMID: 22470144 PMCID: PMC3350812 DOI: 10.1002/0471142905.hg1807s73] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This unit describes basic protocols on using the non-B DNA Motif Search Tool (nBMST) to search for sequence motifs predicted to form alternative DNA conformations that differ from the canonical right-handed Watson-Crick double-helix, collectively known as non-B DNA, and on using the associated PolyBrowse, a GBrowse-based genomic browser. The nBMST is a Web-based resource that allows users to submit one or more DNA sequences to search for inverted repeats (cruciform DNA), mirror repeats (triplex DNA), direct/tandem repeats (slipped/hairpin structures), G4 motifs (tetraplex, G-quadruplex DNA), alternating purine-pyrimidine tracts (left-handed Z-DNA), and A-phased repeats (static bending). The nBMST is versatile, simple to use, does not require bioinformatics skills, and can be applied to any type of DNA sequences, including viral and bacterial genomes, up to an aggregate of 20 megabasepairs (Mbp).
Collapse
Affiliation(s)
- RZ Cer
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick MD 21702, USA
| | - KH Bruce
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick MD 21702, USA
| | - DE Donohue
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick MD 21702, USA
| | - NA Temiz
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick MD 21702, USA
| | - US Mudunuri
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick MD 21702, USA
| | - M Yi
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick MD 21702, USA
| | - N Volfovsky
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick MD 21702, USA
| | - A Bacolla
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick MD 21702, USA
- The Dell Pediatric Research Institute, Division of Toxicology and Pharmacology, The University of Texas at Austin, Austin TX 78723, USA
| | - BT Luke
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick MD 21702, USA
| | - Collins
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick MD 21702, USA
| | - RM Stephens
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick MD 21702, USA
| |
Collapse
|
26
|
Fu YJ, Huang FG, Yuan T, Gu JR, Luo GQ, Xu H. Molecular cloning, characterization and expression analysis of B cell translocation gene 1 in grass carp Ctenopharyngodon idella. JOURNAL OF FISH BIOLOGY 2012; 80:669-678. [PMID: 22380560 DOI: 10.1111/j.1095-8649.2011.03200.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
An expressed sequence tag (EST) of B cell translocation gene (BTG) 1 (gcbtg1) was obtained from a grass carp Ctenopharyngodon idellus intestinal complementary (c)DNA library and the full-length cDNA sequence was acquired by rapid amplification of cDNA ends (RACE) technology. The predicted Gcbtg1 protein contains the box A and box B motifs which characterized the BTG and transducer of ERBB2 (TOB) family. Multiple alignment analysis reveals that Gcbtg1 shares an overall identity of 65-94% with Gcbtg1s of other vertebrates. Real-time quantitative PCR analysis reveals that the highest expression level of gcbtg1 was detected in liver and the lowest in muscle. Western blotting analysis indicates that the immunological cross-reactivity occurs between C. idella and human Homo sapiens BTG1 protein. A 1008 bp 5'-flanking region sequence was cloned and analysed.
Collapse
Affiliation(s)
- Y J Fu
- School of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | | | | | | | | | | |
Collapse
|
27
|
Lundin C, Hjorth L, Behrendtz M, Nordgren A, Palmqvist L, Andersen MK, Biloglav A, Forestier E, Paulsson K, Johansson B. High frequency of BTG1 deletions in acute lymphoblastic leukemia in children with down syndrome. Genes Chromosomes Cancer 2011; 51:196-206. [PMID: 22072402 DOI: 10.1002/gcc.20944] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 09/28/2011] [Indexed: 02/02/2023] Open
Abstract
Previous cytogenetic studies of myeloid and acute lymphoblastic leukemias in children with Down syndrome (ML-DS and DS-ALL) have revealed significant differences in abnormality patterns between such cases and acute leukemias in general. Also, certain molecular genetic aberrations characterize DS-related leukemias, such as GATA1 mutations in ML-DS and deregulation of the CRLF2 gene in DS-ALL. Whether microdeletions/microduplications also vary between DS and non-DS cases is presently unclear. To address this issue, we performed single nucleotide polymorphism array analyses of eight pediatric ML-DS and 17 B-cell precursor DS-ALL. In the ML-DS cases, a total of 29 imbalances (20 gains and nine losses) and two partial uniparental isodisomies (pUPDs) were detected. None of the 11 small (defined as <10 Mb) imbalances were recurrent, nor were the pUPDs, whereas of the 18 large aberrations, three were recurrent-dup(1q), +8 and +21. In contrast, several frequent changes were identified in the DS-ALL cases, which harbored 82 imbalances (30 gains and 52 losses) and four pUPDs. Of the 40 large changes, 28 were gains and 12 losses, with +X, dup(Xq), dup(1q), del(7p), dup(8q), del(9p), dup(9p), del(12p), dup(17q), and +21 being recurrent. Of the 40 microdeletions identified, several targeted specific genes, with the following being repeatedly deleted: BTG1 and CDKN2A/B (29% of cases), ETV6, IKZF1, PAX5 and SERP2 (18%), and BTLA, INPP4B, P2RY8, and RB1 (12%). Loss of the SERP2 and INPP4B genes, encoding the stress-associated endoplasmic reticulum protein family member 2 and the inositol polyphosphate 4-phosphatase-II, respectively, has previously never been implicated in leukemia. Although deletions of the other genes have been associated with ALL, the high frequency of BTG1 loss is a novel finding. Such deletions may characterize a clinical subgroup of DS-ALL, comprising mainly boys with a high median age. In conclusion, ML-DS and DS-ALL are genetically distinct, with mainly gains in ML-DS and deletions in DS-ALL. Furthermore, DS-ALL is characterized by several recurrent gene deletions, with BTG1 loss being particularly frequent.
