1
|
Espino CM, Nagaraja C, Ortiz S, Dayton JR, Murali AR, Ma Y, Mann EL, Garlapalli S, Wohlgemuth RP, Brashear SE, Smith LR, Wilkinson KA, Griffith TN. Differential encoding of mammalian proprioception by voltage-gated sodium channels. SCIENCE ADVANCES 2025; 11:eads6660. [PMID: 39772670 PMCID: PMC11708877 DOI: 10.1126/sciadv.ads6660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
Animals requiring purposeful movement for survival are endowed with mechanoreceptors, called proprioceptors, that provide essential sensory feedback from muscles and joints to spinal cord circuits, which modulates motor output. Despite the essential nature of proprioceptive signaling in daily life, the mechanisms governing proprioceptor activity are poorly understood. Here, we identified nonredundant roles for two voltage-gated sodium channels (NaVs), NaV1.1 and NaV1.6, in mammalian proprioception. Deletion of NaV1.6 in somatosensory neurons (NaV1.6cKO mice) causes severe motor deficits accompanied by loss of proprioceptive transmission, which contrasts with our previous findings using similar mouse models to target NaV1.1 (NaV1.1cKO). In NaV1.6cKO animals, we observed impairments in proprioceptor end-organ structure and a marked reduction in skeletal muscle myofiber size that were absent in NaV1.1cKO mice. We attribute the differential contributions of NaV1.1 and NaV1.6 to distinct cellular localization patterns. Collectively, we provide evidence that NaVs uniquely shape neural signaling within a somatosensory modality.
Collapse
Affiliation(s)
- Cyrrus M. Espino
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
| | - Chetan Nagaraja
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
| | - Serena Ortiz
- Department of Biological Sciences, San José State University, San Jose, CA, USA
| | - Jacquelyn R. Dayton
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
| | - Akash R. Murali
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
- Undergraduate Program in Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, USA
| | - Yanki Ma
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
- Undergraduate Program in Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, USA
| | - Emari L. Mann
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
- Postbaccalaureate Research Education Program at UC Davis, University of California, Davis, Davis, CA, USA
| | - Snigdha Garlapalli
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
- Undergraduate Program in Psychology, University of California, Davis, Davis, CA, USA
| | - Ross P. Wohlgemuth
- Department of Physiology, Neurobiology, and Behavior, University of California, Davis, Davis, CA, USA
| | - Sarah E. Brashear
- Department of Physiology, Neurobiology, and Behavior, University of California, Davis, Davis, CA, USA
| | - Lucas R. Smith
- Department of Physiology, Neurobiology, and Behavior, University of California, Davis, Davis, CA, USA
| | | | - Theanne N. Griffith
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
2
|
Yu W, Hill SF, Huang Y, Zhu L, Demetriou Y, Ziobro J, Reger F, Jia X, Mattis J, Meisler MH. Allele-Specific Editing of a Dominant SCN8A Epilepsy Variant Protects against Seizures and Lethality in a Murine Model. Ann Neurol 2024; 96:958-969. [PMID: 39158034 PMCID: PMC11496010 DOI: 10.1002/ana.27053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/18/2024] [Accepted: 07/26/2024] [Indexed: 08/20/2024]
Abstract
OBJECTIVE Developmental and epileptic encephalopathies (DEEs) can result from dominant, gain of function variants of neuronal ion channels. More than 450 de novo missense variants of the sodium channel gene SCN8A have been identified in individuals with DEE. METHODS We studied a mouse model carrying the patient Scn8a variant p.Asn1768Asp. An AAV-PHP.eB virus carrying an allele-specific single guide RNA (sgRNA) was administered by intracerebroventricular injection. Cas9 was provided by an inherited transgene. RESULTS Allele-specific disruption of the reading frame of the pathogenic transcript generated out-of-frame indels in 1/4 to 1/3 of transcripts throughout the brain. This editing efficiency was sufficient to rescue lethality and seizures. Neuronal hyperexcitability was reduced in cells expressing the virus. INTERPRETATION The data demonstrate efficient allele-specific editing of a dominant missense variant and support the feasibility of allele-specific therapy for DEE epilepsy. ANN NEUROL 2024;96:958-969.
Collapse
Affiliation(s)
- Wenxi Yu
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| | - Sophie F Hill
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
| | - Yumei Huang
- Center for Genomic Technologies, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
| | - Limei Zhu
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | | | - Julie Ziobro
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Faith Reger
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| | - Xiaoyan Jia
- Center for Genomic Technologies, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
| | - Joanna Mattis
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
| |
Collapse
|
3
|
Espino CM, Nagaraja C, Ortiz S, Dayton JR, Murali AR, Ma Y, Mann EL, Garlapalli S, Wohlgemuth RP, Brashear SE, Smith LR, Wilkinson KA, Griffith TN. Differential encoding of mammalian proprioception by voltage-gated sodium channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609982. [PMID: 39253497 PMCID: PMC11383322 DOI: 10.1101/2024.08.27.609982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Animals that require purposeful movement for survival are endowed with mechanosensory neurons called proprioceptors that provide essential sensory feedback from muscles and joints to spinal cord circuits, which modulates motor output. Despite the essential nature of proprioceptive signaling in daily life, the mechanisms governing proprioceptor activity are poorly understood. Here, we have identified distinct and nonredundant roles for two voltage-gated sodium channels (NaVs), NaV1.1 and NaV1.6, in mammalian proprioception. Deletion of NaV1.6 in somatosensory neurons (NaV1.6cKO mice) causes severe motor deficits accompanied by complete loss of proprioceptive transmission, which contrasts with our previous findings using similar mouse models to target NaV1.1 (NaV1.1cKO). In NaV1.6cKO animals, loss of proprioceptive feedback caused non-cell-autonomous impairments in proprioceptor end-organs and skeletal muscle that were absent in NaV1.1cKO mice. We attribute the differential contribution of NaV1.1 and NaV1.6 in proprioceptor function to distinct cellular localization patterns. Collectively, these data provide the first evidence that NaV subtypes uniquely shape neurotransmission within a somatosensory modality.
Collapse
Affiliation(s)
- Cyrrus M. Espino
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
| | - Chetan Nagaraja
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
| | - Serena Ortiz
- Department of Biological Sciences, San José State University, San Jose, CA, USA
| | - Jacquelyn R. Dayton
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
| | - Akash R. Murali
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
- Undergraduate Program in Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, USA
| | - Yanki Ma
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
- Undergraduate Program in Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, USA
| | - Emari L. Mann
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
- Postbaccalaureate Research Education Program at UC Davis, University of California, Davis, Davis, CA, USA
| | - Snigdha Garlapalli
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
- Undergraduate Program in Psychology, University of California, Davis, Davis, CA, USA
| | - Ross P. Wohlgemuth
- Department of Physiology, Neurobiology, and Behavior, University of California, Davis, Davis, CA, USA
| | - Sarah E. Brashear
- Department of Physiology, Neurobiology, and Behavior, University of California, Davis, Davis, CA, USA
| | - Lucas R. Smith
- Department of Physiology, Neurobiology, and Behavior, University of California, Davis, Davis, CA, USA
| | | | - Theanne N. Griffith
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
4
|
Santiago C, Sharma N, Africawala N, Siegrist J, Handler A, Tasnim A, Anjum R, Turecek J, Lehnert BP, Renauld S, Nolan-Tamariz M, Iskols M, Magee AR, Paradis S, Ginty DD. Activity-dependent development of the body's touch receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.23.559109. [PMID: 37790437 PMCID: PMC10542488 DOI: 10.1101/2023.09.23.559109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
We report a role for activity in the development of the primary sensory neurons that detect touch. Genetic deletion of Piezo2, the principal mechanosensitive ion channel in somatosensory neurons, caused profound changes in the formation of mechanosensory end organ structures and altered somatosensory neuron central targeting. Single cell RNA sequencing of Piezo2 conditional mutants revealed changes in gene expression in the sensory neurons activated by light mechanical forces, whereas other neuronal classes were less affected. To further test the role of activity in mechanosensory end organ development, we genetically deleted the voltage-gated sodium channel Nav1.6 (Scn8a) in somatosensory neurons throughout development and found that Scn8a mutants also have disrupted somatosensory neuron morphologies and altered electrophysiological responses to mechanical stimuli. Together, these findings indicate that mechanically evoked neuronal activity acts early in life to shape the maturation of the mechanosensory end organs that underlie our sense of gentle touch.
