1
|
Moloney R, Pavy CL, Kahl RGS, Palliser HK, Hirst JJ, Shaw JC. Protection from oxygen-glucose deprivation by neurosteroid treatment in primary neurons and oligodendrocytes. In Vitro Cell Dev Biol Anim 2024; 60:1068-1084. [PMID: 39075243 PMCID: PMC11534971 DOI: 10.1007/s11626-024-00957-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/20/2024] [Indexed: 07/31/2024]
Abstract
Preterm birth results in an increased risk of neonatal brain injury and neurobehavioural disorders. Despite the seriousness of these adverse outcomes, there are currently no effective therapies to protect the vulnerable developing brain. We propose that neurosteroid replacement therapy may be a novel approach in reducing detrimental neurological outcomes following preterm birth. The use of guinea pig primary neuronal and oligodendrocyte cultures with relevance to late gestation allows insight into the mechanisms behind the effectiveness of these treatments. Primary neuronal and oligodendrocyte cultures were derived from fetal guinea pig frontal cortex brain tissue at gestational age 62 (GA62). Cell cultures were pre-treated with either etifoxine (5 µM) or zuranolone (1 µm) for 24 h prior to insult. Cells were then exposed to either oxygen-glucose deprivation (OGD; 0% O2 and no glucose DMEM; preterm birth insult) or sham (standard cell culture conditions; 25 mM DMEM) for 2 h. Lactate dehydrogenase assay (LDH) was performed following OGD as a measure of cytotoxicity. Relative mRNA expression of key neuronal and oligodendrocyte markers, as well as neuronal receptors and transporters, were quantified using high throughput (Fluidigm) RT-PCR. OGD significantly increased cellular cytotoxicity in both neurons and oligodendrocytes. Additionally, key neuronal marker mRNA expression was reduced following OGD, and oligodendrocytes displayed arrested mRNA expression of key markers of lineage progression. Treatment with etifoxine restored a number of parameters back to control levels, whereas treatment with zuranolone provided a robust improvement in all parameters examined. This study has demonstrated the neuroprotective potential of neurosteroid replacement therapy in a model of hypoxia related to preterm birth. Neuroprotection appears to be mediated through glutamate reduction and increased brain derived neurotrophic factor (BDNF). Future work is warranted in examining these treatments in vivo, with the overall aim to suppress preterm associated brain damage and reduce long term outcomes for affected offspring.
Collapse
Affiliation(s)
- Roisin Moloney
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia.
| | - Carlton L Pavy
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| | - Richard G S Kahl
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| | - Hannah K Palliser
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| | - Jon J Hirst
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| | - Julia C Shaw
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| |
Collapse
|
2
|
Tang Y, Wu X, Li J, Li Y, Xu X, Li G, Zhang P, Qin C, Wu LJ, Tang Z, Tian DS. The Emerging Role of Microglial Hv1 as a Target for Immunomodulation in Myelin Repair. Aging Dis 2024; 15:1176-1203. [PMID: 38029392 PMCID: PMC11081154 DOI: 10.14336/ad.2023.1107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
In the central nervous system (CNS), the myelin sheath ensures efficient interconnection between neurons and contributes to the regulation of the proper function of neuronal networks. The maintenance of myelin and the well-organized subtle process of myelin plasticity requires cooperation among myelin-forming cells, glial cells, and neural networks. The process of cooperation is fragile, and the balance is highly susceptible to disruption by microenvironment influences. Reactive microglia play a critical and complicated role in the demyelination and remyelination process. Recent studies have shown that the voltage-gated proton channel Hv1 is selectively expressed in microglia in CNS, which regulates intracellular pH and is involved in the production of reactive oxygen species, underlying multifaceted roles in maintaining microglia function. This paper begins by examining the molecular mechanisms of demyelination and emphasizes the crucial role of the microenvironment in demyelination. It focuses specifically on the role of Hv1 in myelin repair and its therapeutic potential in CNS demyelinating diseases.
Collapse
Affiliation(s)
- Yingxin Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiarui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yuanwei Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaoxiao Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gaigai Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ping Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Li S, Liu Y, Lu S, Xu J, Liu X, Yang D, Yang Y, Hou L, Li N. A crazy trio in Parkinson's disease: metabolism alteration, α-synuclein aggregation, and oxidative stress. Mol Cell Biochem 2024:10.1007/s11010-024-04985-3. [PMID: 38625515 DOI: 10.1007/s11010-024-04985-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/06/2024] [Indexed: 04/17/2024]
Abstract
Parkinson's disease (PD) is an aging-associated neurodegenerative disorder, characterized by the progressive loss of dopaminergic neurons in the pars compacta of the substantia nigra and the presence of Lewy bodies containing α-synuclein within these neurons. Oligomeric α-synuclein exerts neurotoxic effects through mitochondrial dysfunction, glial cell inflammatory response, lysosomal dysfunction and so on. α-synuclein aggregation, often accompanied by oxidative stress, is generally considered to be a key factor in PD pathology. At present, emerging evidences suggest that metabolism alteration is closely associated with α-synuclein aggregation and PD progression, and improvement of key molecules in metabolism might be potentially beneficial in PD treatment. In this review, we highlight the tripartite relationship among metabolic changes, α-synuclein aggregation, and oxidative stress in PD, and offer updated insights into the treatments of PD, aiming to deepen our understanding of PD pathogenesis and explore new therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Sheng Li
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yanbing Liu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Sen Lu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jiayi Xu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaokun Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Di Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Yuxuan Yang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lin Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Ning Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
4
|
Frase S, Steddin J, Paschen E, Lenz M, Conforti P, Haas CA, Vlachos A, Schachtrup C, Hosp JA. Dense dopaminergic innervation of the peri-infarct cortex despite dopaminergic cell loss after a pure motor-cortical stroke in rats. J Neurochem 2023; 167:427-440. [PMID: 37735852 DOI: 10.1111/jnc.15970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Abstract
After ischemic stroke, the cortex directly adjacent to the ischemic core (i.e., the peri-infarct cortex, PIC) undergoes plastic changes that facilitate motor recovery. Dopaminergic signaling is thought to support this process. However, ischemic stroke also leads to the remote degeneration of dopaminergic midbrain neurons, possibly interfering with this beneficial effect. In this study, we assessed the reorganization of dopaminergic innervation of the PIC in a rat model of focal cortical stroke. Adult Sprague-Dawley rats either received a photothrombotic stroke (PTS) in the primary motor cortex (M1) or a sham operation. 30 days after PTS or sham procedure, the retrograde tracer Micro Ruby (MR) was injected into the PIC of stroke animals or into homotopic cortical areas of matched sham rats. Thus, dopaminergic midbrain neurons projecting into the PIC were identified based on MR signal and immunoreactivity against tyrosine hydroxylase (TH), a marker for dopaminergic neurons. The density of dopaminergic innervation within the PIC was assessed by quantification of dopaminergic boutons indicated by TH-immunoreactivity. Regarding postsynaptic processes, expression of dopamine receptors (D1- and D2) and a marker of the functional signal cascade (DARPP-32) were visualized histologically. Despite a 25% ipsilesional loss of dopaminergic midbrain neurons after PTS, the number and spatial distribution of dopaminergic neurons projecting to the PIC was not different compared to sham controls. Moreover, the density of dopaminergic innervation in the PIC was significantly higher than in homotopic cortical areas of the sham group. Within the PIC, D1-receptors were expressed in neurons, whereas D2-receptors were confined to astrocytes. The intensity of D1- and DARPP-32 expression appeared to be higher in the PIC compared to the contralesional homotopic cortex. Our data suggest a sprouting of dopaminergic fibers into the PIC and point to a role for dopaminergic signaling in reparative mechanisms post-stroke, potentially related to recovery.
Collapse
Affiliation(s)
- Sibylle Frase
- Department of Neurology and Neuroscience, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julius Steddin
- Department of Neurology and Neuroscience, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Enya Paschen
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pasquale Conforti
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Carola A Haas
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Schachtrup
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jonas A Hosp
- Department of Neurology and Neuroscience, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Caldwell M, Ayo-Jibunoh V, Mendoza JC, Brimblecombe KR, Reynolds LM, Zhu Jiang XY, Alarcon C, Fiore E, N Tomaio J, Phillips GR, Mingote S, Flores C, Casaccia P, Liu J, Cragg SJ, McCloskey DP, Yetnikoff L. Axo-glial interactions between midbrain dopamine neurons and oligodendrocyte lineage cells in the anterior corpus callosum. Brain Struct Funct 2023; 228:1993-2006. [PMID: 37668732 PMCID: PMC10516790 DOI: 10.1007/s00429-023-02695-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/09/2023] [Indexed: 09/06/2023]
Abstract
Oligodendrocyte progenitor cells (OPCs) receive synaptic innervation from glutamatergic and GABAergic axons and can be dynamically regulated by neural activity, resulting in activity-dependent changes in patterns of axon myelination. However, it remains unclear to what extent other types of neurons may innervate OPCs. Here, we provide evidence implicating midbrain dopamine neurons in the innervation of oligodendrocyte lineage cells in the anterior corpus callosum and nearby white matter tracts of male and female adult mice. Dopaminergic axon terminals were identified in the corpus callosum of DAT-Cre mice after injection of an eYFP reporter virus into the midbrain. Furthermore, fast-scan cyclic voltammetry revealed monoaminergic transients in the anterior corpus callosum, consistent with the anatomical findings. Using RNAscope, we further demonstrate that ~ 40% of Olig2 + /Pdfgra + cells and ~ 20% of Olig2 + /Pdgfra- cells in the anterior corpus callosum express Drd1 and Drd2 transcripts. These results suggest that oligodendrocyte lineage cells may respond to dopamine released from midbrain dopamine axons, which could affect myelination. Together, this work broadens our understanding of neuron-glia interactions with important implications for myelin plasticity by identifying midbrain dopamine axons as a potential regulator of corpus callosal oligodendrocyte lineage cells.
Collapse
Affiliation(s)
- Megan Caldwell
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, 365 5Th Ave, New York, NY, 10016, USA
- Department of Psychology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Vanessa Ayo-Jibunoh
- Department of Psychology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Josue Criollo Mendoza
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Katherine R Brimblecombe
- Centre for Integrative Neuroscience, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Lauren M Reynolds
- Plasticité du Cerveau, CNRS UMR8249, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Paris, France
| | - Xin Yan Zhu Jiang
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Colin Alarcon
- Department of Psychology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Elizabeth Fiore
- Department of Psychology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Jacquelyn N Tomaio
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, 365 5Th Ave, New York, NY, 10016, USA
- Neuroscience Initiative, Advanced Science Research Center, Graduate Center of The City University of New York, New York, NY, USA
| | - Greg R Phillips
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, 365 5Th Ave, New York, NY, 10016, USA
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
- Center for Developmental Neuroscience, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Susana Mingote
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, 365 5Th Ave, New York, NY, 10016, USA
- Neuroscience Initiative, Advanced Science Research Center, Graduate Center of The City University of New York, New York, NY, USA
| | - Cecilia Flores
- Department of Psychiatry and of Neurology and Neuroscience, McGill University, and Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Patrizia Casaccia
- Neuroscience Initiative, Advanced Science Research Center, Graduate Center of The City University of New York, New York, NY, USA
- Department of Neuroscience and Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jia Liu
- Neuroscience Initiative, Advanced Science Research Center, Graduate Center of The City University of New York, New York, NY, USA
| | - Stephanie J Cragg
- Centre for Integrative Neuroscience, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Dan P McCloskey
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, 365 5Th Ave, New York, NY, 10016, USA
- Department of Psychology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Leora Yetnikoff
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, 365 5Th Ave, New York, NY, 10016, USA.