Collapse
Affiliation(s)
- Catarina Lundin
- Department of Clinical Genetics, University and Regional Laboratories, Skåne University Hospital, Lund University, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sinclair PB, Parker H, An Q, Rand V, Ensor H, Harrison CJ, Strefford JC. Analysis of a breakpoint cluster reveals insight into the mechanism of intrachromosomal amplification in a lymphoid malignancy. Hum Mol Genet 2011; 20:2591-602. [PMID: 21487021 DOI: 10.1093/hmg/ddr159] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A distinct sub-group of B-cell precursor acute lymphoblastic leukemia, defined by intrachromosomal amplification of chromosome 21 (iAMP21), is restricted to older children and has been associated with a poor outcome. Accurate diagnosis is important for appropriate risk stratification for treatment. It could be improved by understanding the initiating mechanism. iAMP21 is characterized by amplification of a 5.1-24 Mb region of chromosome 21, which includes the RUNX1 gene. It is thought to arise through a breakage-fusion-bridge (BFB) mechanism. Breakpoints initiating BFB cycles were determined from recent array data from 18 patients. Three occurred within the PDE9A gene. Other patients with breakpoints in PDE9A were identified by fluorescence in situ hybridization and molecular copy number counting. Sequencing defined a 1.7 Kb breakpoint cluster region, positioned 400 bp distal to an extensive region enriched for CA repeats with the potential to form Z-DNA. None of the rearranged sequences showed the inverted repeat structure characteristic of BFB; instead PDE9A was fused to intergenic regions of chromosome 21 or to genes on other chromosomes. These observations indicated that previously unrecognized complex events, involving microhomology-mediated end joining, preceded or accompanied initiation of the BFB cycle. A chi-like heptomer, CCTCAGC, contained four of the breakpoints, two within PDE9A and two within partner Alu-repeat sequences. This heptomer was closely homologous to a breakpoint hotspot within the TCF3 gene, suggesting involvement of a common novel recombinogenic mechanism that might also contribute to the recombinogenic potential of Alu repeats. These findings provide insight into potential mechanisms involved in the formation of iAMP21.
Collapse
Affiliation(s)
- Paul B Sinclair
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Sir James Spence Institute, Royal Victoria Infirmary, Newcastle-upon-Tyne, UK
| | | | | | | | | | | | | |
Collapse
|
29
|
Hinman RM, Nichols WA, Diaz TM, Gallardo TD, Castrillon DH, Satterthwaite AB. Foxo3-/- mice demonstrate reduced numbers of pre-B and recirculating B cells but normal splenic B cell sub-population distribution. Int Immunol 2009; 21:831-42. [PMID: 19502585 DOI: 10.1093/intimm/dxp049] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
B cell antigen receptor (BCR) cross-linking promotes proliferation and survival of mature B cells. Phosphoinositide-3-kinase-mediated down-regulation of pro-apoptotic and anti-mitogenic genes such as the Foxo family of transcription factors is an important component of this process. Previously, we demonstrated that BCR signaling decreases expression of transcripts for Foxo1, Foxo3 and Foxo4. We now show that BCR-induced down-regulation of Foxo3 and Foxo4 mRNA expression occurs via distinct mechanisms from those established for Foxo1. While Foxo1, Foxo3 and Foxo4 bind the same DNA sequence, the differential control of their expression upon B cell activation suggests that they may have unique functions in the B lineage. To begin to address this issue, we evaluated B cell development and function in Foxo3-/- mice. No effect of Foxo3 deficiency was observed with respect to the following parameters in the splenic B cell compartment: sub-population distribution, proliferation, in vitro differentiation and expression of the Foxo target genes cyclin G2 and B cell translocation gene 1. However, Foxo3-/- mice demonstrated increased basal levels of IgG2a, IgG3 and IgA. A significant reduction in pre-B cell numbers was also observed in Foxo3-/- bone marrow. Finally, recirculating B cells in the bone marrow and peripheral blood were decreased in Foxo3-/- mice, perhaps due to lower than normal expression of receptor for sphingosine-1 phosphate, which mediates egress from lymphoid organs. Thus, Foxo3 makes a unique contribution to B cell development, B cell localization and control of Ig levels.
Collapse
Affiliation(s)
- Rochelle M Hinman
- Department of Internal Medicine, Division of Rheumatology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Wang G, Zhao J, Vasquez KM. Methods to determine DNA structural alterations and genetic instability. Methods 2009; 48:54-62. [PMID: 19245837 PMCID: PMC2693251 DOI: 10.1016/j.ymeth.2009.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 02/15/2009] [Indexed: 11/16/2022] Open
Abstract
Chromosomal DNA is a dynamic structure that can adopt a variety of non-canonical (i.e., non-B) conformations. In this regard, at least 10 different forms of non-B DNA conformations have been identified; many of them have been found to be mutagenic, and associated with human disease development. Despite the importance of non-B DNA structures in genetic instability and DNA metabolic processes, mechanisms by which instability occurs remain largely undefined. The purpose of this review is to summarize current methodologies that are used to address questions in the field of non-B DNA structure-induced genetic instability. Advantages and disadvantages of each method will be discussed. A focused effort to further elucidate the mechanisms of non-B DNA-induced genetic instability will lead to a better understanding of how these structure-forming sequences contribute to the development of human disease.