Collapse
Affiliation(s)
- Celine Santiago
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Nikhil Sharma
- Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Nusrat Africawala
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Julianna Siegrist
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Annie Handler
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Aniqa Tasnim
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Rabia Anjum
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA, 02453, USA
| | - Josef Turecek
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Brendan P. Lehnert
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Sophia Renauld
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael Nolan-Tamariz
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael Iskols
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Alexandra R. Magee
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Suzanne Paradis
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA, 02453, USA
| | - David D. Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
- Lead Contact
| |
Collapse
|
5
|
da Silva CA, Grover CJ, Picardo MCD, Del Negro CA. Role of Na V1.6-mediated persistent sodium current and bursting-pacemaker properties in breathing rhythm generation. Cell Rep 2023; 42:113000. [PMID: 37590134 PMCID: PMC10528911 DOI: 10.1016/j.celrep.2023.113000] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/16/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
Inspiration is the inexorable active phase of breathing. The brainstem pre-Bötzinger complex (preBötC) gives rise to inspiratory neural rhythm, but its underlying cellular and ionic bases remain unclear. The long-standing "pacemaker hypothesis" posits that the persistent Na+ current (INaP) that gives rise to bursting-pacemaker properties in preBötC interneurons is essential for rhythmogenesis. We tested the pacemaker hypothesis by conditionally knocking out and knocking down the Scn8a (Nav1.6 [voltage-gated sodium channel 1.6]) gene in core rhythmogenic preBötC neurons. Deleting Scn8a substantially decreases the INaP and abolishes bursting-pacemaker activity, which slows inspiratory rhythm in vitro and negatively impacts the postnatal development of ventilation. Diminishing Scn8a via genetic interference has no impact on breathing in adult mice. We argue that the Scn8a-mediated INaP is not obligatory but that it influences the development and rhythmic function of the preBötC. The ubiquity of the INaP in respiratory brainstem interneurons could underlie breathing-related behaviors such as neonatal phonation or rhythmogenesis in different physiological conditions.
Collapse
Affiliation(s)
- Carlos A da Silva
- Department of Applied Science, William & Mary, Williamsburg, VA 23185, USA
| | - Cameron J Grover
- Department of Applied Science, William & Mary, Williamsburg, VA 23185, USA
| | | | | |
Collapse
|
6
|
Rey Hipolito AG, van der Heijden ME, Sillitoe RV. Physiology of Dystonia: Animal Studies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:163-215. [PMID: 37482392 DOI: 10.1016/bs.irn.2023.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Dystonia is currently ranked as the third most prevalent motor disorder. It is typically characterized by involuntary muscle over- or co-contractions that can cause painful abnormal postures and jerky movements. Dystonia is a heterogenous disorder-across patients, dystonic symptoms vary in their severity, body distribution, temporal pattern, onset, and progression. There are also a growing number of genes that are associated with hereditary dystonia. In addition, multiple brain regions are associated with dystonic symptoms in both genetic and sporadic forms of the disease. The heterogeneity of dystonia has made it difficult to fully understand its underlying pathophysiology. However, the use of animal models has been used to uncover the complex circuit mechanisms that lead to dystonic behaviors. Here, we summarize findings from animal models harboring mutations in dystonia-associated genes and phenotypic animal models with overt dystonic motor signs resulting from spontaneous mutations, neural circuit perturbations, or pharmacological manipulations. Taken together, an emerging picture depicts dystonia as a result of brain-wide network dysfunction driven by basal ganglia and cerebellar dysfunction. In the basal ganglia, changes in dopaminergic, serotonergic, noradrenergic, and cholinergic signaling are found across different animal models. In the cerebellum, abnormal burst firing activity is observed in multiple dystonia models. We are now beginning to unveil the extent to which these structures mechanistically interact with each other. Such mechanisms inspire the use of pre-clinical animal models that will be used to design new therapies including drug treatments and brain stimulation.
Collapse
Affiliation(s)
- Alejandro G Rey Hipolito
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States
| | - Meike E van der Heijden
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States
| | - Roy V Sillitoe
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States; Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States; Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States.
| |
Collapse
|
7
|
Yang X, Yin H, Wang X, Sun Y, Bian X, Zhang G, Li A, Cao A, Li B, Ebrahimi-Fakhari D, Yang Z, Meisler MH, Liu Q. Social Deficits and Cerebellar Degeneration in Purkinje Cell Scn8a Knockout Mice. Front Mol Neurosci 2022; 15:822129. [PMID: 35557557 PMCID: PMC9087741 DOI: 10.3389/fnmol.2022.822129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/18/2022] [Indexed: 11/23/2022] Open
Abstract
Mutations in the SCN8A gene encoding the voltage-gated sodium channel α-subunit Nav1. 6 have been reported in individuals with epilepsy, intellectual disability and features of autism spectrum disorder. SCN8A is widely expressed in the central nervous system, including the cerebellum. Cerebellar dysfunction has been implicated in autism spectrum disorder. We investigated conditional Scn8a knockout mice under C57BL/6J strain background that specifically lack Scn8a expression in cerebellar Purkinje cells (Scn8a flox/flox , L7Cre + mice). Cerebellar morphology was analyzed by immunohistochemistry and MR imaging. Mice were subjected to a battery of behavioral tests including the accelerating rotarod, open field, elevated plus maze, light-dark transition box, three chambers, male-female interaction, social olfaction, and water T-maze tests. Patch clamp recordings were used to evaluate evoked action potentials in Purkinje cells. Behavioral phenotyping demonstrated that Scn8a flox/flox , L7Cre + mice have impaired social interaction, motor learning and reversal learning as well as increased repetitive behavior and anxiety-like behaviors. By 5 months of age, Scn8a flox/flox , L7Cre + mice began to exhibit cerebellar Purkinje cell loss and reduced molecular thickness. At 9 months of age, Scn8a flox/flox , L7Cre + mice exhibited decreased cerebellar size and a reduced number of cerebellar Purkinje cells more profoundly, with evidence of additional neurodegeneration in the molecular layer and deep cerebellar nuclei. Purkinje cells in Scn8a flox/flox , L7Cre + mice exhibited reduced repetitive firing. Taken together, our experiments indicated that loss of Scn8a expression in cerebellar Purkinje cells leads to cerebellar degeneration and several ASD-related behaviors. Our study demonstrated the specific contribution of loss of Scn8a in cerebellar Purkinje cells to behavioral deficits characteristic of ASD. However, it should be noted that our observed effects reported here are specific to the C57BL/6 genome type.
