1
|
Chen L, Liao K, Zhang Y, Zheng S, He J, Tang H, Wu H, Zhong W, Li S, Li Y. Association of GWAS-Reported Variant of Matrix Metalloproteinase 12 Gene with Susceptibility to Ischemic Stroke in Southern Chinese Population. J Inflamm Res 2024; 17:9231-9241. [PMID: 39583862 PMCID: PMC11585993 DOI: 10.2147/jir.s487321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024] Open
Abstract
Background Accumulating evidence suggests that matrix metalloproteinase (MMP) 12 plays a detrimental role in cerebro-cardiovascular diseases, including ischemic stroke (IS). Previous genome-wide association studies (GWAS) correlated the MMP12 rs660599 variant to IS risk in Europeans. However, this association is yet to be elucidated in the Chinese population. This study aims to assess the genetic predisposition of the MMP12 rs660599 G > A variant with regard to IS risk and short-term outcomes in individuals from Southern China. Methods The Multiplex SNaPshot assay was used to genotype rs660599 in 1035 IS patients and 1061 age-matched healthy controls. Multivariate logistic regression analyses evaluated the effect of the rs660599 G > A polymorphism on IS susceptibility and short-term outcomes. Results No significant association was found between the rs660599 G > A polymorphism and IS risk, even in dominant and recessive models. However, a relationship between rs660599 genotypes and diabetic status revealed that carriers of the A allele and the GA/AA genotype were more likely to develop IS. The presence of diabetes exacerbated the larger infarct volumes and elevated serum MMP12 levels seen in IS patients with the rs660599 A allele. The A allele of rs660599 and the GA/AA genotype were both correlated to moderate and severe stroke with poor short-term outcomes. Conclusion The MMP12 rs660599 polymorphism is associated with a higher incidence of IS in people with diabetes and can serve as a biomarker for assessing the severity of IS and its short-term consequences.
Collapse
Affiliation(s)
- Linfa Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Department of Neurology, Huizhou Third People’s Hospital, Guangzhou Medical University, Huizhou, People’s Republic of China
| | - Keqi Liao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Yutian Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Shutao Zheng
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Jiawen He
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Henglei Tang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Hailing Wu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Wangtao Zhong
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Shengnan Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - You Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| |
Collapse
|
2
|
Li T, Shi W, Ho MS, Zhang YQ. A Pvr-AP-1-Mmp1 signaling pathway is activated in astrocytes upon traumatic brain injury. eLife 2024; 12:RP87258. [PMID: 39480704 PMCID: PMC11527428 DOI: 10.7554/elife.87258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Traumatic brain injury (TBI) caused by external mechanical forces is a major health burden worldwide, but the underlying mechanism in glia remains largely unclear. We report herein that Drosophila adults exhibit a defective blood-brain barrier, elevated innate immune responses, and astrocyte swelling upon consecutive strikes with a high-impact trauma device. RNA sequencing (RNA-seq) analysis of these astrocytes revealed upregulated expression of genes encoding PDGF and VEGF receptor-related (Pvr, a receptor tyrosine kinase), adaptor protein complex 1 (AP-1, a transcription factor complex of the c-Jun N-terminal kinase pathway) composed of Jun-related antigen (Jra) and kayak (kay), and matrix metalloproteinase 1 (Mmp1) following TBI. Interestingly, Pvr is both required and sufficient for AP-1 and Mmp1 upregulation, while knockdown of AP-1 expression in the background of Pvr overexpression in astrocytes rescued Mmp1 upregulation upon TBI, indicating that Pvr acts as the upstream receptor for the downstream AP-1-Mmp1 transduction. Moreover, dynamin-associated endocytosis was found to be an important regulatory step in downregulating Pvr signaling. Our results identify a new Pvr-AP-1-Mmp1 signaling pathway in astrocytes in response to TBI, providing potential targets for developing new therapeutic strategies for TBI.
Collapse
Affiliation(s)
- Tingting Li
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijingChina
| | - Wenwen Shi
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijingChina
| | - Margaret S Ho
- Institute of Neuroscience, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Brain Research Center, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Yong Q Zhang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
3
|
Wang D, Saleem S, Sullivan RD, Zhao T, Reed GL. Differences in Acute Expression of Matrix Metalloproteinases-9, 3, and 2 Related to the Duration of Brain Ischemia and Tissue Plasminogen Activator Treatment in Experimental Stroke. Int J Mol Sci 2024; 25:9442. [PMID: 39273389 PMCID: PMC11394866 DOI: 10.3390/ijms25179442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Matrix metalloproteinases (MMPs) such as MMP-9, 3, and 2 degrade the cellular matrix and are believed to play a crucial role in ischemic stroke. We examined how the duration of ischemia (up to 4 h) and treatment with recombinant tissue plasminogen activator altered the comparative expression of these MMPs in experimental ischemic stroke with reperfusion. Both prolonged ischemia and r-tPA treatment markedly increased MMP-9 expression in the ischemic hemisphere (all p < 0.0001). The duration of ischemia and r-tPA treatment also significantly increased MMP-2 expression (p < 0.01-0.001) in the ischemic hemisphere (p < 0.01) but to a lesser degree than MMP-9. In contrast, MMP-3 expression significantly decreased in the ischemic hemisphere (p < 0.001) with increasing duration of ischemia and r-tPA treatment (p < 0.05-0001). MMP-9 expression was prominent in the vascular compartment and leukocytes. MMP-2 expression was evident in the vascular compartment and MMP-3 in NeuN+ neurons. Prolonging the duration of ischemia (up to 4 h) before reperfusion increased brain hemorrhage, infarction, swelling, and neurologic disability in both saline-treated (control) and r-tPA-treated mice. MMP-9 and MMP-2 expression were significantly positively correlated with, and MMP-3 was significantly negatively correlated with, infarct volume, swelling, and brain hemorrhage. We conclude that in experimental ischemic stroke with reperfusion, the duration of ischemia and r-tPA treatment significantly altered MMP-9, 3, and 2 expression, ischemic brain injury, and neurological disability. Each MMP showed unique patterns of expression that are strongly correlated with the severity of brain infarction, swelling, and hemorrhage. In summary, in experimental ischemic stroke in male mice with reperfusion, the duration of ischemia, and r-tPA treatment significantly altered the immunofluorescent expression of MMP-9, 3, and 2, ischemic brain injury, and neurological disability. In this model, each MMP showed unique patterns of expression that were strongly correlated with the severity of brain infarction, swelling, and hemorrhage.
Collapse
Affiliation(s)
| | | | | | | | - Guy L. Reed
- Department of Medicine, University of Arizona College of Medicine, Phoenix, AZ 85004, USA; (D.W.); (S.S.); (R.D.S.); (T.Z.)
| |
Collapse
|
4
|
Chen KM, Lai SC. Curative effects and mechanisms of AG1296 and LY294002 co-therapy in Angiostrongylus cantonensis-induced neurovascular unit dysfunction and eosinophilic meningoencephalitis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024; 57:647-659. [PMID: 38839542 DOI: 10.1016/j.jmii.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/06/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Co-therapy with albendazole and steroid is commonly used in patients with eosinophilic meningoencephalitis caused by Angiostrongylus cantonensis infections. However, anthelminthics often worsen symptoms, possibly due to the inflammatory reaction to antigens released by dying worms. Therefore, the present study was to investigate the curative effects and probable mechanisms of the platelet-derived growth factor receptor-beta (PDGFR-β) inhibitor AG1296 (AG) and the phosphoinositide 3-kinase inhibitor (PI3K) LY294002 (LY) in A. cantonensis-induced neurovascular unit dysfunction and eosinophilic meningoencephalitis. METHODS Western blots were used to detect matrix protein degradation and the expressions of PDGFR-β/PI3K signaling pathway. The co-localization of PDGFR-β and vascular smooth muscle cells (VSMCs), and metalloproteinase-9 (MMP-9) and VSMCs on the blood vessels were measured by confocal laser scanning immunofluorescence microscopy. Sandwich enzyme-linked immunosorbent assays were used to test S100B, interleukin (IL)-6, and transforming growth factor beta in the cerebrospinal fluid to determine their possible roles in mouse resistance to A. cantonensis. RESULTS The results showed that AG and LY cotherapy decreased the MMP-9 activity and inflammatory reaction. Furthermore, S100B, IL-6 and eosinophil counts were reduced by inhibitor treatment. The localization of PDGFR-β and MMP-9 was observed in VSMCs. Furthermore, we showed that the degradation of the neurovascular matrix and blood-brain barrier permeability were reduced in the mouse brain. CONCLUSIONS These findings demonstrate the potential of PDGFR-β inhibitor AG and PI3K inhibitor LY co-therapy as anti-A. cantonensis drug candidates through improved neurovascular unit dysfunction and reduced inflammatory response.
Collapse
Affiliation(s)
- Ke-Min Chen
- Department of Parasitology, Chung Shan Medical University, Taichung 402, Taiwan
| | - Shih-Chan Lai
- Department of Parasitology, Chung Shan Medical University, Taichung 402, Taiwan; Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| |
Collapse
|
5
|
Alhadidi QM, Bahader GA, Arvola O, Kitchen P, Shah ZA, Salman MM. Astrocytes in functional recovery following central nervous system injuries. J Physiol 2024; 602:3069-3096. [PMID: 37702572 PMCID: PMC11421637 DOI: 10.1113/jp284197] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Astrocytes are increasingly recognised as partaking in complex homeostatic mechanisms critical for regulating neuronal plasticity following central nervous system (CNS) insults. Ischaemic stroke and traumatic brain injury are associated with high rates of disability and mortality. Depending on the context and type of injury, reactive astrocytes respond with diverse morphological, proliferative and functional changes collectively known as astrogliosis, which results in both pathogenic and protective effects. There is a large body of research on the negative consequences of astrogliosis following brain injuries. There is also growing interest in how astrogliosis might in some contexts be protective and help to limit the spread of the injury. However, little is known about how astrocytes contribute to the chronic functional recovery phase following traumatic and ischaemic brain insults. In this review, we explore the protective functions of astrocytes in various aspects of secondary brain injury such as oedema, inflammation and blood-brain barrier dysfunction. We also discuss the current knowledge on astrocyte contribution to tissue regeneration, including angiogenesis, neurogenesis, synaptogenesis, dendrogenesis and axogenesis. Finally, we discuss diverse astrocyte-related factors that, if selectively targeted, could form the basis of astrocyte-targeted therapeutic strategies to better address currently untreatable CNS disorders.
Collapse
Affiliation(s)
- Qasim M Alhadidi
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Pharmacy, Al-Yarmok University College, Diyala, Iraq
| | - Ghaith A Bahader
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Oiva Arvola
- Division of Anaesthesiology, Jorvi Hospital, Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Philip Kitchen
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Mootaz M Salman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Kavli Institute for NanoScience Discovery, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Li J, Long Q, Ding H, Wang Y, Luo D, Li Z, Zhang W. Progress in the Treatment of Central Nervous System Diseases Based on Nanosized Traditional Chinese Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308677. [PMID: 38419366 PMCID: PMC11040388 DOI: 10.1002/advs.202308677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Indexed: 03/02/2024]
Abstract
Traditional Chinese Medicine (TCM) is widely used in clinical practice to treat diseases related to central nervous system (CNS) damage. However, the blood-brain barrier (BBB) constitutes a significant impediment to the effective delivery of TCM, thus substantially diminishing its efficacy. Advances in nanotechnology and its applications in TCM (also known as nano-TCM) can deliver active ingredients or components of TCM across the BBB to the targeted brain region. This review provides an overview of the physiological and pathological mechanisms of the BBB and systematically classifies the common TCM used to treat CNS diseases and types of nanocarriers that effectively deliver TCM to the brain. Additionally, drug delivery strategies for nano-TCMs that utilize in vivo physiological properties or in vitro devices to bypass or cross the BBB are discussed. This review further focuses on the application of nano-TCMs in the treatment of various CNS diseases. Finally, this article anticipates a design strategy for nano-TCMs with higher delivery efficiency and probes their application potential in treating a wider range of CNS diseases.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Qingyin Long
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| | - Huang Ding
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| | - Yang Wang
- Institute of Integrative MedicineDepartment of Integrated Traditional Chinese and Western MedicineXiangya HospitalCentral South University ChangshaChangsha410008China
| | - Dan Luo
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Zhou Li
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Wei Zhang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| |
Collapse
|
7
|
Maclean MA, Rogers PS, Muradov JH, Pickett GE, Friedman A, Weeks A, Greene R, Volders D. Contrast-Induced Encephalopathy and the Blood-Brain Barrier. Can J Neurol Sci 2024:1-10. [PMID: 38453685 DOI: 10.1017/cjn.2024.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
BACKGROUND Contrast-induced encephalopathy (CIE) is an adverse event associated with diagnostic and therapeutic endovascular procedures. Decades of animal and human research support a mechanistic role for pathological blood-brain barrier dysfunction (BBBd). Here, we describe an institutional case series and review the literature supporting a mechanistic role for BBBd in CIE. METHODS A literature review was conducted by searching MEDLINE, Web of Science, Embase, CINAHL and Cochrane databases from inception to January 31, 2022. We searched our institutional neurovascular database for cases of CIE following endovascular treatment of cerebrovascular disease during a 6-month period. Informed consent was obtained in all cases. RESULTS Review of the literature revealed risk factors for BBBd and CIE, including microvascular disease, pathological neuroinflammation, severe procedural hypertension, iodinated contrast load and altered cerebral blood flow dynamics. In our institutional series, 6 of 52 (11.5%) of patients undergoing therapeutic neuroendovascular procedures developed CIE during the study period. Four patients were treated for ischemic stroke and two patients for recurrent cerebral aneurysms. Mechanical stenting or thrombectomy were utilized in all cases. CONCLUSION In this institutional case series and literature review of animal and human data, we identified numerous shared risk factors for CIE and BBBd, including microvascular disease, increased procedure length, large contrast volumes, severe intraoperative hypertension and use of mechanical devices that may induce iatrogenic endothelial injury.