Collapse
Affiliation(s)
- Guliang Wang
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, Smithville, TX 78957
| | - Junhua Zhao
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, Smithville, TX 78957
| | - Karen M. Vasquez
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, Smithville, TX 78957
| |
Collapse
|
32
|
Coll-Mulet L, Santidrián AF, Cosialls AM, Iglesias-Serret D, de Frias M, Grau J, Menoyo A, González-Barca E, Pons G, Domingo A, Gil J. Multiplex ligation-dependent probe amplification for detection of genomic alterations in chronic lymphocytic leukaemia. Br J Haematol 2008; 142:793-801. [PMID: 18564355 DOI: 10.1111/j.1365-2141.2008.07268.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Chronic lymphocytic leukaemia (CLL) is the commonest form of leukaemia in adults in Western countries. We performed multiplex ligation-dependent probe amplification (MLPA) analysis in 50 CLL patients to identify multiple genomic CLL-specific targets, including genes located at 13q14, 17p13 (TP53), 11q23 (ATM) and chromosome 12, and compared the results with those obtained with fluorescence in situ hybridization (FISH). There was a good correlation between MLPA and FISH results, as most alterations (89%) were detected by both techniques. Only three cases with a low percentage (<25%) of cells carrying the alterations were not detected by MLPA. On the other hand, as MLPA uses multiple probes it identified intragenic or small alterations undetected by FISH in three cases. MLPA also detected alterations in 8q24 (MYC) and 6q25-26. In summary, unlike interphase FISH, MLPA enabled the simultaneous analysis of many samples with automated data processing at a low cost. Therefore, the combination of robust multiplexing and high throughput makes MLPA a useful technique for the analysis of genomic alterations in CLL.
Collapse
Affiliation(s)
- Llorenç Coll-Mulet
- Departament de Ciències Fisiològiques II, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kim BC, Ryu MS, Oh SP, Lim IK. TIS21/(BTG2) negatively regulates estradiol-stimulated expansion of hematopoietic stem cells by derepressing Akt phosphorylation and inhibiting mTOR signal transduction. Stem Cells 2008; 26:2339-48. [PMID: 18556508 DOI: 10.1634/stemcells.2008-0327] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It has been known that 12-O-tetradecanoyl phorbol-13-acetate-inducible sequence 21 (TIS21), ortholog of human B-cell translocation gene 2, regulates expansions of stage-specific thymocytes and hematopoietic progenitors. In the present study, lineage-negative (Lin(-))/stem cell antigen-1-positive (Sca-1+)/c-Kit+ (LSK) cell content was significantly elevated in bone marrow (BM) of TIS21-knockout (TIS21(-/-)) female mice, suggesting 17beta-estradiol (E(2))-regulated progenitor expansion. E(2) induced DNA synthesis and cell proliferation of mouse embryonic fibroblasts (MEFs) isolated from TIS21(-/-) mice, but not wild type (WT). In contrast to WT, E(2) failed to activate protein kinase B (Akt) in the TIS21(-/-) MEFs, independent of extracellular signal-regulated kinase 1/2 (Erk1/2) activation. Despite attenuation of Akt activation, mammalian target of rapamycin (mTOR) was constitutively activated in the TIS21(-/-) MEFs. Furthermore, mitogen-activated protein kinase 1/2 inhibitor or knockdown of Erk1 could restore activation of Akt and downregulate mTOR. Immunoprecipitation showed Akt preferentially bound to phosphorylated Erk1/2 (p-Erk1/2) in TIS21(-/-) cells, but reconstitution of TIS21 inhibited their interaction. E(2)-injected TIS21(-/-) male mice also increased LSK cells in BM. Taken together, expansion of hematopoietic progenitors in TIS21(-/-) female mice might be through inhibition of Akt activation, and constitutive activation of mTOR via preferential binding of TIS21 to E(2)-induced p-Erk1/2, compared with that of Akt. Our results suggest that TIS21 plays a pivotal role in maintaining the hematopoietic stem cell compartment and hematopoiesis.
Collapse
Affiliation(s)
- Bong Cho Kim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 443-721, Korea
| | | | | | | |
Collapse
|
34
|
Ou YH, Chung PH, Hsu FF, Sun TP, Chang WY, Shieh SY. The candidate tumor suppressor BTG3 is a transcriptional target of p53 that inhibits E2F1. EMBO J 2007; 26:3968-80. [PMID: 17690688 PMCID: PMC1994125 DOI: 10.1038/sj.emboj.7601825] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 07/17/2007] [Indexed: 01/09/2023] Open
Abstract
Proper regulation of cell cycle progression is pivotal for maintaining genome stability. In a search for DNA damage-inducible, CHK1-modulated genes, we have identified BTG3 (B-cell translocation gene 3) as a direct p53 target. The p53 transcription factor binds to a consensus sequence located in intron 2 of the gene both in vitro and in vivo, and depletion of p53 by small interfering RNA (siRNA) abolishes DNA damage-induced expression of the gene. Furthermore, ablation of BTG3 by siRNA in cancer cells results in accelerated exit from the DNA damage-induced G2/M block. In vitro, BTG3 binds to and inhibits E2F1 through an N-terminal domain including the conserved box A. Deletion of the interaction domain in BTG3 abrogates not only its growth suppression activity, but also its repression on E2F1-mediated transactivation. We also present evidence that by disrupting the DNA binding activity of E2F1, BTG3 participates in the regulation of E2F1 target gene expression. Therefore, our studies have revealed a previously unidentified pathway through which the activity of E2F1 may be guarded by activated p53.