Collapse
Affiliation(s)
- Xiaofan Yang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Experimental Teratology, Ministry of Education, Department of Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Hongqiang Yin
- Medical School, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, China.,Department of Operational Medicine, Tianjin Institute of Environmental & Operational Medicine, Tianjin, China
| | - Xiaojing Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yueqing Sun
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xianli Bian
- Department of Neurology, Second Hospital of Shandong University, Jinan, China
| | - Gaorui Zhang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Anning Li
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Aihua Cao
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Baomin Li
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Zhuo Yang
- Medical School, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, China
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States.,Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Qiji Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China.,Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Jinan, China
| |
Collapse
|
8
|
|
9
|
Chen L, Huang J, Benson C, Lankford KL, Zhao P, Carrara J, Tan AM, Kocsis JD, Waxman SG, Dib-Hajj SD. Sodium channel Nav1.6 in sensory neurons contributes to vincristine-induced allodynia. Brain 2020; 143:2421-2436. [PMID: 32830219 DOI: 10.1093/brain/awaa208] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 12/20/2022] Open
Abstract
Vincristine, a widely used chemotherapeutic agent, produces painful peripheral neuropathy. The underlying mechanisms are not well understood. In this study, we investigated whether voltage-gated sodium channels are involved in the development of vincristine-induced neuropathy. We established a mouse model in which repeated systemic vincristine treatment results in the development of significant mechanical allodynia. Histological examinations did not reveal major structural changes at proximal sciatic nerve branches or distal toe nerve fascicles at the vincristine dose used in this study. Immunohistochemical studies and in vivo two-photon imaging confirmed that there is no significant change in density or morphology of intra-epidermal nerve terminals throughout the course of vincristine treatment. These observations suggest that nerve degeneration is not a prerequisite of vincristine-induced mechanical allodynia in this model. We also provided the first detailed characterization of tetrodotoxin-sensitive (TTX-S) and resistant (TTX-R) sodium currents in dorsal root ganglion neurons following vincristine treatment. Accompanying the behavioural hyperalgesia phenotype, voltage-clamp recordings of small and medium dorsal root ganglion neurons from vincristine-treated animals revealed a significant upregulation of TTX-S Na+ current in medium but not small neurons. The increase in TTX-S Na+ current density is likely mediated by Nav1.6, because in the absence of Nav1.6 channels, vincristine failed to alter TTX-S Na+ current density in medium dorsal root ganglion neurons and, importantly, mechanical allodynia was significantly attenuated in conditional Nav1.6 knockout mice. Our data show that TTX-S sodium channel Nav1.6 is involved in the functional changes of dorsal root ganglion neurons following vincristine treatment and it contributes to the maintenance of vincristine-induced mechanical allodynia.
Collapse
Affiliation(s)
- Lubin Chen
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Jianying Huang
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Curtis Benson
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Karen L Lankford
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Peng Zhao
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Jennifer Carrara
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Andrew M Tan
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Jeffery D Kocsis
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Sulayman D Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| |
Collapse
|
10
|
Solé L, Tamkun MM. Trafficking mechanisms underlying Na v channel subcellular localization in neurons. Channels (Austin) 2020; 14:1-17. [PMID: 31841065 PMCID: PMC7039628 DOI: 10.1080/19336950.2019.1700082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/13/2019] [Indexed: 01/06/2023] Open
Abstract
Voltage gated sodium channels (Nav) play a crucial role in action potential initiation and propagation. Although the discovery of Nav channels dates back more than 65 years, and great advances in understanding their localization, biophysical properties, and links to disease have been made, there are still many questions to be answered regarding the cellular and molecular mechanisms involved in Nav channel trafficking, localization and regulation. This review summarizes the different trafficking mechanisms underlying the polarized Nav channel localization in neurons, with an emphasis on the axon initial segment (AIS), as well as discussing the latest advances regarding how neurons regulate their excitability by modifying AIS length and location. The importance of Nav channel localization is emphasized by the relationship between mutations, impaired trafficking and disease. While this review focuses on Nav1.6, other Nav isoforms are also discussed.
Collapse
Affiliation(s)
- Laura Solé
- Molecular, Cellular and Integrative Neurosciences Graduate Program, Colorado State University, Fort Collins, CO, USA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Michael M. Tamkun
- Molecular, Cellular and Integrative Neurosciences Graduate Program, Colorado State University, Fort Collins, CO, USA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
11
|
Alrashdi B, Dawod B, Schampel A, Tacke S, Kuerten S, Marshall JS, Côté PD. Nav1.6 promotes inflammation and neuronal degeneration in a mouse model of multiple sclerosis. J Neuroinflammation 2019; 16:215. [PMID: 31722722 PMCID: PMC6852902 DOI: 10.1186/s12974-019-1622-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In multiple sclerosis (MS) and in the experimental autoimmune encephalomyelitis (EAE) model of MS, the Nav1.6 voltage-gated sodium (Nav) channel isoform has been implicated as a primary contributor to axonal degeneration. Following demyelination Nav1.6, which is normally co-localized with the Na+/Ca2+ exchanger (NCX) at the nodes of Ranvier, associates with β-APP, a marker of neural injury. The persistent influx of sodium through Nav1.6 is believed to reverse the function of NCX, resulting in an increased influx of damaging Ca2+ ions. However, direct evidence for the role of Nav1.6 in axonal degeneration is lacking. METHODS In mice floxed for Scn8a, the gene that encodes the α subunit of Nav1.6, subjected to EAE we examined the effect of eliminating Nav1.6 from retinal ganglion cells (RGC) in one eye using an AAV vector harboring Cre and GFP, while using the contralateral either injected with AAV vector harboring GFP alone or non-targeted eye as control. RESULTS In retinas, the expression of Rbpms, a marker for retinal ganglion cells, was found to be inversely correlated to the expression of Scn8a. Furthermore, the gene expression of the pro-inflammatory cytokines Il6 (IL-6) and Ifng (IFN-γ), and of the reactive gliosis marker Gfap (GFAP) were found to be reduced in targeted retinas. Optic nerves from targeted eyes were shown to have reduced macrophage infiltration and improved axonal health. CONCLUSION Taken together, our results are consistent with Nav1.6 promoting inflammation and contributing to axonal degeneration following demyelination.
Collapse
Affiliation(s)
- Barakat Alrashdi
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada.,Department of Biology, Al-Jouf University, Sakaka, Saudi Arabia
| | - Bassel Dawod
- Department of Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Andrea Schampel
- Institute of Anatomy and Cell Biology Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sabine Tacke
- Institute of Anatomy and Cell Biology Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Stefanie Kuerten
- Institute of Anatomy and Cell Biology Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jean S Marshall
- Department of Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Patrice D Côté
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada. .,Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
12
|
Role of sodium channel subtype in action potential generation by neocortical pyramidal neurons. Proc Natl Acad Sci U S A 2018; 115:E7184-E7192. [PMID: 29991598 DOI: 10.1073/pnas.1720493115] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Neocortical pyramidal neurons express several distinct subtypes of voltage-gated Na+ channels. In mature cells, Nav1.6 is the dominant channel subtype in the axon initial segment (AIS) as well as in the nodes of Ranvier. Action potentials (APs) are initiated in the AIS, and it has been proposed that the high excitability of this region is related to the unique characteristics of the Nav1.6 channel. Knockout or loss-of-function mutation of the Scn8a gene is generally lethal early in life because of the importance of this subtype in noncortical regions of the nervous system. Using the Cre/loxP system, we selectively deleted Nav1.6 in excitatory neurons of the forebrain and characterized the excitability of Nav1.6-deficient layer 5 pyramidal neurons by patch-clamp and Na+ and Ca2+ imaging recordings. We now report that, in the absence of Nav1.6 expression, the AIS is occupied by Nav1.2 channels. However, APs are generated in the AIS, and differences in AP propagation to soma and dendrites are minimal. Moreover, the channels that are expressed in the AIS still show a clear hyperpolarizing shift in voltage dependence of activation, compared with somatic channels. The only major difference between Nav1.6-null and wild-type neurons was a strong reduction in persistent sodium current. We propose that the molecular environment of the AIS confers properties on whatever Na channel subtype is present and that some other benefit must be conferred by the selective axonal presence of the Nav1.6 channel.
