1
|
Park J, Lee E, Kim CH, Ohk J, Jung H. Mosaicism-independent mechanisms contribute to Pcdh19-related epilepsy and repetitive behaviors in Xenopus. Proc Natl Acad Sci U S A 2024; 121:e2321388121. [PMID: 38748583 PMCID: PMC11126968 DOI: 10.1073/pnas.2321388121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/05/2024] [Indexed: 05/27/2024] Open
Abstract
Protocadherin19 (PCDH19)-related epilepsy syndrome is a rare disorder characterized by early-onset epilepsy, intellectual disability, and autistic behaviors. PCDH19 is located on the X chromosome and encodes a calcium-dependent single-pass transmembrane protein, which regulates cell-to-cell adhesion through homophilic binding. In human, 90% of heterozygous females, containing PCDH19 wild-type and mutant cells due to random X inactivation, are affected, whereas mutant males, containing only mutant cells, are typically not. The current view, the cellular interference, is that the altered interactions between wild-type and mutant cells during development, rather than loss of function itself, are responsible. However, studies using Pcdh19 knockout mice showed that the complete loss of function also causes autism-like behaviors both in males and females, suggesting that other functions of PCDH19 may also contribute to pathogenesis. To address whether mosaicism is required for PCDH19-related epilepsy, we generated Xenopus tropicalis tadpoles with complete or mosaic loss of function by injecting antisense morpholino oligonucleotides into the blastomeres of neural lineage at different stages of development. We found that either mosaic or complete knockdown results in seizure-like behaviors, which could be rescued by antiseizure medication, and repetitive behaviors. Our results suggest that the loss of PCDH19 function itself, in addition to cellular interference, may also contribute to PCDH19-related epilepsy.
Collapse
Affiliation(s)
- Jugeon Park
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - Eunee Lee
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - Chul Hoon Kim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - Jiyeon Ohk
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - Hosung Jung
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| |
Collapse
|
2
|
Abstract
Xenbase is the Xenopus model organism database ( www.xenbase.org ), a web-accessible resource that integrates the diverse genomic and biological data for Xenopus research. It hosts a variety of content including current and archived genomes for both X. laevis and X. tropicalis, bioinformatic tools for comparative genetic analyses including BLAST and GBrowse, annotated Xenopus literature, and catalogs of reagents including antibodies, ORFeome clones, morpholinos, and transgenic lines. Xenbase compiles gene-specific pages which include manually curated gene expression images, functional information including gene ontology (GO), disease associations, and links to other major data sources such as NCBI:Entrez, UniProtKB, and Ensembl. We also maintain the Xenopus Anatomy Ontology (XAO) which describes anatomy throughout embryonic development. This chapter provides a full description of the many features of Xenbase, and offers a guide on how to use various tools to perform a variety of common tasks such as identifying nucleic acid or protein sequences, finding gene expression patterns for specific genes, stages or tissues, identifying literature on a specific gene or tissue, locating useful reagents and downloading our extensive content, including Xenopus gene-Human gene disease mapping files.
Collapse
|
3
|
Joris M, Schloesser M, Baurain D, Hanikenne M, Muller M, Motte P. Number of inadvertent RNA targets for morpholino knockdown in Danio rerio is largely underestimated: evidence from the study of Ser/Arg-rich splicing factors. Nucleic Acids Res 2017; 45:9547-9557. [PMID: 28934490 PMCID: PMC5766196 DOI: 10.1093/nar/gkx638] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/13/2017] [Indexed: 12/12/2022] Open
Abstract
Although the involvement of Ser/Arg-rich (SR) proteins in RNA metabolism is well documented, their role in vertebrate development remains elusive. We, therefore, elected to take advantage of the zebrafish model organism to study the SR genes' functions using the splicing morpholino (sMO) microinjection and the programmable site-specific nucleases. Consistent with previous research, we revealed discrepancies between the mutant and morphant phenotypes and we show that these inconsistencies may result from a large number of unsuspected inadvertent morpholino RNA targets. While microinjection of MOs directed against srsf5a (sMOsrsf5a) led to developmental defects, the corresponding homozygous mutants did not display any phenotypic traits. Furthermore, microinjection of sMOsrsf5a into srsf5a−/− led to the previously observed morphant phenotype. Similar findings were observed for other SR genes. sMOsrsf5a alternative target genes were identified using deep mRNA sequencing. We uncovered that only 11 consecutive bases complementary to sMOsrsf5a are sufficient for binding and subsequent blocking of splice sites. In addition, we observed that sMOsrsf5a secondary targets can be reduced by increasing embryos growth temperature after microinjection. Our data contribute to the debate about MO specificity, efficacy and the number of unknown targeted sequences.
Collapse
Affiliation(s)
- Marine Joris
- Laboratory of Functional Genomics and Plant Molecular Imaging, InBioS, PhytoSystems and Centre for Assistance in Technology of Microscopy (CAREm), University of Liège, 4000 Liège, Belgium
| | - Marie Schloesser
- Laboratory of Functional Genomics and Plant Molecular Imaging, InBioS, PhytoSystems and Centre for Assistance in Technology of Microscopy (CAREm), University of Liège, 4000 Liège, Belgium
| | - Denis Baurain
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, 4000 Liège, Belgium
| | - Marc Hanikenne
- Laboratory of Functional Genomics and Plant Molecular Imaging, InBioS, PhytoSystems and Centre for Assistance in Technology of Microscopy (CAREm), University of Liège, 4000 Liège, Belgium
| | - Marc Muller
- Laboratory for Organogenesis and Regeneration, GIGA-Research, University of Liège, 4000 Liège, Belgium
| | - Patrick Motte
- Laboratory of Functional Genomics and Plant Molecular Imaging, InBioS, PhytoSystems and Centre for Assistance in Technology of Microscopy (CAREm), University of Liège, 4000 Liège, Belgium
| |
Collapse
|
4
|
Feehan JM, Chiu CN, Stanar P, Tam BM, Ahmed SN, Moritz OL. Modeling Dominant and Recessive Forms of Retinitis Pigmentosa by Editing Three Rhodopsin-Encoding Genes in Xenopus Laevis Using Crispr/Cas9. Sci Rep 2017; 7:6920. [PMID: 28761125 PMCID: PMC5537283 DOI: 10.1038/s41598-017-07153-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/27/2017] [Indexed: 11/11/2022] Open
Abstract
The utility of Xenopus laevis, a common research subject for developmental biology, retinal physiology, cell biology, and other investigations, has been limited by lack of a robust gene knockout or knock-down technology. Here we describe manipulation of the X. laevis genome using CRISPR/Cas9 to model the human disorder retinitis pigmentosa, and to introduce point mutations or exogenous DNA sequences. We introduced and characterized in-frame and out-of-frame insertions and deletions in three genes encoding rhodopsin by co-injection of Cas9 mRNA, eGFP mRNA, and single guide RNAs into fertilized eggs. Deletions were characterized by direct sequencing and cloning; phenotypes were assessed by assays of rod opsin in retinal extracts, and confocal microscopy of cryosectioned and immunolabeled contralateral eyes. We obtained germline transmission of editing to F1 offspring. In-frame deletions frequently caused dominant retinal degeneration associated with rhodopsin biosynthesis defects, while frameshift phenotypes were consistent with knockout. We inserted eGFP or point mutations into rhodopsin genes by co-injection of repair fragments with homology to the Cas9 target sites. Our techniques can produce high frequency gene editing in X. laevis, permitting analysis in the F0 generation, and advancing the utility of X. laevis as a subject for biological research and disease modeling.