Collapse
Affiliation(s)
- Yi-Hung Ou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Pei-Han Chung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Fu-Fei Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Biochemistry and Molecular Biology, Molecular Medicine Program, National Yang-Ming University, Taipei, Taiwan
| | - Te-Ping Sun
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Ying Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sheau-Yann Shieh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Road, Taipei 115, Taiwan. Tel.: +886 2 26523916; Fax: +886 2 27829143; E-mail:
| |
Collapse
|
35
|
Hata K, Nishijima K, Mizuguchi J. Role for Btg1 and Btg2 in growth arrest of WEHI-231 cells through arginine methylation following membrane immunoglobulin engagement. Exp Cell Res 2007; 313:2356-66. [PMID: 17466295 DOI: 10.1016/j.yexcr.2007.03.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2006] [Revised: 03/03/2007] [Accepted: 03/23/2007] [Indexed: 11/21/2022]
Abstract
Engagement of membrane Ig (mIg) on WEHI-231 murine B lymphoma cells, a cell line model representative of primary immature B cells, results in growth arrest and subsequent apoptosis. Of the several dozen genes upregulated greater than two-fold by anti-IgM treatment through DNA microarray analysis, we focused on B cell translocation gene 1 (Btg1) and Btg2, member of Btg/Tob family of proteins. WEHI-231 cells were infected with the Btg1/EGFP or Btg2/EGFP retroviral vectors, and those expressing either Btg1 or Btg2 accumulated in G1 phase at significantly higher proportions than that seen for cells expressing control vector. Btg1 or Btg2 bound to protein arginine methyltransferase (PRMT) 1 via the box C region, an interaction required for anti-IgM-induced growth inhibition. The arginine methyltransferase inhibitor AdOx partially abrogated growth inhibition induced by Btg1, Btg2, or anti-IgM. The Btg1- or Btg2-induced growth inhibition was also abrogated in PRMT1-deficient cells via introduction of small interference RNA. In addition, we observed anti-IgM-induced arginine methylation of two proteins, a 28-kDa and a 36-kDa protein. Methylation, detected by a monoclonal antibody specific for asymmetric, but not symmetric methyl residues, was observed as early as 1 h-2 h after stimulation and was sustained for up to 24 h. The anti-IgM-induced p36 arginine methylation was abrogated in the PRMT1-deficient cells, suggesting that PRMT1 induces p36 methylation. Together, these results suggest that anti-IgM-induced growth inhibition is mediated via upregulation of Btg1 and Btg2, resulting in the activation of arginine methyltransferase activity and culminating in growth inhibition of WEHI-231 cells.
Collapse
Affiliation(s)
- Kikumi Hata
- Department of Immunology and Intractable Immunology Research Center, Tokyo Medical University, 6-1-1 Shinjuku, Tokyo, Japan
| | | | | |
Collapse
|
36
|
Taira T, Nagasaki A, Tomoyose T, Miyagi JI, Kakazu N, Makino S, Shinjyo T, Taira N, Masuda M, Takasu N. Establishment of a human herpes virus-8-negative malignant effusion lymphoma cell line (STR-428) carrying concurrent translocations of BCL2 and c-MYC genes. Leuk Res 2007; 31:1285-92. [PMID: 17081606 DOI: 10.1016/j.leukres.2006.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 12/21/2006] [Accepted: 12/21/2006] [Indexed: 10/23/2022]
Abstract
A new cell line, STR-428 was established from ascites tumor cells of a malignant effusion lymphoma patient without human herpes virus-8 (HHV-8) infection. STR-428 cells showed an immunophenotype of mature B-cells and produced few cytokines related to lymphomatous effusion. Karyotypic and genetic analysis revealed complex translocations including t(14;18)(q32;q21) effecting IgH/BCL2 and der(8)t(3;8)(q27;q24) involving c-MYC. STR-428 represents a unique, B-cell lymphoma cell line carrying concurrent rearrangement of BCL2 and c-MYC genes with features distinct from those of HHV-8-related primary effusion lymphoma. This cell line may be a valuable tool, other than HHV-8, to investigate the pathogenesis of primary lymphomatous effusion.