Collapse
Affiliation(s)
- Mark A Maclean
- Division of Neurosurgery, Department of Surgery, Dalhousie University, Halifax, NS, Canada
| | - Patrick S Rogers
- Department of Diagnostic Radiology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Jamil H Muradov
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Gwynedd E Pickett
- Division of Neurosurgery, Department of Surgery, Dalhousie University, Halifax, NS, Canada
| | - Alon Friedman
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Adrienne Weeks
- Division of Neurosurgery, Department of Surgery, Dalhousie University, Halifax, NS, Canada
| | - Ryan Greene
- Division of Neurosurgery, Department of Surgery, Dalhousie University, Halifax, NS, Canada
| | - David Volders
- Department of Diagnostic Radiology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
8
|
Coates-Park S, Rich JA, Stetler-Stevenson WG, Peeney D. The TIMP protein family: diverse roles in pathophysiology. Am J Physiol Cell Physiol 2024; 326:C917-C934. [PMID: 38284123 PMCID: PMC11193487 DOI: 10.1152/ajpcell.00699.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
The tissue inhibitors of matrix metalloproteinases (TIMPs) are a family of four matrisome proteins classically defined by their roles as the primary endogenous inhibitors of metalloproteinases (MPs). Their functions however are not limited to MP inhibition, with each family member harboring numerous MP-independent biological functions that play key roles in processes such as inflammation and apoptosis. Because of these multifaceted functions, TIMPs have been cited in diverse pathophysiological contexts. Herein, we provide a comprehensive overview of the MP-dependent and -independent roles of TIMPs across a range of pathological conditions. The potential therapeutic and biomarker applications of TIMPs in these disease contexts are also considered, highlighting the biomedical promise of this complex and often misunderstood protein family.
Collapse
Affiliation(s)
- Sasha Coates-Park
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland, United States
| | - Joshua A Rich
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland, United States
| | - William G Stetler-Stevenson
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland, United States
| | - David Peeney
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland, United States
| |
Collapse
|
9
|
Zong Y, Wang Y, Hu Y, Wang Z. Clinical Significance of Apela in Acute Cardiorenal Insuffiency of Chronic Heart Failure. Kidney Blood Press Res 2024; 49:100-113. [PMID: 38237563 DOI: 10.1159/000536316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 01/13/2024] [Indexed: 04/26/2024] Open
Abstract
INTRODUCTION Apela has a wide range of biological effects on the cardiovascular system, but the changes and significance of endogenous Apela in patients with chronic heart failure (CHF) and acute deterioration of cardiac and renal function are unclear. METHODS A total of 69 patients with stable CHF combined with well-preserved renal function were enrolled and followed for 12 months. The effects of Apela on human renal glomerular endothelial cells (hRGEC), human glomerular mesangial cells (hMC), and human renal tubular epithelial cells (HK-2) were observed. RESULTS Serum Apela concentration was positively correlated with NYHA class (r = 0.711) and N-terminal pro-brain natriuretic peptide (NT-proBNP) concentration (r = 0.303) but negatively correlated with left ventricular ejection fraction (LVEF) (r = -0.374) and 6-min walk distance (r = -0.860) in patients with stable CHF. Twenty-one patients experiencing deterioration of renal and cardiac function were diagnosed with cardiorenal syndrome (CRS) during the follow-up period. In addition, the serum Apela, as well as the difference in Apela between stable and worsening phases (ΔApela), was correlated with the estimated glomerular filtration rate (eGFR) and ΔeGFR in patients with CRS. Apela significantly inhibited the upregulated expression of MCP-1 and TNF-α induced by angiotensin II (AngII) in hRGEC, hMC, and HK-2 cells. Apela inhibited the adhesion of THP-1 cells to hRGEC and promoted the tubular formation of hRGEC. Moreover, Apela enhanced the expression of MMP-9 in hMC but inhibited the upregulated expression of α-SMA and vimentin in HK-2 cells by AngII. CONCLUSION This study suggests that the level of Apela can be used to diagnose heart failure and assess the severity of cardiac dysfunction in patients with stable CHF, and its dynamic changes can be used to evaluate the damage to renal function in patients with CRS. Apela plays multiple protective effects on renal cells, highlighting its clinical application prospect in the prevention and treatment of CRS.
Collapse
Affiliation(s)
- Yani Zong
- Department of Cardiovascular Medicine, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yajie Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yuexin Hu
- Department of Cardiovascular Medicine, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zhi Wang
- Department of Cardiovascular Medicine, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Chmelova M, Androvic P, Kirdajova D, Tureckova J, Kriska J, Valihrach L, Anderova M, Vargova L. A view of the genetic and proteomic profile of extracellular matrix molecules in aging and stroke. Front Cell Neurosci 2023; 17:1296455. [PMID: 38107409 PMCID: PMC10723838 DOI: 10.3389/fncel.2023.1296455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction Modification of the extracellular matrix (ECM) is one of the major processes in the pathology of brain damage following an ischemic stroke. However, our understanding of how age-related ECM alterations may affect stroke pathophysiology and its outcome is still very limited. Methods We conducted an ECM-targeted re-analysis of our previously obtained RNA-Seq dataset of aging, ischemic stroke and their interactions in young adult (3-month-old) and aged (18-month-old) mice. The permanent middle cerebral artery occlusion (pMCAo) in rodents was used as a model of ischemic stroke. Altogether 56 genes of interest were chosen for this study. Results We identified an increased activation of the genes encoding proteins related to ECM degradation, such as matrix metalloproteinases (MMPs), proteases of a disintegrin and metalloproteinase with the thrombospondin motifs (ADAMTS) family and molecules that regulate their activity, tissue inhibitors of metalloproteinases (TIMPs). Moreover, significant upregulation was also detected in the mRNA of other ECM molecules, such as proteoglycans, syndecans and link proteins. Notably, we identified 8 genes where this upregulation was enhanced in aged mice in comparison with the young ones. Ischemia evoked a significant downregulation in only 6 of our genes of interest, including those encoding proteins associated with the protective function of ECM molecules (e.g., brevican, Hapln4, Sparcl1); downregulation in brevican was more prominent in aged mice. The study was expanded by proteome analysis, where we observed an ischemia-induced overexpression in three proteins, which are associated with neuroinflammation (fibronectin and vitronectin) and neurodegeneration (link protein Hapln2). In fibronectin and Hapln2, this overexpression was more pronounced in aged post-ischemic animals. Conclusion Based on these results, we can conclude that the ratio between the protecting and degrading mechanisms in the aged brain is shifted toward degradation and contributes to the aged tissues' increased sensitivity to ischemic insults. Altogether, our data provide fresh perspectives on the processes underlying ischemic injury in the aging brain and serve as a freely accessible resource for upcoming research.
Collapse
Affiliation(s)
- Martina Chmelova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Peter Androvic
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences – BIOCEV, Vestec, Czechia
| | - Denisa Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Lukas Valihrach
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences – BIOCEV, Vestec, Czechia
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Lydia Vargova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
11
|
Xue S, Zhou X, Yang ZH, Si XK, Sun X. Stroke-induced damage on the blood-brain barrier. Front Neurol 2023; 14:1248970. [PMID: 37840921 PMCID: PMC10569696 DOI: 10.3389/fneur.2023.1248970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/08/2023] [Indexed: 10/17/2023] Open
Abstract
The blood-brain barrier (BBB) is a functional phenotype exhibited by the neurovascular unit (NVU). It is maintained and regulated by the interaction between cellular and non-cellular matrix components of the NVU. The BBB plays a vital role in maintaining the dynamic stability of the intracerebral microenvironment as a barrier layer at the critical interface between the blood and neural tissues. The large contact area (approximately 20 m2/1.3 kg brain) and short diffusion distance between neurons and capillaries allow endothelial cells to dominate the regulatory role. The NVU is a structural component of the BBB. Individual cells and components of the NVU work together to maintain BBB stability. One of the hallmarks of acute ischemic stroke is the disruption of the BBB, including impaired function of the tight junction and other molecules, as well as increased BBB permeability, leading to brain edema and a range of clinical symptoms. This review summarizes the cellular composition of the BBB and describes the protein composition of the barrier functional junction complex and the mechanisms regulating acute ischemic stroke-induced BBB disruption.
Collapse
Affiliation(s)
| | | | | | | | - Xin Sun
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Ahmadighadykolaei H, Lambert JA, Raeeszadeh-Sarmazdeh M. TIMP-1 Protects Tight Junctions of Brain Endothelial Cells From MMP-Mediated Degradation. Pharm Res 2023; 40:2121-2131. [PMID: 37700105 PMCID: PMC10878538 DOI: 10.1007/s11095-023-03593-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023]
Abstract
OBJECTIVE The blood-brain barrier (BBB) plays a critical role in central nervous system homeostasis, and the integrity of BBB is disrupted in many neurodegenerative diseases. Matrix metalloproteinases (MMPs) degrade the tight junctions (TJs) of endothelial cells and basement membrane components essential to BBB integrity, which leads to increased BBB permeability and allows inflammatory cells and neurotoxic substances to enter the brain. Tissue inhibitors of metalloproteinases (TIMPs), endogenous inhibitors of MMPs, regulate MMP activity, thereby maintaining BBB integrity. METHODS The disruptive impacts of MMP-3 and MMP-9 on BBB and protective effect of TIMP-1 were investigated in a simplified in vitro model of the BBB, which was generated using rat brain microvascular endothelial cells (RBMEC). The main features of BBB formation, including permeability and the trans-endothelial electrical resistance (TEER), were monitored over time after the addition of MMP-3 and MMP-9 and their complexes with TIMP-1 inhibitor. RESULTS Our results indicated that MMP-3 and MMP-9 caused a dose-dependent disruption of the BBB, with 1.5 µM MMPs resulting in an over threefold increase in permeability, while TIMP-1 inhibition protected the integrity of the BBB model and recovered TEER and permeability of RBMECs. The disruption and recovery of tight junction proteins of RBMECs after MMP and TIMP treatment were also detected using fluorescent microscopy. CONCLUSION MMP-9 and MMP-3 disrupt the BBB by degrading tight junctions in endothelial cells, and TIMP-1 could inhibit the disruptive effect of MMP-3 and MMP-9 by showing potential as therapeutic protein against MMP-related diseases where BBB disruption plays a role.
Collapse
Affiliation(s)
- Hannaneh Ahmadighadykolaei
- Department of Chemical and Materials Engineering, University of Nevada, 1664 N. Virginia St, Reno, NV, 89557, USA
| | - Janet A Lambert
- Department of Chemical and Materials Engineering, University of Nevada, 1664 N. Virginia St, Reno, NV, 89557, USA
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Maryam Raeeszadeh-Sarmazdeh
- Department of Chemical and Materials Engineering, University of Nevada, 1664 N. Virginia St, Reno, NV, 89557, USA.
| |
Collapse
|
13
|
Tan R, Hong R, Sui C, Yang D, Tian H, Zhu T, Yang Y. The role and potential therapeutic targets of astrocytes in central nervous system demyelinating diseases. Front Cell Neurosci 2023; 17:1233762. [PMID: 37720543 PMCID: PMC10502347 DOI: 10.3389/fncel.2023.1233762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Astrocytes play vital roles in the central nervous system, contributing significantly to both its normal functioning and pathological conditions. While their involvement in various diseases is increasingly recognized, their exact role in demyelinating lesions remains uncertain. Astrocytes have the potential to influence demyelination positively or negatively. They can produce and release inflammatory molecules that modulate the activation and movement of other immune cells. Moreover, they can aid in the clearance of myelin debris through phagocytosis and facilitate the recruitment and differentiation of oligodendrocyte precursor cells, thereby promoting axonal remyelination. However, excessive or prolonged astrocyte phagocytosis can exacerbate demyelination and lead to neurological impairments. This review provides an overview of the involvement of astrocytes in various demyelinating diseases, emphasizing the underlying mechanisms that contribute to demyelination. Additionally, we discuss the interactions between oligodendrocytes, oligodendrocyte precursor cells and astrocytes as therapeutic options to support myelin regeneration. Furthermore, we explore the role of astrocytes in repairing synaptic dysfunction, which is also a crucial pathological process in these disorders.