Collapse
Affiliation(s)
- Joanna M Feehan
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada, V5Z 3N9
- The Sainsbury Laboratory, Colney Ln, Norwich Research Park, Norwich, Norfolk, UK, NR4 7UH
| | - Colette N Chiu
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada, V5Z 3N9
| | - Paloma Stanar
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada, V5Z 3N9
| | - Beatrice M Tam
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada, V5Z 3N9
| | - Sheikh N Ahmed
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada, V5Z 3N9
| | - Orson L Moritz
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada, V5Z 3N9.
| |
Collapse
|
5
|
Moulton JD. Using Morpholinos to Control Gene Expression. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2017; 68:4.30.1-4.30.29. [PMID: 28252184 PMCID: PMC7162182 DOI: 10.1002/cpnc.21] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Morpholino oligonucleotides are stable, uncharged, water-soluble molecules used to block complementary sequences of RNA, preventing processing, read-through, or protein binding at those sites. Morpholinos are typically used to block translation of mRNA and to block splicing of pre-mRNA, though they can block other interactions between biological macromolecules and RNA. Morpholinos are effective, specific, and lack non-antisense effects. They work in any cell that transcribes and translates RNA, but must be delivered into the nuclear/cytosolic compartment to be effective. Morpholinos form stable base pairs with complementary nucleic acid sequences but apparently do not bind to proteins to a significant extent. They are not recognized by any proteins and do not undergo protein-mediated catalysis-nor do they mediate RNA cleavage by RNase H or the RISC complex. This work focuses on techniques and background for using Morpholinos. © 2017 by John Wiley & Sons, Inc.
Collapse
|
6
|
Young JJ, Kjolby RAS, Wu G, Wong D, Hsu SW, Harland RM. Noggin is required for first pharyngeal arch differentiation in the frog Xenopus tropicalis. Dev Biol 2016; 426:245-254. [PMID: 27364468 DOI: 10.1016/j.ydbio.2016.06.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 06/18/2016] [Accepted: 06/24/2016] [Indexed: 02/02/2023]
Abstract
The dorsal ventral axis of vertebrates requires high BMP activity for ventral development and inhibition of BMP activity for dorsal development. Presumptive dorsal regions of the embryo are protected from the ventralizing activity of BMPs by the secretion of BMP antagonists from the mesoderm. Noggin, one such antagonist, binds BMP ligands and prevents them from binding their receptors, however, a unique role for Noggin in amphibian development has remained unclear. Previously, we used zinc-finger nucleases to mutagenize the noggin locus in Xenopus tropicalis. Here, we report on the phenotype of noggin mutant frogs as a result of breeding null mutations to homozygosity. Early homozygous noggin mutant embryos are indistinguishable from wildtype siblings, with normal neural induction and neural tube closure. However, in late tadpole stages mutants present severe ventral craniofacial defects, notably a fusion of Meckel's cartilage to the palatoquadrate cartilage. Consistent with a noggin loss-of-function, mutants show expansions of BMP target gene expression and the mutant phenotype can be rescued with transient BMP inhibition. These results demonstrate that in amphibians, Noggin is dispensable for early embryonic patterning but is critical for cranial skeletogenesis.
Collapse
Affiliation(s)
- John J Young
- Department of Molecular Cell Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Rachel A S Kjolby
- Department of Molecular Cell Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Gloria Wu
- Department of Molecular Cell Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Daniel Wong
- Department of Molecular Cell Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Shu-Wei Hsu
- Department of Molecular Cell Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Richard M Harland
- Department of Molecular Cell Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| |
Collapse
|
7
|
Using Xenopus Embryos to Study Transcriptional and Posttranscriptional Gene Regulatory Mechanisms of Intermediate Filaments. Methods Enzymol 2016; 568:635-60. [DOI: 10.1016/bs.mie.2015.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
8
|
Love NR, Chen Y, Ishibashi S, Kritsiligkou P, Lea R, Koh Y, Gallop JL, Dorey K, Amaya E. Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration. Nat Cell Biol 2013; 15:222-8. [PMID: 23314862 PMCID: PMC3728553 DOI: 10.1038/ncb2659] [Citation(s) in RCA: 352] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 11/26/2012] [Indexed: 12/22/2022]
Abstract
Understanding the molecular mechanisms that promote successful tissue regeneration is critical for continued advancements in regenerative medicine. Vertebrate amphibian tadpoles of the species Xenopus laevis and Xenopus tropicalis have remarkable abilities to regenerate their tails following amputation, through the coordinated activity of numerous growth factor signalling pathways, including the Wnt, Fgf, Bmp, Notch and TGF-β pathways. Little is known, however, about the events that act upstream of these signalling pathways following injury. Here, we show that Xenopus tadpole tail amputation induces a sustained production of reactive oxygen species (ROS) during tail regeneration. Lowering ROS levels, using pharmacological or genetic approaches, reduces the level of cell proliferation and impairs tail regeneration. Genetic rescue experiments restored both ROS production and the initiation of the regenerative response. Sustained increased ROS levels are required for Wnt/β-catenin signalling and the activation of one of its main downstream targets, fgf20 (ref. 7), which, in turn, is essential for proper tail regeneration. These findings demonstrate that injury-induced ROS production is an important regulator of tissue regeneration.
Collapse
Affiliation(s)
- Nick R Love
- Faculty of Life Sciences, University of Manchester, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ishibashi S, Cliffe R, Amaya E. Highly efficient bi-allelic mutation rates using TALENs in Xenopus tropicalis. Biol Open 2012; 1:1273-6. [PMID: 23408158 PMCID: PMC3558749 DOI: 10.1242/bio.20123228] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 10/09/2012] [Indexed: 01/01/2023] Open
Abstract
In the past decade, Xenopus tropicalis has emerged as a powerful new amphibian genetic model system, which offers all of the experimental advantages of its larger cousin, Xenopus laevis. Here we investigated the efficiency of transcription activator-like effector nucleases (TALENs) for generating targeted mutations in endogenous genes in X. tropicalis. For our analysis we targeted the tyrosinase (oculocutaneous albinism IA) (tyr) gene, which is required for the production of skin pigments, such as melanin. We injected mRNA encoding TALENs targeting the first exon of the tyr gene into two-cell-stage embryos. Surprisingly, we found that over 90% of the founder animals developed either partial or full albinism, suggesting that the TALENs induced bi-allelic mutations in the tyr gene at very high frequency in the F0 animals. Furthermore, mutations tyr gene were efficiently transmitted into the F1 progeny, as evidenced by the generation of albino offspring. These findings have far reaching implications in our quest to develop efficient reverse genetic approaches in this emerging amphibian model.
Collapse
Affiliation(s)
- Shoko Ishibashi
- The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester , Oxford Road, Manchester M13 9PT , UK
| | | | | |
Collapse
|
10
|
Leblond GG, Sarazin H, Li R, Suzuki M, Ueno N, Liu XJ. Translation of incenp during oocyte maturation is required for embryonic development in Xenopus laevis. Biol Reprod 2012; 86:161, 1-8. [PMID: 22378760 DOI: 10.1095/biolreprod.111.097972] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The chromosome passenger complex (CPC) consists of Aurora-B kinase and several other subunits. One of these, incenp, binds Aurora-B and regulates its kinase activity. During Xenopus oocyte maturation, incenp accumulates through translation, contributing to aurora-b activation. A previous study has demonstrated that inhibition of incenp translation during oocyte maturation diminishes aurora-b activation but does not interfere with oocyte maturation, characterized by normal maturation-specific cyclin-b phosphorylation, degradation, and resynthesis. Here we have extended these findings, showing that inhibition of incenp translation during oocyte maturation did not interfere with meiosis I or II, as indicated by the normal emission of the first polar body and metaphase II arrest, followed by the successful emission of the second polar body upon parthenogenetic egg activation. Most importantly, however, when transferred to host frogs and subsequently ovulated, the incenp-deficient eggs were fertilized but failed to undergo mitotic cleavage. Thus, translation of incenp during oocyte maturation appears to be part of oocyte cytoplasmic maturation, preparing the egg for the rapid mitosis following fertilization.