Collapse
MESH Headings
- Blotting, Southern
- Chromosomes, Human, Pair 14/genetics
- Chromosomes, Human, Pair 18/genetics
- Cytokines
- Herpesvirus 8, Human/physiology
- Humans
- Immunoenzyme Techniques
- Immunophenotyping
- In Situ Hybridization, Fluorescence
- Lymphoma/genetics
- Lymphoma/metabolism
- Lymphoma/virology
- Male
- Middle Aged
- Pleural Effusion, Malignant/genetics
- Polymerase Chain Reaction
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-myc/genetics
- Translocation, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Tamiko Taira
- Department of Endocrinology and Metabolism, Internal Medicine, University of the Ryukyus School of Medicine, Okinawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bertrand P, Bastard C, Maingonnat C, Jardin F, Maisonneuve C, Courel MN, Ruminy P, Picquenot JM, Tilly H. Mapping of MYC breakpoints in 8q24 rearrangements involving non-immunoglobulin partners in B-cell lymphomas. Leukemia 2007; 21:515-23. [PMID: 17230227 DOI: 10.1038/sj.leu.2404529] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromosomal translocations joining the immunoglobulin (IG) and MYC genes have been extensively reported in Burkitt's and non-Burkitt's lymphomas but data concerning MYC rearrangements with non-IG partners are scarce. In this study, 8q24 breakpoints from 17 B-cell lymphomas involving non-IG loci were mapped by fluorescence in situ hybridization (FISH). In seven cases the breakpoint was inside a small region encompassing MYC: in one t(7;8)(p12;q24) and two t(3;8)(q27;q24), it was telomeric to MYC whereas in four cases, one t(2;8)(p15;q24) and three t(8;9)(q24;p13) it was located in a 85 kb region encompassing MYC. In these seven cases, partner regions identified by FISH contained genes known to be involved in lymphomagenesis, namely BCL6, BCL11A, PAX5 and IKAROS. Breakpoints were cloned in two t(8;9)(q24;p13), 2.5 and 7 kb downstream from MYC and several hundred kb 5' to PAX5 on chromosome 9, joining MYC to ZCCHC7 and to ZBTB5 exon 2, two genes encoding zinc-finger proteins. In these seven cases, MYC expression measured by quantitative reverse transcription-polymerase chain reaction (RT-PCR) was significantly higher when compared to that of patients without 8q24 rearrangement (P=0.006). These results suggest that these rearrangements are the consequence of a non-random process targeting MYC together with non-IG genes involved in lymphocyte differentiation and lymphoma progression.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Base Sequence
- Burkitt Lymphoma/genetics
- Carrier Proteins/genetics
- Cell Transformation, Neoplastic/genetics
- Chromosome Breakage
- Chromosomes, Human, Pair 2/genetics
- Chromosomes, Human, Pair 2/ultrastructure
- Chromosomes, Human, Pair 3/genetics
- Chromosomes, Human, Pair 3/ultrastructure
- Chromosomes, Human, Pair 7/genetics
- Chromosomes, Human, Pair 7/ultrastructure
- Chromosomes, Human, Pair 8/genetics
- Chromosomes, Human, Pair 8/ultrastructure
- Chromosomes, Human, Pair 9/genetics
- Chromosomes, Human, Pair 9/ultrastructure
- DNA-Binding Proteins/genetics
- Female
- Genes, myc
- Humans
- Ikaros Transcription Factor/genetics
- In Situ Hybridization, Fluorescence
- Karyotyping
- Lymphoma, B-Cell/genetics
- Male
- Middle Aged
- Molecular Sequence Data
- Nuclear Proteins/genetics
- PAX5 Transcription Factor/genetics
- Proto-Oncogene Proteins c-bcl-6
- Repressor Proteins
- Reverse Transcriptase Polymerase Chain Reaction
- Translocation, Genetic/genetics
Collapse
Affiliation(s)
- P Bertrand
- Groupe d'Etude des Proliférations Lymphoïdes, Centre Henri Becquerel, INSERM U614, IFRMP23, Rouen, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Nahta R, Yuan LXH, Fiterman DJ, Zhang L, Symmans WF, Ueno NT, Esteva FJ. B cell translocation gene 1 contributes to antisense Bcl-2-mediated apoptosis in breast cancer cells. Mol Cancer Ther 2006; 5:1593-601. [PMID: 16818519 DOI: 10.1158/1535-7163.mct-06-0133] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The antiapoptotic protein Bcl-2 is overexpressed in a majority of breast cancers, and is associated with a diminished apoptotic response and resistance to various antitumor agents. Bcl-2 inhibition is currently being explored as a possible strategy for sensitizing breast cancer cells to standard chemotherapeutic agents. Antisense Bcl-2 oligonucleotides represent one method for blocking the antiapoptotic effects of Bcl-2. In this study, we show that antisense Bcl-2 efficiently blocks Bcl-2 expression, resulting in the apoptosis of breast cancer cells. Antisense Bcl-2-mediated cytotoxicity was associated with the induction of the B cell translocation gene 1 (BTG1). Importantly, knockdown of BTG1 reduced antisense Bcl-2-mediated cytotoxicity in breast cancer cells. Furthermore, BTG1 expression seems to be negatively regulated by Bcl-2, and exogenous expression of BTG1 induced apoptosis. These results suggest that BTG1 is a Bcl-2-regulated mediator of apoptosis in breast cancer cells, and that its induction contributes to antisense Bcl-2-mediated cytotoxic effects.
Collapse
Affiliation(s)
- Rita Nahta
- Department of Breast Medical Oncology, Unit 1354, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Einerson RR, Law ME, Blair HE, Kurtin PJ, McClure RF, Ketterling RP, Flynn HC, Dogan A, Remstein ED. Novel FISH probes designed to detect IGK-MYC and IGL-MYC rearrangements in B-cell lineage malignancy identify a new breakpoint cluster region designated BVR2. Leukemia 2006; 20:1790-9. [PMID: 16888615 DOI: 10.1038/sj.leu.2404340] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Detection of translocations involving MYC at 8q24.1 in B-cell lineage malignancies (BCL) is important for diagnostic and prognostic purposes. However, routine detection of MYC translocations is often hampered by the wide variation in breakpoint location within the MYC region, particularly when a gene other than IGH, such as IGK or IGL, is involved. To address this issue, we developed and validated four fluorescence in situ hybridization (FISH) probes: two break apart probes to detect IGK and IGL translocations, and two dual-color, dual-fusion FISH (D-FISH) probes to detect IGK-MYC and IGL-MYC. MYC rearrangements (four IGK-MYC, 12 IGL-MYC and four unknown partner gene-MYC) were correctly identified in 20 of 20 archival BCL specimens known to have MYC rearrangements not involving IGH. Seven specimens, all of which lacked MYC rearrangements using a commercial IGH/MYC D-FISH probe, were found to have 8q24 breakpoints within a cluster region >350-645 kb 3' from MYC, provisionally designated as Burkitt variant rearrangement region 2 (BVR2). FISH is a useful ancillary tool in identifying MYC rearrangements. In light of the discovery of the distally located BVR2 breakpoint cluster region, it is important to use MYC FISH probes that cover a breakpoint region at least 1.0 Mb 3' of MYC.