Collapse
Affiliation(s)
- Rui Tan
- Department of Neurosurgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Rui Hong
- Department of Neurosurgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunxiao Sui
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Tianjin's Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Dianxu Yang
- Department of Neurosurgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hengli Tian
- Department of Neurosurgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Zhu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang Yang
- Department of Neurosurgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Xu S, Yang J, Wan H, Yu L, He Y. Combination of Radix Astragali and Safflower Promotes Angiogenesis in Rats with Ischemic Stroke via Silencing PTGS2. Int J Mol Sci 2023; 24:ijms24032126. [PMID: 36768450 PMCID: PMC9916507 DOI: 10.3390/ijms24032126] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
Promotion of angiogenesis and restoration of the blood flow in the ischemic penumbra is an effective treatment for patients with ischemic stroke (IS). Radix astragali-safflower (AS), a classic herbal pair for accelerating blood circulation and dispersing blood stasis, has been used for thousands of years to treat patients with IS in China. Even so, the mechanism of the treatment of IS by AS is still undecipherable. In the current study, network pharmacology was firstly employed to unveil the mechanism of AS in treating IS, which showed that AS might promote angiogenesis associated with PTGS2 silence. Middle cerebral artery occlusion/reperfusion (MCAO/R) model rats were then used as the experimental animals to verify the prediction result. The experimental results revealed that treatment with AS improved the cerebral infarct volume, neurological damage, and cerebral histopathological damage; inhibited cell apoptosis; increased the contents of PDGF-BB, EPO, and TGF-β1; and reduced the levels of PF4, Ang-2, and TIMP-1 in serum. Immunohistochemical staining demonstrated that the expression of PTGS2 was dramatically increased in the hippocampus and cerebral cortex of rats with MCAO/R, and this trend was reversed by the treatment of AS. Immunofluorescent staining expressed that AS reversed the down-regulation of VEGF and further promoted the expression of CD31, which indicated that AS promoted angiogenesis in MCAO/R rats. The abnormal protein or mRNA expression of PTGS2, PGI2, bFGF, TSP-1, and VEGF in the penumbra were transposed by AS or Celecoxib (an inhibitor of PTGS2). In conclusion, the protective mechanism of AS for IS promoted angiogenesis and was involved with PTGS2 silence.
Collapse
Affiliation(s)
- Shouchao Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiehong Yang
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Haitong Wan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Li Yu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Correspondence: ; Tel.: +86-18858286825; Fax: +86-0571-61768136
| |
Collapse
|
15
|
Chojnowski K, Opiełka M, Gozdalski J, Radziwon J, Dańczyszyn A, Aitken AV, Biancardi VC, Winklewski PJ. The Role of Arginine-Vasopressin in Stroke and the Potential Use of Arginine-Vasopressin Type 1 Receptor Antagonists in Stroke Therapy: A Narrative Review. Int J Mol Sci 2023; 24:ijms24032119. [PMID: 36768443 PMCID: PMC9916514 DOI: 10.3390/ijms24032119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Stroke is a life-threatening condition in which accurate diagnoses and timely treatment are critical for successful neurological recovery. The current acute treatment strategies, particularly non-invasive interventions, are limited, thus urging the need for novel therapeutical targets. Arginine vasopressin (AVP) receptor antagonists are emerging as potential targets to treat edema formation and subsequent elevation in intracranial pressure, both significant causes of mortality in acute stroke. Here, we summarize the current knowledge on the mechanisms leading to AVP hyperexcretion in acute stroke and the subsequent secondary neuropathological responses. Furthermore, we discuss the work supporting the predictive value of measuring copeptin, a surrogate marker of AVP in stroke patients, followed by a review of the experimental evidence suggesting AVP receptor antagonists in stroke therapy. As we highlight throughout the narrative, critical gaps in the literature exist and indicate the need for further research to understand better AVP mechanisms in stroke. Likewise, there are advantages and limitations in using copeptin as a prognostic tool, and the translation of findings from experimental animal models to clinical settings has its challenges. Still, monitoring AVP levels and using AVP receptor antagonists as an add-on therapeutic intervention are potential promises in clinical applications to alleviate stroke neurological consequences.
Collapse
Affiliation(s)
- Karol Chojnowski
- Student Scientific Circle of the Department of Adult Neurology, Medical University of Gdansk, 17 Smoluchowskiego Street, 80-214 Gdansk, Poland
| | - Mikołaj Opiełka
- Student Scientific Circle of the Department of Adult Neurology, Medical University of Gdansk, 17 Smoluchowskiego Street, 80-214 Gdansk, Poland
| | - Jacek Gozdalski
- Department of Adult Neurology, Medical University of Gdansk, 17 Smoluchowskiego Street, 80-214 Gdansk, Poland
- Correspondence: (J.G.); (P.J.W.)
| | - Jakub Radziwon
- Student Scientific Circle of the Department of Adult Neurology, Medical University of Gdansk, 17 Smoluchowskiego Street, 80-214 Gdansk, Poland
| | - Aleksandra Dańczyszyn
- Student Scientific Circle of the Department of Adult Neurology, Medical University of Gdansk, 17 Smoluchowskiego Street, 80-214 Gdansk, Poland
| | - Andrew Vieira Aitken
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Center for Neurosciences Initiative, Auburn University, Auburn, AL 36849, USA
| | - Vinicia Campana Biancardi
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Center for Neurosciences Initiative, Auburn University, Auburn, AL 36849, USA
| | - Paweł Jan Winklewski
- Department of Human Physiology, Medical University of Gdansk, 15 Tuwima Street, 80-210 Gdansk, Poland
- 2nd Department of Radiology, Medical University of Gdansk, 17 Smoluchowskiego Street, 80-214 Gdansk, Poland
- Correspondence: (J.G.); (P.J.W.)
| |
Collapse
|
16
|
Berrone E, Chiorino G, Guana F, Benedetti V, Palmitessa C, Gallo M, Calvo A, Casale F, Manera U, Favole A, Crociara P, Testori C, Carta V, Tessarolo C, D’Angelo A, De Marco G, Caramelli M, Chiò A, Casalone C, Corona C. SOMAscan Proteomics Identifies Novel Plasma Proteins in Amyotrophic Lateral Sclerosis Patients. Int J Mol Sci 2023; 24:ijms24031899. [PMID: 36768220 PMCID: PMC9916400 DOI: 10.3390/ijms24031899] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/09/2023] [Accepted: 01/14/2023] [Indexed: 01/21/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex disease characterized by the interplay of genetic and environmental factors for which, despite decades of intense research, diagnosis remains rather delayed, and most therapeutic options fail. Therefore, unravelling other potential pathogenetic mechanisms and searching for reliable markers are high priorities. In the present study, we employ the SOMAscan assay, an aptamer-based proteomic technology, to determine the circulating proteomic profile of ALS patients. The expression levels of ~1300 proteins were assessed in plasma, and 42 proteins with statistically significant differential expression between ALS patients and healthy controls were identified. Among these, four were upregulated proteins, Thymus- and activation-regulated chemokine, metalloproteinase inhibitor 3 and nidogen 1 and 2 were selected and validated by enzyme-linked immunosorbent assays in an overlapping cohort of patients. Following statistical analyses, different expression patterns of these proteins were observed in the familial and sporadic ALS patients. The proteins identified in this study might provide insight into ALS pathogenesis and represent potential candidates to develop novel targeted therapies.
Collapse
Affiliation(s)
- Elena Berrone
- S.C. Neuroscienze, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy
| | - Giovanna Chiorino
- Cancer Genomics Laboratory, Fondazione Edo ed Elvo Tempia, 13900 Biella, Italy
| | - Francesca Guana
- Cancer Genomics Laboratory, Fondazione Edo ed Elvo Tempia, 13900 Biella, Italy
| | - Valerio Benedetti
- S.C. Neuroscienze, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy
| | - Claudia Palmitessa
- S.C. Neuroscienze, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy
| | - Marina Gallo
- S.C. Neuroscienze, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy
| | - Andrea Calvo
- Rita Levi Montalcini Department of Neuroscience, University of Turin, 10126 Turin, Italy
- Neurology, Hospital Department of Neuroscience and Mental Health, Città della Salute e della Scienza Hospital of Turin, 10126 Turin, Italy
| | - Federico Casale
- Rita Levi Montalcini Department of Neuroscience, University of Turin, 10126 Turin, Italy
| | - Umberto Manera
- Rita Levi Montalcini Department of Neuroscience, University of Turin, 10126 Turin, Italy
- Neurology, Hospital Department of Neuroscience and Mental Health, Città della Salute e della Scienza Hospital of Turin, 10126 Turin, Italy
| | - Alessandra Favole
- S.C. Neuroscienze, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy
- Correspondence: (A.F.); (A.C.)
| | - Paola Crociara
- S.C. Neuroscienze, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy
- ASL TO4, 10034 Chivasso, Italy
| | - Camilla Testori
- S.C. Neuroscienze, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy
| | - Valerio Carta
- S.C. Neuroscienze, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy
| | - Carlotta Tessarolo
- S.C. Neuroscienze, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy
| | - Antonio D’Angelo
- Department of Veterinary Science, University of Turin, 10095 Grugliasco, Italy
| | - Giovanni De Marco
- Rita Levi Montalcini Department of Neuroscience, University of Turin, 10126 Turin, Italy
- Neurology, Hospital Department of Neuroscience and Mental Health, Città della Salute e della Scienza Hospital of Turin, 10126 Turin, Italy
| | - Maria Caramelli
- S.C. Neuroscienze, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy
| | - Adriano Chiò
- Rita Levi Montalcini Department of Neuroscience, University of Turin, 10126 Turin, Italy
- Neurology, Hospital Department of Neuroscience and Mental Health, Città della Salute e della Scienza Hospital of Turin, 10126 Turin, Italy
- Correspondence: (A.F.); (A.C.)
| | - Cristina Casalone
- S.C. Neuroscienze, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy
| | - Cristiano Corona
- S.C. Neuroscienze, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy
| |
Collapse
|
17
|
Yang AL, Zhou HJ, Tang T, Luo JK, Cui HJ. Temporal profile of angiogenesis and expression of extracellular matrix-related genes in rat brains following experimental intracerebral hemorrhage. Sci Prog 2022; 105:368504221115509. [PMID: 35899308 PMCID: PMC10450485 DOI: 10.1177/00368504221115509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Angiogenesis is essential for the repair process after intracerebral hemorrhage (ICH). METHODS Given the importance of the extracellular matrix (ECM) in angiogenesis, we analysed the temporal profile of angiogenesis in rat brains on days 4, 7, and 21 after ICH. To this end, we compared the expression of ECM-related genes between ICH-induced and sham-operated groups using a complementary DNA (cDNA) array. We further measured protein expression using western blot and immunohistochemistry assays. Fluorescein isothiocyanate (FITC)-dextran was injected into the tail vein to examine the angioarchitecture in the perihematomal region. RESULTS Among the 88 ECM-related genes, we identified 42, 50, and 38 genes that were significantly upregulated on days 4, 7, and 21 after ICH, respectively (P < 0.05). Particularly, collagens, integrins, and matrix metalloproteinases (MMPs) were significantly increased on day 4 post-ICH and continued to increase at the other time points. Western blot and immunohistochemistry analyses showed a comparable trend in the upregulation of MMPs. Compared to the sham group, FITC-dextran labelling demonstrated decreased perfusion and increased vascular permeability in the perihematomal region in the ICH group. Doxycycline, an MMP inhibitor, significantly reduced angiogenesis (P < 0.05). CONCLUSIONS The results of this study indicate that MMPs are involved in modulating angiogenesis following ICH.
Collapse
Affiliation(s)
- A-Li Yang
- Department of Neurology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Hua-Jun Zhou
- The First Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Tao Tang
- Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Jie-Kun Luo
- Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Han-Jin Cui
- Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, P.R. China
| |
Collapse
|
18
|
Laminin as a Biomarker of Blood-Brain Barrier Disruption under Neuroinflammation: A Systematic Review. Int J Mol Sci 2022; 23:ijms23126788. [PMID: 35743229 PMCID: PMC9224176 DOI: 10.3390/ijms23126788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 01/01/2023] Open
Abstract
Laminin, a non-collagenous glycoprotein present in the brain extracellular matrix, helps to maintain blood–brain barrier (BBB) integrity and regulation. Neuroinflammation can compromise laminin structure and function, increasing BBB permeability. The aim of this paper is to determine if neuroinflammation-induced laminin functional changes may serve as a potential biomarker of alterations in the BBB. The 38 publications included evaluated neuroinflammation, BBB disruption, and laminin, and were assessed for quality and risk of bias (protocol registered in PROSPERO; CRD42020212547). We found that laminin may be a good indicator of BBB overall structural integrity, although changes in expression are dependent on the pathologic or experimental model used. In ischemic stroke, permanent vascular damage correlates with increased laminin expression (β and γ subunits), while transient damage correlates with reduced laminin expression (α subunits). Laminin was reduced in traumatic brain injury and cerebral hemorrhage studies but increased in multiple sclerosis and status epilepticus studies. Despite these observations, there is limited knowledge about the role played by different subunits or isoforms (such as 411 or 511) of laminin in maintaining structural architecture of the BBB under neuroinflammation. Further studies may clarify this aspect and the possibility of using laminin as a biomarker in different pathologies, which have alterations in BBB function in common.
Collapse
|
19
|
He T, Yang GY, Zhang Z. Crosstalk of Astrocytes and Other Cells during Ischemic Stroke. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060910. [PMID: 35743941 PMCID: PMC9228674 DOI: 10.3390/life12060910] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 12/27/2022]
Abstract
Stroke is a leading cause of death and long-term disability worldwide. Astrocytes structurally compose tripartite synapses, blood–brain barrier, and the neurovascular unit and perform multiple functions through cell-to-cell signaling of neurons, glial cells, and vasculature. The crosstalk of astrocytes and other cells is complicated and incompletely understood. Here we review the role of astrocytes in response to ischemic stroke, both beneficial and detrimental, from a cell–cell interaction perspective. Reactive astrocytes provide neuroprotection through antioxidation and antiexcitatory effects and metabolic support; they also contribute to neurorestoration involving neurogenesis, synaptogenesis, angiogenesis, and oligodendrogenesis by crosstalk with stem cells and cell lineage. In the meantime, reactive astrocytes also play a vital role in neuroinflammation and brain edema. Glial scar formation in the chronic phase hinders functional recovery. We further discuss astrocyte enriched microRNAs and exosomes in the regulation of ischemic stroke. In addition, the latest notion of reactive astrocyte subsets and astrocytic activity revealed by optogenetics is mentioned. This review discusses the current understanding of the intimate molecular conversation between astrocytes and other cells and outlines its potential implications after ischemic stroke. “Neurocentric” strategies may not be sufficient for neurological protection and recovery; future therapeutic strategies could target reactive astrocytes.
