1
|
Mata P, Calovi S, Benli KP, Iglesias L, Hernández MI, Martín A, Pérez-Samartín A, Ramos-Murguialday A, Domercq M, Ortego-Isasa I. Magnetic field in the extreme low frequency band protects neuronal and microglia cells from oxygen-glucose deprivation. Front Cell Neurosci 2024; 18:1455158. [PMID: 39553829 PMCID: PMC11563784 DOI: 10.3389/fncel.2024.1455158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/14/2024] [Indexed: 11/19/2024] Open
Abstract
Ischemic stroke consists of rapid neural death as a consequence of brain vessel obstruction, followed by damage to the neighboring tissue known as ischemic penumbra. The cerebral tissue in the core of the lesions becomes irreversibly damaged, however, the ischemic penumbra is potentially recoverable during the initial phases after the stroke. Therefore, there is real need for emerging therapeutic strategies to reduce ischemic damage and its spread to the penumbral region. For this reason, we tested the effect of Extreme Low Frequency Electromagnetic Stimulation (ELF-EMS) on in vitro primary neuronal and microglial cultures under oxygen-glucose deprivation (OGD) conditions. ELF-EMS under basal non-OGD conditions did not induce any effect in cell survival. However, ELF-EMS significantly reduced neuronal cell death in OGD conditions and reduced ischemic induced Ca2+ overload. Likewise, ELF-EMS modulated microglia activation and OGD-induced microglia cell death. Hence, this study suggests potential benefits in the application of ELF-EMS to limit ischemic irreversible damages under in vitro stroke conditions, encouraging in vivo preclinical validations of ELF-EMS as a potential therapeutic strategy for ischemic stroke.
Collapse
Affiliation(s)
- Paloma Mata
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neuroscience, University of the Basque Country UPV/EHU, Leioa, Spain
| | | | | | | | | | - Abraham Martín
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Ikerbasque Basque Foundation for Science, Bilbao, Spain
| | - Alberto Pérez-Samartín
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neuroscience, University of the Basque Country UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Ander Ramos-Murguialday
- TECNALIA, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Department of Neurology and Stroke, University of Tubingen, Tubingen, Germany
- Athenea Neuroclinics, Donostia-San Sebastian, Spain
| | - María Domercq
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neuroscience, University of the Basque Country UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Iñaki Ortego-Isasa
- TECNALIA, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Wei W, Cheng B, Yang X, Chu X, He D, Qin X, Zhang N, Zhao Y, Shi S, Cai Q, Hui J, Wen Y, Liu H, Jia Y, Zhang F. Single-cell multiomics analysis reveals cell/tissue-specific associations in bipolar disorder. Transl Psychiatry 2024; 14:323. [PMID: 39107272 PMCID: PMC11303399 DOI: 10.1038/s41398-024-03044-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024] Open
Abstract
This study investigates the cellular origin and tissue heterogeneity in bipolar disorder (BD) by integrating multiomics data. Four distinct datasets were employed, including single-cell RNA sequencing (scRNA-seq) data (embryonic and fetal brain, n = 8, 1,266 cells), BD Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) data (adult brain, n = 210), BD bulk RNA-seq data (adult brain, n = 314), and BD genome-wide association study (GWAS) summary data (n = 413,466). The integration of scRNA-seq data with multiomics data relevant to BD was accomplished using the single-cell disease relevance score (scDRS) algorithm. We have identified a novel brain cell cluster named ADCY1, which exhibits distinct genetic characteristics. From a high-resolution genetic perspective, glial cells emerge as the primary cytopathology associated with BD. Specifically, astrocytes were significantly related to BD at the RNA-seq level, while microglia showed a strong association with BD across multiple panels, including the transcriptome-wide association study (TWAS), ATAC-seq, and RNA-seq. Additionally, oligodendrocyte precursor cells displayed a significant association with BD in both ATAC-seq and RNA-seq panel. Notably, our investigation of brain regions affected by BD revealed significant associations between BD and all three types of glial cells in the dorsolateral prefrontal cortex (DLPFC). Through comprehensive analyses, we identified several BD-associated genes, including CRMP1, SYT4, UCHL1, and ZBTB18. In conclusion, our findings suggest that glial cells, particularly in specific brain regions such as the DLPFC, may play a significant role in the pathogenesis of BD. The integration of multiomics data has provided valuable insights into the etiology of BD, shedding light on potential mechanisms underlying this complex psychiatric disorder.