- Department of Psychology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA.
| |
Collapse
|
6
|
Sharma K, Dev KK. The Effects of Antipsychotics in Experimental Models of Krabbe Disease. Biomedicines 2023; 11:biomedicines11051313. [PMID: 37238985 DOI: 10.3390/biomedicines11051313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
The role of altered myelin in the onset and development of schizophrenia and changes in myelin due to antipsychotics remains unclear. Antipsychotics are D2 receptor antagonists, yet D2 receptor agonists increase oligodendrocyte progenitor numbers and limit oligodendrocyte injury. Conflicting studies suggest these drugs promote the differentiation of neural progenitors to oligodendrocyte lineage, while others report antipsychotics inhibit the proliferation and differentiation of oligodendrocyte precursors. Here, we utilised in-vitro (human astrocytes), ex-vivo (organotypic slice cultures) and in-vivo (twitcher mouse model) experimental study designs of psychosine-induced demyelination, a toxin that accumulates in Krabbe disease (KD), to investigate direct effects of antipsychotics on glial cell dysfunction and demyelination. Typical and atypical antipsychotics, and selective D2 and 5HT2A receptor antagonists, attenuated psychosine-induced cell viability, toxicity, and morphological aberrations in human astrocyte cultures. Haloperidol and clozapine reduced psychosine-induced demyelination in mouse organotypic cerebellar slices. These drugs also attenuated the effects of psychosine on astrocytes and microglia and restored non-phosphorylated neurofilament levels, indicating neuroprotective effects. In the demyelinating twitcher mouse model of KD, haloperidol improved mobility and significantly increased the survival of these animals. Overall, this study suggests that antipsychotics directly regulate glial cell dysfunction and exert a protective effect on myelin loss. This work also points toward the potential use of these pharmacological agents in KD.
Collapse
Affiliation(s)
- Kapil Sharma
- Drug Development Research Group, Department of Physiology, School of Medicine, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Kumlesh K Dev
- Drug Development Research Group, Department of Physiology, School of Medicine, Trinity College Dublin, D02 R590 Dublin, Ireland
| |
Collapse
|
7
|
Hao P, Liu Y, Dong S, Fan G, Li G, Xie M, Liu Q. Enhanced peroxidase-like activity of 2(3), 9(10), 16(17), 23(24)-octamethoxyphthalocyanine modified CoFe LDH for a sensor array for reducing substances with catechol structure. Anal Bioanal Chem 2023; 415:289-301. [PMID: 36352035 DOI: 10.1007/s00216-022-04404-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/06/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022]
Abstract
Improving the catalytic activity of artificial nanozymes to realize the real-time detection of small molecules becomes an important task. Herein, a highly active nanozyme, 2(3), 9(10), 16(17), 23(24)-octamethoxyphthalocyanine (Pc(OH)8) modified CoFe LDH microspheres (Pc(OH)8-CoFe LDH) have been prepared by the two-step hydrothermal method. The 3,3',5,5'-tetramylbenzidine (TMB), a chromogenic substrate, was fast oxidized into blue oxTMB by H2O2 in the presence of Pc(OH)8-CoFe LDH, indicating that Pc(OH)8-CoFe LDH possesses high peroxidase-like activity rather than pure CoFe LDH. The enhancement peroxidase-like activity of the Pc(OH)8-CoFe LDH is ascribed to the synergistic action between Pc(OH)8 and CoFe LDH. Experimental results of radical scavenger and fluorescence probe verify that superoxide radical (•O2-) plays an important role during the catalytic reaction. Interestingly, the absorption intensity of reaction system has been enhanced largely, due to adding of the reducing substances containing catechol structure. Based on this, the three reducing substances (dopamine, procyanidin B2, catechins) containing catechol structure were distinguished from other reducing substances without catechol structure. Thus, a colorimetric array has been constructed using reaction time as the sensing element to realize the sensitive and selective recognition of catechol structures at a certain concentration.
Collapse
Affiliation(s)
- Pingping Hao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Yaru Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Shanmin Dong
- Shandong Hualu-Hengsheng Chemical Co., Ltd, Dezhou, 253024, People's Republic of China
| | - Gaochao Fan
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Guijiang Li
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China. .,Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
| | - Min Xie
- Community Health Service Center (University Hospital), University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
| | - Qingyun Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China.
| |
Collapse
|
8
|
Astrocyte-neuron signaling in the mesolimbic dopamine system: the hidden stars of dopamine signaling. Neuropsychopharmacology 2021; 46:1864-1872. [PMID: 34253855 PMCID: PMC8429665 DOI: 10.1038/s41386-021-01090-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/14/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
Astrocytes are fundamental components of brain information processing and possess the ability to respond to synaptic signaling with increases in cytoplasmic calcium and modulate neuronal activity with the subsequent release of neuroactive transmitters. Dopamine signaling is essential for brain physiology and pathology, participating in learning and memory, motor control, neurological diseases, and psychiatric diseases, and astrocytes are emerging as a key cellular target of dopamine signaling. The present review will examine evidence revealing that astrocytes respond to dopamine and modulate information processing in the primary brain regions implicated in the mesolimbic dopamine system. Astrocytes exhibit circuit-specific modulation of neuronal networks and have the potential to serve as a therapeutic target for interventions designed for dopamine pathologies.
Collapse
|
9
|
Talhada D, Marklund N, Wieloch T, Kuric E, Ruscher K. Plasticity-Enhancing Effects of Levodopa Treatment after Stroke. Int J Mol Sci 2021; 22:10226. [PMID: 34638567 PMCID: PMC8508853 DOI: 10.3390/ijms221910226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/10/2021] [Accepted: 09/21/2021] [Indexed: 11/21/2022] Open
Abstract
Dopaminergic treatment in combination with rehabilitative training enhances long-term recovery after stroke. However, the underlying mechanisms on structural plasticity are unknown. Here, we show an increased dopaminergic innervation of the ischemic territory during the first week after stroke induced in Wistar rats subjected to transient occlusion of the middle cerebral artery (tMCAO) for 120 min. This response was also found in rats subjected to permanent focal ischemia induced by photothrombosis (PT) and mice subjected to PT or tMCAO. Dopaminergic branches were detected in the infarct core of mice and rats in both stroke models. In addition, the Nogo A pathway was significantly downregulated in rats treated with levodopa (LD) compared to vehicle-treated animals subjected to tMCAO. Specifically, the number of Nogo A positive oligodendrocytes as well as the levels of Nogo A and the Nogo A receptor were significantly downregulated in the peri-infarct area of LD-treated animals, while the number of Oligodendrocyte transcription factor 2 positive cells increased in this region after treatment. In addition, we observed lower protein levels of Growth Associated Protein 43 in the peri-infarct area compared to sham-operated animals without treatment effect. The results provide the first evidence of the plasticity-promoting actions of dopaminergic treatment following stroke.
Collapse
Affiliation(s)
- Daniela Talhada
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, S-22184 Lund, Sweden; (D.T.); (T.W.); (E.K.)
| | - Niklas Marklund
- LUBIN Lab—Lunds Laboratorium för Neurokirurgisk Hjärnskadeforskning, Division of Neurosurgery, Department of Clinical Sciences, Lund University, S-22184 Lund, Sweden;
| | - Tadeusz Wieloch
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, S-22184 Lund, Sweden; (D.T.); (T.W.); (E.K.)
| | - Enida Kuric
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, S-22184 Lund, Sweden; (D.T.); (T.W.); (E.K.)
| | - Karsten Ruscher
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, S-22184 Lund, Sweden; (D.T.); (T.W.); (E.K.)
- LUBIN Lab—Lunds Laboratorium för Neurokirurgisk Hjärnskadeforskning, Division of Neurosurgery, Department of Clinical Sciences, Lund University, S-22184 Lund, Sweden;
| |
Collapse
|
10
|
The effect of antipsychotic medications on white matter integrity in first-episode drug-naïve patients with psychosis: A review of DTI studies. Asian J Psychiatr 2021; 61:102688. [PMID: 34000500 DOI: 10.1016/j.ajp.2021.102688] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Psychotic episodes have been associated with damage to both grey matter (GM) and white matter (WM). Although a recent meta-analysis suggest that in long term treatment, first generation antipsychotics (FGA) are associated with progressive reduction in GM, second generation antipsychotics (SGA) seem to have benefits to WM microstructure. METHODS A search was conducted to identify controlled trials published from January 2000 to January 2021, which assessed WM integrity as measured by DTI in drug-naïve patients with FEP before and after antipsychotic administration. RESULTS 3 studies met the criteria for inclusion. All studies demonstrated lower FA in psychotic patients vs HC. A 6-week study reported that antipsychotic medication results in a further decrease in FA within the bilateral ACG and right ACR, regions important in emotional processing. An 8-week study found that antipsychotic treatment increase FA in the SLF, resulting in improved symptoms and increased processing speed. A 3rd study found an increase in FA in several regions along with a negative correlation between FA and PANSS at remission. CONCLUSIONS Drug-naïve FEP patients have WM dysfunction at baseline and antipsychotic medications appear to alter or improve WM especially at remission. More controlled trials are warranted to validate these conclusions.
Collapse
|
11
|
Aghamohammadi-Sereshki A, Olsen F, Seres P, Malykhin NV. Selective Effects of Healthy Cognitive Aging and Catechol- O-Methyl Transferase Polymorphism on Limbic White Matter Tracts. Brain Connect 2021; 12:146-163. [PMID: 34015958 DOI: 10.1089/brain.2020.0919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: The cingulum bundle and uncinate fasciculus are major limbic white matter tracts involved in emotion, memory, and cognition. The main goal of the present study was to investigate the relationship between age and structural properties of the uncinate fasciculus and the cingulum bundle using diffusion tensor imaging (DTI) tractography in a large cohort of healthy individuals. The second goal was to determine the effects of the catechol-O-methyl transferase (COMT) gene polymorphism on the DTI measurements of these white matter tracts. Methods: We recruited 140 healthy participants (18-85 years old). DTI data sets were acquired on a 1.5T magnetic resonance imaging system. The rostral, dorsal, and parahippocampal cingulum, as well as uncinate fasciculus, were delineated using deterministic tractography. Fractional anisotropy (FA), mean (MD), radial (RD), and axial (AD) diffusivities, tract volume, linear (Cl), planar (Cp), and spherical (Cs) tensor shapes were calculated. The COMT polymorphism (methionine homozygous vs. valine carriers) was determined using single nucleotide polymorphism. Results: We found that age was negatively associated with FA, but positively associated with MD and RD for the rostral cingulum, dorsal cingulum, and the uncinate fasciculus but not for the parahippocampal cingulum. Furthermore, individuals with the COMT methionine homozygous had higher FA and lower MD, RD, AD, and Cs values in the right rostral cingulum compared with the valine carriers across the entire adult life span. Discussion: This study indicates that limbic tracts might be nonuniformly affected by healthy aging, and the methionine homozygous genotype might be associated with micro/macro white matter properties of the right rostral cingulum.