Collapse
Affiliation(s)
- R R Einerson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Repetitive DNA sequences are abundant in eukaryotic genomes, and many of these sequences have the potential to adopt non-B DNA conformations. Genes harboring non-B DNA structure-forming sequences increase the risk of genetic instability and thus are associated with human diseases. In this review, we discuss putative mechanisms responsible for genetic instability events occurring at these non-B DNA structures, with a focus on hairpins, left-handed Z-DNA, and intramolecular triplexes or H-DNA. Slippage and misalignment are the most common events leading to DNA structure-induced mutagenesis. However, a number of other mechanisms of genetic instability have been proposed based on the finding that these structures not only induce expansions and deletions, but can also induce DNA strand breaks and rearrangements. The available data implicate a variety of proteins, such as mismatch repair proteins, nucleotide excision repair proteins, topoisomerases, and structure specific-nucleases in the processing of these mutagenic DNA structures. The potential mechanisms of genetic instability induced by these structures and their contribution to human diseases are discussed.
Collapse
Affiliation(s)
- Guliang Wang
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, P.O. Box 389, Smithville, 78957, USA
| | | |
Collapse
|
41
|
Wang G, Christensen LA, Vasquez KM. Z-DNA-forming sequences generate large-scale deletions in mammalian cells. Proc Natl Acad Sci U S A 2006; 103:2677-82. [PMID: 16473937 PMCID: PMC1413824 DOI: 10.1073/pnas.0511084103] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spontaneous chromosomal breakages frequently occur at genomic hot spots in the absence of DNA damage and can result in translocation-related human disease. Chromosomal breakpoints are often mapped near purine-pyrimidine Z-DNA-forming sequences in human tumors. However, it is not known whether Z-DNA plays a role in the generation of these chromosomal breakages. Here, we show that Z-DNA-forming sequences induce high levels of genetic instability in both bacterial and mammalian cells. In mammalian cells, the Z-DNA-forming sequences induce double-strand breaks nearby, resulting in large-scale deletions in 95% of the mutants. These Z-DNA-induced double-strand breaks in mammalian cells are not confined to a specific sequence but rather are dispersed over a 400-bp region, consistent with chromosomal breakpoints in human diseases. This observation is in contrast to the mutations generated in Escherichia coli that are predominantly small deletions within the repeats. We found that the frequency of small deletions is increased by replication in mammalian cell extracts. Surprisingly, the large-scale deletions generated in mammalian cells are, at least in part, replication-independent and are likely initiated by repair processing cleavages surrounding the Z-DNA-forming sequence. These results reveal that mammalian cells process Z-DNA-forming sequences in a strikingly different fashion from that used by bacteria. Our data suggest that Z-DNA-forming sequences may be causative factors for gene translocations found in leukemias and lymphomas and that certain cellular conditions such as active transcription may increase the risk of Z-DNA-related genetic instability.
Collapse
Affiliation(s)
- Guliang Wang
- Department of Carcinogenesis, University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, Smithville, TX 78957
| | - Laura A. Christensen
- Department of Carcinogenesis, University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, Smithville, TX 78957
| | - Karen M. Vasquez
- Department of Carcinogenesis, University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, Smithville, TX 78957
- *To whom correspondence should be addressed at:
Department of Carcinogenesis, University of Texas M. D. Anderson Cancer Center, 1808 Park Road 1-C, P.O. Box 389, Smithville, TX 78957. E-mail:
| |
Collapse
|
42
|
3 Diverse roles of protein arginine methyltransferases. PROTEIN METHYLTRANSFERASES 2006; 24:51-103. [DOI: 10.1016/s1874-6047(06)80005-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
43
|
Konrad MAP, Zúñiga-Pflücker JC. The BTG/TOB family protein TIS21 regulates stage-specific proliferation of developing thymocytes. Eur J Immunol 2005; 35:3030-42. [PMID: 16163674 DOI: 10.1002/eji.200526345] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
As thymocytes undergo differentiation in the thymus, they progress through distinct phases of quiescence and proliferation. Identifying cellular mechanisms that maintain thymocytes in a non-dividing state is critical to fully understand T cell development. A member of the B cell translocation gene/transducer of ErbB-2 (BTG/TOB) family of anti-proliferative proteins was identified as a key mediator of the quiescent state in peripheral anergic and unstimulated T cells. Here, we demonstrate that the BTG/TOB family member TPA-inducible sequence 21 (TIS21) is expressed in quiescent CD44+ CD25- early progenitor thymocytes and CD44- CD25+ cells prior to TCR beta-selection. However, TIS21 expression is decreased in proliferating CD25+ CD44+ progenitor thymocytes and CD25(low) CD44- beta-selected cells, suggesting that its regulated expression may enable thymocytes to remain quiescent in the absence of mitogenic signals. We addressed the role of TIS21 in regulating thymocyte stage-specific expansion by ectopically expressing TIS21 in developing thymocytes and hematopoietic progenitors. Dysregulated expression of TIS21 inhibited the expansion of thymocytes even in the presence of endogenous mitogenic signals, while thymocyte differentiation was unimpeded. These findings imply that the intracellular mechanisms regulating thymocyte differentiation and proliferation, which are induced downstream of developmental cues, function independently during early T cell development.