Collapse
|
13
|
Chen L, Huang J, Zhao P, Persson AK, Dib-Hajj FB, Cheng X, Tan A, Waxman SG, Dib-Hajj SD. Conditional knockout of Na V1.6 in adult mice ameliorates neuropathic pain. Sci Rep 2018; 8:3845. [PMID: 29497094 PMCID: PMC5832877 DOI: 10.1038/s41598-018-22216-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/19/2018] [Indexed: 01/09/2023] Open
Abstract
Voltage-gated sodium channels NaV1.7, NaV1.8 and NaV1.9 have been the focus for pain studies because their mutations are associated with human pain disorders, but the role of NaV1.6 in pain is less understood. In this study, we selectively knocked out NaV1.6 in dorsal root ganglion (DRG) neurons, using NaV1.8-Cre directed or adeno-associated virus (AAV)-Cre mediated approaches, and examined the specific contribution of NaV1.6 to the tetrodotoxin-sensitive (TTX-S) current in these neurons and its role in neuropathic pain. We report here that NaV1.6 contributes up to 60% of the TTX-S current in large, and 34% in small DRG neurons. We also show NaV1.6 accumulates at nodes of Ranvier within the neuroma following spared nerve injury (SNI). Although NaV1.8-Cre driven NaV1.6 knockout does not alter acute, inflammatory or neuropathic pain behaviors, AAV-Cre mediated NaV1.6 knockout in adult mice partially attenuates SNI-induced mechanical allodynia. Additionally, AAV-Cre mediated NaV1.6 knockout, mostly in large DRG neurons, significantly attenuates excitability of these neurons after SNI and reduces NaV1.6 accumulation at nodes of Ranvier at the neuroma. Together, NaV1.6 in NaV1.8-positive neurons does not influence pain thresholds under normal or pathological conditions, but NaV1.6 in large NaV1.8-negative DRG neurons plays an important role in neuropathic pain.
Collapse
Affiliation(s)
- Lubin Chen
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA.,Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT, 06510, USA.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Jianying Huang
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA.,Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT, 06510, USA.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Peng Zhao
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA.,Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT, 06510, USA.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Anna-Karin Persson
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA.,Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT, 06510, USA.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Fadia B Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA.,Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT, 06510, USA.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Xiaoyang Cheng
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA.,Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT, 06510, USA.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Andrew Tan
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA.,Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT, 06510, USA.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA.,Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT, 06510, USA.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Sulayman D Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA. .,Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT, 06510, USA. .,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT, 06516, USA.
| |
Collapse
|
14
|
Makinson CD, Tanaka BS, Sorokin JM, Wong JC, Christian CA, Goldin AL, Escayg A, Huguenard JR. Regulation of Thalamic and Cortical Network Synchrony by Scn8a. Neuron 2017; 93:1165-1179.e6. [PMID: 28238546 DOI: 10.1016/j.neuron.2017.01.031] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/30/2016] [Accepted: 01/30/2017] [Indexed: 12/22/2022]
Abstract
Voltage-gated sodium channel (VGSC) mutations cause severe epilepsies marked by intermittent, pathological hypersynchronous brain states. Here we present two mechanisms that help to explain how mutations in one VGSC gene, Scn8a, contribute to two distinct seizure phenotypes: (1) hypoexcitation of cortical circuits leading to convulsive seizure resistance, and (2) hyperexcitation of thalamocortical circuits leading to non-convulsive absence epilepsy. We found that loss of Scn8a leads to altered RT cell intrinsic excitability and a failure in recurrent RT synaptic inhibition. We propose that these deficits cooperate to enhance thalamocortical network synchrony and generate pathological oscillations. To our knowledge, this finding is the first clear demonstration of a pathological state tied to disruption of the RT-RT synapse. Our observation that loss of a single gene in the thalamus of an adult wild-type animal is sufficient to cause spike-wave discharges is striking and represents an example of absence epilepsy of thalamic origin.
Collapse
Affiliation(s)
- Christopher D Makinson
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94304, USA
| | - Brian S Tanaka
- Departments of Microbiology and Molecular Genetics and Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA
| | - Jordan M Sorokin
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94304, USA
| | - Jennifer C Wong
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Catherine A Christian
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94304, USA
| | - Alan L Goldin
- Departments of Microbiology and Molecular Genetics and Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA
| | - Andrew Escayg
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA.
| | - John R Huguenard
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94304, USA.
| |
Collapse
|
15
|
Analysis of compound heterozygotes reveals that the mouse floxed Pax6 (tm1Ued) allele produces abnormal eye phenotypes. Transgenic Res 2016; 25:679-92. [PMID: 27240603 PMCID: PMC5023747 DOI: 10.1007/s11248-016-9962-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/13/2016] [Indexed: 01/27/2023]
Abstract
Analysis of abnormal phenotypes produced by different types of mutations has been crucial for our understanding of gene function. Some floxed alleles that retain a neomycin-resistance selection cassette (neo cassette) are not equivalent to wild-type alleles and provide useful experimental resources. Pax6 is an important developmental gene and the aim of this study was to determine whether the floxed Pax6tm1Ued (Pax6fl) allele, which has a retained neo cassette, produced any abnormal eye phenotypes that would imply that it differs from the wild-type allele. Homozygous Pax6fl/fl and heterozygous Pax6fl/+ mice had no overt qualitative eye abnormalities but morphometric analysis showed that Pax6fl/fl corneas tended be thicker and smaller in diameter. To aid identification of weak effects, we produced compound heterozygotes with the Pax6Sey-Neu (Pax6−) null allele. Pax6fl/− compound heterozygotes had more severe eye abnormalities than Pax6+/− heterozygotes, implying that Pax6fl differs from the wild-type Pax6+ allele. Immunohistochemistry showed that the Pax6fl/− corneal epithelium was positive for keratin 19 and negative for keratin 12, indicating that it was abnormally differentiated. This Pax6fl allele provides a useful addition to the existing Pax6 allelic series and this study demonstrates the utility of using compound heterozygotes with null alleles to unmask cryptic effects of floxed alleles.