Collapse
Affiliation(s)
| | - Fraser Olsen
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Peter Seres
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Nikolai V Malykhin
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
12
|
G-Protein-Coupled Receptors and Ischemic Stroke: a Focus on Molecular Function and Therapeutic Potential. Mol Neurobiol 2021; 58:4588-4614. [PMID: 34120294 DOI: 10.1007/s12035-021-02435-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/18/2021] [Indexed: 01/22/2023]
Abstract
In ischemic stroke, there is only one approved drug, tissue plasminogen activator, to be used in clinical conditions for thrombolysis. New neuroprotective therapies for ischemic stroke are desperately needed. Several targets and pathways have been shown to confer neuroprotective effects in ischemic stroke. G-protein-coupled receptors (GPCRs) are one of the most frequently targeted receptors for developing novel therapeutics for central nervous system disorders. GPCRs are a large family of cell surface receptors that response to a wide variety of extracellular stimuli. GPCRs are involved in a wide range of physiological and pathological processes. More than 90% of the identified non-sensory GPCRs are expressed in the brain, where they play important roles in regulating mood, pain, vision, immune responses, cognition, and synaptic transmission. There is also good evidence that GPCRs are implicated in the pathogenesis of stroke. This review narrates the pathophysiological role and possible targeted therapy of GPCRs in ischemic stroke.
Collapse
|
13
|
Yang J, Villar VAM, Jose PA, Zeng C. Renal Dopamine Receptors and Oxidative Stress: Role in Hypertension. Antioxid Redox Signal 2021; 34:716-735. [PMID: 32349533 PMCID: PMC7910420 DOI: 10.1089/ars.2020.8106] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: The kidney plays an important role in the long-term control of blood pressure. Oxidative stress is one of the fundamental mechanisms responsible for the development of hypertension. Dopamine, via five subtypes of receptors, plays an important role in the control of blood pressure by various mechanisms, including the inhibition of oxidative stress. Recent Advances: Dopamine receptors exert their regulatory function to decrease the oxidative stress in the kidney and ultimately maintain normal sodium balance and blood pressure homeostasis. An aberration of this regulation may be involved in the pathogenesis of hypertension. Critical Issues: Our present article reviews the important role of oxidative stress and intrarenal dopaminergic system in the regulation of blood pressure, summarizes the current knowledge on renal dopamine receptor-mediated antioxidation, including decreasing reactive oxygen species production, inhibiting pro-oxidant enzyme nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase, and stimulating antioxidative enzymes, and also discusses its underlying mechanisms, including the increased activity of G protein-coupled receptor kinase 4 (GRK4) and abnormal trafficking of renal dopamine receptors in hypertensive status. Future Directions: Identifying the mechanisms of renal dopamine receptors in the regulation of oxidative stress and their contribution to the pathogenesis of hypertension remains an important research focus. Increased understanding of the role of reciprocal regulation between renal dopamine receptors and oxidative stress in the regulation of blood pressure may give us novel insights into the pathogenesis of hypertension and provide a new treatment strategy for hypertension.
Collapse
Affiliation(s)
- Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Van Anthony M Villar
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Chunyu Zeng
- Department of Cardiology, Fujian Heart Medical Center, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China.,Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| |
Collapse
|
14
|
The Role of the Renal Dopaminergic System and Oxidative Stress in the Pathogenesis of Hypertension. Biomedicines 2021; 9:biomedicines9020139. [PMID: 33535566 PMCID: PMC7912729 DOI: 10.3390/biomedicines9020139] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 01/11/2023] Open
Abstract
The kidney is critical in the long-term regulation of blood pressure. Oxidative stress is one of the many factors that is accountable for the development of hypertension. The five dopamine receptor subtypes (D1R–D5R) have important roles in the regulation of blood pressure through several mechanisms, such as inhibition of oxidative stress. Dopamine receptors, including those expressed in the kidney, reduce oxidative stress by inhibiting the expression or action of receptors that increase oxidative stress. In addition, dopamine receptors stimulate the expression or action of receptors that decrease oxidative stress. This article examines the importance and relationship between the renal dopaminergic system and oxidative stress in the regulation of renal sodium handling and blood pressure. It discusses the current information on renal dopamine receptor-mediated antioxidative network, which includes the production of reactive oxygen species and abnormalities of renal dopamine receptors. Recognizing the mechanisms by which renal dopamine receptors regulate oxidative stress and their degree of influence on the pathogenesis of hypertension would further advance the understanding of the pathophysiology of hypertension.
Collapse
|
15
|
Melloni EMT, Poletti S, Dallaspezia S, Bollettini I, Vai B, Barbini B, Zanardi R, Colombo C, Benedetti F. Changes of white matter microstructure after successful treatment of bipolar depression. J Affect Disord 2020; 274:1049-1056. [PMID: 32663931 DOI: 10.1016/j.jad.2020.05.146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/22/2020] [Accepted: 05/27/2020] [Indexed: 01/31/2023]
Abstract
BACKGROUND Diffusion tensor imaging (DTI) measures suggest a widespread alteration of white matter (WM) microstructure in patients with bipolar disorder (BD). The chronotherapeutic combination of repeated total sleep deprivation and morning light therapy (TSD+LT) can acutely reverse depressive symptoms in approximately 60% of patients, and it has been confirmed as a model antidepressant treatment to investigate the neurobiological correlates of rapid antidepressant response. METHODS We tested if changes in DTI measures of WM microstructure could parallel antidepressant response in a sample of 44 patients with a major depressive episode in course of BD, treated with chronoterapeutics for one week. We used both a tract-wise and a voxel-wise approach for the whole-brain extraction of DTI measures of WM microstructure: axial (AD), radial (RD), and mean diffusivity (MD), and fractional anisotropy (FA). RESULTS Compared to baseline level, at one-week follow up we observed a significant increase in average FA measures paralleled by a significant decrease in MD measures of several WM tracts including cingulum, corpus callosum, corona radiata, cortico-spinal tract, internal capsule, fornix and uncinate fasciculus. The degree of change was associated to clinical response. CONCLUSIONS This is the first study to show changes of individual DTI measures of WM microstructure in response to antidepressant treatment in BD. Our results add new evidence to warrant a role for chronotherapeutics as a first-line treatment for bipolar depression and contribute identifying generalizable neuroimaging-based biomarkers of antidepressant response.
Collapse
Affiliation(s)
- Elisa M T Melloni
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy.
| | - Sara Poletti
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy
| | - Sara Dallaspezia
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Irene Bollettini
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Benedetta Vai
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy; Fondazione Centro San Raffaele, Milano, Italy
| | - Barbara Barbini
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Raffaella Zanardi
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Cristina Colombo
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy
| | - Francesco Benedetti
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy
| |
Collapse
|
16
|
Bouvier ML, Fehsel K, Schmitt A, Meisenzahl-Lechner E, Gaebel W, von Wilmsdorff M. Sex-dependent alterations of dopamine receptor and glucose transporter density in rat hypothalamus under long-term clozapine and haloperidol medication. Brain Behav 2020; 10:e01694. [PMID: 32525610 PMCID: PMC7428470 DOI: 10.1002/brb3.1694] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/04/2020] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Sex-dependent disturbances of peripheral glucose metabolism are known complications of antipsychotic drug treatment. The influence of long-term clozapine and haloperidol medication on hypothalamus, maintaining aspects of internal body homeostasis, has not yet been completely clarified. METHODS After puberty, male and female Sprague Dawley rats were fed orally with ground pellets containing haloperidol (1 mg/kgBW/day) or clozapine (20 mg/kgBW/day) for 12 weeks. The hypothalamic protein expression of dopamine receptors D2R and D4R, melanocortin receptor MC4R, and glucose transporters Glut1 and Glut3 was examined. Glucose, glycogen, lactate, and pyruvate levels were determined, also malondialdehyde equivalents as markers of oxidative stress. RESULTS D2R expression was increased in the male haloperidol and clozapine group but decreased in females medicated with clozapine. D4R expression was upregulated under clozapine medication. While females showed increased Glut1, Glut3 was elevated in both male and female clozapine-medicated animals. We found no changes of hypothalamic malondialdehyde, glycogen, and MC4R. Hypothalamic lactate was elevated in the female clozapine group. CONCLUSION Clozapine sex-dependently affects the expression of D2R, Glut1, and Glut3. The upregulation of the glucose transporters indicates glucose deprivation in the endothelial cells and consequently in astrocytes and neurons. Increased hypothalamic lactate in females under clozapine points to enhanced glycolysis with a higher glucose demand to produce the required energy. Haloperidol did not change the expression of the glucose transporters and upregulated D2R only in males.
Collapse
Affiliation(s)
- Marie-Luise Bouvier
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Karin Fehsel
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians University Munich, München, Germany.,Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of Sao Paulo, São Paulo, Brazil
| | - Eva Meisenzahl-Lechner
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Wolfgang Gaebel
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Martina von Wilmsdorff
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
17
|
Neuron-oligodendroglia interactions: Activity-dependent regulation of cellular signaling. Neurosci Lett 2020; 727:134916. [PMID: 32194135 DOI: 10.1016/j.neulet.2020.134916] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 03/11/2020] [Accepted: 03/15/2020] [Indexed: 12/31/2022]
Abstract
Oligodendrocyte lineage cells (oligodendroglia) and neurons engage in bidirectional communication throughout life to support healthy brain function. Recent work shows that changes in neuronal activity can modulate proliferation, differentiation, and myelination to support the formation and function of neural circuits. While oligodendroglia express a diverse collection of receptors for growth factors, signaling molecules, neurotransmitters and neuromodulators, our knowledge of the intracellular signaling pathways that are regulated by neuronal activity remains largely incomplete. Many of the pathways that modulate oligodendroglia behavior are driven by changes in intracellular calcium signaling, which may differentially affect cytoskeletal dynamics, gene expression, maturation, integration, and axonal support. Additionally, activity-dependent neuron-oligodendroglia communication plays an integral role in the recovery from demyelinating injuries. In this review, we summarize the modalities of communication between neurons and oligodendroglia and explore possible roles of activity-dependent calcium signaling in mediating cellular behavior and myelination.