Collapse
|
11
|
Abstract
Here we present a protocol, which allows loss-of-function studies in Xenopus embryos using antisense morpholino oligonucleotides (MOs). Gene knockdown studies provide a critical method for assessing gene function in vitro and in vivo. Such studies are currently performed in Xenopus using primarily one of the two main methods: (1) overexpression of dominant negative constructs or (2) inhibition of gene function by using MOs targeting either the initiation of translation or mRNA splicing. While a dominant negative approach is very effective, it often suffers from specificity. Given that MOs target very specific nucleotide sequences in the target RNA, it suffers considerably less from issues of specificity. The most convenient method for introducing MOs into embryos is through microinjection, which is a simple procedure. Therefore, a reverse genetics approach in Xenopus using MOs is an extremely powerful tool to study gene function, particularly when taking advantage of available sequence data in the post-genomic era. Furthermore, given the well-established fate map in Xenopus, it is also very easy to generate mosaic knockdown embryos, where the gene of interest is affected in defined regions of the embryo. Finally it should be noted that MOs can also be used to block miRNA function and processing, so that it provides a convenient method to not only perform gene knockdown studies on protein coding genes, but also noncoding genes. The protocol we describe here is for both Xenopus laevis and Xenopus tropicalis.
Collapse
|
12
|
Abstract
The study of gene function in developmental biology has been significantly furthered by advances in antisense technology made in the early 2000s. This was achieved, in particular, by the introduction of morpholino (MO) oligonucleotides. The introduction of antisense MO oligonucleotides into cells enables researchers to readily reduce the levels of their protein of interest without investing huge financial or temporal resources, in both in vivo and in vitro model systems. Historically, the African clawed frog Xenopus has been used to study vertebrate embryological development, due to its ability to produce vast numbers of offspring that develop rapidly, in synchrony, and can be cultured in buffers with ease. The developmental progress of Xenopus embryos has been extensively characterized and this model organism is very easy to maintain. It is these attributes that enable MO-based knockdown strategies to be so effective in Xenopus. In this chapter, we will detail the methods of microinjecting MO oligonucleotides into early embryos of X. laevis and X. tropicalis. We will discuss how MOs can be used to prevent either pre-mRNA splicing or translation of the specific gene of interest resulting in abrogation of that gene's function and advise on what control experiments should be undertaken to verify their efficacy.
Collapse
Affiliation(s)
- Panna Tandon
- Department of Genetics, UNC McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | |
Collapse
|
13
|
Huynh MH, Zhu SJ, Kollara A, Brown T, Winklbauer R, Ringuette M. Knockdown of SPARC leads to decreased cell-cell adhesion and lens cataracts during post-gastrula development in Xenopus laevis. Dev Genes Evol 2011; 220:315-27. [PMID: 21384171 DOI: 10.1007/s00427-010-0349-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 12/16/2010] [Indexed: 12/01/2022]
Abstract
SPARC is a multifunctional matricellular glycoprotein with complex, transient tissue distribution during embryonic development. In Xenopus laevis embryos, zygotic activation of SPARC is first detected during late gastrulation, undergoing rapid changes in its spatiotemporal distribution throughout organogenesis. Injections of anti-sense Xenopus SPARC morpholinos (XSMOs) into 2- and 4-cell embryos led to a dose-dependent dissociation of embryos during neurula and tailbud stages of development. Animal cap explants derived from XSMO-injected embryos also dissociated, resulting in the formation of amorphous ciliated microspheres. At low doses of XSMOs, lens cataracts were formed, phenocopying that observed in Sparc-null mice. At XSMOs concentrations that did not result in a loss of axial tissue integrity, adhesion between myotomes at intersomitic borders was compromised with a reduction in SPARC concentration. The combined data suggest a critical requirement for SPARC during post-gastrula development in Xenopus embryos and that SPARC, directly or indirectly, promotes cell-cell adhesion in vivo.
Collapse
Affiliation(s)
- My-Hang Huynh
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, 48109-5620, USA
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Lens regeneration among vertebrates is basically restricted to some amphibians. The most notable cases are the ones that occur in premetamorphic frogs and in adult newts. Frogs and newts regenerate their lens in very different ways. In frogs the lens is regenerated by transdifferentiation of the cornea and is limited only to a time before metamorphosis. On the other hand, regeneration in newts is mediated by transdifferentiation of the pigment epithelial cells of the dorsal iris and is possible in adult animals as well. Thus, the study of both systems could provide important information about the process. Molecular tools have been developed in frogs and recently also in newts. Thus, the process has been studied at the molecular and cellular levels. A synthesis describing both systems was long due. In this review we describe the process in both Xenopus and the newt. The known molecular mechanisms are described and compared.
Collapse
Affiliation(s)
- Jonathan J Henry
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL 61801, USA.
| | | |
Collapse
|
15
|
Abu-Daya A, Nishimoto S, Fairclough L, Mohun TJ, Logan MPO, Zimmerman LB. The secreted integrin ligand nephronectin is necessary for forelimb formation in Xenopus tropicalis. Dev Biol 2010; 349:204-12. [PMID: 20977901 PMCID: PMC3021715 DOI: 10.1016/j.ydbio.2010.10.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 09/27/2010] [Accepted: 10/14/2010] [Indexed: 11/21/2022]
Abstract
While limb regeneration has been extensively studied in amphibians, little is known about the initial events in limb formation in metamorphosing anurans. The small secreted integrin ligand nephronectin (npnt) is necessary for development of the metanephros in mouse. Although expressed in many tissues, its role in other developmental processes is not well-studied. Here we show that a transgene insertion that disrupts this gene ablates forelimb formation in Xenopus tropicalis. Our results suggest a novel role for integrin signalling in limb development, and represent the first insertional phenotype to be cloned in amphibians.
Collapse
Affiliation(s)
- Anita Abu-Daya
- Division of Developmental Biology, MRC-National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK
| | | | | | | | | | | |
Collapse
|
16
|
Novel isoform of the Xenopus tropicalis PKA catalytic alpha subunit: An example of alternative splicing. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2010; 5:151-6. [PMID: 20418193 DOI: 10.1016/j.cbd.2010.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Revised: 03/24/2010] [Accepted: 03/27/2010] [Indexed: 11/27/2022]
Abstract
The cAMP-dependent protein kinase (PKA) plays key roles in the control of various aspects of eukaryotic cellular activities by phosphorylating several proteins and is multifunctional in nature. In the case of frog, Xenopus tropicalis, a gene encoding the PKA catalytic alpha subunit has been identified which encodes a single protein. Here we report the occurrence of N-terminal alternative splicing events in X. tropicalis tadpole that, in addition to generating a myristoylatable isoforms, also generate the non-myristoylated variant of the catalytic alpha subunit as has been reported in various other organisms. In addition to the already characterized exon 1, the 5' untranslated region and first intron actually contains one more other exon, that is alternatively spliced on to exon 2 at the 5' end of the pre-mRNA. This N-terminal alternative splicing occurs in combination with already characterized all internal exons. Thus, X. tropicalis tadpole expresses at least two different isoforms of the catalytic alpha subunit of PKA. The significance of this structural diversity in the family of PKA catalytic subunits is discussed.
Collapse
|
17
|
Chen Y, Costa RMB, Love NR, Soto X, Roth M, Paredes R, Amaya E. C/EBPalpha initiates primitive myelopoiesis in pluripotent embryonic cells. Blood 2009; 114:40-8. [PMID: 19420355 PMCID: PMC3747498 DOI: 10.1182/blood-2008-11-189159] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular mechanisms that underlie the development of primitive myeloid cells in vertebrate embryos are not well understood. Here we characterize the role of cebpa during primitive myeloid cell development in Xenopus. We show that cebpa is one of the first known hematopoietic genes expressed in the embryo. Loss- and gain-of-function studies show that it is both necessary and sufficient for the development of functional myeloid cells. In addition, we show that cebpa misexpression leads to the precocious induction of myeloid cell markers in pluripotent prospective ectodermal cells, without the cells transitioning through a general mesodermal state. Finally, we use live imaging to show that cebpa-expressing cells exhibit many attributes of terminally differentiated myeloid cells, such as highly active migratory behavior, the ability to quickly and efficiently migrate toward wounds and phagocytose bacteria, and the ability to enter the circulation. Thus, C/EPBalpha is the first known single factor capable of initiating an entire myelopoiesis pathway in pluripotent cells in the embryo.