Collapse
|
16
|
Lenk GM, Frei CM, Miller AC, Wallen RC, Mironova YA, Giger RJ, Meisler MH. Rescue of neurodegeneration in the Fig4 null mouse by a catalytically inactive FIG4 transgene. Hum Mol Genet 2015; 25:340-7. [PMID: 26604144 DOI: 10.1093/hmg/ddv480] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/16/2015] [Indexed: 11/13/2022] Open
Abstract
The lipid phosphatase FIG4 is a subunit of the protein complex that regulates biosynthesis of the signaling lipid PI(3,5)P2. Mutations of FIG4 result in juvenile lethality and spongiform neurodegeneration in the mouse, and are responsible for the human disorders Charcot-Marie-Tooth disease, Yunis-Varon syndrome and polymicrogyria with seizures. We previously demonstrated that conditional expression of a wild-type FIG4 transgene in neurons is sufficient to rescue most of the abnormalities of Fig4 null mice, including juvenile lethality and extensive neurodegeneration. To evaluate the contribution of the phosphatase activity to the in vivo function of Fig4, we introduced the mutation p.Cys486Ser into the Sac phosphatase active-site motif CX5RT. Transfection of the Fig4(Cys486Ser) cDNA into cultured Fig4(-/-) fibroblasts was effective in preventing vacuolization. The neuronal expression of an NSE-Fig4(Cys486Ser) transgene in vivo prevented the neonatal neurodegeneration and juvenile lethality seen in Fig4 null mice. These observations demonstrate that the catalytically inactive FIG4 protein provides significant function, possibly by stabilization of the PI(3,5)P2 biosynthetic complex and/or localization of the complex to endolysosomal vesicles. Despite this partial rescue, later in life the NSE-Fig4(Cys486Ser) transgenic mice display significant abnormalities that include hydrocephalus, defective myelination and reduced lifespan. The late onset phenotype of the NSE-Fig4(Cys486Ser) transgenic mice demonstrates that the phosphatase activity of FIG4 has an essential role in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | - Roman J Giger
- Department of Cell and Developmental Biology and Department of Neurology, University of Michigan, 4909 Buhl, Ann Arbor, MI 48109-5618, USA
| | - Miriam H Meisler
- Department of Human Genetics, Department of Neurology, University of Michigan, 4909 Buhl, Ann Arbor, MI 48109-5618, USA
| |
Collapse
|
17
|
Chung G, Saito M, Kawasaki Y, Kawano T, Yin D, Lee S, Kogo M, Takada M, Bae YC, Kim JS, Oh SB, Kang Y. Generation of resonance-dependent oscillation by mGluR-I activation switches single spiking to bursting in mesencephalic trigeminal sensory neurons. Eur J Neurosci 2015; 41:998-1012. [PMID: 25712773 DOI: 10.1111/ejn.12858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/19/2015] [Accepted: 01/26/2015] [Indexed: 11/29/2022]
Abstract
The primary sensory neurons supplying muscle spindles of jaw-closing muscles are unique in that they have their somata in the mesencephalic trigeminal nucleus (MTN) in the brainstem, thereby receiving various synaptic inputs. MTN neurons display bursting upon activation of glutamatergic synaptic inputs while they faithfully relay respective impulses arising from peripheral sensory organs. The persistent sodium current (IN aP ) is reported to be responsible for both the generation of bursts and the relay of impulses. We addressed how IN aP is controlled either to trigger bursts or to relay respective impulses as single spikes in MTN neurons. Protein kinase C (PKC) activation enhanced IN aP only at low voltages. Spike generation was facilitated by PKC activation at membrane potentials more depolarized than the resting potential. By injection of a ramp current pulse, a burst of spikes was triggered from a depolarized membrane potential whereas its instantaneous spike frequency remained almost constant despite the ramp increases in the current intensity beyond the threshold. A puff application of glutamate preceding the ramp pulse lowered the threshold for evoking bursts by ramp pulses while chelerythrine abolished such effects of glutamate. Dihydroxyphenylglycine, an agonist of mGluR1/5, also caused similar effects, and increased both the frequency and impedance of membrane resonance. Immunohistochemistry revealed that glutamatergic synapses are made onto the stem axons, and that mGluR1/5 and Nav1.6 are co-localized in the stem axon. Taken together, glutamatergic synaptic inputs onto the stem axon may be able to switch the relaying to the bursting mode.
Collapse
Affiliation(s)
- Gehoon Chung
- Department of Neuroscience and Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan; Pain Cognitive Function Research Center, Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Yuan Y, Isom LL. SUMOylation of Neuronal K⁺ channels: a potential therapeutic pathway for epilepsy and SUDEP? Neuron 2014; 83:996-8. [PMID: 25189206 DOI: 10.1016/j.neuron.2014.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Critical unmet clinical needs are the treatment of epilepsy without side effects and prevention of sudden unexpected death in epilepsy, or SUDEP. In this issue of Neuron, Qi et al. (2014), define how hyper-SUMOylation impacts K(+) channel activity in vivo and could serve as a potential pathway for development of novel epilepsy therapeutics.
Collapse
Affiliation(s)
- Yukun Yuan
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Lori L Isom
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
19
|
Makinson CD, Tanaka BS, Lamar T, Goldin AL, Escayg A. Role of the hippocampus in Nav1.6 (Scn8a) mediated seizure resistance. Neurobiol Dis 2014; 68:16-25. [PMID: 24704313 DOI: 10.1016/j.nbd.2014.03.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 03/13/2014] [Accepted: 03/25/2014] [Indexed: 10/25/2022] Open
Abstract
SCN1A mutations are the main cause of the epilepsy disorders Dravet syndrome (DS) and genetic epilepsy with febrile seizures plus (GEFS+). Mutations that reduce the activity of the mouse Scn8a gene, in contrast, are found to confer seizure resistance and extend the lifespan of mouse models of DS and GEFS+. To investigate the mechanism by which reduced Scn8a expression confers seizure resistance, we induced interictal-like burst discharges in hippocampal slices of heterozygous Scn8a null mice (Scn8a(med/+)) with elevated extracellular potassium. Scn8a(med/+) mutants exhibited reduced epileptiform burst discharge activity after P20, indicating an age-dependent increased threshold for induction of epileptiform discharges. Scn8a deficiency also reduced the occurrence of burst discharges in a GEFS+ mouse model (Scn1a(R1648H/+)). There was no detectable change in the expression levels of Scn1a (Nav1.1) or Scn2a (Nav1.2) in the hippocampus of adult Scn8a(med/+) mutants. To determine whether the increased seizure resistance associated with reduced Scn8a expression was due to alterations that occurred during development, we examined the effect of deleting Scn8a in adult mice. Global Cre-mediated deletion of a heterozygous floxed Scn8a allele in adult mice was found to increase thresholds to chemically and electrically induced seizures. Finally, knockdown of Scn8a gene expression in the adult hippocampus via lentiviral Cre injection resulted in a reduction in the number of EEG-confirmed seizures following the administration of picrotoxin. Our results identify the hippocampus as an important structure in the mediation of Scn8a-dependent seizure protection and suggest that selective targeting of Scn8a activity might be efficacious in patients with epilepsy.
Collapse
Affiliation(s)
| | - Brian S Tanaka
- Departments of Microbiology and Molecular Genetics and Anatomy and Neurobiology, University of California, Irvine, CA 92697
| | - Tyra Lamar
- Department of Human Genetics, Emory University, Atlanta, GA 30322
| | - Alan L Goldin
- Departments of Microbiology and Molecular Genetics and Anatomy and Neurobiology, University of California, Irvine, CA 92697
| | - Andrew Escayg
- Department of Human Genetics, Emory University, Atlanta, GA 30322
| |
Collapse
|
20
|
Jones JM, Meisler MH. Modeling human epilepsy by TALEN targeting of mouse sodium channel Scn8a. Genesis 2013; 52:141-8. [PMID: 24288358 DOI: 10.1002/dvg.22731] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/21/2013] [Accepted: 11/25/2013] [Indexed: 01/09/2023]
Abstract
To evaluate the efficiency of TALEN technology for introducing mutations into the mouse genome we targeted Scn8a, a member of a multigene family with nine closely related paralogs. Our goal was to generate a model of early onset epileptic encephalopathy by introduction of the Scn8a missense mutation p.Asn1768Asp. We used a pair of TALENs that were highly active in transfected cells. The targeting template for homologous recombination contained a 4 kb genomic fragment. Microinjection of TALENs with the targeting construct into the pronucleus of 350 fertilized mouse eggs generated 67 live-born potential founders, of which 5 were heterozygous for the pathogenic mutation, a yield of 7% correctly targeted mice. Twenty-four mice carried one or two Scn8a indels, including 12 frameshift mutations and the novel amino acid deletion p.Asn1759del. Nine off-site mutations in the paralogs sodium channel genes Scn5a and Scn4a were identified. The data demonstrate the feasibility and efficiency of targeting members of multigene families using TALENs. The Scn8a(tm) (1768DMm) mouse model will be useful for investigation of the pathogenesis and therapy of early onset seizure disorders.