Collapse
|
18
|
Pottoo FH, Tabassum N, Javed MN, Nigar S, Sharma S, Barkat MA, Alam MS, Ansari MA, Barreto GE, Ashraf GM. Raloxifene potentiates the effect of fluoxetine against maximal electroshock induced seizures in mice. Eur J Pharm Sci 2020; 146:105261. [PMID: 32061655 DOI: 10.1016/j.ejps.2020.105261] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/24/2020] [Accepted: 02/07/2020] [Indexed: 01/17/2023]
Abstract
The evidence to guide clinicians regarding rationale polytherapy with current antiepileptic drugs (AEDs) is lacking, and current practice recommendations are largely empirical. The excessive drug loading with combinatorial therapies of existing AEDs are associated with escalated neurotoxicity, and that emergence of pharmacoresistant seizures couldn't be averted. In pursuit of judicious selection of novel AEDs in combinatorial therapies with mechanism based evidences, standardized dose of raloxifene, fluoxetine, bromocriptine and their low dose combinations, were experimentally tested for their impact on maximal electroshock (MES) induced tonic hind limb extension (THLE) in mice. Hippocampal neuropeptide Y (NPY) levels, oxidative stress and histopathological studies were undertaken. The results suggest the potentiating effect of 4 mg/kg raloxifene on 14 mg/kg fluoxetine against MES induced THLE, as otherwise monotherapy with 4 mg/kg raloxifene was unable to produce an effect. The results also depicted better efficacy than carbamazepine (20 mg/kg), standard AED. Most profoundly, MES-induced significant (P < 0.001) reduction in hippocampal NPY levels, that were escalated insignificantly with the duo-drug combination, suggesting some other mechanism in mitigation of electroshock induced seizures. These results were later corroborated with assays to assess oxidative stress and neuronal damage. In conclusion, the results demonstrated the propitious therapeutic benefit of duo-drug low dose combination of drugs; raloxifene and fluoxetine, with diverse mode of actions fetching greater effectiveness in the management of generalized tonic clonic seizures (GTCS).
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O.BOX 1982, Dammam, 31441 Saudi Arabia.
| | - Nahida Tabassum
- Department of Pharmaceutical Sciences, Faculty of Applied Sc. and Tech, University of Kashmir, Srinagar, India.
| | - Md Noushad Javed
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Research, Jamia Hamdard University, New Delhi, India; School of Pharmaceutical Sciences, Apeejay Stya University, Gurugram, Haryana, India
| | - Shah Nigar
- Department of Pharmaceutical Sciences, Faculty of Applied Sc. and Tech, University of Kashmir, Srinagar, India
| | - Shrestha Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, K.R.Mangalam University, Gurgaon, India
| | - Md Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Al Jamiah, Hafr Al Batin 39524, Saudi Arabia
| | - Md Sabir Alam
- Department of Pharmacy, School of Medical and Allied Sciences, K.R.Mangalam University, Gurgaon, India
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O.BOX 1982, Dammam, 31441 Saudi Arabia
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Ireland.
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
19
|
Thomas Broome S, Louangaphay K, Keay KA, Leggio GM, Musumeci G, Castorina A. Dopamine: an immune transmitter. Neural Regen Res 2020; 15:2173-2185. [PMID: 32594028 PMCID: PMC7749467 DOI: 10.4103/1673-5374.284976] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The dopaminergic system controls several vital central nervous system functions, including the control of movement, reward behaviors and cognition. Alterations of dopaminergic signaling are involved in the pathogenesis of neurodegenerative and psychiatric disorders, in particular Parkinson’s disease, which are associated with a subtle and chronic inflammatory response. A substantial body of evidence has demonstrated the non-neuronal expression of dopamine, its receptors and of the machinery that governs synthesis, secretion and storage of dopamine across several immune cell types. This review aims to summarize current knowledge on the role and expression of dopamine in immune cells. One of the goals is to decipher the complex mechanisms through which these cell types respond to dopamine, in order to address the impact this has on neurodegenerative and psychiatric pathologies such as Parkinson’s disease. A further aim is to illustrate the gaps in our understanding of the physiological roles of dopamine to encourage more targeted research focused on understanding the consequences of aberrant dopamine production on immune regulation. These highlights may prompt scientists in the field to consider alternative functions of this important neurotransmitter when targeting neuroinflammatory/neurodegenerative pathologies.
Collapse
Affiliation(s)
- Sarah Thomas Broome
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Krystal Louangaphay
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Kevin A Keay
- Laboratory of Neural Structure and Function (LNSF), School of Medical Sciences, (Anatomy and Histology), Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Gian Marco Leggio
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Musumeci
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney; Laboratory of Neural Structure and Function (LNSF), School of Medical Sciences, (Anatomy and Histology), Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| |
Collapse
|
20
|
Santos AK, Vieira MS, Vasconcellos R, Goulart VAM, Kihara AH, Resende RR. Decoding cell signalling and regulation of oligodendrocyte differentiation. Semin Cell Dev Biol 2018; 95:54-73. [PMID: 29782926 DOI: 10.1016/j.semcdb.2018.05.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 12/20/2022]
Abstract
Oligodendrocytes are fundamental for the functioning of the nervous system; they participate in several cellular processes, including axonal myelination and metabolic maintenance for astrocytes and neurons. In the mammalian nervous system, they are produced through waves of proliferation and differentiation, which occur during embryogenesis. However, oligodendrocytes and their precursors continue to be generated during adulthood from specific niches of stem cells that were not recruited during development. Deficiencies in the formation and maturation of these cells can generate pathologies mainly related to myelination. Understanding the mechanisms involved in oligodendrocyte development, from the precursor to mature cell level, will allow inferring therapies and treatments for associated pathologies and disorders. Such mechanisms include cell signalling pathways that involve many growth factors, small metabolic molecules, non-coding RNAs, and transcription factors, as well as specific elements of the extracellular matrix, which act in a coordinated temporal and spatial manner according to a given stimulus. Deciphering those aspects will allow researchers to replicate them in vitro in a controlled environment and thus mimic oligodendrocyte maturation to understand the role of oligodendrocytes in myelination in pathologies and normal conditions. In this study, we review these aspects, based on the most recent in vivo and in vitro data on oligodendrocyte generation and differentiation.
Collapse
Affiliation(s)
- A K Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - M S Vieira
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil
| | - R Vasconcellos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil
| | - V A M Goulart
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - A H Kihara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - R R Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil.
| |
Collapse
|
21
|
Na KS, Won E, Kang J, Kim A, Choi S, Tae WS, Kim YK, Lee MS, Joe SH, Ham BJ. Differential effect of COMT gene methylation on the prefrontal connectivity in subjects with depression versus healthy subjects. Neuropharmacology 2018; 137:59-70. [PMID: 29723539 DOI: 10.1016/j.neuropharm.2018.04.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/12/2018] [Accepted: 04/27/2018] [Indexed: 01/09/2023]
Abstract
Expression of the catechol-O-methyl transferase (COMT) gene mainly determines prefrontal dopaminergic availability. Deficient prefrontal dopaminergic activity leads to loss of interest, energy, and motivation, which are core symptoms of depression. Given the role of stress-environmental interactions in major depressive disorder (MDD), we investigated the impact of COMT gene methylation status on prefrontal connectivity. We measured COMT gene methylation and polymorphisms (Val158Met) at the rs4468 locus in peripheral blood samples of healthy controls (n = 90) and patients with MDD (n = 90). We used diffusion tensor imaging to calculate the fractional anisotropy (FA) and radial diffusivity (RD) of the white matter tracts related to prefrontal cortex. Finally, we examined the effects of COMT gene methylation on the white matter connectivity in patients with MDD. The FA and RD values in the prefrontal white matter tracts of patients with MDD were positively and negatively associated with COMT gene methylation, respectively. In the control group, on the other hand, the association between white matter connectivity and COMT gene methylation showed opposite pattern to those of MDD. COMT gene methylation has a substantial effect on the prefrontal connectivity in patients with MDD. Moreover, COMT gene methylation and prefrontal connectivity showed opposite relationships in patients and controls. Thus, stress-related alterations in dopaminergic neurotransmission have a differential effect on white matter connectivity according to the microenvironment in the brain.
Collapse
Affiliation(s)
- Kyoung-Sae Na
- Department of Psychiatry, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Eunsoo Won
- Department of Psychiatry, Korea University Anam Hospital, Seoul, Republic of Korea
| | - June Kang
- Department of Biomedical Science, Korea University, Seoul, Republic of Korea
| | - Aram Kim
- Department of Biomedical Science, Korea University, Seoul, Republic of Korea
| | - Sunyoung Choi
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - Min-Soo Lee
- Department of Psychiatry, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Sook-Haeng Joe
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Seoul, Republic of Korea; Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Skaper SD, Facci L. Culture of Neonatal Rodent Microglia, Astrocytes, and Oligodendrocytes from the Cortex, Spinal Cord, and Cerebellum. Methods Mol Biol 2018; 1727:49-61. [PMID: 29222772 DOI: 10.1007/978-1-4939-7571-6_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The protocol described in this chapter covers the preparation and culture of enriched populations of microglia, astrocytes, and oligodendrocytes from the cortex and spinal cord of neonatal rat and mouse. The procedure is based on enzymatic digestion of the tissue, followed by the culture of a mixed glial cell population which is then utilized as the starting point for the isolation, via differential attachment, of the different cell types.
Collapse
Affiliation(s)
- Stephen D Skaper
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy.
| | - Laura Facci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| |
Collapse
|
23
|
S Cassoli J, Brandão-Teles C, G Santana A, H M F Souza G, Martins-de-Souza D. Ion Mobility-Enhanced Data-Independent Acquisitions Enable a Deep Proteomic Landscape of Oligodendrocytes. Proteomics 2017; 17. [PMID: 28861932 DOI: 10.1002/pmic.201700209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/05/2017] [Indexed: 12/15/2022]
Abstract
Oligodendrocytes are a type of neuroglia that provide trophic support and insulation to axons in the central nervous system. The genesis and maturation of oligodendrocytes are essential processes for myelination and the course of CNS development. Using ion mobility-enhanced, data-independent acquisitions and 2D-nanoUPLC fractionation operating at nanoscale flow rates, we established a comprehensive data set of proteins expressed by the human oligodendroglia cell line MO3.13. The final dataset incorporating all fractions comprised 223 531 identified peptides assigned to 10 390 protein hits, an improvement of 4.5 times on identified proteins described previously by our group using the same cell line. Identified proteins play pivotal roles in many biological processes such as cell growth and development and energy metabolism, providing a rich resource for future studies on oligodendrocyte development, myelination, axonal support, and the regulation of such process. Our results can help further studies that use MO3.13 cells as a tool of investigation, not only in relation to oligodendrocyte maturation, but also to diseases that have oligodendrocytes as key players. All MS data have been deposited in the ProteomeXchange with identifier PXD004696.
Collapse
Affiliation(s)
- Juliana S Cassoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Caroline Brandão-Teles
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Aline G Santana
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Gustavo H M F Souza
- Mass Spectrometry Research and Development Laboratory, Health Sciences Department, Waters Corporation, São Paulo, SP, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico, Brazil
| |
Collapse
|
24
|
Choi MH, Na JE, Yoon YR, Lee HJ, Yoon S, Rhyu IJ, Baik JH. Role of Dopamine D2 Receptor in Stress-Induced Myelin Loss. Sci Rep 2017; 7:11654. [PMID: 28912499 PMCID: PMC5599541 DOI: 10.1038/s41598-017-10173-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 08/04/2017] [Indexed: 12/24/2022] Open
Abstract
Dopaminergic systems play a major role in reward-related behavior and dysregulation of dopamine (DA) systems can cause several mental disorders, including depression. We previously reported that dopamine D2 receptor knockout (D2R-/-) mice display increased anxiety and depression-like behaviors upon chronic stress. Here, we observed that chronic stress caused myelin loss in wild-type (WT) mice, while the myelin level in D2R-/- mice, which was already lower than that in WT mice, was not affected upon stress. Fewer mature oligodendrocytes (OLs) were observed in the corpus callosum of stressed WT mice, while in D2R-/- mice, both the control and stressed group displayed a decrease in the number of mature OLs. We observed a decrease in the number of active β-catenin (ABC)-expressing and TCF4-expressing cells among OL lineage cells in the corpus callosum of stressed WT mice, while such regulation was not found in D2R-/- mice. Administration of lithium normalized the behavioral impairments and myelin damage induced by chronic stress in WT mice, and restored the number of ABC-positive and TCF4-positive OLs, while such effect was not found in D2R-/- mice. Together, our findings indicate that chronic stress induces myelin loss through the Wnt/β-catenin signaling pathway in association with DA signaling through D2R.