Collapse
Affiliation(s)
- Yaoyao Chen
- The Healing Foundation Centre, Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Ricardo M. B. Costa
- The Healing Foundation Centre, Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Nick R. Love
- The Healing Foundation Centre, Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Ximena Soto
- The Healing Foundation Centre, Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Martin Roth
- The Healing Foundation Centre, Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Roberto Paredes
- The Healing Foundation Centre, Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Enrique Amaya
- The Healing Foundation Centre, Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| |
Collapse
|
18
|
Lin AC, Tan CL, Lin CL, Strochlic L, Huang YS, Richter JD, Holt CE. Cytoplasmic polyadenylation and cytoplasmic polyadenylation element-dependent mRNA regulation are involved in Xenopus retinal axon development. Neural Dev 2009; 4:8. [PMID: 19254368 PMCID: PMC2661069 DOI: 10.1186/1749-8104-4-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 03/02/2009] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Translation in axons is required for growth cone chemotropic responses to many guidance cues. Although locally synthesized proteins are beginning to be identified, how specific mRNAs are selected for translation remains unclear. Control of poly(A) tail length by cytoplasmic polyadenylation element (CPE) binding protein 1 (CPEB1) is a conserved mechanism for mRNA-specific translational regulation that could be involved in regulating translation in axons. RESULTS We show that cytoplasmic polyadenylation is required in Xenopus retinal ganglion cell (RGC) growth cones for translation-dependent, but not translation-independent, chemotropic responses in vitro, and that inhibition of CPE binding through dominant-negative interference severely reduces axon outgrowth in vivo. CPEB1 mRNA transcripts are present at low levels in RGCs but, surprisingly, CPEB1 protein was not detected in eye or brain tissue, and CPEB1 loss-of-function does not affect chemotropic responses or pathfinding in vivo. UV cross-linking experiments suggest that CPE-binding proteins other than CPEB1 in the retina regulate retinal axon development. CONCLUSION These results indicate that cytoplasmic polyadenylation and CPE-mediated translational regulation are involved in retinal axon development, but that CPEB1 may not be the key regulator of polyadenylation in the developing retina.
Collapse
Affiliation(s)
- Andrew C Lin
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Chin Lik Tan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Robinson Way, Cambridge, CB2 2PY, UK
| | - Chien-Ling Lin
- Program in Molecular Medicine, University of Massachusetts Medical School, Plantation St, Worcester, MA 01605, USA
| | - Laure Strochlic
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
- Institut National de la Santé et de la Recherche Médicale, Biologie des Jonctions Neuromusculaires, Université Paris V, Paris, France
| | - Yi-Shuian Huang
- Program in Molecular Medicine, University of Massachusetts Medical School, Plantation St, Worcester, MA 01605, USA
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2 Academia Road, Taipei 11529, Taiwan
| | - Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Medical School, Plantation St, Worcester, MA 01605, USA
| | - Christine E Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| |
Collapse
|
19
|
Abstract
Morpholino oligonucleotides are stable, uncharged, water-soluble molecules used to block complementary sequences of RNA, preventing processing, read-through, or protein binding at those sites. Morpholinos are typically used to block translation of mRNA and to block splicing of pre-mRNA, though they can block other interactions between biological macromolecules and RNA. Morpholinos are effective, specific, and lack non-antisense effects. They work in any cell that transcribes and translates RNA, but must be delivered into the nuclear/cytosolic compartment to be effective. Morpholinos form stable base pairs with complementary nucleic acid sequences but apparently do not bind to proteins to a significant extent. They are not recognized by any proteins and do not undergo protein-mediated catalysis; nor do they mediate RNA cleavage by RNase H or the RISC complex. This work focuses on techniques and background for using Morpholinos.
Collapse
|
20
|
Abstract
Morpholino oligonucleotides are stable, uncharged, water-soluble molecules that bind to complementary sequences of RNA, thereby inhibiting mRNA processing, read-through, and protein binding at those sites. Morpholinos are typically used to inhibit translation of mRNA, splicing of pre-mRNA, and maturation of miRNA, although they can also inhibit other interactions between biological macromolecules and RNA. Morpholinos are effective, specific, and lack non-antisense effects. They work in any cell that transcribes and translates RNA. However, unmodified Morpholinos do not pass well through plasma membranes and must therefore be delivered into the nuclear or cytosolic compartment to be effective. Morpholinos form stable base pairs with complementary nucleic acid sequences but apparently do not bind to proteins to a significant extent. They are not recognized by proteins and do not undergo protein-mediated catalysis; nor do they mediate RNA cleavage by RNase H or the RISC complex. This work focuses on techniques and background for using Morpholinos.
Collapse
|
21
|
Shin WS, Rockson SG. Animal models for the molecular and mechanistic study of lymphatic biology and disease. Ann N Y Acad Sci 2008; 1131:50-74. [PMID: 18519959 DOI: 10.1196/annals.1413.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The development of animal model systems for the study of the lymphatic system has resulted in an explosion of information regarding the mechanisms governing lymphatic development and the diseases associated with lymphatic dysfunction. Animal studies have led to a new molecular model of embryonic lymphatic vascular development, and have provided insight into the pathophysiology of both inherited and acquired lymphatic insufficiency. It has become apparent, however, that the importance of the lymphatic system to human disease extends, beyond its role in lymphedema, to many other diverse pathologic processes, including, very notably, inflammation and tumor lymphangiogenesis. Here, we have undertaken a systematic review of the models as they relate to molecular and functional characterization of the development, maturation, genetics, heritable and acquired diseases, and neoplastic implications of the lymphatic system. The translation of these advances into therapies for human diseases associated with lymphatic dysfunction will require the continued study of the lymphatic system through robust animal disease models that simulate their human counterparts.
Collapse
Affiliation(s)
- William S Shin
- Stanford Center for Lymphatic and Venous Disorders, Division of Cardiovascular Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | | |
Collapse
|
22
|
Moulton HM, Moulton JD. Antisense Morpholino Oligomers and Their Peptide Conjugates. THERAPEUTIC OLIGONUCLEOTIDES 2008. [DOI: 10.1039/9781847558275-00043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Hong M. Moulton
- AVI BioPharma Inc. 4575 SW Research Way Corvallis OR 97333 USA
| | | |
Collapse
|
23
|
Eisen JS, Smith JC. Controlling morpholino experiments: don't stop making antisense. Development 2008; 135:1735-43. [PMID: 18403413 DOI: 10.1242/dev.001115] [Citation(s) in RCA: 463] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
One of the most significant problems facing developmental biologists who do not work on an organism with well-developed genetics - and even for some who do - is how to inhibit the action of a gene of interest during development so as to learn about its normal biological function. A widely adopted approach is to use antisense technologies, and especially morpholino antisense oligonucleotides. In this article, we review the use of such reagents and present examples of how they have provided insights into developmental mechanisms. We also discuss how the use of morpholinos can lead to misleading results, including off-target effects, and we suggest controls that will allow researchers to interpret morpholino experiments correctly.
Collapse
Affiliation(s)
- Judith S Eisen
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA
| | | |
Collapse
|
24
|
Affiliation(s)
- Shoko Ishibashi
- The Healing Foundation Centre, Michael Smith Building, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | | |
Collapse
|
25
|
Falk J, Drinjakovic J, Leung KM, Dwivedy A, Regan AG, Piper M, Holt CE. Electroporation of cDNA/Morpholinos to targeted areas of embryonic CNS in Xenopus. BMC DEVELOPMENTAL BIOLOGY 2007; 7:107. [PMID: 17900342 PMCID: PMC2147031 DOI: 10.1186/1471-213x-7-107] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 09/27/2007] [Indexed: 02/07/2023]
Abstract
Background Blastomere injection of mRNA or antisense oligonucleotides has proven effective in analyzing early gene function in Xenopus. However, functional analysis of genes involved in neuronal differentiation and axon pathfinding by this method is often hampered by earlier function of these genes during development. Therefore, fine spatio-temporal control of over-expression or knock-down approaches is required to specifically address the role of a given gene in these processes. Results We describe here an electroporation procedure that can be used with high efficiency and low toxicity for targeting DNA and antisense morpholino oligonucleotides (MOs) into spatially restricted regions of the Xenopus CNS at a critical time-window of development (22–50 hour post-fertilization) when axonal tracts are first forming. The approach relies on the design of "electroporation chambers" that enable reproducible positioning of fixed-spaced electrodes coupled with accurate DNA/MO injection. Simple adjustments can be made to the electroporation chamber to suit the shape of different aged embryos and to alter the size and location of the targeted region. This procedure can be used to electroporate separate regions of the CNS in the same embryo allowing separate manipulation of growing axons and their intermediate and final targets in the brain. Conclusion Our study demonstrates that electroporation can be used as a versatile tool to investigate molecular pathways involved in axon extension during Xenopus embryogenesis. Electroporation enables gain or loss of function studies to be performed with easy monitoring of electroporated cells. Double-targeted transfection provides a unique opportunity to monitor axon-target interaction in vivo. Finally, electroporated embryos represent a valuable source of MO-loaded or DNA transfected cells for in vitro analysis. The technique has broad applications as it can be tailored easily to other developing organ systems and to other organisms by making simple adjustments to the electroporation chamber.