Collapse
Affiliation(s)
- Julie M Jones
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
21
|
O'Brien JE, Meisler MH. Sodium channel SCN8A (Nav1.6): properties and de novo mutations in epileptic encephalopathy and intellectual disability. Front Genet 2013; 4:213. [PMID: 24194747 PMCID: PMC3809569 DOI: 10.3389/fgene.2013.00213] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/04/2013] [Indexed: 11/13/2022] Open
Abstract
The sodium channel Nav1.6, encoded by the gene SCN8A, is one of the major voltage-gated channels in human brain. The sequences of sodium channels have been highly conserved during evolution, and minor changes in biophysical properties can have a major impact in vivo. Insight into the role of Nav1.6 has come from analysis of spontaneous and induced mutations of mouse Scn8a during the past 18 years. Only within the past year has the role of SCN8A in human disease become apparent from whole exome and genome sequences of patients with sporadic disease. Unique features of Nav1.6 include its contribution to persistent current, resurgent current, repetitive neuronal firing, and subcellular localization at the axon initial segment (AIS) and nodes of Ranvier. Loss of Nav1.6 activity results in reduced neuronal excitability, while gain-of-function mutations can increase neuronal excitability. Mouse Scn8a (med) mutants exhibit movement disorders including ataxia, tremor and dystonia. Thus far, more than ten human de novo mutations have been identified in patients with two types of disorders, epileptic encephalopathy and intellectual disability. We review these human mutations as well as the unique features of Nav1.6 that contribute to its role in determining neuronal excitability in vivo. A supplemental figure illustrating the positions of amino acid residues within the four domains and 24 transmembrane segments of Nav1.6 is provided to facilitate the location of novel mutations within the channel protein.
Collapse
Affiliation(s)
- Janelle E O'Brien
- Department of Human Genetics, University of Michigan Ann Arbor, MI, USA
| | | |
Collapse
|
22
|
O'Brien JE, Sharkey LM, Vallianatos CN, Han C, Blossom JC, Yu T, Waxman SG, Dib-Hajj SD, Meisler MH. Interaction of voltage-gated sodium channel Nav1.6 (SCN8A) with microtubule-associated protein Map1b. J Biol Chem 2012; 287:18459-66. [PMID: 22474336 DOI: 10.1074/jbc.m111.336024] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The mechanism by which voltage-gated sodium channels are trafficked to the surface of neurons is not well understood. Our previous work implicated the cytoplasmic N terminus of the sodium channel Na(v)1.6 in this process. We report that the N terminus plus the first transmembrane segment (residues 1-153) is sufficient to direct a reporter to the cell surface. To identify proteins that interact with the 117-residue N-terminal domain, we carried out a yeast two-hybrid screen of a mouse brain cDNA library. Three clones containing overlapping portions of the light chain of microtubule-associated protein Map1b (Mtap1b) were recovered from the screen. Interaction between endogenous Na(v)1.6 channels and Map1b in mouse brain was confirmed by co-immunoprecipitation. Map1b did not interact with the N terminus of the related channel Na(v)1.1. Alanine-scanning mutagenesis of the Na(v)1.6 N terminus demonstrated that residues 77-80 (VAVP) contribute to interaction with Map1b. Co-expression of Na(v)1.6 with Map1b in neuronal cell line ND7/23 resulted in a 50% increase in current density, demonstrating a functional role for this interaction. Mutation of the Map1b binding site of Na(v)1.6 prevented generation of sodium current in transfected cells. The data indicate that Map1b facilitates trafficking of Na(v)1.6 to the neuronal cell surface.
Collapse
Affiliation(s)
- Janelle E O'Brien
- Department of Human Genetics, the University of Michigan, Ann Arbor, Michigan 48109-5618, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hammond SM, Gogliotti RG, Rao V, Beauvais A, Kothary R, DiDonato CJ. Mouse survival motor neuron alleles that mimic SMN2 splicing and are inducible rescue embryonic lethality early in development but not late. PLoS One 2010; 5:e15887. [PMID: 21249120 PMCID: PMC3012126 DOI: 10.1371/journal.pone.0015887] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/27/2010] [Indexed: 11/25/2022] Open
Abstract
Spinal muscular atrophy (SMA) is caused by low survival motor neuron (SMN) levels and patients represent a clinical spectrum due primarily to varying copies of the survival motor neuron-2 (SMN2) gene. Patient and animals studies show that disease severity is abrogated as SMN levels increase. Since therapies currently being pursued target the induction of SMN, it will be important to understand the dosage, timing and cellular requirements of SMN for disease etiology and potential therapeutic intervention. This requires new mouse models that can induce SMN temporally and/or spatially. Here we describe the generation of two hypomorphic Smn alleles, SmnC-T-Neo and Smn2B-Neo. These alleles mimic SMN2 exon 7 splicing, titre Smn levels and are inducible. They were specifically designed so that up to three independent lines of mice could be generated, herein we describe two. In a homozygous state each allele results in embryonic lethality. Analysis of these mutants indicates that greater than 5% of Smn protein is required for normal development. The severe hypomorphic nature of these alleles is caused by inclusion of a loxP-flanked neomycin gene selection cassette in Smn intron 7, which can be removed with Cre recombinase. In vitro and in vivo experiments demonstrate these as inducible Smn alleles. When combined with an inducible Cre mouse, embryonic lethality caused by low Smn levels can be rescued early in gestation but not late. This provides direct genetic evidence that a therapeutic window for SMN inductive therapies may exist. Importantly, these lines fill a void for inducible Smn alleles. They also provide a base from which to generate a large repertoire of SMA models of varying disease severities when combined with other Smn alleles or SMN2-containing mice.
Collapse
Affiliation(s)
- Suzan M. Hammond
- Human Molecular Genetics Program, Children's Memorial Research Center, Chicago, Illinois, United States of America
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Rocky G. Gogliotti
- Human Molecular Genetics Program, Children's Memorial Research Center, Chicago, Illinois, United States of America
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Vamshi Rao
- Human Molecular Genetics Program, Children's Memorial Research Center, Chicago, Illinois, United States of America
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Ariane Beauvais
- Ottawa Hospital Research Institute, Ottawa, Canada
- The University of Ottawa Center for Neuromuscular Disease, Ottawa, Canada
| | - Rashmi Kothary
- Ottawa Hospital Research Institute, Ottawa, Canada
- The University of Ottawa Center for Neuromuscular Disease, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- Department of Medicine, University of Ottawa, Ottawa, Canada
| | - Christine J. DiDonato
- Human Molecular Genetics Program, Children's Memorial Research Center, Chicago, Illinois, United States of America
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
24
|
Osorio N, Cathala L, Meisler MH, Crest M, Magistretti J, Delmas P. Persistent Nav1.6 current at axon initial segments tunes spike timing of cerebellar granule cells. J Physiol 2010; 588:651-70. [PMID: 20173079 DOI: 10.1113/jphysiol.2010.183798] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cerebellar granule (CG) cells generate high-frequency action potentials that have been proposed to depend on the unique properties of their voltage-gated ion channels. To address the in vivo function of Nav1.6 channels in developing and mature CG cells, we combined the study of the developmental expression of Nav subunits with recording of acute cerebellar slices from young and adult granule-specific Scn8a KO mice. Nav1.2 accumulated rapidly at early-formed axon initial segments (AISs). In contrast, Nav1.6 was absent at early postnatal stages but accumulated at AISs of CG cells from P21 to P40. By P40-P65, both Nav1.6 and Nav1.2 co-localized at CG cell AISs. By comparing Na(+) currents in mature CG cells (P66-P74) from wild-type and CG-specific Scn8a KO mice, we found that transient and resurgent Na(+) currents were not modified in the absence of Nav1.6 whereas persistent Na(+) current was strongly reduced. Action potentials in conditional Scn8a KO CG cells showed no alteration in threshold and overshoot, but had a faster repolarization phase and larger post-spike hyperpolarization. In addition, although Scn8a KO CG cells kept their ability to fire action potentials at very high frequency, they displayed increased interspike-interval variability and firing irregularity in response to sustained depolarization. We conclude that Nav1.6 channels at axon initial segments contribute to persistent Na(+) current and ensure a high degree of temporal precision in repetitive firing of CG cells.