Collapse
Affiliation(s)
- Mi-Hyun Choi
- Molecular Neurobiology Laboratory, Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Ji Eun Na
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Ye Ran Yoon
- Molecular Neurobiology Laboratory, Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Hyo Jin Lee
- Molecular Neurobiology Laboratory, Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Sehyoun Yoon
- Molecular Neurobiology Laboratory, Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Im Joo Rhyu
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Ja-Hyun Baik
- Molecular Neurobiology Laboratory, Department of Life Sciences, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
25
|
The COMT Val158Met polymorphism moderates the association between cognitive functions and white matter microstructure in schizophrenia. Psychiatr Genet 2016; 26:193-202. [DOI: 10.1097/ypg.0000000000000130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Oxidative Stress Implications in the Affective Disorders: Main Biomarkers, Animal Models Relevance, Genetic Perspectives, and Antioxidant Approaches. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3975101. [PMID: 27563374 PMCID: PMC4983669 DOI: 10.1155/2016/3975101] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 01/12/2023]
Abstract
The correlation between the affective disorders and the almost ubiquitous pathological oxidative stress can be described in a multifactorial way, as an important mechanism of central nervous system impairment. Whether the obvious changes which occur in oxidative balance of the affective disorders are a part of the constitutive mechanism or a collateral effect yet remains as an interesting question. However it is now clear that oxidative stress is a component of these disorders, being characterized by different aspects in a disease-dependent manner. Still, there are a lot of controversies regarding the relevance of the oxidative stress status in most of the affective disorders and despite the fact that most of the studies are showing that the affective disorders development can be correlated to increased oxidative levels, there are various studies stating that oxidative stress is not linked with the mood changing tendencies. Thus, in this minireview we decided to describe the way in which oxidative stress is involved in the affective disorders development, by focusing on the main oxidative stress markers that could be used mechanistically and therapeutically in these deficiencies, the genetic perspectives, some antioxidant approaches, and the relevance of some animal models studies in this context.
Collapse
|
27
|
Rumajogee P, Bregman T, Miller SP, Yager JY, Fehlings MG. Rodent Hypoxia-Ischemia Models for Cerebral Palsy Research: A Systematic Review. Front Neurol 2016; 7:57. [PMID: 27199883 PMCID: PMC4843764 DOI: 10.3389/fneur.2016.00057] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 04/03/2016] [Indexed: 12/28/2022] Open
Abstract
Cerebral palsy (CP) is a complex multifactorial disorder, affecting approximately 2.5-3/1000 live term births, and up to 22/1000 prematurely born babies. CP results from injury to the developing brain incurred before, during, or after birth. The most common form of this condition, spastic CP, is primarily associated with injury to the cerebral cortex and subcortical white matter as well as the deep gray matter. The major etiological factors of spastic CP are hypoxia/ischemia (HI), occurring during the last third of pregnancy and around birth age. In addition, inflammation has been found to be an important factor contributing to brain injury, especially in term infants. Other factors, including genetics, are gaining importance. The classic Rice-Vannucci HI model (in which 7-day-old rat pups undergo unilateral ligation of the common carotid artery followed by exposure to 8% oxygen hypoxic air) is a model of neonatal stroke that has greatly contributed to CP research. In this model, brain damage resembles that observed in severe CP cases. This model, and its numerous adaptations, allows one to finely tune the injury parameters to mimic, and therefore study, many of the pathophysiological processes and conditions observed in human patients. Investigators can recreate the HI and inflammation, which cause brain damage and subsequent motor and cognitive deficits. This model further enables the examination of potential approaches to achieve neural repair and regeneration. In the present review, we compare and discuss the advantages, limitations, and the translational value for CP research of HI models of perinatal brain injury.
Collapse
Affiliation(s)
- Prakasham Rumajogee
- Division of Genetics and Development, Krembil Research Institute, Toronto Western Hospital, University Health Network , Toronto, ON , Canada
| | - Tatiana Bregman
- Division of Genetics and Development, Krembil Research Institute, Toronto Western Hospital, University Health Network , Toronto, ON , Canada
| | - Steven P Miller
- Department of Pediatrics, Hospital for Sick Children , Toronto, ON , Canada
| | - Jerome Y Yager
- Division of Pediatric Neurosciences, Stollery Children's Hospital, University of Alberta , Edmonton, AB , Canada
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada; Division of Neurosurgery, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
28
|
Abnormal white matter microstructure in drug-naive first episode schizophrenia patients before and after eight weeks of antipsychotic treatment. Schizophr Res 2016; 172:1-8. [PMID: 26852402 DOI: 10.1016/j.schres.2016.01.051] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 01/21/2016] [Accepted: 01/28/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Abnormal white matter integrity has been reported among first episode schizophrenia patients. However, findings on whether it can be reversed by short-term antipsychotic medications are inconsistent. METHOD Diffusion tensor imaging (DTI) was obtained from 55 drug-naive first episode schizophrenia patients and 61 healthy controls, and was repeated among 25 patients and 31 controls after 8 weeks during which patients were medicated with antipsychotics. White matter integrity is measured using fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD). These measures showing a group difference by Tract-based spatial statistics (TBSS) at baseline were extracted for longitudinal comparisons. RESULTS At baseline, patients exhibited lower FA, higher MD and higher RD versus controls in forceps, left superior longitudinal fasciculus, inferior fronto-occipital fasciculus, left corticospinal tract, left uncinate fasciculus, left anterior thalamic radiation, and bilateral inferior longitudinal fasciculi. FA values of schizophrenia patients correlated with their negative symptoms (r=-0.412, P=0.002), working memory (r=0.377, P=0.005) and visual learning (r=0.281, P=0.038). The longitudinal changes in DTI indices in these tracts did not differ between patients and controls. However, among the patients the longitudinal changes in FA values in left superior longitudinal fasciculus correlated with the change of positive symptoms (r=-0.560, p=0.004), and the change of processing speed (r=0.469, p=0.018). CONCLUSIONS White matter deficits were validated in the present study by a relatively large sample of medication naïve and first episode schizophrenia patients. They could be associated with negative symptoms and cognitive impairment, whereas improvement in white matter integrity of left superior longitudinal fasciculus correlated with improvement in psychosis and processing speed. Further examination of treatment-related changes in white matter integrity may provide clues to the mechanism of antipsychotic response and provide a biomarker for clinical studies.
Collapse
|
29
|
Marinelli C, Bertalot T, Zusso M, Skaper SD, Giusti P. Systematic Review of Pharmacological Properties of the Oligodendrocyte Lineage. Front Cell Neurosci 2016; 10:27. [PMID: 26903812 PMCID: PMC4751280 DOI: 10.3389/fncel.2016.00027] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/25/2016] [Indexed: 12/12/2022] Open
Abstract
Oligodendrogenesis and oligodendrocyte precursor maturation are essential processes during the course of central nervous system development, and lead to the myelination of axons. Cells of the oligodendrocyte lineage are generated in the germinal zone from migratory bipolar oligodendrocyte precursor cells (OPCs), and acquire cell surface markers as they mature and respond specifically to factors which regulate proliferation, migration, differentiation, and survival. Loss of myelin underlies a wide range of neurological disorders, some of an autoimmune nature—multiple sclerosis probably being the most prominent. Current therapies are based on the use of immunomodulatory agents which are likely to promote myelin repair (remyelination) indirectly by subverting the inflammatory response, aspects of which impair the differentiation of OPCs. Cells of the oligodendrocyte lineage express and are capable of responding to a diverse array of ligand-receptor pairs, including neurotransmitters and nuclear receptors such as γ-aminobutyric acid, glutamate, adenosine triphosphate, serotonin, acetylcholine, nitric oxide, opioids, prostaglandins, prolactin, and cannabinoids. The intent of this review is to provide the reader with a synopsis of our present state of knowledge concerning the pharmacological properties of the oligodendrocyte lineage, with particular attention to these receptor-ligand (i.e., neurotransmitters and nuclear receptor) interactions that can influence oligodendrocyte migration, proliferation, differentiation, and myelination, and an appraisal of their therapeutic potential. For example, many promising mediators work through Ca2+ signaling, and the balance between Ca2+ influx and efflux can determine the temporal and spatial properties of oligodendrocytes (OLs). Moreover, Ca2+ signaling in OPCs can influence not only differentiation and myelination, but also process extension and migration, as well as cell death in mature mouse OLs. There is also evidence that oligodendroglia exhibit Ca2+ transients in response to electrical activity of axons for activity-dependent myelination. Cholinergic antagonists, as well as endocannabinoid-related lipid-signaling molecules target OLs. An understanding of such pharmacological pathways may thus lay the foundation to allow its leverage for therapeutic benefit in diseases of demyelination.
Collapse
Affiliation(s)
- Carla Marinelli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua Padua, Italy
| | - Thomas Bertalot
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua Padua, Italy
| | - Morena Zusso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua Padua, Italy
| | - Stephen D Skaper
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua Padua, Italy
| | - Pietro Giusti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua Padua, Italy
| |
Collapse
|
30
|
Poletti S, Mazza E, Bollettini I, Locatelli C, Cavallaro R, Smeraldi E, Benedetti F. Adverse childhood experiences influence white matter microstructure in patients with schizophrenia. Psychiatry Res 2015; 234:35-43. [PMID: 26341951 DOI: 10.1016/j.pscychresns.2015.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 07/15/2015] [Accepted: 08/13/2015] [Indexed: 12/18/2022]
Abstract
Integrity of brain white matter (WM) tracts in adulthood could be detrimentally affected by exposure to adverse childhood experiences (ACE). Changes of diffusion tensor imaging (DTI) measures suggesting WM disruption have been reported in patients with schizophrenia together with a history of childhood maltreatment. We therefore hypothesized that ACE could be associated with altered DTI measures of WM integrity in patients with schizophrenia. We tested this hypothesis in 83 schizophrenia patients using whole brain tract-based spatial statistics in the WM skeleton with threshold-free cluster enhancement of DTI measures of WM microstructure: axial, radial, and mean diffusivity (MD), and fractional anisotropy (FA). We observed an inverse correlation between severity of ACE and DTI measures of FA, and a positive correlation with MD in several WM tracts including corona radiata, thalamic radiations, corpus callosum, cingulum bundle, superior longitudinal fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus. Lower FA and higher MD are indexes of a reduction in fibre coherence and integrity. The association of ACE to reduced FA and increased MD in key WM tracts contributing to the functional integrity of the brain suggests that ACE might contribute to the pathophysiology of schizophrenia through a detrimental action on structural connectivity in critical cortico-limbic networks.