Collapse
Affiliation(s)
- Wenming Wei
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoge Chu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Dan He
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyue Qin
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Na Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yijing Zhao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Sirong Shi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Qingqing Cai
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jingni Hui
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Huan Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
3
|
Zhao D, Hu M, Liu S. Glial cells in the mammalian olfactory bulb. Front Cell Neurosci 2024; 18:1426094. [PMID: 39081666 PMCID: PMC11286597 DOI: 10.3389/fncel.2024.1426094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
The mammalian olfactory bulb (OB), an essential part of the olfactory system, plays a critical role in odor detection and neural processing. Historically, research has predominantly focused on the neuronal components of the OB, often overlooking the vital contributions of glial cells. Recent advancements, however, underscore the significant roles that glial cells play within this intricate neural structure. This review discus the diverse functions and dynamics of glial cells in the mammalian OB, mainly focused on astrocytes, microglia, oligodendrocytes, olfactory ensheathing cells, and radial glia cells. Each type of glial contributes uniquely to the OB's functionality, influencing everything from synaptic modulation and neuronal survival to immune defense and axonal guidance. The review features their roles in maintaining neural health, their involvement in neurodegenerative diseases, and their potential in therapeutic applications for neuroregeneration. By providing a comprehensive overview of glial cell types, their mechanisms, and interactions within the OB, this article aims to enhance our understanding of the olfactory system's complexity and the pivotal roles glial cells play in both health and disease.
Collapse
Affiliation(s)
| | | | - Shaolin Liu
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, Department of Biomedical Sciences, University of Georgia College of Veterinary Medicine, Athens, GA, United States
| |
Collapse
|
4
|
Nájera-Maldonado JM, Salazar R, Alvarez-Fitz P, Acevedo-Quiroz M, Flores-Alfaro E, Hernández-Sotelo D, Espinoza-Rojo M, Ramírez M. Phenolic Compounds of Therapeutic Interest in Neuroprotection. J Xenobiot 2024; 14:227-246. [PMID: 38390994 PMCID: PMC10885129 DOI: 10.3390/jox14010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
The number of elderly people is projected to double in the next 50 years worldwide, resulting in an increased prevalence of neurodegenerative diseases. Aging causes changes in brain tissue homeostasis, thus contributing to the development of neurodegenerative disorders. Current treatments are not entirely effective, so alternative treatments or adjuvant agents are being actively sought. Antioxidant properties of phenolic compounds are of particular interest for neurodegenerative diseases whose psychopathological mechanisms strongly rely on oxidative stress at the brain level. Moreover, phenolic compounds display other advantages such as the permeability of the blood-brain barrier (BBB) and the interesting molecular mechanisms that we reviewed in this work. We began by briefly outlining the physiopathology of neurodegenerative diseases to understand the mechanisms that result in irreversible brain damage, then we provided an overall classification of the phenolic compounds that would be addressed later. We reviewed in vitro and in vivo studies, as well as some clinical trials in which neuroprotective mechanisms were demonstrated in models of different neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), ischemia, and traumatic brain injury (TBI).