Collapse
Affiliation(s)
- Nancy Osorio
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, UMR 6231, CNRS, Université de la Méditerranée, CS80011, Bd Pierre Dramard, 13344 Marseille Cedex 15, France
| | | | | | | | | | | |
Collapse
|
25
|
Ragland RL, Arlt MF, Hughes ED, Saunders TL, Glover TW. Mice hypomorphic for Atr have increased DNA damage and abnormal checkpoint response. Mamm Genome 2009; 20:375-85. [PMID: 19504344 DOI: 10.1007/s00335-009-9195-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 05/08/2009] [Indexed: 10/20/2022]
Abstract
The ATR checkpoint pathway responds to DNA damage during the S/G2 phases of the cell cycle and is activated early in tumorigenesis. Investigation of ATR's role in development and tumorigenesis is complicated by the lethality of homozygous knockout mice and the limited effects of heterozygous deficiency. To overcome this limitation, we sought to create mice with a hypomorphic Atr mutation based on the ATR mutation in the human disease Seckel syndrome-1 (SCKL1). Homozygous SCKL1 mice were generated by targeted knock-in of the A --> G SCKL1 mutation. Western blot and RT-PCR analysis established that homozygotes have no reduction in Atr protein or increase in missplicing as is seen in humans. Thus, the A --> G substitution alone is not sufficient to reproduce in mice the effects that are seen in humans. However, homozygous SCKL1 mice that retain the neo cassette used for targeting have an estimated 66-82% reduction in total Atr protein levels due to missplicing into the neo cassette. Under conditions of APH-induced replication stress, primary fibroblasts from homozygous mice displayed an increase in overall chromosome damage and an increase in gaps and breaks at specific common fragile sites. In addition, mutant cells display a significant delay in checkpoint induction and an increase in DNA damage as assayed by Chk1 phosphorylation and gamma-H2ax levels, respectively. These mice provide a novel model system for studies of Atr deficiency and replication stress.
Collapse
Affiliation(s)
- Ryan L Ragland
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-0618, USA.
| | | | | | | | | |
Collapse
|
26
|
The ataxia3 mutation in the N-terminal cytoplasmic domain of sodium channel Na(v)1.6 disrupts intracellular trafficking. J Neurosci 2009; 29:2733-41. [PMID: 19261867 DOI: 10.1523/jneurosci.6026-08.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The ENU-induced neurological mutant ataxia3 was mapped to distal mouse chromosome 15. Sequencing of the positional candidate gene Scn8a encoding the sodium channel Na(v)1.6 identified a T>C transition in exon 1 resulting in the amino acid substitution p.S21P near the N terminus of the channel. The cytoplasmic N-terminal region is evolutionarily conserved but its function has not been well characterized. ataxia3 homozygotes exhibit a severe disorder that includes ataxia, tremor, and juvenile lethality. Unlike Scn8a null mice, they retain partial hindlimb function. The mutant transcript is stable but protein abundance is reduced and the mutant channel is not detected in its usual site of concentration at nodes of Ranvier. In whole-cell patch-clamp studies of transfected ND7/23 cells that were maintained at 37 degrees C, the mutant channel did not produce sodium current, and function was not restored by coexpression of beta1 and beta2 subunits. However, when transfected cells were maintained at 30 degrees C, the mutant channel generated voltage-dependent inward sodium currents with an average peak current density comparable with wild type, demonstrating recovery of channel activity. Immunohistochemistry of primary cerebellar granule cells from ataxia3 mice demonstrated that the mutant protein is retained in the cis-Golgi. This trafficking defect can account for the low level of Na(v)1.6-S21P at nodes of Ranvier in vivo and at the surface of transfected cells. The data demonstrate that the cytoplasmic N-terminal domain of the sodium channel is required for anterograde transport from the Golgi complex to the plasma membrane.
Collapse
|
27
|
Papale LA, Beyer B, Jones JM, Sharkey LM, Tufik S, Epstein M, Letts VA, Meisler MH, Frankel WN, Escayg A. Heterozygous mutations of the voltage-gated sodium channel SCN8A are associated with spike-wave discharges and absence epilepsy in mice. Hum Mol Genet 2009; 18:1633-41. [PMID: 19254928 PMCID: PMC2667290 DOI: 10.1093/hmg/ddp081] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In a chemical mutagenesis screen, we identified the novel Scn8a8J allele of the gene encoding the neuronal voltage-gated sodium channel Nav1.6. The missense mutation V929F in this allele alters an evolutionarily conserved residue in the pore loop of domain 2 of Nav1.6. Electroencephalography (EEG) revealed well-defined spike-wave discharges (SWD), the hallmark of absence epilepsy, in Scn8a8J heterozygotes and in heterozygotes for two classical Scn8a alleles, Scn8amed (null) and Scn8amed-jo (missense). Mouse strain background had a significant effect on SWD, with mutants on the C3HeB/FeJ strain showing a higher incidence than on C57BL/6J. The abnormal EEG patterns in heterozygous mutant mice and the influence of genetic background on SWD make SCN8A an attractive candidate gene for common human absence epilepsy, a genetically complex disorder.
Collapse
Affiliation(s)
- Ligia A Papale
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Nagai Y, Sano H, Yokoi M. Transgenic expression of Cre recombinase in mitral/tufted cells of the olfactory bulb. Genesis 2008; 43:12-6. [PMID: 16106355 DOI: 10.1002/gene.20146] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Olfactory information is conveyed from the periphery to the olfactory cortices through mitral and tufted (M/T) cells in the olfactory bulb. A mouse with a specific expression of Cre recombinase in M/T cells is essential for genetic marking of M/T cells and manipulating their properties. Protocadherin 21 (Pcdh21) expression is highly restricted to M/T cells. Here we report a transgenic mouse line, Pcdh21-Cre, in which 10-kb mouse Pcdh21 promoter drives the expression of Cre recombinase. In Pcdh21-Cre mice, Cre recombinase activity is predominantly detected in M/T cells, visualized with the anti-CFP immunostaining in offspring of a cross between Pcdh21-Cre and the reporter Rosa26-loxP-stop-loxP-CFP strain. These results demonstrate that the 10-kb Pcdh21 promoter can drive transcription in M/T cells and Pcdh21-Cre mice can be used to excise floxed DNA fragments in M/T cells, which provides a valuable tool to reveal the structure and function of the central olfactory circuits.
Collapse
Affiliation(s)
- Yumiko Nagai
- Molecular Neurogenetics Unit, HMRO, Kyoto University Graduate School of Medicine, Yoshida-Konoe, Sakyo, Kyoto, Japan
| | | | | |
Collapse
|
29
|
Woodruff-Pak DS, Disterhoft JF. Where is the trace in trace conditioning? Trends Neurosci 2008; 31:105-12. [PMID: 18199490 DOI: 10.1016/j.tins.2007.11.006] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 11/28/2007] [Accepted: 11/29/2007] [Indexed: 11/19/2022]
Abstract
Intensive mapping of the essential cerebellar brain circuits for Pavlovian eyeblink conditioning appeared relatively complete by 2000, but new data indicate the need for additional differentiation of cerebellar regions and mechanisms coding delay and trace conditioning. This is especially important, as trace conditioning is an experimentally tractable model of declarative learning. The temporal gap in trace eyeblink conditioning may be bridged by forebrain regions through pontine-cerebellar nuclear connections that can bypass cerebellar cortex, whereas a cerebellar cortical long-term-depression-like process appears to be required to support normal delay conditioning. Experiments focusing on the role of cerebellar cortex and deep nuclei in delay versus trace conditioning add perspective on brain substrates of these seemingly similar paradigms, which differ only by a brief stimulus-free time gap between conditioned and unconditioned stimuli. This temporal gap appears to impose forebrain dependencies and differentially engage different cerebellar circuitry during acquisition of conditioned responses.