Collapse
Affiliation(s)
- Mark A P Konrad
- Department of Immunology, University of Toronto, Sunnybrook and Women's Research Institute, Toronto, Ontario, Canada
| | | |
Collapse
|
44
|
Nguyen-Khac F, Davi F, Receveur A, Maloum K, Morel V, Le Garff-Tavernier M, Ong J, Berger R, Leblond V, Merle-Béral H. Burkitt-type acute leukemia in a patient with B-prolymphocytic leukemia: evidence for a common origin. ACTA ACUST UNITED AC 2005; 159:74-8. [PMID: 15860362 DOI: 10.1016/j.cancergencyto.2004.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Revised: 09/16/2004] [Accepted: 09/29/2004] [Indexed: 10/25/2022]
Abstract
Burkitt-type acute leukemia cells were present in the bone marrow of a patient with B-prolymphocytic leukemia diagnosed from peripheral blood cell morphology. Immunophenotype analysis confirmed morphological patterns. Cytogenetic and fluorescence in situ hybridization (FISH) analysis showed an identical t(8;22)(q24;q21) with MYC locus rearrangement in blood and bone marrow cells, with additional chromosome abnormalities in the bone marrow. In addition, the loss of one copy of the TP53 gene and identical IGH DNA clonal rearrangements were shown with FISH and polymerase chain reaction analysis respectively in the two types of leukemic cells. These data indicated the common origin of the two coexisting leukemias and are the first example of such occurrence in a leukemic patient.
Collapse
MESH Headings
- Bone Marrow/pathology
- Burkitt Lymphoma/genetics
- Burkitt Lymphoma/pathology
- Cell Lineage
- Chromosomes, Human, Pair 22/genetics
- Chromosomes, Human, Pair 8/genetics
- Cytogenetic Analysis
- Female
- Gene Rearrangement
- Genes, myc
- Humans
- In Situ Hybridization, Fluorescence
- Leukemia, Prolymphocytic/genetics
- Leukemia, Prolymphocytic/pathology
- Middle Aged
- Neoplasms, Second Primary/genetics
- Neoplasms, Second Primary/pathology
- Translocation, Genetic
Collapse
Affiliation(s)
- Florence Nguyen-Khac
- Service d'Hématologie Biologique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Cho JW, Kim JJ, Park SG, Lee DH, Lee SC, Kim HJ, Park BC, Cho S. Identification of B-cell translocation gene 1 as a biomarker for monitoring the remission of acute myeloid leukemia. Proteomics 2005; 4:3456-63. [PMID: 15449376 DOI: 10.1002/pmic.200400968] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Acute myeloid leukemia (AML) is a biologically heterogeneous disease of the hematopoietic system characterized by a clonal accumulation of immature blast cells in bone marrow. We used a proteomic approach based on two-dimensional electrophoresis and mass spectrometry to search for biomarkers related to the complete remission (CR) state of AML patients. We detected one AML-related protein, which was identified as the B-cell translocation gene 1 (BTG1) protein that belongs to anti-proliferative protein family. In the CR state of AML-M2 and M3 patients (by French-American-British subtype classification), the BTG1 protein was upregulated in bone marrow mononuclear cells. It was also expressed robustly in normal bone marrow mononuclear cells. In addition, the BTG1 levels in AML-M2 patients in a non-remission state after therapy did not increase as they did before therapy. Overexpression of BTG1 mRNA was also observed in the CR state of all-trans-retinoic acid (ATRA)-treated AML-M3 patients and ATRA-treated HL-60 cells. Taken together, these results suggest that BTG1 may play a role in the differentiation process of myeloid cells and can therefore be used as a potential treatment-related biomarker for monitoring the remission status of AML-M2 and M3 patients.
Collapse
Affiliation(s)
- Jae-We Cho
- Department of Microbiology, College of Medicine, Seonam University, Namwon, Chunpook, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Boisvert FM, Chénard CA, Richard S. Protein interfaces in signaling regulated by arginine methylation. Sci Signal 2005; 2005:re2. [PMID: 15713950 DOI: 10.1126/stke.2712005re2] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Posttranslational modifications are well-known effectors of signal transduction. Arginine methylation is a covalent modification that results in the addition of methyl groups to the nitrogen atoms of the arginine side chains. A probable role of arginine methylation in signal transduction is emerging with the identification of new arginine-methylated proteins. However, the functional consequences of arginine methylation and its mode of regulation remain unknown. The identification of the protein arginine methyltransferase family and the development of methylarginine-specific antibodies have raised renewed interest in this modification during the last decade. Arginine methylation was mainly observed on abundant proteins such as RNA-binding proteins and histones, but recent advances have revealed a plethora of arginine-methylated proteins implicated in a variety of cellular processes, including signaling by interferon and cytokines, and in T cell signaling. We discuss these recent advances and the role of arginine methylation in signal transduction.