Collapse
Affiliation(s)
| | - Ricardo Salazar
- CONAHCYT National Council of Humanities, Sciences and Technologies, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Patricia Alvarez-Fitz
- CONAHCYT National Council of Humanities, Sciences and Technologies, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Macdiel Acevedo-Quiroz
- National Technological Institute of Mexico, Technological/IT Institute of Zacatepec, Zacatepec 62780, Mexico
| | - Eugenia Flores-Alfaro
- Faculty of Chemical Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Daniel Hernández-Sotelo
- Faculty of Chemical Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Mónica Espinoza-Rojo
- Faculty of Chemical Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Mónica Ramírez
- CONAHCYT National Council of Humanities, Sciences and Technologies, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| |
Collapse
|
5
|
Martínez‐Coria H, Serrano‐García N, López‐Valdés HE, López‐Chávez GS, Rivera‐Alvarez J, Romero‐Hernández Á, Valverde FF, Orozco‐Ibarra M, Torres‐Ramos MA. Morin improves learning and memory in healthy adult mice. Brain Behav 2024; 14:e3444. [PMID: 38409930 PMCID: PMC10897355 DOI: 10.1002/brb3.3444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/26/2023] [Accepted: 02/04/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Morin is a flavonoid found in many edible fruits. The hippocampus and entorhinal cortex play crucial roles in memory formation and consolidation. This study aimed to characterize the effect of morin on recognition and space memory in healthy C57BL/6 adult mice and explore the underlying molecular mechanism. METHODS Morin was administered i.p. at 1, 2.5, and 5 mg/kg/24 h for 10 days. The Morris water maze (MWM), novel object recognition, novel context recognition, and tasks were conducted 1 day after the last administration. The mice's brains underwent histological characterization, and their protein expression was examined using immunohistochemistry and Western blot techniques. RESULTS In the MWM and novel object recognition tests, mice treated with 1 mg/kg of morin exhibited a significant recognition index increase compared to the control group. Besides, they demonstrated faster memory acquisition during MWM training. Additionally, the expression of pro-brain-derived neurotrophic factor (BDNF), BDNF, and postsynaptic density protein 95 proteins in the hippocampus of treated mice showed a significant increase. In the entorhinal cortex, only the pro-BDNF increased. Morin-treated mice exhibited a significant increase in the hippocampus's number and length of dendrites. CONCLUSION This study shows that morin improves recognition memory and spatial memory in healthy adult mice.
Collapse
Affiliation(s)
- Hilda Martínez‐Coria
- Departamento de Fisiología, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Norma Serrano‐García
- Laboratorio de NeurofisiologíaInstituto Nacional de Neurología y Neurocirugía Manuel Velasco SuárezCiudad de MéxicoMéxico
| | - Héctor E. López‐Valdés
- Departamento de Fisiología, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Gabriela Sinaí López‐Chávez
- Ciencia Traslacional, laboratorio 4. Centro de Investigación sobre el Envejecimiento del Centro de Investigación y de Estudios Avanzados; Dirección de investigación, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - José Rivera‐Alvarez
- Ciencia Traslacional, laboratorio 4. Centro de Investigación sobre el Envejecimiento del Centro de Investigación y de Estudios Avanzados; Dirección de investigación, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Ángeles Romero‐Hernández
- Ciencia Traslacional, laboratorio 4. Centro de Investigación sobre el Envejecimiento del Centro de Investigación y de Estudios Avanzados; Dirección de investigación, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Francisca Fernández Valverde
- Laboratorio de Patología ExperimentalInstituto Nacional de Neurología y Neurocirugía Manuel Velasco SuárezCiudad de MéxicoMéxico
| | - Marisol Orozco‐Ibarra
- Departamento de BioquímicaInstituto Nacional de Cardiología Ignacio ChávezCiudad de MéxicoMéxico
| | - Mónica Adriana Torres‐Ramos
- Ciencia Traslacional, laboratorio 4. Centro de Investigación sobre el Envejecimiento del Centro de Investigación y de Estudios Avanzados; Dirección de investigación, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| |
Collapse
|
6
|
Dassamiour S, Bensaad MS, Ghebache W. Utility of phenolic acids in neurological disorders. ADVANCEMENT OF PHENOLIC ACIDS IN DRUG DISCOVERY 2024:295-344. [DOI: 10.1016/b978-0-443-18538-0.00015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Huang S, Ren C, Luo Y, Ding Y, Ji X, Li S. New insights into the roles of oligodendrocytes regulation in ischemic stroke recovery. Neurobiol Dis 2023:106200. [PMID: 37321419 DOI: 10.1016/j.nbd.2023.106200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/20/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023] Open
Abstract
Oligodendrocytes (OLs), the myelin-forming cells of the central nervous system, are integral to axonal integrity and function. Hypoxia-ischemia episodes can cause severe damage to these vulnerable cells through excitotoxicity, oxidative stress, inflammation, and mitochondrial dysfunction, leading to axonal dystrophy, neuronal dysfunction, and neurological impairments. OLs damage can result in demyelination and myelination disorders, severely impacting axonal function, structure, metabolism, and survival. Adult-onset stroke, periventricular leukomalacia, and post-stroke cognitive impairment primarily target OLs, making them a critical therapeutic target. Therapeutic strategies targeting OLs, myelin, and their receptors should be given more emphasis to attenuate ischemia injury and establish functional recovery after stroke. This review summarizes recent advances on the function of OLs in ischemic injury, as well as the present and emerging principles that serve as the foundation for protective strategies against OL deaths.