Collapse
Affiliation(s)
- Julien Falk
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Jovana Drinjakovic
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Kin Mei Leung
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Asha Dwivedy
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Aoife G Regan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Michael Piper
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
- The Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Christine E Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
26
|
Huang JK, Dorey K, Ishibashi S, Amaya E. BDNF promotes target innervation of Xenopus mandibular trigeminal axons in vivo. BMC DEVELOPMENTAL BIOLOGY 2007; 7:59. [PMID: 17540021 PMCID: PMC1899173 DOI: 10.1186/1471-213x-7-59] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 05/31/2007] [Indexed: 01/11/2023]
Abstract
BACKGROUND Trigeminal nerves consist of ophthalmic, maxillary, and mandibular branches that project to distinct regions of the facial epidermis. In Xenopus embryos, the mandibular branch of the trigeminal nerve extends toward and innervates the cement gland in the anterior facial epithelium. The cement gland has previously been proposed to provide a short-range chemoattractive signal to promote target innervation by mandibular trigeminal axons. Brain derived neurotrophic factor, BDNF is known to stimulate axon outgrowth and branching. The goal of this study is to determine whether BDNF functions as the proposed target recognition signal in the Xenopus cement gland. RESULTS We found that the cement gland is enriched in BDNF mRNA transcripts compared to the other neurotrophins NT3 and NT4 during mandibular trigeminal nerve innervation. BDNF knockdown in Xenopus embryos or specifically in cement glands resulted in the failure of mandibular trigeminal axons to arborise or grow into the cement gland. BDNF expressed ectodermal grafts, when positioned in place of the cement gland, promoted local trigeminal axon arborisation in vivo. CONCLUSION BDNF is necessary locally to promote end stage target innervation of trigeminal axons in vivo, suggesting that BDNF functions as a short-range signal that stimulates mandibular trigeminal axon arborisation and growth into the cement gland.
Collapse
Affiliation(s)
- Jeffrey K Huang
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, University of Cambridge, Cambridge, CB2 1QR UK
| | - Karel Dorey
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, University of Cambridge, Cambridge, CB2 1QR UK
- The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Shoko Ishibashi
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, University of Cambridge, Cambridge, CB2 1QR UK
- The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Enrique Amaya
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, University of Cambridge, Cambridge, CB2 1QR UK
- The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
27
|
Abstract
The African clawed frog, Xenopus laevis, is a valuable model system for studies of vertebrate heart development. In the following review, we describe a range of embryological and molecular methodologies that are used in Xenopus research and discuss key discoveries relating to heart development that have been made using this model system. We also discuss how the sequence of the Xenopus tropicalis genome provides a valuable tool for identification of orthologous genes and for identification of evolutionarily conserved promoter elements. Finally, both forward and reverse genetic approaches are currently being applied to Xenopus for the study of vertebrate heart development.
Collapse
Affiliation(s)
- Andrew S Warkman
- Department of Cell Biology and Anatomy, University of Arizona Health Sciences Center, 1501 N. Campbell Avenue, P.O. Box 245044, Tucson, AZ 85724, USA.
| | | |
Collapse
|
28
|
Elkins MB, Henry JJ. Isolation and characterization of a novel gene, xMADML, involved in Xenopus laevis eye development. Dev Dyn 2006; 235:1845-57. [PMID: 16607642 DOI: 10.1002/dvdy.20824] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We have identified Xenopus MADM-like (xMADML), a Xenopus laevis gene related to the murine MADM and the human NRBP genes. xMADML is expressed throughout early development and is expressed most strongly in the developing lens and more weakly in the retina and other anterior tissues. We demonstrate that disruption of xMADML translation by means of morpholino injection results in impaired retina and lens development. Reciprocal transplantation of the presumptive lens ectoderm between morpholino-injected embryos and those injected solely with a dextran lineage tracer demonstrates that xMADML is necessary in both the lens and the retina for correct development of these eye tissues. Analysis of gene expression after knockdown of xMADML revealed significant alterations in the expression of some genes, including Pax6, xSix3, Sox2, and Sox3, suggesting that xMADML plays a role in regulating gene expression during development of the eye. This investigation is the first in vivo study examining the developmental role of this novel gene and reveals an important role of xMADML in eye tissue development and differentiation.
Collapse
Affiliation(s)
- Matthew B Elkins
- Department of Cell and Developmental Biology and College of Medicine, University of Illinois, Urbana, Illinois, USA
| | | |
Collapse
|
29
|
Li M, Rohrer B. Gene silencing in Xenopus laevis by DNA vector-based RNA interference and transgenesis. Cell Res 2006; 16:99-105. [PMID: 16467881 DOI: 10.1038/sj.cr.7310013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A vector-based RNAi expression system was developed using the Xenopus tropicalis U6 promoter, which transcribes small RNA genes by RNA polymerase III. The system was first validated in a Xenopus laevis cell line, designing a short hairpin DNA specific for the GFP gene. Co-transfection of the vector-based RNAi and the GFP gene into Xenopus XR1 cells significantly decreased the number of GFP-expressing cells and overall GFP fluorescence. Vector-based RNAi was subsequently validated in GFP transgenic Xenopus embryos. Sperm nuclei from GFP transgenic males and RNAi construct-incubated-sperm nuclei were used for fertilization, respectively. GFP mRNA and protein were reduced by approximately 60% by RNAi in these transgenic embryos compared with the control. This transgene-driven RNAi is specific and stable in inhibiting GFP expression in the Xenopus laevis transgenic line. Gene silencing by vector-based RNAi and Xenopus transgenesis may provide an alternative for 'repression of gene function' studies in vertebrate model systems.
Collapse
Affiliation(s)
- Ming Li
- Department of Neurosciences, Division of Research, Medical University of South Carolina, 167 Ashley Ave, SEI 511, Charleston, 29425, USA
| | | |
Collapse
|
30
|
Baltzinger M, Ori M, Pasqualetti M, Nardi I, Rijli FM. Hoxa2 knockdown in Xenopus results in hyoid to mandibular homeosis. Dev Dyn 2006; 234:858-67. [PMID: 16222714 DOI: 10.1002/dvdy.20567] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The skeletal structures of the face and throat are derived from cranial neural crest cells (NCCs) that migrate from the embryonic neural tube into a series of branchial arches (BAs). The first arch (BA1) gives rise to the upper and lower jaw cartilages, whereas hyoid structures are generated from the second arch (BA2). The Hox paralogue group 2 (PG2) genes, Hoxa2 and Hoxb2, show distinct roles for hyoid patterning in tetrapods and fishes. In the mouse, Hoxa2 acts as a selector of hyoid identity, while its paralogue Hoxb2 is not required. On the contrary, in zebrafish Hoxa2 and Hoxb2 are functionally redundant for hyoid arch patterning. Here, we show that in Xenopus embryos morpholino-induced functional knockdown of Hoxa2 is sufficient to induce homeotic changes of the second arch cartilage. Moreover, Hoxb2 is downregulated in the BA2 of Xenopus embryos, even though initially expressed in second arch NCCs, similar to mouse and unlike in zebrafish. Finally, Xbap, a gene involved in jaw joint formation, is selectively upregulated in the BA2 of Hoxa2 knocked-down frog embryos, supporting a hyoid to mandibular change of NCC identity. Thus, in Xenopus Hoxa2 does not act redundantly with Hoxb2 for BA2 patterning, similar to mouse and unlike in fish. These data bring novel insights into the regulation of Hox PG2 genes and hyoid patterning in vertebrate evolution and suggest that Hoxa2 function is required at late stages of BA2 development.