Collapse
Affiliation(s)
- Sara Poletti
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy.
| | - Elena Mazza
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milan, Italy
| | - Irene Bollettini
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| | - Clara Locatelli
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| | - Roberto Cavallaro
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milan, Italy
| | - Enrico Smeraldi
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| | - Francesco Benedetti
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
31
|
Tomlinson L, Leiton CV, Colognato H. Behavioral experiences as drivers of oligodendrocyte lineage dynamics and myelin plasticity. Neuropharmacology 2015; 110:548-562. [PMID: 26415537 DOI: 10.1016/j.neuropharm.2015.09.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 09/10/2015] [Accepted: 09/12/2015] [Indexed: 12/28/2022]
Abstract
Many behavioral experiences are known to promote hippocampal neurogenesis. In contrast, the ability of behavioral experiences to influence the production of oligodendrocytes and myelin sheath formation remains relatively unknown. However, several recent studies indicate that voluntary exercise and environmental enrichment can positively influence both oligodendrogenesis and myelination, and that, in contrast, social isolation can negatively influence myelination. In this review we summarize studies addressing the influence of behavioral experiences on oligodendrocyte lineage cells and myelin, and highlight potential mechanisms including experience-dependent neuronal activity, metabolites, and stress effectors, as well as both local and systemic secreted factors. Although more study is required to better understand the underlying mechanisms by which behavioral experiences regulate oligodendrocyte lineage cells, this exciting and newly emerging field has already revealed that oligodendrocytes and their progenitors are highly responsive to behavioral experiences and suggest the existence of a complex network of reciprocal interactions among oligodendrocyte lineage development, behavioral experiences, and brain function. Achieving a better understanding of these relationships may have profound implications for human health, and in particular, for our understanding of changes in brain function that occur in response to experiences. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'.
Collapse
|
32
|
Glial cells as key players in schizophrenia pathology: recent insights and concepts of therapy. Schizophr Res 2015; 161:4-18. [PMID: 24948484 DOI: 10.1016/j.schres.2014.03.035] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/27/2014] [Accepted: 03/01/2014] [Indexed: 02/07/2023]
Abstract
The past decade has witnessed an explosion of knowledge on the impact of glia for the neurobiological foundation of schizophrenia. A plethora of studies have shown structural and functional abnormalities in all three types of glial cells. There is convincing evidence of reduced numbers of oligodendrocytes, impaired cell maturation and altered gene expression of myelin/oligodendrocyte-related genes that may in part explain white matter abnormalities and disturbed inter- and intra-hemispheric connectivity, which are characteristic signs of schizophrenia. Earlier reports of astrogliosis could not be confirmed by later studies, although the expression of a variety of astrocyte-related genes is abnormal in psychosis. Since astrocytes play a key role in the synaptic metabolism of glutamate, GABA, monoamines and purines, astrocyte dysfunction may contribute to certain aspects of disturbed neurotransmission in schizophrenia. Finally, increased densities of microglial cells and aberrant expression of microglia-related surface markers in schizophrenia suggest that immunological/inflammatory factors are of considerable relevance for the pathophysiology of psychosis. This review describes current evidence for the multifaceted role of glial cells in schizophrenia and discusses efforts to develop glia-directed therapies for the treatment of the disease.
Collapse
|
33
|
Yan J, Fu Q, Cheng L, Zhai M, Wu W, Huang L, Du G. Inflammatory response in Parkinson's disease (Review). Mol Med Rep 2014; 10:2223-33. [PMID: 25215472 DOI: 10.3892/mmr.2014.2563] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 07/01/2014] [Indexed: 11/05/2022] Open
Abstract
Parkinson's disease (PD) is one of the most common age‑related neurodegenerative diseases, which results from a number of environmental and inherited factors. PD is characterized by the slow progressive degeneration of dopaminergic (DA) neurons in the substantia nigra. The nigrostriatal DA neurons are particularly vulnerable to inflammatory attack. Neuroinflammation is an important contributor to the pathogenesis of age‑related neurodegenerative disorders, such as PD, and as such anti‑inflammatory agents are becoming a novel therapeutic focus. This review will discuss the current knowledge regarding inflammation and review the roles of intracellular inflammatory signaling pathways, which are specific inflammatory mediators in PD. Finally, possible therapeutic strategies are proposed, which may downregulate inflammatory processes and inhibit the progression of PD.
Collapse
Affiliation(s)
- Junqiang Yan
- Department of Neurology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Qizhi Fu
- Department of Neurology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Liniu Cheng
- Department of Neurology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Mingming Zhai
- Department of Neurology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Wenjuan Wu
- Department of Neurology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Lina Huang
- Department of Neurology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Ganqin Du
- Department of Neurology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| |
Collapse
|
34
|
Papenberg G, Lövdén M, Laukka EJ, Kalpouzos G, Keller L, Graff C, Köhncke Y, Li TQ, Fratiglioni L, Bäckman L. Magnified effects of the COMT gene on white-matter microstructure in very old age. Brain Struct Funct 2014; 220:2927-38. [DOI: 10.1007/s00429-014-0835-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/27/2014] [Indexed: 10/25/2022]
|
35
|
Valeiras B, Rosato Siri MV, Codagnone M, Reinés A, Pasquini JM. Gender influence on schizophrenia-relevant abnormalities in a cuprizone demyelination model. Glia 2014; 62:1629-44. [PMID: 24890315 DOI: 10.1002/glia.22704] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 05/08/2014] [Accepted: 05/19/2014] [Indexed: 11/08/2022]
Abstract
The aim of this study was to determine whether early demyelination can impact behavior in young adulthood. For this purpose, albino Wistar rats of either sex were exposed to cuprizone (CPZ) in two different intoxication protocols: one group was intoxicated before weaning (CPZ-BW), from postnatal day 7 (P7) to P21, through maternal milk, whereas the other group was intoxicated after weaning (CPZ-AW), from P21 to P35. After treatment, rats were returned to a normal diet until P90 when behavioral studies were performed. Both treatments produced marked demyelination in the corpus callosum and retraction of cortical myelin fibers. The subsequent normal diet allowed for effective remyelination at P90. Interestingly, CPZ-AW correlated with significant behavioral and neurochemical changes in a gender-dependent manner. CPZ-AW treatment altered both the number of social activities and the latency to the first social interaction in males, while also highly compromising recognition-related activities. In addition, only P90 males treated AW showed a hyperdopaminergic striatum, confirmed by an increase in tyrosine hydroxylase expression and in dopamine levels. Our results suggest that the timing of demyelination significantly influences the development of altered behavior, particularly in adult males.
Collapse
Affiliation(s)
- Brenda Valeiras
- Department of Biological Chemistry, IQUIFIB, School of Pharmacy and Biochemistry, University of Buenos Aires, CONICET, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
36
|
Mifsud G, Zammit C, Muscat R, Di Giovanni G, Valentino M. Oligodendrocyte pathophysiology and treatment strategies in cerebral ischemia. CNS Neurosci Ther 2014; 20:603-12. [PMID: 24703424 DOI: 10.1111/cns.12263] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/06/2014] [Accepted: 03/07/2014] [Indexed: 12/19/2022] Open
Abstract
Oligodendrocytes (OLs), the myelin-forming cells of the central nervous system, form a functional unit with axons and play a crucial role in axonal integrity. An episode of hypoxia-ischemia causes rapid and severe damage to these particularly vulnerable cells via multiple pathways such as overactivation of glutamate and ATP receptors, oxidative stress, and disruption of mitochondrial function. The cardinal effect of OL pathology is demyelination and dysmyelination, and this has profound effects on axonal function, transport, structure, metabolism, and survival. The OL is a primary target of ischemia in adult-onset stroke and especially in periventricular leukomalacia and should be considered as a primary therapeutic target in these conditions. More emphasis is needed on therapeutic strategies that target OLs, myelin, and their receptors, as these have the potential to significantly attenuate white matter injury and to establish functional recovery of white matter after stroke. In this review, we will summarize recent progress on the role of OLs in white matter ischemic injury and the current and emerging principles that form the basis for protective strategies against OL death.
Collapse
Affiliation(s)
- Gabriella Mifsud
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | | | | | | | | |
Collapse
|
37
|
Regionally-specific alterations in myelin proteins in nonhuman primate white matter following prolonged cocaine self-administration. Drug Alcohol Depend 2014; 137:143-7. [PMID: 24529965 PMCID: PMC4000724 DOI: 10.1016/j.drugalcdep.2014.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/10/2014] [Accepted: 01/20/2014] [Indexed: 01/24/2023]
Abstract
BACKGROUND Neuroimaging studies of cocaine users have demonstrated white matter abnormalities associated with behavioral measures of impulsivity and decision-making deficits. The underlying bases for this dysregulation in white matter structure and function have yet to be determined. The aim of the present studies was to investigate the influence of prolonged cocaine self-administration on the levels of myelin-associated proteins and mRNAs in nonhuman primate white matter. METHODS Rhesus monkeys (N=4) self-administered cocaine (0.3mg/kg/inj, 30 reinforcers per session) for 300 sessions. Control animals (N=4) responded for food. Following the final session monkeys were euthanized and white matter tissue at three brain levels was processed for immunoblotting analysis of proteolipid protein (PLP) and myelin basic protein (MBP), as well as for in situ hybridization histochemical analysis of PLP and MBP mRNAs. RESULTS Both MBP and PLP immunoreactivities in white matter at the level of the precommissural striatum were significantly lower in tissue from monkeys self-administering cocaine as compared to controls. No significant differences were seen for either protein at the levels of the prefrontal cortex or postcommissural striatum. In addition, no differences were observed in expression of mRNA for either protein. CONCLUSIONS These preliminary findings, in a nonhuman model of prolonged cocaine self-administration, provide further evidence that compromised myelin may underlie the deficits in white matter integrity described in studies of human cocaine users.
Collapse
|
38
|
D'Agati E, Casarelli L, Pitzianti M, Pasini A. Neuroleptic treatments and overflow movements in schizophrenia: are they independent? Psychiatry Res 2012; 200:970-6. [PMID: 22901438 DOI: 10.1016/j.psychres.2012.07.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 06/11/2012] [Accepted: 07/27/2012] [Indexed: 11/26/2022]
Abstract
Neurological soft signs (NSS) are minor neurological abnormalities that can be revealed by a clinical examination focused on sensory and motor information processing. NSS include overflow movements (OMs), which are defined as involuntary movements that may accompany the production of voluntary movements. OM is generally considered to be a characteristic feature of schizophrenia. White matter abnormalities might be involved in the pathogenesis of OMs. Dopamine receptors play a role in oligodendrocytes development. There is a direct link between antipsychotic agents that bind to dopamine receptors on oligodendrocytes and the development of oligodendrocytes and myelin formation. In this paper, we review the current knowledge of the effects of antipsychotic agents on NSS in schizophrenic patients. As a result of this critical review we hypothesize that the neuroleptic actions described in this paper could explain why antipsychotic agents have no effect on the resolution of NSS in patients with schizophrenia.