Collapse
Affiliation(s)
- Tingting He
- Department of Neurology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai 200072, China;
- Neuroscience and Neuroengineering Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
- Correspondence: (G.-Y.Y.); (Z.Z.); Tel.: +86-21-62933186 (G.-Y.Y.); Fax: +86-21-62932302 (G.-Y.Y.)
| | - Zhijun Zhang
- Neuroscience and Neuroengineering Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
- Correspondence: (G.-Y.Y.); (Z.Z.); Tel.: +86-21-62933186 (G.-Y.Y.); Fax: +86-21-62932302 (G.-Y.Y.)
| |
Collapse
|
20
|
Glaser N, Chu S, Weiner J, Zdepski L, Wulff H, Tancredi D, ODonnell ME. Effects of TRAM-34 and minocycline on neuroinflammation caused by diabetic ketoacidosis in a rat model. BMJ Open Diabetes Res Care 2022; 10:10/3/e002777. [PMID: 35584854 PMCID: PMC9119135 DOI: 10.1136/bmjdrc-2022-002777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/01/2022] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Diabetic ketoacidosis (DKA) causes acute and chronic neuroinflammation that may contribute to cognitive decline in patients with type 1 diabetes. We evaluated the effects of agents that reduce neuroinflammation (triarylmethane-34 (TRAM-34) and minocycline) during and after DKA in a rat model. RESEARCH DESIGN AND METHODS Juvenile rats with DKA were treated with insulin and saline, either alone or in combination with TRAM-34 (40 mg/kg intraperitoneally twice daily for 3 days, then daily for 4 days) or minocycline (45 mg/kg intraperitoneally daily for 7 days). We compared cytokine and chemokine concentrations in brain tissue lysates during DKA among the three treatment groups and in normal controls and diabetic controls (n=9-15/group). We also compared brain inflammatory mediator levels in these same groups in adult diabetic rats that were treated for DKA as juveniles. RESULTS Brain tissue concentrations of chemokine (C-C) motif ligand (CCL)3, CCL5 and interferon (IFNγ) were increased during acute DKA, as were brain cytokine composite scores. Both treatments reduced brain inflammatory mediator levels during acute DKA. TRAM-34 predominantly reduced chemokine concentrations (chemokine (C-X-C) motif ligand (CXCL-1), CCL5) whereas minocycline had broader effects, (reducing CXCL-1, tumor necrosis factor (TNFα), IFNγ, interleukin (IL) 2, IL-10 and IL-17A). Brain inflammatory mediator levels were elevated in adult rats that had DKA as juveniles, compared with adult diabetic rats without previous DKA, however, neither TRAM-34 nor minocycline treatment reduced these levels. CONCLUSIONS These data demonstrate that both TRAM-34 and minocycline reduce acute neuroinflammation during DKA, however, treatment with these agents for 1 week after DKA does not reduce long-term neuroinflammation.
Collapse
Affiliation(s)
- Nicole Glaser
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, California, USA
| | - Steven Chu
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, California, USA
| | - Justin Weiner
- Department of Physiology and Membrane Biology, UC Davis, Davis, California, USA
| | - Linnea Zdepski
- Department of Physiology and Membrane Biology, UC Davis, Davis, California, USA
| | - Heike Wulff
- Department of Pharmacology, UC Davis, Davis, California, USA
| | - Daniel Tancredi
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, California, USA
| | - Martha E ODonnell
- Department of Physiology and Membrane Biology, UC Davis, Davis, California, USA
| |
Collapse
|
21
|
Xiong M, Feng Y, Huang S, Lv S, Deng Y, Li M, Wang P, Luo M, Wen H, Zhang W. Teriparatide induces angiogenesis in ischemic cerebral infarction zones of rats through AC/PKA signaling and reduces ischemia-reperfusion injury. Biomed Pharmacother 2022; 148:112728. [PMID: 35220030 DOI: 10.1016/j.biopha.2022.112728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/02/2022] Open
Abstract
Teriparatide is a commonly used drug indicated for the treatment of osteoporosis in postmenopausal women. Teriparatide can also upregulate Ang-1 expression through the AC/PKA signaling pathway to promote angiogenesis. At present, promoting angiogenesis is a promising but unrealized strategy for the treatment of ischemic cerebral infarction. However, there are few studies on the application of teriparatide in the treatment of cerebral infarction. We used teriparatide to treat ischemic cerebral infarction in rats and obtained three major findings. First, teriparatide can promote angiogenesis, reduce cerebral infarct size, and increase cerebral perfusion by upregulating Ang-1 expression. Second, teriparatide can promote the expression of HO1, SOD2 and inhibit the production of pro-inflammatory cytokines IL-1β, IL-6 by upregulating Nrf2 expression. Third, we further found that teriparatide can mitigate blood-brain barrier disruption and brain edema by downregulating the expressions of MMP9, Ang-2 and AQP4. Our results indicate that teriparatide is neuroprotective through multiple mechanisms of action that include promoting angiogenesis, inhibiting oxidative stress and neuroinflammation, protecting blood-brain barrier, and reducing brain edema.
Collapse
Affiliation(s)
- Moliang Xiong
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangzhou 510282, China
| | - Yun Feng
- Department of Pediatrics, Hospital of the 74th Group Army of the Chinese people's Liberation Army, Guangzhou 510282, China
| | - Shujie Huang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangzhou 510282, China
| | - Siyuan Lv
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangzhou 510282, China
| | - Yuhao Deng
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangzhou 510282, China
| | - Min Li
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangzhou 510282, China
| | - Pengfei Wang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangzhou 510282, China
| | - Minjie Luo
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangzhou 510282, China
| | - Huangtao Wen
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangzhou 510282, China
| | - Wangming Zhang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangzhou 510282, China.
| |
Collapse
|
22
|
Kim Y, Cho AY, Kim HC, Ryu D, Jo SA, Jung YS. Effects of Natural Polyphenols on Oxidative Stress-Mediated Blood–Brain Barrier Dysfunction. Antioxidants (Basel) 2022; 11:antiox11020197. [PMID: 35204080 PMCID: PMC8868362 DOI: 10.3390/antiox11020197] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
The blood-brain barrier (BBB), which consists mainly of brain microvascular endothelial cells and astrocytes connected by tight junctions (TJs) and adhesion molecules (AMs), maintains the homeostatic balance between brain parenchyma and extracellular fluid. Accumulating evidence shows that BBB dysfunction is a common feature of neurodegenerative diseases, including stroke, traumatic brain injury, and Alzheimer’s disease. Among the various pathological pathways of BBB dysfunction, reactive oxygen species (ROS) are known to play a key role in inducing BBB disruption mediated via TJ modification, AM induction, cytoskeletal reorganization, and matrix metalloproteinase activation. Thus, antioxidants have been suggested to exert beneficial effects on BBB dysfunction-associated brain diseases. In this review, we summarized the sources of ROS production in multiple cells that constitute or surround the BBB, such as BBB endothelial cells, astrocytes, microglia, and neutrophils. We also reviewed various pathological mechanisms by which BBB disruption is caused by ROS in these cells. Finally, we summarized the effects of various natural polyphenols on BBB dysfunction to suggest a therapeutic strategy for BBB disruption-related brain diseases.
Collapse
Affiliation(s)
- Yeonjae Kim
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.K.); (A.Y.C.); (H.C.K.); (D.R.)
- Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Korea
| | - A Yeon Cho
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.K.); (A.Y.C.); (H.C.K.); (D.R.)
| | - Hong Cheol Kim
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.K.); (A.Y.C.); (H.C.K.); (D.R.)
| | - Dajung Ryu
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.K.); (A.Y.C.); (H.C.K.); (D.R.)
- Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Korea
| | - Sangmee Ahn Jo
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea;
- Department of Pharmacology, College of Pharmacy, Dankook University, Cheonan 31116, Korea
| | - Yi-Sook Jung
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.K.); (A.Y.C.); (H.C.K.); (D.R.)
- Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Korea
- Correspondence: ; Tel.: +82-31-219-3444
| |
Collapse
|
23
|
Jurcau A, Simion A. Neuroinflammation in Cerebral Ischemia and Ischemia/Reperfusion Injuries: From Pathophysiology to Therapeutic Strategies. Int J Mol Sci 2021; 23:14. [PMID: 35008440 PMCID: PMC8744548 DOI: 10.3390/ijms23010014] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/18/2021] [Accepted: 12/18/2021] [Indexed: 02/07/2023] Open
Abstract
Its increasing incidence has led stroke to be the second leading cause of death worldwide. Despite significant advances in recanalization strategies, patients are still at risk for ischemia/reperfusion injuries in this pathophysiology, in which neuroinflammation is significantly involved. Research has shown that in the acute phase, neuroinflammatory cascades lead to apoptosis, disruption of the blood-brain barrier, cerebral edema, and hemorrhagic transformation, while in later stages, these pathways support tissue repair and functional recovery. The present review discusses the various cell types and the mechanisms through which neuroinflammation contributes to parenchymal injury and tissue repair, as well as therapeutic attempts made in vitro, in animal experiments, and in clinical trials which target neuroinflammation, highlighting future therapeutic perspectives.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania;
- Neurology Ward, Clinical Municipal Hospital “dr. G. Curteanu” Oradea, 410154 Oradea, Romania
| | - Aurel Simion
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania;
- Neurorehabilitation Ward, Clinical Municipal Hospital “dr. G. Curteanu” Oradea, 410154 Oradea, Romania
| |
Collapse
|
24
|
The Effect of Ecdystene on the Activity of Matrix Metalloproteinases in Experimental Alloxan Diabetes in Rats. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00903-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Hevin-calcyon interaction promotes synaptic reorganization after brain injury. Cell Death Differ 2021; 28:2571-2588. [PMID: 33753902 PMCID: PMC8408247 DOI: 10.1038/s41418-021-00772-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 02/01/2023] Open
Abstract
Hevin, also known as SPARC-like protein 1 (SPARCL1 or SC1), is a synaptogenic protein secreted by astrocytes and modulates the formation of glutamatergic synapses in the developing brain by interacting with synaptic adhesion proteins, such as neurexin and neuroligin. Here, we identified the neuron-specific vesicular protein calcyon as a novel interaction partner of hevin and demonstrated that this interaction played a pivotal role in synaptic reorganization after an injury in the mature brain. Astrocytic hevin was upregulated post-injury in a photothrombotic stroke model. Hevin was fragmented by MMP3 induced during the acute stage of brain injury, and this process was associated with severe gliosis. At the late stage, the functional hevin level was restored as MMP3 expression decreased. The C-terminus of hevin interacted with the N-terminus of calcyon. By using RNAi and binding competitor peptides in an ischemic brain injury model, we showed that this interaction was crucial in synaptic and functional recoveries in the sensory-motor cortex, based on histological and electrophysiological analyses. Regulated expression of hevin and calcyon and interaction between them were confirmed in a mouse model of traumatic brain injury and patients with chronic traumatic encephalopathy. Our study provides direct evidence for the causal relationship between the hevin-calcyon interaction and synaptic reorganization after brain injury. This neuron-glia interaction can be exploited to modulate synaptic reorganization under various neurological conditions.
Collapse
|
26
|
Elastin-Derived Peptides in the Central Nervous System: Friend or Foe. Cell Mol Neurobiol 2021; 42:2473-2487. [PMID: 34374904 PMCID: PMC9560920 DOI: 10.1007/s10571-021-01140-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/03/2021] [Indexed: 12/11/2022]
Abstract
Elastin is one of the main structural matrix proteins of the arteries, lung, cartilage, elastic ligaments, brain vessels, and skin. These elastin fibers display incredible resilience and structural stability with long half-life. However, during some physiological and pathophysiological conditions, elastin is prone to proteolytic degradation and, due to the extremely low turnover rate, its degradation is practically an irreversible and irreparable phenomenon. As a result of elastin degradation, new peptides called elastin-derived peptides (EDPs) are formed. A growing body of evidence suggests that these peptides play an important role in the development of age-related vascular disease. They are also detected in the cerebrospinal fluid of healthy people, and their amount increases in patients after ischemic stroke. Recently, elastin-like polypeptides have been reported to induce overproduction of beta-amyloid in a model of Alzheimer's disease. Nevertheless, the role and mechanism of action of EDPs in the nervous system is largely unknown and limited to only a few studies. The article summarizes the current state of knowledge on the role of EDPs in the nervous system.
Collapse
|
27
|
Wu QJ, Sun X, Teves L, Mayor D, Tymianski M. Mice and Rats Exhibit Striking Inter-species Differences in Gene Response to Acute Stroke. Cell Mol Neurobiol 2021; 42:2773-2789. [PMID: 34350530 DOI: 10.1007/s10571-021-01138-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 07/30/2021] [Indexed: 10/20/2022]
Abstract
Neuroprotection in acute stroke has not been successfully translated from animals to humans. Animal research on promising agents continues largely in rats and mice which are commonly available to researchers. However, controversies continue on the most suitable species to model the human situation. Generally, putative agents seem less effective in mice as compared with rats. We hypothesized that this may be due to inter-species differences in stroke response and that this might be manifest at a genetic level. Here we used whole-genome microarrays to examine the differential gene regulation in the ischemic penumbra of mice and rats at 2 and 6 h after permanent middle cerebral artery occlusion (pMCAO; Raw microarray CEL data files are available in the GEO database with an accession number GSE163654). Differentially expressed genes (adj. p ≤ 0.05) were organized by hierarchical clustering, correlation plots, Venn diagrams and pathway analyses in each species and at each time-point. Emphasis was placed on genes already known to be associated with stroke, including validation by RT-PCR. Gene expression patterns in the ischemic penumbra differed strikingly between the species at both 2 h and 6 h. Nearly 90% of significantly regulated genes and most pathways modulated by ischemia differed between mice and rats. These differences were evident globally, among stroke-associated genes, immediate early genes, genes implicated in stress response, inflammation, neuroprotection, ion channels, and signal transduction. The findings of this study may have significant implications for the choice of species for screening putative stroke therapies.