Collapse
Affiliation(s)
- Mireille Baltzinger
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Strasbourg, France
| | | | | | | | | |
Collapse
|
31
|
Malartre M, Short S, Sharpe C. Xenopus embryos lacking specific isoforms of the corepressor SMRT develop abnormal heads. Dev Biol 2006; 292:333-43. [PMID: 16500640 DOI: 10.1016/j.ydbio.2006.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 12/22/2005] [Accepted: 01/07/2006] [Indexed: 11/18/2022]
Abstract
The corepressor SMRT acts on a range of transcription factors, including the retinoid and thyroid hormone nuclear receptors. The carboxy-terminal region of SMRT contains CoRNR box motifs that mediate these interactions. We have shown, in Xenopus, that SMRT can exist as isoforms containing either two or three CoRNR boxes depending on the alternative splicing of exon 37b. The number of SMRT transcript isoforms expressed increases during development until all sixteen possible isoforms are identified in the swimming tadpole. To eliminate specific SMRT isoforms, we have developed a process that uses an antisense morpholino oligonucleotide in Xenopus to dictate the outcome of alternative splicing at a defined exon and used this to inhibit the formation of transcripts containing exon 37b. These embryos are therefore limited to the expression of SMRT isoforms that contain two rather than three CoRNR boxes. Analysis of responsive genes in these embryos shows that targets of thyroid hormone, but not retinoid signaling are affected by the elimination of exon 37b. Morpholino-injected embryos have swimming abnormalities and develop altered head morphology, an expanded olfactory epithelium and disorganized peripheral axons. These experiments indicate a critical role for the alternative splicing of SMRT in development.
Collapse
Affiliation(s)
- Marianne Malartre
- School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, PO1 2DY, UK
| | | | | |
Collapse
|
32
|
Abstract
Research using Xenopus laevis has made enormous contributions to our understanding of vertebrate development, control of the eukaryotic cell cycle and the cytoskeleton. One limitation, however, has been the lack of systematic genetic studies in Xenopus to complement molecular and cell biological investigations. Work with the closely related diploid frog Xenopus tropicalis is beginning to address this limitation. Here, we review the resources that will make genetic studies using X. tropicalis a reality.
Collapse
Affiliation(s)
- Samantha Carruthers
- Vertebrate Development and Genetics, The Morgan Building, Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK
| | | |
Collapse
|
33
|
Abstract
Xenopus genomics, or Xenomics for short, is coming of age. Indeed, biological insight into processes such as growth factor signaling and patterning of the early embryo is now being gained by combining the value of Xenopus as a model organism for cell and developmental biology with genomic approaches. In this review I address these recent advances and explore future possibilities gained from combining this powerful experimental system with genomic approaches, as well as how our quest to understand basic biological principles will be greatly facilitated though the marriage of Xenopus and genomics.
Collapse
Affiliation(s)
- Enrique Amaya
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, CB2 1QN, United Kingdom.
| |
Collapse
|
34
|
Taverner NV, Kofron M, Shin Y, Kabitschke C, Gilchrist MJ, Wylie C, Cho KWY, Heasman J, Smith JC. Microarray-based identification of VegT targets in Xenopus. Mech Dev 2005; 122:333-54. [PMID: 15763211 DOI: 10.1016/j.mod.2004.10.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 10/14/2004] [Accepted: 10/21/2004] [Indexed: 11/20/2022]
Abstract
The Xenopus T box family member VegT is expressed maternally in the vegetal hemisphere of the embryo. Mis-expression of VegT in prospective ectodermal tissue causes ectopic activation of mesodermal and endodermal markers, and ablation of VegT transcripts prevents proper formation of the mesendoderm, with the entire embryo developing as epidermis. These observations define VegT as a key initiator of mesendodermal development in the Xenopus embryo, and in an effort to understand how it exerts its effects we have used microarray analysis to compare gene expression in control animal caps with that in ectodermal tissue expressing an activated form of VegT. This procedure allowed the identification of 99 potential VegT targets, and we went on to study the expression patterns of these genes and then to ask, for those that are expressed in mesoderm or endoderm, which are direct targets of VegT. The putative regulatory regions of the resulting 14 genes were examined for T domain binding sites, and we also asked whether their expression is down-regulated in embryos in which VegT RNA is ablated. Finally, the functions of these genes were assayed by both over-expression and by use of antisense morpholino oligonucleotides. Our results provide new insights into the function of VegT during early Xenopus development.
Collapse
Affiliation(s)
- Nicola V Taverner
- Department of Zoology, Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Henry Wellcome Building of Cancer and Developmental Biology, Tennis Court Road, Cambridge CB2 1QN, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chen JA, Voigt J, Gilchrist M, Papalopulu N, Amaya E. Identification of novel genes affecting mesoderm formation and morphogenesis through an enhanced large scale functional screen in Xenopus. Mech Dev 2005; 122:307-31. [PMID: 15763210 DOI: 10.1016/j.mod.2004.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 10/22/2004] [Accepted: 11/13/2004] [Indexed: 10/25/2022]
Abstract
The formation of mesoderm is an important developmental process of vertebrate embryos, which can be broken down into several steps; mesoderm induction, patterning, morphogenesis and differentiation. Although mesoderm formation in Xenopus has been intensively studied, much remains to be learned about the molecular events responsible for each of these steps. Furthermore, the interplay between mesoderm induction, patterning and morphogenesis remains obscure. Here, we describe an enhanced functional screen in Xenopus designed for large-scale identification of genes controlling mesoderm formation. In order to improve the efficiency of the screen, we used a Xenopus tropicalis unique set of cDNAs, highly enriched in full-length clones. The screening strategy incorporates two mesodermal markers, Xbra and Xmyf-5, to assay for cell fate specification and patterning, respectively. In addition we looked for phenotypes that would suggest effects in morphogenesis, such as gastrulation defects and shortened anterior-posterior axis. Out of 1728 full-length clones we isolated 82 for their ability to alter the phenotype of tadpoles and/or the expression of Xbra and Xmyf-5. Many of the clones gave rise to similar misexpression phenotypes (synphenotypes) and many of the genes within each synphenotype group appeared to be involved in similar pathways. We determined the expression pattern of the 82 genes and found that most of the genes were regionalized and expressed in mesoderm. We expect that many of the genes identified in this screen will be important in mesoderm formation.
Collapse
Affiliation(s)
- Jun-An Chen
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK
| | | | | | | | | |
Collapse
|
36
|
Morpholinos and PNAs compared. Int J Pept Res Ther 2005. [DOI: 10.1007/s10989-005-4913-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Pollet N, Muncke N, Verbeek B, Li Y, Fenger U, Delius H, Niehrs C. An atlas of differential gene expression during early Xenopus embryogenesis. Mech Dev 2004; 122:365-439. [PMID: 15763213 DOI: 10.1016/j.mod.2004.11.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2004] [Revised: 10/11/2004] [Accepted: 11/07/2004] [Indexed: 01/24/2023]
Abstract
We have carried out a large-scale, semi-automated whole-mount in situ hybridization screen of 8369 cDNA clones in Xenopus laevis embryos. We confirm that differential gene expression is prevalent during embryogenesis since 24% of the clones are expressed non-ubiquitously and 8% are organ or cell type specific marker genes. Sequence analysis and clustering yielded 723 unique genes displaying a differential expression pattern. Of these, 18% were already described in Xenopus, 47% have homologs and 35% are lacking significant sequence similarity in databases. Many of them encode known developmental regulators. We classified 363 of the 723 genes for which a Gene Ontology annotation for molecular function could be attributed and found 'DNA binding' and 'enzyme' the most represented terms. The most common protein domains encoded in these embryonic, differentially expressed genes are the homeobox and RNA Recognition Motif (RRM). Fifty-nine putative orthologs of human disease genes, and 254 organ or cell specific marker genes were identified. Markers were found for nasal placode and archenteron roof, organs for which a specific marker was previously unavailable. Markers were also found for novel subdomains of various other organs. The tissues for which most markers were found are muscle and epidermis. Expression of cell cycle regulators fell in two classes, containing proliferation-promoting and anti-proliferative genes, respectively. We identified 66 new members of the BMP4, chromatin, endoplasmic reticulum, and karyopherin synexpression groups, thus providing a first glimpse of their probable cellular roles. Cluster analysis of tissues to measure tissue relatedness yielded some unorthodox affinities besides expectable lineage relationships. In conclusion, this study represents an atlas of gene expression patterns, which reveals embryonic regionalization, provides novel marker genes, and makes predictions about the functional role of unknown genes.