Collapse
Affiliation(s)
- Elisa D'Agati
- Unit of Child Neurology and Psychiatry, Department of Neuroscience, University of Rome Tor Vergata, Via Alberico 2 n. 35, 00193 Roma, Italy
| | | | | | | |
Collapse
|
39
|
Bókkon I, Antal I. Schizophrenia: redox regulation and volume neurotransmission. Curr Neuropharmacol 2012; 9:289-300. [PMID: 22131938 PMCID: PMC3131720 DOI: 10.2174/157015911795596504] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 05/30/2010] [Accepted: 06/04/2010] [Indexed: 02/08/2023] Open
Abstract
Here, we show that volume neurotransmission and the redox property of dopamine, as well as redox-regulated processes at glutamate receptors, can contribute significantly to our understanding of schizophrenia. Namely, volume neurotransmission may play a key role in the development of dysconnectivity between brain regions in schizophrenic patients, which can cause abnormal modulation of NMDA-dependent synaptic plasticity and produce local paroxysms in deafferented neural areas. During synaptic transmission, neuroredox regulations have fundamental functions, which involve the excellent antioxidant properties and nonsynaptic neurotransmission of dopamine. It is possible that the effect of redox-linked volume neurotransmission (diffusion) of dopamine is not as exact as communication by the classical synaptic mechanism, so approaching the study of complex schizophrenic mechanisms from this perspective may be beneficial. However, knowledge of redox signal processes, including the sources and molecular targets of reactive species, is essential for understanding the physiological and pathophysiological signal pathways in cells and the brain, as well as for pharmacological design of various types of new drugs.
Collapse
Affiliation(s)
- I Bókkon
- Doctoral School of Pharmaceutical and Pharmacological Sciences, Semmelweis University, Budapest, Hungary
| | | |
Collapse
|
40
|
Doi N, Hoshi Y, Itokawa M, Yoshikawa T, Ichikawa T, Arai M, Usui C, Tachikawa H. Paradox of schizophrenia genetics: is a paradigm shift occurring? BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2012; 8:28. [PMID: 22650965 PMCID: PMC3487746 DOI: 10.1186/1744-9081-8-28] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 04/27/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND Genetic research of schizophrenia (SCZ) based on the nuclear genome model (NGM) has been one of the most active areas in psychiatry for the past two decades. Although this effort is ongoing, the current situation of the molecular genetics of SCZ seems disappointing or rather perplexing. Furthermore, a prominent discrepancy between persistence of the disease at a relatively high prevalence and a low reproductive fitness of patients creates a paradox. Heterozygote advantage works to sustain the frequency of a putative susceptibility gene in the mitochondrial genome model (MGM) but not in the NGM. METHODS We deduced a criterion that every nuclear susceptibility gene for SCZ should fulfill for the persistence of the disease under general assumptions of the multifactorial threshold model. SCZ-associated variants listed in the top 45 in the SZGene Database (the version of the 23rd December, 2011) were selected, and the distribution of the genes that could meet or do not meet the criterion was surveyed. RESULTS 19 SCZ-associated variants that do not meet the criterion are located outside the regions where the SCZ-associated variants that could meet the criterion are located. Since a SCZ-associated variant that does not meet the criterion cannot be a susceptibility gene, but instead must be a protective gene, it should be linked to a susceptibility gene in the NGM, which is contrary to these results. On the other hand, every protective gene on any chromosome can be associated with SCZ in the MGM. Based on the MGM we propose a new hypothesis that assumes brain-specific antioxidant defenses in which trans-synaptic activations of dopamine- and N-methyl-d-aspartate-receptors are involved. Most of the ten predictions of this hypothesis seem to accord with the major epidemiological facts and the results of association studies to date. CONCLUSION The central paradox of SCZ genetics and the results of association studies to date argue against the NGM, and in its place the MGM is emerging as a viable option to account for genomic and pathophysiological research findings involving SCZ.
Collapse
Affiliation(s)
- Nagafumi Doi
- Ibaraki Prefectural Medical Center of Psychiatry, 654Asahi-machi, Kasama-shi, Ibaraki, 309-1717, Japan
| | - Yoko Hoshi
- Integrated Neuroscience Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Masanari Itokawa
- Project for Schizophrenia and Affective Disorders Research, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, 2-1Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Tomoe Ichikawa
- Project for Schizophrenia and Affective Disorders Research, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Makoto Arai
- Project for Schizophrenia and Affective Disorders Research, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Chie Usui
- Department of Psychiatry, Juntendo University Nerima Hospital, 3-1-10 Takanodai, Nerima-ku, Tokyo, 177-8521, Japan
| | - Hirokazu Tachikawa
- Department of Psychiatry, Graduate School of Comprehensive Human Science, Tsukuba University, Tsukuba-shi, Ibaraki, Japan
| |
Collapse
|
41
|
Skaper SD, Argentini C, Barbierato M. Culture of neonatal rodent microglia, astrocytes, and oligodendrocytes from cortex and spinal cord. Methods Mol Biol 2012; 846:67-77. [PMID: 22367802 DOI: 10.1007/978-1-61779-536-7_7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The protocol described in this chapter covers the preparation and culture of enriched populations of microglia, astrocytes, and oligodendrocytes from the cortex and spinal cord of neonatal rat and mouse. The procedure is based on the enzymatic digestion of tissue, followed by the culture of a mixed glial cell population which is then utilized as the starting point for the isolation, via differential attachment, of the different cell types.
Collapse
Affiliation(s)
- Stephen D Skaper
- Department of Pharmacology and Anesthesiology, University of Padova, Padova, Italy.
| | | | | |
Collapse
|
42
|
Walterfang M, Velakoulis D, Whitford TJ, Pantelis C. Understanding aberrant white matter development in schizophrenia: an avenue for therapy? Expert Rev Neurother 2011; 11:971-87. [PMID: 21721915 DOI: 10.1586/ern.11.76] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although historically gray matter changes have been the focus of neuropathological and neuroradiological studies in schizophrenia, in recent years an increasing body of research has implicated white matter structures and its constituent components (axons, their myelin sheaths and supporting oligodendrocytes). This article summarizes this body of literature, examining neuropathological, neurogenetic and neuroradiological evidence for white matter pathology in schizophrenia. We then look at the possible role that antipsychotic medication may play in these studies, examining both its role as a potential confounder in studies examining neuronal density and brain volume, but also the possible role that these medications may play in promoting myelination through their effects on oligodendrocytes. Finally, the role of potential novel therapies is discussed.
Collapse
Affiliation(s)
- Mark Walterfang
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne, Australia.
| | | | | | | |
Collapse
|
43
|
Niu J, Mei F, Li N, Wang H, Li X, Kong J, Xiao L. Haloperidol promotes proliferation but inhibits differentiation in rat oligodendrocyte progenitor cell culturesThis paper is one of a selection of papers published in this special issue entitled “Second International Symposium on Recent Advances in Basic, Clinical, and Social Medicine” and has undergone the Journal's usual peer review process. Biochem Cell Biol 2010; 88:611-20. [DOI: 10.1139/o09-178] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Haloperidol is a commonly used, typical, antipsychotic drug (APD) that acts strongly against positive symptoms, but has fewer therapeutic effects on, or may even aggravate, negative symptoms and cognitive deficits in patients with schizophrenia. Loss of oligodendrocytes has been suggested as a factor associated with the negative symptoms of schizophrenia. Recent study shows that chronic haloperidol treatment induced down-regulation of oligodendrocyte-related genes in certain brain regions of mouse. In this study, we used primary oligodendrocyte progenitor cell cultures from 1- to 3-day-postnatal rats to investigate the direct effects of haloperidol on the proliferation and differentiation of oligodendrocyte progenitor cells. Our results showed that (i) haloperidol (0–10.0 µmol·L–1) facilitated the proliferation of oligodendrocyte progenitor cells, (ii) chronic haloperidol (0.5 µmol·L–1) treatment decreased the number of myelin basic protein positive oligodendrocytes and reduced the oligodendrocytes cells possessing myelin-like membranes, resulting in inhibition of the terminal differentiation of oligodendrocytes, and (iii) D3 receptor mRNA was detected in oligodendrocyte progenitor cells, and haloperidol treatment induced a down-regulation of D3 receptor mRNA. These results suggest that the typical antipsychotic drug haloperidol affects the development of oligodendrocyte progenitor cells, and that D3 receptor down regulation may be involved. Our observations provide new insight into possible cellular mechanisms responsible for the side effects of typical antipsychotic drugs and support the concept that abnormality of oligodendrocytes may be involved in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Jianqin Niu
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
- Department of Psychiatry, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Feng Mei
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
- Department of Psychiatry, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Nan Li
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
- Department of Psychiatry, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Hanzhi Wang
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
- Department of Psychiatry, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Xinmin Li
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
- Department of Psychiatry, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Jiming Kong
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
- Department of Psychiatry, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Lan Xiao
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
- Department of Psychiatry, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
44
|
Wang H, Xu H, Niu J, Mei F, Li X, Kong J, Cai W, Xiao L. Haloperidol activates quiescent oligodendroglia precursor cells in the adult mouse brain. Schizophr Res 2010; 119:164-74. [PMID: 20346631 DOI: 10.1016/j.schres.2010.02.1068] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 02/22/2010] [Accepted: 02/24/2010] [Indexed: 10/19/2022]
Abstract
Recent human studies suggest that abnormal development of oligodendrocytes (OLs) is an important component in the pathophysiology of schizophrenia. However, less information is available regarding effects of antipsychotics on OLs' development. In the present study, young adult C57BL/6 mice were given haloperidol (HAL; 2mg/kg/day) in their drinking water for three or six weeks. At the conclusion of the drug treatment, mice were sacrificed and the numbers of NG2- and Olig2-expressing cells in the brain regions of the corpus callosum, hippocampus and cerebral cortex were quantified. NG2 is a specific marker for oligodendroglia precursor cells (OPCs); Olig2 marks glial progenitors. HAL treatment for three weeks increased the number of NG2-expressing cells in the corpus callosum; HAL treatment for three and six weeks increased the numbers of Olig2-expressing cells in all three brain regions and increased the levels of Olig2 expression in the same brain regions. These results suggest that HAL treatment activates adult OPCs, which divide infrequently under normal conditions but respond to a variety of insulting factors by proliferation and differentiation. However, our further observations showed no changes in the number of mature OLs and the amount of myelin basic protein in HAL-treated mice, suggesting the drug treatment has no effect on the maturation of OLs. In addition, HAL treatment did not increase the numbers of GFAP- and CD68-expressing cells, suggesting that no gliosis and inflammatory responses occurred while the drug activated the quiescent OPCs in adult brain. These results suggest that HAL treatment may target the development of OLs.