Collapse
Affiliation(s)
- Qiu Jing Wu
- Krembil Research Institute, University Health Network, 60 Leonard Ave., Toronto, ON, M5T0S8, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Xiujun Sun
- Krembil Research Institute, University Health Network, 60 Leonard Ave., Toronto, ON, M5T0S8, Canada
| | - Lucy Teves
- Krembil Research Institute, University Health Network, 60 Leonard Ave., Toronto, ON, M5T0S8, Canada
| | - Diana Mayor
- Krembil Research Institute, University Health Network, 60 Leonard Ave., Toronto, ON, M5T0S8, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Michael Tymianski
- Krembil Research Institute, University Health Network, 60 Leonard Ave., Toronto, ON, M5T0S8, Canada. .,Department of Physiology, University of Toronto, Toronto, ON, Canada. .,Division of Neurosurgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
28
|
Han L, Jiang C. Evolution of blood-brain barrier in brain diseases and related systemic nanoscale brain-targeting drug delivery strategies. Acta Pharm Sin B 2021; 11:2306-2325. [PMID: 34522589 PMCID: PMC8424230 DOI: 10.1016/j.apsb.2020.11.023] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/30/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Blood–brain barrier (BBB) strictly controls matter exchange between blood and brain, and severely limits brain penetration of systemically administered drugs, resulting in ineffective drug therapy of brain diseases. However, during the onset and progression of brain diseases, BBB alterations evolve inevitably. In this review, we focus on nanoscale brain-targeting drug delivery strategies designed based on BBB evolutions and related applications in various brain diseases including Alzheimer's disease, Parkinson's disease, epilepsy, stroke, traumatic brain injury and brain tumor. The advances on optimization of small molecules for BBB crossing and non-systemic administration routes (e.g., intranasal treatment) for BBB bypassing are not included in this review.
Collapse
Key Words
- AD, Alzheimer's disease
- AMT, alpha-methyl-l-tryptophan
- Aβ, amyloid beta
- BACE1, β-secretase 1
- BBB, blood–brain barrier
- BDNF, brain derived neurotrophic factor
- BTB, blood–brain tumor barrier
- Blood–brain barrier
- Brain diseases
- Brain-targeting
- CMT, carrier-mediated transportation
- DTPA-Gd, Gd-diethyltriaminepentaacetic acid
- Drug delivery systems
- EPR, enhanced permeability and retention
- GLUT1, glucose transporter-1
- Gd, gadolinium
- ICAM-1, intercellular adhesion molecule-1
- KATP, ATP-sensitive potassium channels
- KCa, calcium-dependent potassium channels
- LAT1, L-type amino acid transporter 1
- LDL, low density lipoprotein
- LDLR, LDL receptor
- LFA-1, lymphocyte function associated antigen-1
- LRP1, LDLR-related protein 1
- MFSD2A, major facilitator superfamily domain-containing protein 2a
- MMP9, metalloproteinase-9
- MRI, magnetic resonance imaging
- NPs, nanoparticles
- Nanoparticles
- P-gp, P-glycoprotein
- PD, Parkinson's disease
- PEG, polyethyleneglycol
- PEG-PLGA, polyethyleneglycol-poly(lactic-co-glycolic acid)
- PLGA, poly(lactic-co-glycolic acid)
- PSMA, prostate-specific membrane antigen
- RAGE, receptor for advanced glycosylation end products
- RBC, red blood cell
- RMT, receptor-mediated transcytosis
- ROS, reactive oxygen species
- TBI, traumatic brain injury
- TJ, tight junction
- TfR, transferrin receptor
- VEGF, vascular endothelial growth factor
- ZO1, zona occludens 1
- siRNA, short interfering RNA
- tPA, tissue plasminogen activator
Collapse
Affiliation(s)
- Liang Han
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
- Corresponding author. Tel./fax: +86 512 65882089.
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 200032, China
| |
Collapse
|
29
|
Kuźniarz K, Luchowska-Kocot D, Tomaszewski T, Kurzepa J. Role of matrix metalloproteinases and their tissue inhibitors in the pathological mechanisms underlying maxillofacial cystic lesions. Biomed Rep 2021; 15:65. [PMID: 34155449 PMCID: PMC8212445 DOI: 10.3892/br.2021.1441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/27/2021] [Indexed: 12/18/2022] Open
Abstract
Cystic lesions are considered to be one of the most common pathologies of the maxillofacial region, and matrix metalloproteinases (MMPs) may represent potential etiological factors. The aim of the present study was to elucidate the role of MMP-2 and MMP-9, and their endogenous tissue inhibitors, tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2, respectively, in the pathogenesis of maxillofacial cystic lesions. A total of 25 patients diagnosed with radicular cysts (RCs; n=20), dentigerous cysts (n=3) and retention cysts (RtCs; n=7) were enrolled in the present study. Gelatin zymography was performed to assess the gelatinolytic activity of MMP-2 and MMP-9, and commercial ELISA kits were used to determine TIMP-1 and TIMP-2 concentrations. Gelatin zymography revealed the presence of both MMP-2 and MMP-9 in all types of samples analyzed. An increase in MMP-9 activity, TIMP-1 concentration and MMP-9/TIMP-1 ratio was observed in the fluid obtained from RCs compared with that obtained from RtCs. In conclusion, MMP-9 may be involved in the pathogenesis of RCs, whereas the activity of MMP-2 in the wall of RtCs was low, and this gelatinase did not appear to significantly affect the development of this type of lesion.
Collapse
Affiliation(s)
- Krystian Kuźniarz
- Department of Maxillofacial Surgery, Medical University of Lublin, Lublin 20-081, Poland
| | | | - Tomasz Tomaszewski
- Department of Maxillofacial Surgery, Medical University of Lublin, Lublin 20-081, Poland
| | - Jacek Kurzepa
- Department of Medical Chemistry, Medical University of Lublin, Lublin 20-081, Poland
| |
Collapse
|
30
|
CEACAM1 Inhibited IκB-α/NF-κB Signal Pathway Via Targeting MMP-9/TIMP-1 Axis in Diabetic Atherosclerosis. J Cardiovasc Pharmacol 2021; 76:329-336. [PMID: 32569018 DOI: 10.1097/fjc.0000000000000868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Atherosclerosis (AS) is the most common and serious complication in type 2 diabetes mellitus (T2DM). Recent studies have emphasized that inflammation is the main cause of atherosclerosis. Studies have shown that carcinoembryonic antigen-related cellular adhesion molecule 1 (CEACAM1) regulates the expression of matrix metallopeptidase 9 (MMP-9) after ischemic stroke to reduce inflammation. The aim of this study was to elucidate potential molecular mechanism of CEACAM1 on the inflammatory response in atherosclerosis. The serum levels of CEACAM1, MMP-9, and tissue inhibitors of metalloproteinase 1 (TIMP-1) in T2DM patients and healthy control was detected. The results showed that the levels of CEACAM1 and TIMP-1 were significantly decreased, and the levels of MMP-9 were significantly higher than those in the control group. Moreover, we also observed the effect of CEACAM1 on atherosclerosis in T2DM rats. Hematoxylin & eosin (HE) staining and oil red staining showed that CEACAM1 recombinant protein reduced intima-media thickness and the area of atherosclerotic plaques. To further explore the molecular mechanism of CEACAM1 regulating MMP-9/TIMP-1, we conducted experiments in rat aorta vascular endothelial cells and rat aorta smooth muscle cells. The result showed that CEACAM1 inhibits inflammatory response via MMP-9/TIMP-1 axis. Taken together, CEACAM1 attenuates diabetic atherosclerosis by inhibition of IκB/NF-κB signal pathway via MMP-9/TIMP-1 axis, which indicate that CEACAM1 is potentially amenable to therapeutic manipulation for clinical application in atherosclerosis in T2DM.
Collapse
|
31
|
Behl T, Kaur G, Sehgal A, Bhardwaj S, Singh S, Buhas C, Judea-Pusta C, Uivarosan D, Munteanu MA, Bungau S. Multifaceted Role of Matrix Metalloproteinases in Neurodegenerative Diseases: Pathophysiological and Therapeutic Perspectives. Int J Mol Sci 2021; 22:ijms22031413. [PMID: 33573368 PMCID: PMC7866808 DOI: 10.3390/ijms22031413] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Neurodegeneration is the pathological condition, in which the nervous system or neuron loses its structure, function, or both, leading to progressive degeneration or the death of neurons, and well-defined associations of tissue system, resulting in clinical manifestations. Neuroinflammation has been shown to precede neurodegeneration in several neurodegenerative diseases (NDs). No drug is yet known to delay or treat neurodegeneration. Although the etiology and potential causes of NDs remain widely indefinable, matrix metalloproteinases (MMPs) evidently have a crucial role in the progression of NDs. MMPs, a protein family of zinc (Zn2+)-containing endopeptidases, are pivotal agents that are involved in various biological and pathological processes in the central nervous system (CNS). The current review delineates the several emerging evidence demonstrating the effects of MMPs in the progression of NDs, wherein they regulate several processes, such as (neuro)inflammation, microglial activation, amyloid peptide degradation, blood brain barrier (BBB) disruption, dopaminergic apoptosis, and α-synuclein modulation, leading to neurotoxicity and neuron death. Published papers to date were searched via PubMed, MEDLINE, etc., while using selective keywords highlighted in our manuscript. We also aim to shed a light on pathophysiological effect of MMPs in the CNS and focus our attention on its detrimental and beneficial effects in NDs, with a special focus on Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), multiple sclerosis (MS), and Huntington's disease (HD), and discussed various therapeutic strategies targeting MMPs, which could serve as potential modulators in NDs. Over time, several agents have been developed in order to overcome challenges and open up the possibilities for making selective modulators of MMPs to decipher the multifaceted functions of MMPs in NDs. There is still a greater need to explore them in clinics.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 140401, Punjab, India; (G.K.); (A.S.); (S.S.)
- Correspondence: (T.B.); (S.B.); Tel.: +40-726-776-588 (S.B.)
| | - Gagandeep Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 140401, Punjab, India; (G.K.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 140401, Punjab, India; (G.K.); (A.S.); (S.S.)
| | - Shaveta Bhardwaj
- Department of Pharmacology, GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana 141104, Punjab, India;
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 140401, Punjab, India; (G.K.); (A.S.); (S.S.)
| | - Camelia Buhas
- Department of Morphological Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.B.); (C.J.-P.)
| | - Claudia Judea-Pusta
- Department of Morphological Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.B.); (C.J.-P.)
| | - Diana Uivarosan
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Mihai Alexandru Munteanu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Correspondence: (T.B.); (S.B.); Tel.: +40-726-776-588 (S.B.)
| |
Collapse
|
32
|
Glaser N, Chu S, Hung B, Fernandez L, Wulff H, Tancredi D, ODonnell ME. Acute and chronic neuroinflammation is triggered by diabetic ketoacidosis in a rat model. BMJ Open Diabetes Res Care 2020; 8:e001793. [PMID: 33318070 PMCID: PMC7737057 DOI: 10.1136/bmjdrc-2020-001793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/21/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Cognitive decline is common in patients with type 1 diabetes and has been attributed to the effects of chronic hyperglycemia and severe hypoglycemia. Diabetic ketoacidosis (DKA) has only recently been suspected to be involved in causing cognitive decline. We hypothesized that DKA triggers both acute and chronic neuroinflammation, contributing to brain injury. RESEARCH METHODS AND DESIGN We measured concentrations of cytokines, chemokines and matrix metalloproteinases (MMP) in serum and brain tissue lysates in juvenile rats during and after DKA (during acute DKA, 24 hours and 7 days after DKA), and compared these to healthy controls and hyperglycemic controls. We also measured cytokine, chemokine and MMP concentrations in serum and brain tissue of adult rats (70 days) that had experienced DKA as juveniles and compared these measurements to those of adult diabetic rats without exposure to DKA. RESULTS During acute DKA in the juvenile rats, serum concentrations of CCL3, tumor necrosis factor (TNF)-α, interleukin (IL)-1ß and MMP-9 were significantly increased. Serum concentrations of IL-2 and IL-17A increased 7 days after DKA recovery. In brain tissue lysates, concentrations of CCL3, CCL5, interferon (IFN)-γ and MMP-9 were significantly elevated during acute DKA. In adult rats that had DKA as juveniles (28 days previously), serum concentrations of IL-1ß and brain concentrations of IL-10 and IL-12p70 were elevated in comparison to diabetic rats without prior DKA. Composite scores for highly correlated cytokines and chemokines (mean z-scores for IL-10, IL-1ß, TNF-α, IL-17A, IFN-γ, CXCL-1 and CCL5) were also significantly elevated in adult rats with prior DKA. CONCLUSIONS These data confirm that DKA causes acute systemic inflammation and neuroinflammation in a rat model. Importantly, the neuroinflammatory response triggered by DKA is long-lasting, suggesting the possibility that DKA-induced chronic neuroinflammation could contribute to long-term cognitive decline in individuals with diabetes.