Collapse
Affiliation(s)
- Shuangfeng Huang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China; Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Changhong Ren
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yumin Luo
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China; Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University, Detroit, MI, USA
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Sijie Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China; Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Polo Y, Luzuriaga J, Gonzalez de Langarica S, Pardo-Rodríguez B, Martínez-Tong DE, Tapeinos C, Manero-Roig I, Marin E, Muñoz-Ugartemendia J, Ciofani G, Ibarretxe G, Unda F, Sarasua JR, Pineda JR, Larrañaga A. Self-assembled three-dimensional hydrogels based on graphene derivatives and cerium oxide nanoparticles: scaffolds for co-culture of oligodendrocytes and neurons derived from neural stem cells. NANOSCALE 2023; 15:4488-4505. [PMID: 36753326 DOI: 10.1039/d2nr06545b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Stem cell-based therapies have shown promising results for the regeneration of the nervous system. However, the survival and integration of the stem cells in the neural circuitry is suboptimal and might compromise the therapeutic outcomes of this approach. The development of functional scaffolds capable of actively interacting with stem cells may overcome the current limitations of stem cell-based therapies. In this study, three-dimensional hydrogels based on graphene derivatives and cerium oxide (CeO2) nanoparticles are presented as prospective supports allowing neural stem cell adhesion, migration and differentiation. The morphological, mechanical and electrical properties of the resulting hydrogels can be finely tuned by controlling several parameters of the self-assembly of graphene oxide sheets, namely the amount of incorporated reducing agent (ascorbic acid) and CeO2 nanoparticles. The intrinsic properties of the hydrogels, as well as the presence of CeO2 nanoparticles, clearly influence the cell fate. Thus, stiffer adhesion substrates promote differentiation to glial cell lineages, while softer substrates enhance mature neuronal differentiation. Remarkably, CeO2 nanoparticle-containing hydrogels support the differentiation of neural stem cells to neuronal, astroglial and oligodendroglial lineage cells, promoting the in vitro generation of nerve tissue grafts that might be employed in neuroregenerative cell therapies.
Collapse
Affiliation(s)
| | - Jon Luzuriaga
- Cell Signaling Lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Sergio Gonzalez de Langarica
- Group of Science and Engineering of Polymeric Biomaterials (ZIBIO Group), Department of Mining, Metallurgy Engineering and Materials Science, POLYMAT, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| | - Beatriz Pardo-Rodríguez
- Cell Signaling Lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Daniel E Martínez-Tong
- Polymers and advanced materials: Physics, Chemistry and Technology, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain & Centro de Física de Materiales (UPV/EHU-CSIC), Donostia-San Sebastian, Spain
| | - Christos Tapeinos
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Pontedera, PI, Italy
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Irene Manero-Roig
- Cell Signaling Lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.
- Université de Bordeaux IINS - UMR 5297, Bordeaux, France
| | - Edurne Marin
- Group of Science and Engineering of Polymeric Biomaterials (ZIBIO Group), Department of Mining, Metallurgy Engineering and Materials Science, POLYMAT, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| | - Jone Muñoz-Ugartemendia
- Group of Science and Engineering of Polymeric Biomaterials (ZIBIO Group), Department of Mining, Metallurgy Engineering and Materials Science, POLYMAT, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| | - Gianni Ciofani
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Pontedera, PI, Italy
| | - Gaskon Ibarretxe
- Cell Signaling Lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Fernando Unda
- Cell Signaling Lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Jose-Ramon Sarasua
- Group of Science and Engineering of Polymeric Biomaterials (ZIBIO Group), Department of Mining, Metallurgy Engineering and Materials Science, POLYMAT, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| | - Jose Ramon Pineda
- Cell Signaling Lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.