Collapse
Affiliation(s)
- François-Michel Boisvert
- Terry Fox Molecular Oncology Group and Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Department of Oncology, McGill University, Montréal, Québec, Canada H3T 1E2
| | | | | |
Collapse
|
47
|
Iwai K, Hirata KI, Ishida T, Takeuchi S, Hirase T, Rikitake Y, Kojima Y, Inoue N, Kawashima S, Yokoyama M. An anti-proliferative gene BTG1 regulates angiogenesis in vitro. Biochem Biophys Res Commun 2004; 316:628-35. [PMID: 15033446 DOI: 10.1016/j.bbrc.2004.02.095] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Indexed: 11/27/2022]
Abstract
B-cell translocation gene 1 (BTG1) is a member of the anti-proliferative gene family that regulates cell growth and differentiation. To clarify the role of BTG1 in angiogenesis, we examined the regulation of BTG1 expression in cultured endothelial cells and characterized its function in in vitro models of angiogenesis. BTG1 mRNA was abundantly expressed in quiescent endothelial cells. Addition of serum and angiogenic growth factors decreased BTG1 mRNA levels in endothelial cells. In contrast, BTG1 mRNA was up-regulated in tube-forming endothelial cells on Matrigel. This up-regulation was partially blocked by neutralizing antibody against transforming growth factor-beta (TGF-beta), and TGF-beta increased BTG1 mRNA levels. Inhibition of endogenous BTG1 by overexpression of antisense BTG1 resulted in inhibited network formation, and overexpression of sense BTG1 augmented tube formation in these cell lines. BTG1-overexpressing endothelial cells displayed increased cell migration. These findings suggest that BTG1 may play an important role in the process of angiogenesis.
Collapse
Affiliation(s)
- Kenji Iwai
- Division of Cardiovascular and Respiratory Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lee H, Cha S, Lee MS, Cho GJ, Choi WS, Suk K. Role of antiproliferative B cell translocation gene-1 as an apoptotic sensitizer in activation-induced cell death of brain microglia. THE JOURNAL OF IMMUNOLOGY 2004; 171:5802-11. [PMID: 14634089 DOI: 10.4049/jimmunol.171.11.5802] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mouse brain microglial cells undergo apoptosis on exposure to inflammatory stimuli, which is considered as an autoregulatory mechanism to control their own activation. Here, we present evidence that an antiproliferative B cell translocation gene 1 (BTG1) constitutes a novel apoptotic pathway of LPS/IFN-gamma-activated microglia. The expression of BTG1 was synergistically enhanced by LPS and IFN-gamma in BV-2 mouse microglial cells as well as in primary microglia cultures. Levels of BTG1 expression inversely correlated with a proliferative capacity of the microglial cells. Tetracycline-based conditional expression of BTG1 not only suppressed microglial proliferation but also increased the sensitivity of microglial cells to NO-induced apoptosis, suggesting a novel mechanism of cooperation between LPS and IFN-gamma in the induction of microglial apoptosis. An increase in BTG1 expression, however, did not affect microglial production of NO, TNF-alpha, or IL-1beta, indicating that the antiproliferative BTG1 is important in the activation-induced apoptosis of microglia, but not in the activation itself. The synergistic action of LPS and IFN-gamma in the microglial BTG1 induction and apoptosis was dependent on the Janus kinase/STAT1 pathway, but not IFN-regulatory factor-1, as demonstrated by a pharmacological inhibitor of Janus kinase (AG490), STAT1 dominant negative mutant, and IFN-regulatory factor-1-deficient mice. Taken together, antiproliferative BTG1 may participate in the activation-induced cell death of microglia by lowering the threshold for apoptosis; BTG1 increases the sensitivity of microglia to apoptogenic action of autocrine cytotoxic mediator, NO. Our results point out an important link between the proliferative state of microglia and their sensitivity to apoptogenic agents.
Collapse
Affiliation(s)
- Heasuk Lee
- Department of Anatomy and Neurobiology and Research Institute of Natural Science, Gyeongsang National University College of Medicine, Institute of Health Sciences, Jinju, Korea
| | | | | | | | | | | |
Collapse
|
49
|
Habermann FA, Biet C, Fries R. Chromosomal localization of the genes encoding SCNN1A, BTG1, IFNG and MAOA on chicken chromosome 1 by fluorescence in-situ hybridization. Chromosome Res 2002; 9:515-8. [PMID: 11592486 DOI: 10.1023/a:1011692831799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- F A Habermann
- Lehrstuhl für Tierzucht der Technischen Universität München, Freising-Weihenstephan, Germany
| | | | | |
Collapse
|
50
|
Duriez C, Falette N, Audoynaud C, Moyret-Lalle C, Bensaad K, Courtois S, Wang Q, Soussi T, Puisieux A. The human BTG2/TIS21/PC3 gene: genomic structure, transcriptional regulation and evaluation as a candidate tumor suppressor gene. Gene 2002; 282:207-14. [PMID: 11814693 DOI: 10.1016/s0378-1119(01)00825-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BTG2/TIS21/PC3 protein is involved in the regulation of G1/S transition of the cell cycle by inhibiting pRb function, suggesting that BTG2/TIS21/PC3 regulation is critical for normal cell growth and proliferation. To understand the regulatory mechanisms for the expression of BTG2/TIS21/PC3 we cloned the human gene. Potential binding sites for several transcription factors were identified in the 5'-flanking region of the gene. Transient expression assays with BTG2/TIS21/PC3 promoter deletions and electrophoretic mobility shift analysis identified a major wild-type p53 response element located -74 to -122 relative to the start codon. This genomic fragment was sufficient to constitute a promoter element in the presence of p53. The BTG2/TIS21/PC3 gene is an antiproliferative gene which maps within a chromosomal segment (1q32) frequently altered in breast adenocarcinomas. However, no mutations of BTG2/TIS21/PC3 were detected in breast cancer cells, suggesting that the inactivation of this gene is not a frequent genetic event during breast carcinogenesis.
Collapse
Affiliation(s)
- Cyril Duriez
- Unité INSERM U453, Unité d'Oncologie Moléculaire, Centre Léon Bérard, 28 rue Laënnec, F-69373 Lyon Cedex 08, France
| | | | | | | | | | | | | | | | | |
Collapse
|