Collapse
Affiliation(s)
- Nicolas Pollet
- Division of Molecular Embryology, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
38
|
Lin JW, Biankin AV, Horb ME, Ghosh B, Prasad NB, Yee NS, Pack MA, Leach SD. Differential requirement for ptf1a in endocrine and exocrine lineages of developing zebrafish pancreas. Dev Biol 2004; 274:491-503. [PMID: 15570689 DOI: 10.1016/j.ydbio.2004.07.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mammalian studies have implicated important roles for the basic helix-loop-helix transcription factor Ptf1a-p48 in the development of both exocrine and endocrine pancreas. We have cloned the Ptf1a-p48 ortholog in Danio rerio. Early zebrafish ptf1a expression is observed in developing hindbrain and in endodermal pancreatic precursors. Analysis of ptf1a and insulin expression reveals a population of exocrine precursors that, throughout early development, are temporally and spatially segregated from endocrine elements. Morpholino-mediated knockdown of ptf1a confirms early divergence of these endocrine and exocrine lineages. Ptf1a morphants lack differentiated exocrine pancreas, but maintain normal differentiation and organization of the principal islet. In addition to the exocrine phenotype, ptf1a knockdown also reduces the prevalence of a small population of anterior endocrine cells normally found outside the principal islet. Together, these findings suggest the presence of distinct ptf1a-dependent and ptf1a-independent precursor populations in developing zebrafish pancreas.
Collapse
Affiliation(s)
- John W Lin
- Department of Surgery, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Bayramov AV, Martynova NY, Eroshkin FM, Ermakova GV, Zaraisky AG. The homeodomain-containing transcription factor X-nkx-5.1 inhibits expression of the homeobox gene Xanf-1 during the Xenopus laevis forebrain development. Mech Dev 2004; 121:1425-41. [PMID: 15511636 DOI: 10.1016/j.mod.2004.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Revised: 08/09/2004] [Accepted: 08/09/2004] [Indexed: 11/18/2022]
Abstract
Expression of the homeobox gene Xanf-1 starts within the presumptive forebrain primordium of the Xenopus embryo at the midgastrula stage and is inhibited by the late neurula. Such stage-specific inhibition is essential for the normal development as the experimental prolongation of the Xanf-1 expression elicits severe brain abnormalities. To identify transcriptional regulators that are responsible for the Xanf-1 inhibition, we have used the yeast one-hybrid system and identified a novel Xenopus homeobox gene X-nkx-5.1 that belongs to a family of Nkx-5.1 transcription factors. In terms of gene expression, X-nkx-5.1 shares many common features with its orthologs in other species, including expression in the embryonic brain and in the ciliated cells of the otic and lateral line placodes. However, we have also observed several features specific for X-nkx-5.1, such as expression in precursors of the epidermal ciliated cells that may indicate a possible common evolutionary origin of all ciliated cells derived from the embryonic ectoderm. Another specific feature is that the X-nkx-5.1 expression in the anterior neural plate starts early, within the area overlapping the Xanf-1 expression territory at the midneurula stage, and it correlates with the beginning of the Xanf-1 inhibition. Using various loss and gain-of-function techniques, including microinjections of antisense morpholino oligonucleotides and mRNA encoding for the X-nkx-5.1 and its dominant repressor and activator versions, we have shown that X-nkx-5.1 can indeed play a role of stage-specific inhibitor of Xanf-1 in the anterior neural plate during the Xenopus development.
Collapse
Affiliation(s)
- Andrey V Bayramov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117995 Moscow, Russian Federation
| | | | | | | | | |
Collapse
|
40
|
Kenwrick S, Amaya E, Papalopulu N. Pilot morpholino screen in Xenopus tropicalis identifies a novel gene involved in head development. Dev Dyn 2004; 229:289-99. [PMID: 14745953 DOI: 10.1002/dvdy.10440] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The diploid frog X. tropicalis has recently been adopted as a model genetic system, but loss-of-function screens in Xenopus have not yet been performed. We have undertaken a pilot functional knockdown screen in X. tropicalis for genes involved in nervous system development by injecting antisense morpholino (MO) oligos directed against X. tropicalis mRNAs. Twenty-six genes with primary expression in the nervous system were selected as targets based on an expression screen previously conducted in X. laevis. Reproducible phenotypes were observed for six and for four of these, a second MO gave a similar result. One of these genes encodes a novel protein with previously unknown function. Knocking down this gene, designated pinhead, results in severe microcephaly, whereas, overexpression results in macrocephaly. Together with the early embryonic expression in the anterior neural plate, these data indicate that pinhead is a novel gene involved in controlling head development.
Collapse
Affiliation(s)
- Sue Kenwrick
- Cambridge Institute for Medical Research, Hills Road, Cambridge United Kingdom
| | | | | |
Collapse
|
41
|
Piepenburg O, Grimmer D, Williams PH, Smith JC. Activin redux: specification of mesodermal pattern in Xenopus by graded concentrations of endogenous activin B. Development 2004; 131:4977-86. [PMID: 15371302 DOI: 10.1242/dev.01323] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mesoderm formation in the amphibian embryo occurs through an inductive interaction in which cells of the vegetal hemisphere of the embryo act on overlying equatorial cells. The first candidate mesoderm-inducing factor to be identified was activin, a member of the transforming growth factor type beta family, and it is now clear that members of this family are indeed involved in mesoderm and endoderm formation. In particular, Derrière and five nodal-related genes are all considered to be strong candidates for endogenous mesoderm-inducing agents. Here, we show that activin, the function of which in mesoderm induction has hitherto been unclear, also plays a role in mesoderm formation. Inhibition of activin function using antisense morpholino oligonucleotides interferes with mesoderm formation in a concentration-dependent manner and also changes the expression levels of other inducing agents such as Xnr2 and Derrière. This work reinstates activin as a key player in mesodermal patterning. It also emphasises the importance of checking for polymorphisms in the 5' untranslated region of the gene of interest when carrying out antisense morpholino experiments in Xenopus laevis.
Collapse
|
42
|
Gilchrist MJ, Zorn AM, Voigt J, Smith JC, Papalopulu N, Amaya E. Defining a large set of full-length clones from a Xenopus tropicalis EST project. Dev Biol 2004; 271:498-516. [PMID: 15223350 DOI: 10.1016/j.ydbio.2004.04.023] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Revised: 04/07/2004] [Accepted: 04/07/2004] [Indexed: 02/06/2023]
Abstract
Amphibian embryos from the genus Xenopus are among the best species for understanding early vertebrate development and for studying basic cell biological processes. Xenopus, and in particular the diploid Xenopus tropicalis, is also ideal for functional genomics. Understanding the behavior of genes in this accessible model system will have a significant and beneficial impact on the understanding of similar genes in other vertebrate systems. Here we describe the analysis of 219,270 X. tropicalis expressed sequence tags (ESTs) from four early developmental stages. From these, we have deduced a set of unique expressed sequences comprising approximately 20,000 clusters and 16,000 singletons. Furthermore, we developed a computational method to identify clones that contain the complete coding sequence and describe the creation for the first time of a set of approximately 7000 such clones, the full-length (FL) clone set. The entire EST set is cloned in a eukaryotic expression vector and is flanked by bacteriophage promoters for in vitro transcription, allowing functional experiments to be carried out without further subcloning. We have created a publicly available database containing the FL clone set and related clustering data (http://www.gurdon.cam.ac.uk/informatics/Xenopus.html) and we make the FL clone set publicly available as a resource to accelerate the process of gene discovery and function in this model organism. The creation of the unique set of expressed sequences and the FL clone set pave the way toward a large-scale systematic analysis of gene sequence, gene expression, and gene function in this vertebrate species.