Collapse
Affiliation(s)
- Nicole Glaser
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, California, USA
| | - Steven Chu
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, California, USA
| | - Benjamin Hung
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Sacramento, California, USA
| | - Luis Fernandez
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, California, USA
| | - Heike Wulff
- Department of Pharmacology, University of California Davis School of Medicine, Sacramento, California, USA
| | - Daniel Tancredi
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, California, USA
| | - Martha E ODonnell
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Sacramento, California, USA
| |
Collapse
|
33
|
Macedo-da-Silva J, Rosa-Fernandes L, Barbosa RH, Angeli CB, Carvalho FR, de Oliveira Vianna RA, Carvalho PC, Larsen MR, Cardoso CA, Palmisano G. Serum Proteomics Reveals Alterations in Protease Activity, Axon Guidance, and Visual Phototransduction Pathways in Infants With In Utero Exposure to Zika Virus Without Congenital Zika Syndrome. Front Cell Infect Microbiol 2020; 10:577819. [PMID: 33312964 PMCID: PMC7708324 DOI: 10.3389/fcimb.2020.577819] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022] Open
Abstract
In 2015, ZIKV infection attracted international attention during an epidemic in the Americas, when neurological disorders were reported in infants who had their mothers exposed to ZIKV during pregnancy. World Health Organization (WHO) epidemiological data show that 5 to 15% of neonates exposed to ZIKV in the uterus have complications included in abnormalities related to Congenital Zika Syndrome (CZS). The risk of complications after birth is not well documented, however, clinical evidence shows that 6% of infants exposed to ZIKV during pregnancy have complications present at birth, and this rate rises to 14% when medical monitoring is performed in all exposed infants, regardless of birth condition. Thus, the evaluation and monitoring of all exposed infants are of foremost importance as the development of late complications has been increasingly supported by clinical evidence. The identification of changes in protein profile of infants exposed to ZIKV without CZS could provide valuable findings to better understand molecular changes in this cohort. Here, we use a shotgun-proteomics approach to investigate alterations in the serum of infants without CZS symptoms but exposed to intrauterine ZIKV (ZIKV) compared to unexposed controls (CTRL). A complex pattern of differentially expressed proteins was identified, highlighting the dysregulation of proteins involved in axon orientation, visual phototransduction, and global protease activity in children exposed to ZIKV without CZS. These data support the importance of monitoring children exposed to ZIKV during gestation and without early CZS symptoms. Our study is the first to assess molecular evidence of possible late disorders in children victims of the ZIKV outbreak in the Americas. We emphasize the importance of medical monitoring of symptomatic and asymptomatic children, as apparently unexplained late neurological and eye disorders may be due to intrauterine ZIKV exposure.
Collapse
Affiliation(s)
- Janaina Macedo-da-Silva
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz, Curitiba, Brazil
| | - Lívia Rosa-Fernandes
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Raquel Hora Barbosa
- Maternal and Child Department, School of Medicine, Universidade Federal Fluminense, Niteroi, Brazil
| | - Claudia B. Angeli
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Fabiana Rabe Carvalho
- Maternal and Child Department, School of Medicine, Universidade Federal Fluminense, Niteroi, Brazil
- Multiuser Laboratory for Research in Nephrology and Medical Sciences (LAMAP), School of Medicine, Universidade Federal Fluminense, Niteroi, Brazil
| | - Renata Artimos de Oliveira Vianna
- Maternal and Child Department, School of Medicine, Universidade Federal Fluminense, Niteroi, Brazil
- Multiuser Laboratory for Research in Nephrology and Medical Sciences (LAMAP), School of Medicine, Universidade Federal Fluminense, Niteroi, Brazil
| | - Paulo C. Carvalho
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz, Curitiba, Brazil
| | - Martin R. Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Claudete Araújo Cardoso
- Maternal and Child Department, School of Medicine, Universidade Federal Fluminense, Niteroi, Brazil
- Multiuser Laboratory for Research in Nephrology and Medical Sciences (LAMAP), School of Medicine, Universidade Federal Fluminense, Niteroi, Brazil
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
34
|
Tsuji K, Tsuji A, Yoshimura Y, Ogawa N, Nakazawa T, Nozaki K. Rupture of Anterior Communicating Artery Aneurysm after Intravenous Thrombolysis for Acute Ischemic Stroke: A Case Report. JOURNAL OF NEUROENDOVASCULAR THERAPY 2020; 15:240-245. [PMID: 37501693 PMCID: PMC10370924 DOI: 10.5797/jnet.cr.2020-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/08/2020] [Indexed: 07/29/2023]
Abstract
Objective Rupture of intracranial aneurysms after tissue plasminogen activator (t-PA) administration for acute ischemic stroke with an unruptured cerebral aneurysm is rare. We report a case of ruptured cerebral aneurysm after t-PA administration. Case Presentation A 74-year-old woman with dysarthria and left hemiparesis was admitted to our hospital, and acute lacunar infarction was found in the right corona radiata. One hour after t-PA administration, she complained of sudden headache and nausea, and her consciousness level deteriorated. Subarachnoid hemorrhage due to rupture of the anterior communicating aneurysm was confirmed and coil embolization was performed. Conclusion T-PA administration for acute ischemic stroke with an unruptured cerebral aneurysm risks rupture of the cerebral aneurysm, and careful judgment is needed in each case.
Collapse
Affiliation(s)
- Keiichi Tsuji
- Department of Neurosurgery, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Atsushi Tsuji
- Department of Neurosurgery, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Yayoi Yoshimura
- Department of Neurosurgery, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Nobuhiro Ogawa
- Department of Neurology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Takuya Nakazawa
- Department of Neurosurgery, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Kazuhiko Nozaki
- Department of Neurosurgery, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
35
|
Amorim MR, Moreira DA, Santos BM, Ferrari GD, Nogueira JE, de Deus JL, Alberici LC, Branco LGS. Increased lipopolysaccharide-induced hypothermia in neurogenic hypertension is caused by reduced hypothalamic PGE 2 production and increased heat loss. J Physiol 2020; 598:4663-4680. [PMID: 32749717 DOI: 10.1113/jp280321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/31/2020] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS The mechanisms involved in hypothermia and fever during systemic inflammation (SI) remain largely unknown. Our data support the contention that brain-mediated mechanisms are different in hypertension during SI. Considering that, clinically, it is not easy to assess all mechanisms involved in cardiovascular and thermoregulatory control during SI, the present study sheds light on these integrated mechanisms that may be triggered simultaneously in septic hypertensive patients. The result obtained demonstrate that, in lipopolysaccharide-induced SI, an increased hypothermia is observed in neurogenic hypertension, which is caused by reduced hypothalamic prostaglandin E2 production and increased heat loss in conscious rats. Therefore, the results of the present study provide useful insight for clinical trials evaluating the thermoregulatory outcomes of septic patients with hypertension. ABSTRACT Hypertension is a prevalent disease characterized by autonomic-induced elevated and sustained blood pressure levels and abnormal body core temperature (Tb) regulation. The present study aimed to determine the brain-mediated mechanisms involved in the thermoregulatory changes observed during lipopolysaccharide (LPS)-induced systemic inflammation (SI; at a septic-like model) in spontaneously hypertensive rats (SHR). We combined Tb and skin temperature (Tsk) analysis, assessment of prostaglandin (PG) E2 levels (the proximal mediator of fever) in the anteroventral region of the hypothalamus (AVPO; an important site for Tb control), oxygen consumption analysis, cardiovascular recordings, assays of inflammatory markers, and evaluation of oxidative stress in the plasma and brain of male Wistar rats and SHR that had received LPS (1.5 mg kg-1 ) or saline. LPS induced hypothermia followed by fever in Wistar rats, whereas, in SHR, a maintained hypothermia without fever were observed. These thermoregulatory responses were associated with an increased heat loss in SHR compared to Wistar rats. We measured LPS-induced increased PGE2 levels in the AVPO in Wistar rats, but not in SHR. The LPS-induced drop in blood pressure was higher in SHR than in Wistar rats. Furthermore, LPS-induced plasma and brain [regions involved in autonomic control: nucleus tractus solitarius (NTS) and rostral ventrolateral medulla (RVLM)] cytokine surges were blunted, whereas oxidative stress was higher in SHR. LPS-induced SI leads to blunted cytokine surges both systemically (plasma) and centrally (NTS and RVLM) and reduced hypothalamic PGE2 production, which are all associated with increased hypothermia mediated by increased heat loss, but not by heat production, in SHR.
Collapse
Affiliation(s)
- Mateus R Amorim
- Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Diego A Moreira
- Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Bruna M Santos
- Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Gustavo D Ferrari
- Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jonatas E Nogueira
- School of Physical Education and Sports of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Júnia L de Deus
- Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,The Solomon H. Snyder. Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Luciane C Alberici
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luiz G S Branco
- Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
36
|
Pichl T, Keller T, Hünseler C, Roth B, Janoschek R, Appel S, Hucklenbruch-Rother E. Effects of ketamine on neurogenesis, extracellular matrix homeostasis and proliferation in hypoxia-exposed HT22 murine hippocampal neurons. Biomed Rep 2020; 13:23. [PMID: 32765862 PMCID: PMC7403805 DOI: 10.3892/br.2020.1330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
Ketamine is a widely used drug in pediatric anesthesia, and both neurotoxic and neuroprotective effects have been associated with its use. There are only a few studies to date which have examined the effects of ketamine on neurons under hypoxic conditions, which may lead to severe brain damage and poor neurocognitive outcomes in neonates. In the present study, the effects of ketamine on cellular pathways associated with neurogenesis, extracellular matrix homeostasis and proliferation were examined in vitro in hypoxia-exposed neurons. Differentiated HT22 murine hippocampal neurons were treated with 1, 10 and 20 µM ketamine and cultured under hypoxic or normoxic conditions for 24 h followed by quantitative PCR analysis of relevant candidate genes. Ketamine treatment did not exert any notable effects on the mRNA expression levels of markers of neurogenesis (neuronal growth factor and syndecan 1), extracellular matrix homeostasis (matrix-metalloproteinase 2 and 9, tenascin C and tenascin R) or proliferation markers (Ki67 and proliferating cell nuclear antigen) compared with the respective untreated controls. However, there was a tendency towards downregulation of multiple cellular markers under hypoxic conditions and simultaneous ketamine treatment. No dose-dependent association was found in the ketamine treated groups for genetic markers of neurogenesis, extracellular matrix homeostasis or proliferation. Based on the results, ketamine may have increased the vulnerability of hippocampal neurons in vitro to hypoxia, independent of the dose. The results of the present study contribute to the ongoing discussion on the safety concerns around ketamine use in pediatric clinical practice from a laboratory perspective.
Collapse
Affiliation(s)
- Thomas Pichl
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital, D-50931 Cologne, Germany
| | - Titus Keller
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital, D-50931 Cologne, Germany
| | - Christoph Hünseler
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital, D-50931 Cologne, Germany
| | - Bernhard Roth
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital, D-50931 Cologne, Germany
| | - Ruth Janoschek
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital, D-50931 Cologne, Germany
| | - Sarah Appel
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital, D-50931 Cologne, Germany
| | - Eva Hucklenbruch-Rother
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Faculty of Medicine and University Hospital, D-50931 Cologne, Germany
| |
Collapse
|
37
|
Roa JA, Sarkar D, Zanaty M, Ishii D, Lu Y, Karandikar NJ, Hasan DM, Ortega SB, Samaniego EA. Preliminary results in the analysis of the immune response after aneurysmal subarachnoid hemorrhage. Sci Rep 2020; 10:11809. [PMID: 32678268 PMCID: PMC7367262 DOI: 10.1038/s41598-020-68861-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/26/2020] [Indexed: 01/15/2023] Open
Abstract
Cerebral vasospasm (VSP) is a common phenomenon after aneurysmal subarachnoid hemorrhage (aSAH) and contributes to neurocognitive decline. The natural history of the pro-inflammatory immune response after aSAH has not been prospectively studied in human cerebrospinal fluid (CSF). In this pilot study, we aimed to identify specific immune mediators of VSP after aSAH. Peripheral blood (PB) and CSF samples from patients with aSAH were prospectively collected at different time-points after hemorrhage: days 0–1 (acute); days 2–4 (pre-VSP); days 5–9 (VSP) and days 10 + (post-VSP peak). Presence and severity of VSP was assessed with computed tomography angiography/perfusion imaging and clinical examination. Cytokine and immune mediators’ levels were quantified using ELISA. Innate and adaptive immune cells were characterized by flow cytometry, and cell counts at different time-points were compared with ANOVA. Confocal immunostaining was used to determine the presence of specific immune cell populations detected in flow cytometry. Thirteen patients/aneurysms were included. Five (38.5%) patients developed VSP after a mean of 6.8 days from hemorrhage. Flow cytometry demonstrated decreased numbers of CD45+ cells during the acute phase in PB of aSAH patients compared with healthy controls. In CSF of VSP patients, NK cells (CD3-CD161 +) were increased during the acute phase and progressively declined, whereas CD8+CD161+ lymphocytes significantly increased at days 5–9. Microglia cells (CD45dimCD11b +) increased over time after SAH. This increase was particularly significant in patients with VSP. Levels of VEGF and MMP-9 were consistently higher in VSP patients, with the highest difference occurring at the acute phase. Confocal immunostaining demonstrated the presence of CD8+CD161+ lymphocytes in the arterial wall of two unruptured intracranial aneurysms. In this preliminary study, human CSF showed active presence of innate and adaptive immune cells after aSAH. CD8+CD161+ lymphocytes may have an important role in the inflammatory response after aneurysmal rupture and were identified in the aneurysmal wall of unruptured brain aneurysms. Microglia activation occurs 6 + days after aSAH.