Collapse
|
30
|
Chen C, Dickendesher TL, Oyama F, Miyazaki H, Nukina N, Isom LL. Floxed allele for conditional inactivation of the voltage-gated sodium channel β1 subunitScn1b. Genesis 2007; 45:547-53. [PMID: 17868089 DOI: 10.1002/dvg.20324] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The voltage-gated sodium channel gene Scn1b encodes the auxiliary subunit beta1, which is widely distributed in neurons and glia of the central and peripheral nervous systems, cardiac myocytes, skeletal muscle myocytes, and neuroendocrine cells. We showed previously that the Scn1b null mutation results in a complex and severe phenotype that includes retarded growth, seizures, ataxia, and death by postnatal day 21. We generated a floxed allele of Scn1b by inserting loxP sites surrounding the second coding exon. Ubiquitous deletion of the floxed exon by Cre recombinase using CMV-Cre-transgenic mice produced the Scn1b(del) allele. The null phenotype of Scn1b(del) homozygotes is indistinguishable from that of Scn1b nulls and confirms the invivo inactivation of Scn1b. Conditional inactivation ofthe floxed allele will make it possible to circumvent the lethality that results from complete loss of this gene, such that the physiological role of Scn1b in specific cell types and/or specific developmental time points can be investigated.
Collapse
Affiliation(s)
- Chunling Chen
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109-0632, USA
| | | | | | | | | | | |
Collapse
|
31
|
Levin SI, Khaliq ZM, Aman TK, Grieco TM, Kearney JA, Raman IM, Meisler MH. Impaired Motor Function in Mice With Cell-Specific Knockout of Sodium ChannelScn8a(NaV1.6) in Cerebellar Purkinje Neurons and Granule Cells. J Neurophysiol 2006; 96:785-93. [PMID: 16687615 DOI: 10.1152/jn.01193.2005] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The Scn8a gene encodes the voltage-gated Na channel α subunit NaV1.6, which is widely expressed throughout the nervous system. Global null mutations that eliminate Scn8a in all cells result in severe motor dysfunction and premature death, precluding analysis of the physiological role of NaV1.6 in different neuronal types. To test the effect of cerebellar NaV1.6 on motor coordination in mice, we used the Cre-lox system to eliminate Scn8a expression exclusively in Purkinje neurons (Purkinje KO) and/or granule neurons (granule KO). Whereas granule KO mice had only minor behavioral defects, adult Purkinje KO mice exhibited ataxia, tremor, and impaired coordination. These disorders were exacerbated in double mutants lacking Scn8a in both Purkinje and granule cells (double KO). In Purkinje cells isolated from adult Purkinje KO and double KO but not granule KO mice, the ratio of resurgent-to-transient tetrodotoxin- (TTX)-sensitive Na current amplitudes decreased from ∼15 to ∼5%. In cerebellar slices, Purkinje cell spontaneous and maximal firing rates were reduced 10-fold and twofold relative to control in Purkinje KO and double KO but not granule KO mice. Additionally, short-term plasticity of high-frequency parallel fiber EPSCs was altered relative to control in Purkinje KO and double KO but not granule KO mice. These data suggest that the specialized kinetics of Purkinje Na channels depend directly on Scn8a expression. The loss of these channels leads to a decrease in Purkinje cell firing rates as well as a modification of the synaptic properties of afferent parallel fibers, with the ultimate consequence of disrupting motor behavior.
Collapse
Affiliation(s)
- Stephen I Levin
- Dept. of Human Genetics, University of Michigan, School of Medicine, Ann Arbor, MI 48109-0618, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Musarella M, Alcaraz G, Caillol G, Boudier JL, Couraud F, Autillo-Touati A. Expression of Nav1.6 sodium channels by Schwann cells at neuromuscular junctions: Role in the motor endplate disease phenotype. Glia 2006; 53:13-23. [PMID: 16078241 DOI: 10.1002/glia.20252] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In addition to their role in action potential generation and fast synaptic transmission in neurons, voltage-dependent sodium channels can also be active in glia. Terminal Schwann cells (TSCs) wrap around the nerve terminal arborization at the neuromuscular junction, which they contribute to shape during development and in the postdenervation processes. Using fluorescent in situ hybridization (FISH), immunofluorescence, and confocal microscopy, we detected the neuronal Nav1.6 sodium channel transcripts and proteins in TSCs in normal adult rats and mice. Nav1.6 protein co-localized with the Schwann cell marker S-100 but was not detected in the SV2-positive nerve terminals. The med phenotype in mice is due to a mutation in the SCN8A gene resulting in loss of Nav1.6 expression. It leads to early onset in postnatal life of defects in neuromuscular transmission with minimal alteration of axonal conduction. Strikingly, in mutant mice, the nonmyelinated pre-terminal region of axons showed abundant sprouting at neuromuscular junctions, and most of the alpha-bungarotoxin-labeled endplates were devoid of S-100- or GFAP-positive TSCs. Using specific antibodies against the Nav1.2 and Nav1.6 sodium channels, ankyrin G and Caspr 1, and a pan sodium channel antibody, we found that a similar proportion of ankyrin G-positive nodes of Ranvier express sodium channels in mutant and wild-type animals and that nodal expression of Nav1.2 persists in med mice. Our data supports the hypothesis that the lack of expression of Nav1.6 in Schwann cells at neuromuscular junctions might play a role in the med phenotype.
Collapse
Affiliation(s)
- Magali Musarella
- INSERM, UMR 641, IFR Jean Roche, Marseille, France; Université de la Méditerranée,Faculté de Médecine Nord, Marseille, Cedex, France
| | | | | | | | | | | |
Collapse
|
33
|
Woodruff-Pak DS, Green JT, Levin SI, Meisler MH. Inactivation of sodium channel Scn8A (Nav1.6) in purkinje neurons impairs learning in Morris Water Maze and delay but not trace eyeblink classical conditioning. Behav Neurosci 2006; 120:229-40. [PMID: 16719687 DOI: 10.1037/0735-7044.120.2.229] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To examine the isolated effects of altered currents in cerebellar Purkinje neurons, the authors used Scn8a-super(flox/flox), Purkinje cell protein-CRE (Pcp-CRE) mice in which Exon 1 of Scn8a is deleted only in Purkinje neurons. Twenty male Purkinje Scn8a knockout (PKJ Scn8a KO) mice and 20 male littermates were tested on the Morris water maze (MWM). Subsequently, half were tested in 500-ms delay and half were tested in 500-ms trace eyeblink conditioning. PKJ Scn8a KO mice were impaired in delay conditioning and MWM but not in trace conditioning. These results provide additional support for the necessary participation of cerebellar cortex in normal acquisition of delay eyeblink conditioning and MWM and raise questions about the role, if any, of cerebellar cortex in trace eyeblink conditioning.
Collapse
|
34
|
Meisler MH, Kearney JA. Sodium channel mutations in epilepsy and other neurological disorders. J Clin Invest 2005; 115:2010-7. [PMID: 16075041 PMCID: PMC1180547 DOI: 10.1172/jci25466] [Citation(s) in RCA: 357] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Since the first mutations of the neuronal sodium channel SCN1A were identified 5 years ago, more than 150 mutations have been described in patients with epilepsy. Many are sporadic mutations and cause loss of function, which demonstrates haploinsufficiency of SCN1A. Mutations resulting in persistent sodium current are also common. Coding variants of SCN2A, SCN8A, and SCN9A have also been identified in patients with seizures, ataxia, and sensitivity to pain, respectively. The rapid pace of discoveries suggests that sodium channel mutations are significant factors in the etiology of neurological disease and may contribute to psychiatric disorders as well.
Collapse
Affiliation(s)
- Miriam H Meisler
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109-0618, USA.
| | | |
Collapse
|