Collapse
|
43
|
Lin JW, Biankin AV, Horb ME, Ghosh B, Prasad NB, Yee NS, Pack MA, Leach SD. Differential requirement for ptf1a in endocrine and exocrine lineages of developing zebrafish pancreas. Dev Biol 2004; 270:474-86. [PMID: 15183727 DOI: 10.1016/j.ydbio.2004.02.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Revised: 01/20/2004] [Accepted: 02/25/2004] [Indexed: 11/15/2022]
Abstract
Mammalian studies have implicated important roles for the basic helix-loop-helix transcription factor Ptf1a-p48 in the development of both exocrine and endocrine pancreas. We have cloned the Ptf1a-p48 ortholog in Danio rerio. Early zebrafish ptf1a expression is observed in developing hindbrain and in endodermal pancreatic precursors. Analysis of ptf1a and insulin expression reveals a population of exocrine precursors that, throughout early development, are temporally and spatially segregated from endocrine elements. Morpholino-mediated knockdown of ptf1a confirms early divergence of these endocrine and exocrine lineages. Ptf1a morphants lack differentiated exocrine pancreas, but maintain normal differentiation and organization of the principal islet. In addition to the exocrine phenotype, ptf1a knockdown also reduces the prevalence of a small population of anterior endocrine cells normally found outside the principal islet. Together, these findings suggest the presence of distinct ptf1a-dependent and ptf1a-independent precursor populations in developing zebrafish pancreas.
Collapse
Affiliation(s)
- John W Lin
- Department of Surgery, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Gervasi C, Szaro BG. Performing functional studies of Xenopus laevis intermediate filament proteins through injection of macromolecules into early embryos. Methods Cell Biol 2004; 78:673-701. [PMID: 15646635 DOI: 10.1016/s0091-679x(04)78023-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Christine Gervasi
- Department of Biological Sciences and the Center for Neuroscience Research, University at Albany, State University of New York, Albany, New York 12222, USA
| | | |
Collapse
|
45
|
Boado RJ, Pardridge WM. Imaging gene expression in the brain with peptide nucleic acid (PNA) antisense radiopharmaceuticals and drug targeting technology. Int J Pept Res Ther 2003. [DOI: 10.1007/s10989-004-4918-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
|
47
|
Carruthers S, Mason J, Papalopulu N. Depletion of the cell-cycle inhibitor p27(Xic1) impairs neuronal differentiation and increases the number of ElrC(+) progenitor cells in Xenopus tropicalis. Mech Dev 2003; 120:607-16. [PMID: 12782277 DOI: 10.1016/s0925-4773(03)00010-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The Xenopus p27(Xic1) gene encodes a cyclin dependent kinase (CDK) inhibitor of the Cip/Kip family. We have previously shown that p27(Xic1) is expressed in the cells of the neural plate as they become post-mitotic (Development 127 (2000) 1303). To investigate whether p27(Xic1) is necessary for cell cycle exit and/or neuronal differentiation, we used antisense morpholino oligos (MO) to knockdown the protein levels in vivo. For such knockdown studies, Xenopus tropicalis is a better model system than Xenopus laevis, since it has a diploid genome. Indeed, while X. laevis has two p27(Xic1) paralogs, p27(Xic1) and p28(Kix1), we have found only one ortholog in X. tropicalis, equidistant from the X. laevis genes. The X. tropicalis p27(Xic1) was expressed in a similar pattern to the X. laevis gene. Depletion of p27(Xic1) in X. tropicalis caused an increase in proliferation and a suppression of the neuronal differentiation marker, N-tubulin. At the same time, we found an increase in the expression of ElrC, a marker of cells as they undergo a transition from proliferation to differentiation. We conclude that p27(Xic1) is necessary for cells to exit the cell cycle and differentiate; in its absence, cells accumulate in a progenitor state. The expression of p27(Xic1) in the embryo is regionalised but the transcriptional regulation of p27(Xic1) is not well understood. We report the isolation of a p27(Xic1) genomic clone and we identify a 5' region capable of driving reporter gene expression specifically in the neural tube and the eye.
Collapse
Affiliation(s)
- Samantha Carruthers
- Wellcome Trust/Cancer Research UK Institute, Tennis Court Road, Cambridge CB2 1QR, UK
| | | | | |
Collapse
|
48
|
|
49
|
Collavin L, Kirschner MW. The secreted Frizzled-related protein Sizzled functions as a negative feedback regulator of extreme ventral mesoderm. Development 2003; 130:805-16. [PMID: 12506010 DOI: 10.1242/dev.00306] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The prevailing model of dorsal ventral patterning of the amphibian embryo predicts that the prospective mesoderm is regionalized at gastrulation in response to a gradient of signals. This gradient is established by diffusible BMP and Wnt inhibitors secreted dorsally in the Spemann organizer. An interesting question is whether ventrolateral tissue passively reads graded levels of ventralizing signals, or whether local self-organizing regulatory circuits may exist on the ventral side to control cell behavior and differentiation at a distance from the Organizer. We provide evidence that sizzled, a secreted Frizzled-related protein expressed ventrally during and after gastrulation, functions in a negative feedback loop that limits allocation of mesodermal cells to the extreme ventral fate, with direct consequences for morphogenesis and formation of the blood islands. Morpholino-mediated knockdown of Sizzled protein results in expansion of ventral posterior mesoderm and the ventral blood islands, indicating that this negative regulation is required for proper patterning of the ventral mesoderm. The biochemical activity of sizzled is apparently very different from that of other secreted Frizzled-related proteins, and does not involve inhibition of Wnt8. Our data are consistent with the existence of some limited self-organizing properties of the extreme ventral mesoderm.
Collapse
Affiliation(s)
- Licio Collavin
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
50
|
D'Souza A, Lee M, Taverner N, Mason J, Carruthers S, Smith JC, Amaya E, Papalopulu N, Zorn AM. Molecular components of the endoderm specification pathway in Xenopus tropicalis. Dev Dyn 2003; 226:118-27. [PMID: 12508233 DOI: 10.1002/dvdy.10201] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Xenopus laevis has been instrumental in elucidating a conserved molecular pathway that regulates vertebrate endoderm specification. However, loss-of-function analysis is required to resolve the precise function of the genes involved. For such analysis, antisense oligos and possibly forward genetics are likely to be more effective in the diploid species Xenopus tropicalis than in the pseudotetraploid Xenopus laevis. Here we have isolated most of the tropicalis genes in the endoderm specification pathway, specifically, tVegT, tMixer, tMix, tBix, tGata6, tSox17alpha, tSox17beta, tFoxA1, tHex, and tCerberus, which lack the redundant copies that are found in laevis. In situ hybridization analysis has revealed identical expression patterns between the orthologous tropicalis and laevis endoderm genes, thus suggesting conserved genetic functions. Furthermore, we noted that the smaller tropicalis embryos gave better probe penetration than in laevis whole-mount in situ hybridizations-allowing us to visualize transcripts in the deep endoderm in tropicalis, which is difficult in laevis. This study illustrates how an entire genetic pathway can be quickly transferred from laevis to tropicalis due to high sequence conservation between the sister species and the large number of tropicalis-expressed sequence tags that are now available.
Collapse
Affiliation(s)
- Anjali D'Souza
- Cincinnati Children's Hospital Medical Center, Division of Developmental Biology, Cincinnati, Ohio 45229-3039, USA
| | | | | | | | | | | | | | | | | |
Collapse
|