Collapse
Affiliation(s)
- Jorge A Roa
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA.,Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Deepon Sarkar
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Mario Zanaty
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Daizo Ishii
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Yongjun Lu
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Nitin J Karandikar
- Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - David M Hasan
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Sterling B Ortega
- Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Edgar A Samaniego
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA. .,Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA. .,Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA.
| |
Collapse
|
38
|
Navarro-Oviedo M, Muñoz-Arrondo R, Zandio B, Marta-Enguita J, Bonaterra-Pastra A, Rodríguez JA, Roncal C, Páramo JA, Toledo E, Montaner J, Hernández-Guillamon M, Orbe J. Circulating TIMP-1 is associated with hematoma volume in patients with spontaneous intracranial hemorrhage. Sci Rep 2020; 10:10329. [PMID: 32587306 PMCID: PMC7316718 DOI: 10.1038/s41598-020-67250-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/02/2020] [Indexed: 01/15/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are proteolytic zinc-endopeptidases regulated by tissue Inhibitors of matrix metalloproteinases (TIMPs). We evaluated the potential of MMPs and TIMPs as clinical tools for Intracranial Haemorrhage (ICH). Spontaneous non-traumatic ICH patients were recruited from two hospitals: Complejo Hospitalario de Navarra (CHN = 29) and Vall d´Hebron (VdH = 76). Plasmatic levels of MMP-1, -2, -7, -9, -10 and TIMP-1 and their relationship with clinical, radiological and functional variables were evaluated. We further studied the effect of TIMP-1 (0.05-0.2 mg/Kg) in an experimental tail-bleeding model. In CHN, TIMP-1 was associated with admission-hematoma volume and MMP-7 was elevated in patients with deep when compared to lobar hematoma. In VdH, admission-hematoma volume was associated with TIMP-1 and MMP-7. When data from both hospitals were combined, we observed that an increase in 1 ng/ml in TIMP-1 was associated with an increase of 0.14 ml in haemorrhage (combined β = 0.14, 95% CI = 0.08-0.21). Likewise, mice receiving TIMP-1 (0.2 mg/Kg) showed a shorter bleeding time (p < 0.01). Therefore, the association of TIMP-1 with hematoma volume in two independent ICH cohorts suggests its potential as ICH biomarker. Moreover, increased TIMP-1 might not be sufficient to counterbalance MMPs upregulation indicating that TIMP-1 administration might be a beneficial strategy for ICH.
Collapse
Affiliation(s)
- Manuel Navarro-Oviedo
- Laboratory of Atherothrombosis, CIMA, Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
| | | | - Beatriz Zandio
- Neurology Service, Complejo Hospitalario de Navarra, IdisNA, Pamplona, Spain
| | - Juan Marta-Enguita
- Laboratory of Atherothrombosis, CIMA, Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
- Neurology Service, Complejo Hospitalario de Navarra, IdisNA, Pamplona, Spain
| | - Anna Bonaterra-Pastra
- Neurovascular Research Laboratory, Vall d´Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jose Antonio Rodríguez
- Laboratory of Atherothrombosis, CIMA, Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Roncal
- Laboratory of Atherothrombosis, CIMA, Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose A Páramo
- Laboratory of Atherothrombosis, CIMA, Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Haematology Service, Clínica Universidad de Navarra, Pamplona, Spain
| | - Estefania Toledo
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red en Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, Madrid, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d´Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d´Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josune Orbe
- Laboratory of Atherothrombosis, CIMA, Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain.
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
39
|
Hua W, Chen X, Wang J, Zang W, Jiang C, Ren H, Hong M, Wang J, Wu H, Wang J. Mechanisms and potential therapeutic targets for spontaneous intracerebral hemorrhage. BRAIN HEMORRHAGES 2020. [DOI: 10.1016/j.hest.2020.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
40
|
Famakin BM, Vemuganti R. Toll-Like Receptor 4 Signaling in Focal Cerebral Ischemia: a Focus on the Neurovascular Unit. Mol Neurobiol 2020; 57:2690-2701. [PMID: 32306272 DOI: 10.1007/s12035-020-01906-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/19/2020] [Indexed: 12/14/2022]
Abstract
A robust innate immune activation leads to downstream expression of inflammatory mediators that amplify tissue damage and consequently increase the morbidity after stroke. The Toll-like receptor 4 (TLR4) pathway is a major innate immune pathway activated acutely and chronically after stroke. Hence, understanding the intricacies of the temporal profile, specific control points, and cellular specificity of TLR4 activation is crucial for the development of any novel therapeutics targeting the endogenous innate immune response after focal cerebral ischemia. The goal of this review is to summarize the current findings related to TLR4 signaling after stroke with a specific focus on the components of the neurovascular unit such as astrocytes, neurons, endothelial cells, and pericytes. In addition, this review will examine the effects of focal cerebral ischemia on interaction of these neurovascular unit components.
Collapse
Affiliation(s)
| | - R Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- William S. Middleton VA Hospital, Madison, WI, USA
| |
Collapse
|
41
|
Amtul Z, Randhawa J, Najdat AN, Hill DJ, Arany EJ. Role of Delayed Neuroglial Activation in Impaired Cerebral Blood Flow Restoration Following Comorbid Injury. Cell Mol Neurobiol 2020; 40:369-380. [PMID: 31522299 DOI: 10.1007/s10571-019-00735-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 09/04/2019] [Indexed: 11/27/2022]
Abstract
Besides other causes, ischemia and Alzheimer's disease pathology is also linked to decreased cerebral blood flow (CBF). There is little or no consensus about the role of neuroglial cells in maintaining CBF in various neuropathologies. This consensus becomes scarcer when it comes to clinical and experimental cases of comorbid Abeta-amyloid (Aβ) toxicity and ischemia. Here, a comorbid rat model of Aβ toxicity and endothelin-1 induced ischemia (ET1) not only demonstrated the appearance of axotomized phagocytosed pyknotic neurons (NeuN) immediately after the injury, but also showed a diversity of continuously changing neuroglia (MHC Class II/OX6, Iba1) and macrophage (Iba1/CD68) phenotypes with round, stout somas, and retracted processes. This is indicative of a response to a concomitant increase in large fluid-filled spaces due to the vascular leakage. Ironically 4 weeks after the injury despite a conclusive reduction in neurons, CBF restoration in ET1 rats was associated with a massive increase in neuroglial cell numbers, hypertrophy, ramification, and soma sizes bordering the continuously reducing lesion core and inflamed vasculature, possibly to shield their leaky phenotype. Astrocytes were also found to be releasing matrix metalloproteinase9 (MMP9), which stabilized matrix ligand β-dystroglycan (β-DG) in repaired or functional vessels. Changing neuroglia phenotypes, responses, motility, astrocytic recruitment of MMP9, and β-DG stabilization implies the role of communication between neuroglia and endothelium in recovering CBF, in the absence of neurons, in ET1 rats compared to Aβ+ET1 rats, which showed characteristics delayed neuroglial activation. Stimulation of timely neuroglial reactivity may serve as a viable strategy to compensate for the neuronal loss in restoring CBF in comorbid cases of ischemia and Aβ toxicity.
Collapse
Affiliation(s)
- Zareen Amtul
- Department of Anatomy and Cell Biology, University of Western Ontario, London, N6A 5C1, Canada.
| | - Jasmine Randhawa
- Department of Biology, University of Western Ontario, London, N6A 5B7, Canada
| | - Abdullah N Najdat
- Department of Biology, University of Western Ontario, London, N6A 5B7, Canada
| | - David J Hill
- Departments of Medicine, Physiology, and Pharmacology, and Pediatrics, University of Western Ontario, London, N6A 5C1, Canada
- Lawson Health Research Institute, London, ON, N6A 4V2, Canada
| | - Edith J Arany
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, N6A 5C1, Canada
| |
Collapse
|
42
|
Zhang W, Zhu L, An C, Wang R, Yang L, Yu W, Li P, Gao Y. The blood brain barrier in cerebral ischemic injury – Disruption and repair. BRAIN HEMORRHAGES 2020. [DOI: 10.1016/j.hest.2019.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
43
|
Zhao W, Wu C, Dornbos D, Li S, Song H, Wang Y, Ding Y, Ji X. Multiphase adjuvant neuroprotection: A novel paradigm for improving acute ischemic stroke outcomes. Brain Circ 2020; 6:11-18. [PMID: 32166195 PMCID: PMC7045534 DOI: 10.4103/bc.bc_58_19] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/29/2019] [Accepted: 01/17/2020] [Indexed: 12/24/2022] Open
Abstract
While several large pivotal clinical trials recently revealed a substantial benefit of endovascular thrombectomy for acute ischemic stroke (AIS) caused by large-vessel occlusion, many patients still experience mediocre prognosis. Enlargement of the ischemic core, failed revascularization, incomplete reperfusion, distal embolization, and secondary reperfusion injury substantially impact the salvaging of brain tissue and the functional outcomes of AIS. Here, we propose novel concept of “Multiphase Adjuvant Neuroprotection” as a new paradigm that may help guide our search for adjunctive treatments to be used together with thrombectomy. The premise of multiphase adjuvant neuroprotection is based on the diverse and potentially nonoverlapping pathophysiologic mechanisms that are triggered before, during, and after thrombectomy therapies. Before thrombectomy, strategies should focus on preventing the growth of the ischemic core; during thrombectomy, improving recanalization while reducing distal embolization and maximizing reperfusion are of significant importance; after reperfusion, strategies should focus on seeking targets to reduce secondary reperfusion injury. The concept of multiphase adjuvant neuroprotection, wherein different strategies are employed throughout the various phases of clinical care, might provide a paradigm to minimize the final infarct size and improve functional outcome in AIS patients treated with thrombectomy. With the success of thrombectomy in selected AIS patients, there is now an opportunity to revisit stroke neuroprotection. Notably, if the underlying mechanisms of these neuroprotective strategies are identified, their role in the distinct phases will provide further avenues to improve patient outcomes of AIS.
Collapse
Affiliation(s)
- Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chuanjie Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - David Dornbos
- Department of Neurological Surgery, Semmes-Murphey Clinic and University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sijie Li
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Haiqing Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
44
|
Broekaart DWM, van Scheppingen J, Anink JJ, Wierts L, van het Hof B, Jansen FE, Spliet WG, van Rijen PC, Kamphuis WW, de Vries HE, Aronica E, van Vliet EA. Increased matrix metalloproteinases expression in tuberous sclerosis complex: modulation by microRNA 146a and 147b in vitro. Neuropathol Appl Neurobiol 2020; 46:142-159. [PMID: 31183875 PMCID: PMC7217197 DOI: 10.1111/nan.12572] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/05/2019] [Indexed: 01/09/2023]
Abstract
AIM Matrix metalloproteinases (MMPs) and their endogenous tissue inhibitors (TIMPs) control proteolysis within the extracellular matrix (ECM) of the brain. Dysfunction of this enzymatic system due to brain inflammation can disrupt the blood-brain barrier (BBB) and has been implicated in the pathogenesis of epilepsy. However, this has not been extensively studied in the epileptogenic human brain. METHODS We investigated the expression and cellular localization of major MMPs (MMP2, MMP3, MMP9 and MMP14) and TIMPs (TIMP1, TIMP2, TIMP3 and TIMP4) using quantitative real-time polymerase chain reaction (RT-PCR) and immunohistochemistry in resected epileptogenic brain tissue from patients with tuberous sclerosis complex (TSC), a severe neurodevelopmental disorder characterized by intractable epilepsy and prominent neuroinflammation. Furthermore, we determined whether anti-inflammatory microRNAs, miR146a and miR147b, which can regulate gene expression at the transcriptional level, could attenuate dysregulated MMP and TIMP expression in TSC tuber-derived astroglial cultures. RESULTS We demonstrated higher mRNA and protein expression of MMPs and TIMPs in TSC tubers compared to control and perituberal brain tissue, particularly in dysmorphic neurons and giant cells, as well as in reactive astrocytes, which was associated with BBB dysfunction. More importantly, IL-1β-induced dysregulation of MMP3, TIMP2, TIMP3 and TIMP4 could be rescued by miR146a and miR147b in tuber-derived TSC cultures. CONCLUSIONS This study provides evidence of dysregulation of the MMP/TIMP proteolytic system in TSC, which is associated with BBB dysfunction. As dysregulated MMP and TIMP expression can be ameliorated in vitro by miR146a and miR147b, these miRNAs deserve further investigation as a novel therapeutic approach.