Collapse
Affiliation(s)
- Hanzhi Wang
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Serý O, Prikryl R, Castulík L, St'astný F. A118G polymorphism of OPRM1 gene is associated with schizophrenia. J Mol Neurosci 2010; 41:219-22. [PMID: 20112002 DOI: 10.1007/s12031-010-9327-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 01/05/2010] [Indexed: 10/19/2022]
Abstract
Schizophrenia is ranked among multifactor diseases in whose pathogenesis, besides environmental factors, an interplay of functional polymorphisms of a larger number of candidate genes is involved. Neurodevelopmental abnormities are among the most accepted hypotheses in the etiology of schizophrenia. Recently, the role of oligodendrocytes in the development of the cortex has been cited repeatedly. During their various phases of differentiation oligodendrocytes present on their surfaces diverse receptors, among others the mu-opioid receptor (OPRM1). The study was focused on the relationship between the functional A118G polymorphism of the OPRM1 gene (rs1799971) and schizophrenia in groups of 130 male patients and 452 male controls. An association study revealed yet unpublished statistically significant difference of allelic and genotypic frequencies between the control and patient groups. According to our present knowledge, we assume that the OPRM1 gene polymorphism can influence the myelination of CNS neurons through regulations of expression of OPRM1 receptors on surfaces of oligodendrocytes. The neuronal myelination seems to be one of the important factors in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Omar Serý
- Laboratory of Neurobiology and Molecular Psychiatry, Laboratory of Molecular Physiology, Department of Biochemistry, Faculty of Science, Masaryk University, Kotlárská 2, 611 37, Brno, Czech Republic.
| | | | | | | |
Collapse
|
46
|
Bernstein HG, Steiner J, Bogerts B. Glial cells in schizophrenia: pathophysiological significance and possible consequences for therapy. Expert Rev Neurother 2009; 9:1059-71. [PMID: 19589054 DOI: 10.1586/ern.09.59] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the last 10 years, structural, molecular and functional changes in glial cells have become a major focus of interest in the search for the neurobiological foundations of schizophrenia. While neuronal degeneration, as seen in typical degenerative brain diseases, cannot be found in post-mortem brains of psychotic disorders called 'schizophrenia', many studies show abnormalities in the connecting elements between the nerve cell bodies (synapses, dendrites and axons) and in all three types of glial cells. There is accumulating evidence of reduced numbers of oligodendrocytes and altered gene expression of myelin/oligodendrocyte-related genes that might explain white matter abnormalities and disturbed inter- and intra-hemispheric connectivity, which have frequently been described in schizophrenia. Earlier reports of increased astrocyte densities as a sign of gliosis could not be confirmed by later studies; however, the expression of several astrocyte-related genes is abnormal. Since astrocytes play a key role in the synaptic metabolism of glutamate and monamines, astrocyte dysfunction may well be related to the current transmitter theories of schizophrenia. Results in increased densities of microglial cells, which act as the main cells for immune defence in the brain, are more controversial. There are, however, higher microglial cell numbers in psychotic patients dying from suicide, and several studies reported altered expression of microglia-related surface markers in schizophrenia, suggesting that immunological/inflammatory factors may be relevant for the pathophysiology of psychosis. Searches for future therapeutic options should aim at compensating disturbed functions of oligodendrocytes, astrocytes and microglial cells, by which at least some aspects of the pathophysiology of the very inhomogeneous clinical syndrome of schizophrenia might be explained.
Collapse
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry, Otto von Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | | | | |
Collapse
|
47
|
Bartzokis G, Lu PH, Stewart SB, Oluwadara B, Lucas AJ, Pantages J, Pratt E, Sherin JE, Altshuler LL, Mintz J, Gitlin MJ, Subotnik KL, Nuechterlein KH. In vivo evidence of differential impact of typical and atypical antipsychotics on intracortical myelin in adults with schizophrenia. Schizophr Res 2009; 113:322-31. [PMID: 19616412 PMCID: PMC2862048 DOI: 10.1016/j.schres.2009.06.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 06/13/2009] [Accepted: 06/16/2009] [Indexed: 10/20/2022]
Abstract
CONTEXT Imaging and post-mortem studies provide converging evidence that patients with schizophrenia have a dysregulated developmental trajectory of frontal lobe myelination. The hypothesis that typical and atypical medications may differentially impact brain myelination in adults with schizophrenia was previously assessed with inversion recovery (IR) images. Increased white matter (WM) volume suggestive of increased myelination was detected in the patient group treated with an atypical antipsychotic compared to a typical one. OBJECTIVE In a follow-up reanalysis of MRI images from the original study, we used a novel method to assess whether the difference in WM volumes could be caused by a differential effect of medications on the intracortical myelination process. DESIGN, SETTING, AND PARTICIPANTS Two different male cohorts of healthy controls ranging in age from 18-35 years were compared to cohorts of subjects with schizophrenia who were treated with either oral risperidone (Ris) or fluphenazine decanoate (Fd). MAIN OUTCOME MEASURE A novel MRI method that combines the distinct tissue contrasts provided by IR and proton density (PD) images was used to estimate intracortical myelin (ICM) volume. RESULTS When compared with their pooled healthy control comparison group, the two groups of schizophrenic patients differed in the frontal lobe ICM measure with the Ris group having significantly higher volume. CONCLUSIONS The data suggest that in adults with schizophrenia antipsychotic treatment choice may be specifically and differentially impacting later-myelinating intracortical circuitry. In vivo MRI can be used to dissect subtle differences in brain tissue characteristics and thus help clarify the effect of pharmacologic treatments on developmental and pathologic processes.
Collapse
Affiliation(s)
- George Bartzokis
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6968, USA.
| | - Po H. Lu
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Stephanie B. Stewart
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Bolanle Oluwadara
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine at UCLA, Los Angeles, California.,Greater Los Angeles VA Healthcare System, West Los Angeles, California
| | - Andrew J. Lucas
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Joanna Pantages
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine at UCLA, Los Angeles, California.,Greater Los Angeles VA Healthcare System, West Los Angeles, California
| | - Erika Pratt
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine at UCLA, Los Angeles, California.,Greater Los Angeles VA Healthcare System, West Los Angeles, California
| | - Jonathan E. Sherin
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine at UCLA, Los Angeles, California.,Greater Los Angeles VA Healthcare System, West Los Angeles, California
| | - Lori L. Altshuler
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine at UCLA, Los Angeles, California.,Greater Los Angeles VA Healthcare System, West Los Angeles, California
| | - Jim Mintz
- University of Texas Health Science Center at San Antonio, Department of Epidemiology and Biostatistics, San Antonio, Texas
| | - Michael J. Gitlin
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Kenneth L. Subotnik
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Keith H. Nuechterlein
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
48
|
Bence M, Kereszturi E, Mozes V, Sasvari-Szekely M, Keszler G. Hypoxia-induced transcription of dopamine D3 and D4 receptors in human neuroblastoma and astrocytoma cells. BMC Neurosci 2009; 10:92. [PMID: 19653907 PMCID: PMC3224682 DOI: 10.1186/1471-2202-10-92] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 08/04/2009] [Indexed: 01/07/2023] Open
Abstract
Background Dopaminergic pathways that influence mood and behaviour are severely affected in cerebral hypoxia. In contrast, hypoxia promotes the differentiation of dopaminergic neurons. In order to clarify the hypoxic sensitivity of key dopaminergic genes, we aimed to study their transcriptional regulation in the context of neuroblastoma and astrocytoma cell lines exposed to 1% hypoxia. Results Quantitative RT-PCR assays revealed that the transcription of both type D3 and D4 postsynaptic dopamine receptors (DRD3 and DRD4) was induced several fold upon 2-day hypoxia in a cell-specific manner, while the vascular endothelial growth factor gene was activated after 3-hr incubation in hypoxia. On the other hand, mRNA levels of type 2 dopamine receptor, dopamine transporter, monoamino oxidase and catechol-O-methyltransferase were unaltered, while those of the dopamine receptor regulating factor (DRRF) were decreased by hypoxia. Notably, 2-day hypoxia did not result in elevation of protein levels of DRD3 and DRD4. Conclusion In light of the relatively delayed transcriptional activation of the DRD3 and DRD4 genes, we propose that slow-reacting hypoxia sensitive transcription factors might be involved in the transactivation of DRD3 and DRD4 promoters in hypoxia.
Collapse
Affiliation(s)
- Melinda Bence
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, POB 260, Budapest H-1444, Hungary.
| | | | | | | | | |
Collapse
|
49
|
Lee PR, Fields RD. Regulation of myelin genes implicated in psychiatric disorders by functional activity in axons. Front Neuroanat 2009; 3:4. [PMID: 19521541 PMCID: PMC2694662 DOI: 10.3389/neuro.05.004.2009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 05/19/2009] [Indexed: 01/04/2023] Open
Abstract
Myelination is a highly dynamic process that continues well into adulthood in humans. Several recent gene expression studies have found abnormal expression of genes involved in myelination in the prefrontal cortex of brains from patients with schizophrenia and other psychiatric illnesses. Defects in myelination could contribute to the pathophysiology of psychiatric illness by impairing information processing as a consequence of altered impulse conduction velocity and synchrony between cortical regions carrying out higher level cognitive functions. Myelination can be altered by impulse activity in axons and by environmental experience. Psychiatric illness is treated by psychotherapy, behavioral modification, and drugs affecting neurotransmission, raising the possibility that myelinating glia may not only contribute to such disorders, but that activity-dependent effects on myelinating glia could provide one of the cellular mechanisms contributing to the therapeutic effects of these treatments. This review examines evidence showing that genes and gene networks important for myelination can be regulated by functional activity in axons.
Collapse
Affiliation(s)
- Philip R Lee
- National Institutes of Health, NICHD Bethesda, MD, USA
| | | |
Collapse
|
50
|
Lisak RP, Benjamins JA, Bealmear B, Nedelkoska L, Studzinski D, Retland E, Yao B, Land S. Differential effects of Th1, monocyte/macrophage and Th2 cytokine mixtures on early gene expression for molecules associated with metabolism, signaling and regulation in central nervous system mixed glial cell cultures. J Neuroinflammation 2009; 6:4. [PMID: 19159481 PMCID: PMC2639549 DOI: 10.1186/1742-2094-6-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 01/21/2009] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cytokines secreted by immune cells and activated glia play central roles in both the pathogenesis of and protection from damage to the central nervous system (CNS) in multiple sclerosis (MS). METHODS We have used gene array analysis to identify the initial direct effects of cytokines on CNS glia by comparing changes in early gene expression in CNS glial cultures treated for 6 hours with cytokines typical of those secreted by Th1 and Th2 lymphocytes and monocyte/macrophages (M/M). RESULTS In two previous papers, we summarized effects of these cytokines on immune-related molecules, and on neural and glial related proteins, including neurotrophins, growth factors and structural proteins. In this paper, we present the effects of the cytokines on molecules involved in metabolism, signaling and regulatory mechanisms in CNS glia. Many of the changes in gene expression were similar to those seen in ischemic preconditioning and in early inflammatory lesions in experimental autoimmune encephalomyelitis (EAE), related to ion homeostasis, mitochondrial function, neurotransmission, vitamin D metabolism and a variety of transcription factors and signaling pathways. Among the most prominent changes, all three cytokine mixtures markedly downregulated the dopamine D3 receptor, while Th1 and Th2 cytokines downregulated neuropeptide Y receptor 5. An unexpected finding was the large number of changes related to lipid metabolism, including several suggesting a switch from diacylglycerol to phosphatidyl inositol mediated signaling pathways. Using QRT-PCR we validated the results for regulation of genes for iNOS, arginase and P glycoprotein/multi-drug resistance protein 1 (MDR1) seen at 6 hours with microarray. CONCLUSION Each of the three cytokine mixtures differentially regulated gene expression related to metabolism and signaling that may play roles in the pathogenesis of MS, most notably with regard to mitochondrial function and neurotransmitter signaling in glia.
Collapse
Affiliation(s)
- Robert P Lisak
- Department of Neurology, 8D University Health Center, Wayne State University School of Medicine, 4201 St Antoine, Detroit, MI, 48210, USA.
| | | | | | | | | | | | | | | |
Collapse
|