Collapse
Affiliation(s)
- D. W. M. Broekaart
- Department of (Neuro)PathologyAmsterdam NeuroscienceAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - J. van Scheppingen
- Department of (Neuro)PathologyAmsterdam NeuroscienceAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - J. J. Anink
- Department of (Neuro)PathologyAmsterdam NeuroscienceAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - L. Wierts
- Brendinn TherapeuticsAmsterdamThe Netherlands
- Department of Molecular Cell Biology and ImmunologyAmsterdam NeuroscienceAmsterdam UMCVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - B. van het Hof
- Department of Molecular Cell Biology and ImmunologyAmsterdam NeuroscienceAmsterdam UMCVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - F. E. Jansen
- Department of Pediatric NeurologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - W. G. Spliet
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - P. C. van Rijen
- Department of NeurosurgeryRudolf Magnus Institute for NeuroscienceUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - W. W. Kamphuis
- Brendinn TherapeuticsAmsterdamThe Netherlands
- Department of Molecular Cell Biology and ImmunologyAmsterdam NeuroscienceAmsterdam UMCVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - H. E. de Vries
- Department of Molecular Cell Biology and ImmunologyAmsterdam NeuroscienceAmsterdam UMCVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - E. Aronica
- Department of (Neuro)PathologyAmsterdam NeuroscienceAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN)HeemstedeThe Netherlands
| | - E. A. van Vliet
- Department of (Neuro)PathologyAmsterdam NeuroscienceAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Swammerdam Institute for Life SciencesCenter for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
45
|
Wu MY, Gao F, Yang XM, Qin X, Chen GZ, Li D, Dang BQ, Chen G. Matrix metalloproteinase-9 regulates the blood brain barrier via the hedgehog pathway in a rat model of traumatic brain injury. Brain Res 2020; 1727:146553. [DOI: 10.1016/j.brainres.2019.146553] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/31/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023]
|
46
|
Ren Y, Gao XP, Liang H, Zhang H, Hu CY. LncRNA KCNQ1OT1 contributes to oxygen-glucose-deprivation/reoxygenation-induced injury via sponging miR-9 in cultured neurons to regulate MMP8. Exp Mol Pathol 2019; 112:104356. [PMID: 31837324 DOI: 10.1016/j.yexmp.2019.104356] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 01/24/2023]
Abstract
Our study proposed to investigate the function of potassium voltage-gated channel sub-family Q member 1 opposite strand 1 (KCNQ1OT1) in cerebral ischemia-reperfusion (I/R) injury and the underlying mechanism. We constructed an oxygen-glucose-deprivation/reoxygenation (OGD/R) model using the primary cortical neurons to mimic the cerebral I/R injury in vitro. Small inference RNA (siRNA) was used to silencing KCNQ1OT1. Dual luciferase assay was conducted to verify the interaction between KCNQ1OT1 and miR-9 and interaction between miR-9 and MMP8. CCK8 assay and flow cytometry analysis were applied for determing the viability and apoptosis of neurons, accordingly. QPCR and Western blot were performed to determine the RNA and protein expression. Our outcomes revealed that the expression of KCNQ1OT1 in cultured neurons was notably enhanced after suffered to OGD/R. Knockdown of KCNQ1OT1 weakened OGD/R-induced injury in neurons. Moreover, depletion of KCNQ1OT1 lead to the up-regulation of miR-9 and down-regulation of MMP8. Dual luciferase target validation assays demonstrated that KCNQ1OT1 directly interact with miR-9 and MMP8 is a direct target of miR-9, suggesting that KCNQ1OT1/miR-9/MMP8 might constitute the competing endogenous RNA (ceRNA) mechanism. Knockdown of MMP8 or up-regulation of miR-9 also could weaken OGD/R-induced injury. Furthermore, cells co-transfected with si-KCNQ1OT1, miR-9 mimic and si-MMP8 could significantly abolish the injury on neurons caused by OGD/R. Taken together, our data manifested that KCNQ1OT1 possibly acts as a facilitator in cerebral I/R injury through modulating miR-9/MMP8 axis as a ceRNA.
Collapse
Affiliation(s)
- Yi Ren
- Department of Neurology, The People's Hospital of Hunan Province, Changsha 410000, PR China
| | - Xiao-Ping Gao
- Department of Neurology, The People's Hospital of Hunan Province, Changsha 410000, PR China.
| | - Hui Liang
- Department of Neurology, The People's Hospital of Hunan Province, Changsha 410000, PR China
| | - Huan Zhang
- Department of Neurology, The People's Hospital of Hunan Province, Changsha 410000, PR China
| | - Chong-Yu Hu
- Department of Neurology, The People's Hospital of Hunan Province, Changsha 410000, PR China
| |
Collapse
|
47
|
Dabrowska S, Andrzejewska A, Lukomska B, Janowski M. Neuroinflammation as a target for treatment of stroke using mesenchymal stem cells and extracellular vesicles. J Neuroinflammation 2019; 16:178. [PMID: 31514749 PMCID: PMC6743114 DOI: 10.1186/s12974-019-1571-8] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 08/29/2019] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke is the third cause of death in the developed countries and the main reason of severe disability. Brain ischemia leads to the production of damage-associated molecular patterns (DAMPs) by neurons and glial cells which results in astrocyte and microglia activation, pro-inflammatory cytokines and chemokines production, blood-brain barrier (BBB) disruption, infiltration of leukocytes from the peripheral blood into the infarcted area, and further exacerbation of tissue damage. However, some immune cells such as microglia or monocytes are capable to change their phenotype to anti-inflammatory, produce anti-inflammatory cytokines, and protect injured nervous tissue. In this situation, therapies, which will modulate the immune response after brain ischemia, such as transplantation of mesenchymal stem cells (MSCs) are catching interest. Many experimental studies of ischemic stroke revealed that MSCs are able to modulate immune response and act neuroprotective, through stimulation of neurogenesis, oligodendrogenesis, astrogenesis, and angiogenesis. MSCs may also have an ability to replace injured cells, but the release of paracrine factors directly into the environment or via extracellular vesicles (EVs) seems to play the most pronounced role. EVs are membrane structures containing proteins, lipids, and nucleic acids, and they express similar properties as the cells from which they are derived. However, EVs have lower immunogenicity, do not express the risk of vessel blockage, and have the capacity to cross the blood-brain barrier. Experimental studies of ischemic stroke showed that EVs have immunomodulatory and neuroprotective properties; therefore, they can stimulate neurogenesis and angiogenesis. Up to now, 20 clinical trials with MSC transplantation into patients after stroke were performed, from which two concerned on only hemorrhagic stroke and 13 studied only on ischemic stroke. There is no clinical trial with EV injection into patients after brain ischemia so far, but the case with miR-124-enriched EVs administration is planned and probably there will be more clinical studies with EV transplantation in the near future.
Collapse
Affiliation(s)
- Sylwia Dabrowska
- NeuroRepair Department, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - Anna Andrzejewska
- NeuroRepair Department, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - Miroslaw Janowski
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, HSF III, 620 W. Baltimore street, Baltimore, MD, 21201, USA.
| |
Collapse
|
48
|
Yasmeen S, Akram BH, Hainsworth AH, Kruuse C. Cyclic nucleotide phosphodiesterases (PDEs) and endothelial function in ischaemic stroke. A review. Cell Signal 2019; 61:108-119. [PMID: 31132399 DOI: 10.1016/j.cellsig.2019.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Endothelial dysfunction is a hallmark of cerebrovascular disease, including ischemic stroke. Modulating endothelial signalling by cyclic nucleotides, cAMP and cGMP, is a potential therapeutic target in stroke. Inhibitors of the cyclic nucleotide degrading phosphodiesterase (PDE) enzymes may restore cerebral endothelial function. Current knowledge on PDE distribution and function in cerebral endothelial cells is sparse. This review explores data on PDE distribution and effects of PDEi in cerebral endothelial cells and identifies which PDEs are potential treatment targets in stroke. METHOD We performed a systematic search of electronic databases (Medline and Embase). Our search terms were cerebral ischaemia, cerebral endothelial cells, cyclic nucleotide, phosphodiesterase and phosphodiesterase inhibitors. RESULTS We found 23 publications which described effects of selective inhibitors of only three PDE families on endothelial function in ischemic stroke. PDE3 inhibitors (PDE3i) (11 publications) and PDE4 inhibitors (PDE4i) (3 publications) showed anti-inflammatory, anti-apoptotic or pro-angiogenic effects. PDE3i also reduced leucocyte infiltration and MMP-9 expression. Both PDE3i and PDE4i increased expression of tight junction proteins and protected the blood-brain barrier. PDE5 inhibitors (PDE5i) (6 publications) reduced inflammation and apoptosis. In preclinical models, PDE5i enhanced cGMP/NO signalling associated with microvascular angiogenesis, increased cerebral blood flow and improved functional recovery. Non-specific PDEi (3 publications) had mainly anti-inflammatory effects. CONCLUSION This review demonstrates that non-selective and selective PDEi of PDE3, PDE4 and PDE5 modulated endothelial function in cerebral ischemic stroke by regulating processes involved in vascular repair and neuroprotection and thus reduced cell death and inflammation. Of note, they promoted angiogenesis, microcirculation and improved functional recovery; all are important in stroke prevention and recovery, and effects should be further evaluated in humans.
Collapse
Affiliation(s)
- Saiqa Yasmeen
- Stroke Unit and Neurovascular Research Unit, Department of Neurology, Herlev Gentofte Hospital, Herlev Ringvej 75, Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Bilal Hussain Akram
- Stroke Unit and Neurovascular Research Unit, Department of Neurology, Herlev Gentofte Hospital, Herlev Ringvej 75, Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Atticus H Hainsworth
- Clinical Neuroscience, Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Christina Kruuse
- Stroke Unit and Neurovascular Research Unit, Department of Neurology, Herlev Gentofte Hospital, Herlev Ringvej 75, Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
49
|
Wang M, Cheng L, Chen ZL, Mungur R, Xu SH, Wu J, Liu XL, Wan S. Hyperbaric oxygen preconditioning attenuates brain injury after intracerebral hemorrhage by regulating microglia polarization in rats. CNS Neurosci Ther 2019; 25:1126-1133. [PMID: 31411803 PMCID: PMC6776759 DOI: 10.1111/cns.13208] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022] Open
Abstract
AIMS Hyperbaric oxygen preconditioning (HBOP) attenuates brain edema, microglia activation, and inflammation after intracerebral hemorrhage (ICH). In this present study, we investigated the role of HBOP in ICH-induced microglia polarization and the potential involved signal pathway. METHODS Male Sprague-Dawley rats were divided into three groups: SHAM, ICH, and ICH + HBOP group. Before surgery, rats in SHAM and HBOP groups received HBO for 5 days. Rats in SHAM group received needle injection, while rats in ICH and ICH + HBOP groups received 100 μL autologous blood injection into the right basal ganglia. Rats were euthanized at 24 hours after ICH, and the brains were removed for immunohistochemistry and Western blotting. Neurological deficits and brain water content were determined. RESULTS Intracerebral hemorrhage induced brain edema, which was significantly lower in the HBOP group. The levels of MMP9 were also less in the HBOP group. HBO pretreatment resulted in less neuronal death and neurological deficits after ICH. Their immunoactivity and protein levels of M1 markers were downregulated, but the M2 markers were unchanged by HBOP. In addition, ICH-induced pro-inflammatory cytokine (TNF-α and IL-1β) levels and the phosphorylation of JNK and STAT1 were also lower in the HBOP rats. CONCLUSIONS HBO pretreatment attenuated ICH-induced brain injuries and MMP9 upregulation, which may through the inhibiting of M1 polarization of microglia and inflammatory signal pathways after ICH.
Collapse
Affiliation(s)
- Ming Wang
- Department of Neurosurgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Lin Cheng
- Brain Center, Zhejiang Hospital, Hangzhou, China
| | | | - Rajneesh Mungur
- Department of Neurosurgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Shan-Hu Xu
- Brain Center, Zhejiang Hospital, Hangzhou, China
| | - Jiong Wu
- Brain Center, Zhejiang Hospital, Hangzhou, China
| | - Xiao-Li Liu
- Brain Center, Zhejiang Hospital, Hangzhou, China
| | - Shu Wan
- Brain Center, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
50
|
Jiang RH, Zu QQ, Xu XQ, Wang B, Ding Y, Wang J, Liu S, Shi HB. A Canine Model of Hemorrhagic Transformation Using Recombinant Tissue Plasminogen Activator Administration After Acute Ischemic Stroke. Front Neurol 2019; 10:673. [PMID: 31293509 PMCID: PMC6603151 DOI: 10.3389/fneur.2019.00673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/10/2019] [Indexed: 11/13/2022] Open
Abstract
Early reperfusion of occluded arteries via recombinant tissue plasminogen activator (rtPA) administration is considered to be an effective strategy for the treatment of acute ischemic stroke. However, delayed administration of rtPA may cause severe hemorrhagic transformation (HT) and undesirable neurological outcomes. The current study aims to establish a canine HT model using rtPA administration and to investigate the potential mechanisms underlying HT. Following anesthesia, two autologous clots were injected into the middle cerebral artery (MCA) to induce ischemic stroke. To induce reperfusion, rtPA (2 mg/kg) was administrated intravenously 4.5 h after the establishment of stroke. The occurrence of HT was determined by computed tomography (CT) and by pathological assessment. Transmission electron microscopy was utilized to assess blood-brain barrier (BBB) damage. The expression of matrix metalloprotein 9 (MMP-9) was analyzed by enzyme linked immunosorbent assay (ELISA), immunofluorescence (IF), and western blot. Administration of rtPA 4.5 h after stroke induced reperfusion in 73.9% of the canines, caused evident HT, and did not improve neurological outcomes compared to canines that did not receive rtPA. There was a significant increase in expression of MMP-9 after rtPA administration, accompanied by BBB disruption. We have established a canine HT model that closely mimics human HT by using rtPA administration after the induction of middle cerebral artery occlusion (MCAO) with autologous clots. Our data suggest that a potential mechanism underlying rtPA-caused HT may be related to BBB dysfunction induced by an increase in MMP-9 expression.
Collapse
Affiliation(s)
- Run-Hao Jiang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qing-Quan Zu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Charles T. Dotter Department of Interventional Radiology, Oregon Health and Science University, Portland, OR, United States
| | - Xiao-Quan Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bin Wang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ye Ding
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jun Wang
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Sheng Liu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hai-Bin Shi
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|