- Achucarro Basque Center for Neuroscience Fundazioa, Leioa, Spain
| | - Aitor Larrañaga
- Group of Science and Engineering of Polymeric Biomaterials (ZIBIO Group), Department of Mining, Metallurgy Engineering and Materials Science, POLYMAT, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| |
Collapse
|
9
|
Chen Q, Ruan D, Shi J, Du D, Bian C. The multifaceted roles of natural products in mitochondrial dysfunction. Front Pharmacol 2023; 14:1093038. [PMID: 36860298 PMCID: PMC9968749 DOI: 10.3389/fphar.2023.1093038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
Mitochondria are the primary source of energy production in cells, supporting the metabolic demand of tissue. The dysfunctional mitochondria are implicated in various diseases ranging from neurodegeneration to cancer. Therefore, regulating dysfunctional mitochondria offers a new therapeutic opportunity for diseases with mitochondrial dysfunction. Natural products are pleiotropic and readily obtainable sources of therapeutic agents, which have broad prospects in new drug discovery. Recently, many mitochondria-targeting natural products have been extensively studied and have shown promising pharmacological activity in regulating mitochondrial dysfunction. Hence, we summarize recent advances in natural products in targeting mitochondria and regulating mitochondrial dysfunction in this review. We discuss natural products in terms of their mechanisms on mitochondrial dysfunction, including modulating mitochondrial quality control system and regulating mitochondrial functions. In addition, we describe the future perspective and challenges in the development of mitochondria-targeting natural products, emphasizing the potential value of natural products in mitochondrial dysfunction.
Collapse
Affiliation(s)
| | | | - Jiayan Shi
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Gynecology and Obstetrics, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Dongru Du
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Gynecology and Obstetrics, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | | |
Collapse
|
10
|
Tsafack PB, Tsopmo A. Effects of bioactive molecules on the concentration of biogenic amines in foods and biological systems. Heliyon 2022; 8:e10456. [PMID: 36105466 PMCID: PMC9465362 DOI: 10.1016/j.heliyon.2022.e10456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/14/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022] Open
Abstract
Biogenic amines (BAs) are a group of molecules naturally present in foods that contain amino acids, peptides, and proteins as well as in biological systems. In foods, their concentrations typically increase during processing and storage because of exposure to microorganisms that catalyze their formation by releasing amino acid decarboxylases. The concentrations of BAs above certain values are indicative of unsafe foods due to associate neuronal toxicity, allergenic reactions, and increase risks of cardiovascular diseases. There are therefore various strategies that focus on the control of BAs in foods mostly through elimination, inactivation, or inhibition of the growth of microorganisms. Increasingly, there are works on bioactive compounds that can decrease the concentration of BAs through their antimicrobial activity as well as the inhibition of decarboxylating enzymes that control their formation in foods or amine oxidases and N-acetyltransferase that control the degradation in vivo. This review focusses on the role of food-derived bioactive compounds and the mechanism by which they regulate the concentration of BAs. The findings are that most active molecules belong to polyphenols, one of the largest groups of plant secondary metabolites, additionally other useful +compounds are present in extracts of different herbs and spices. Different mechanisms have been proposed for the effects of polyphenols depending on the model system. Studies on the effects in vivo are limited and there is a lack of bioavailability and transport data which are important to assess the importance of the bioactive molecules.
Collapse
Affiliation(s)
- Patrick Blondin Tsafack
- Nutrition and Functional Food, School of Biosciences and Veterinary Medicine, University of Camerino, Via A. D'Accorso, 16, Camerino, Italy
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Department of Chemistry and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, K1S 5B6, Ottawa, ON, Canada
| |
Collapse
|
11
|
Lloret A, Esteve D, Lloret MA, Monllor P, López B, León JL, Cervera-Ferri A. Is Oxidative Stress the Link Between Cerebral Small Vessel Disease, Sleep Disruption, and Oligodendrocyte Dysfunction in the Onset of Alzheimer's Disease? Front Physiol 2021; 12:708061. [PMID: 34512381 PMCID: PMC8424010 DOI: 10.3389/fphys.2021.708061] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/28/2021] [Indexed: 01/07/2023] Open
Abstract
Oxidative stress is an early occurrence in the development of Alzheimer’s disease (AD) and one of its proposed etiologic hypotheses. There is sufficient experimental evidence supporting the theory that impaired antioxidant enzymatic activity and increased formation of reactive oxygen species (ROS) take place in this disease. However, the antioxidant treatments fail to stop its advancement. Its multifactorial condition and the diverse toxicological cascades that can be initiated by ROS could possibly explain this failure. Recently, it has been suggested that cerebral small vessel disease (CSVD) contributes to the onset of AD. Oxidative stress is a central hallmark of CSVD and is depicted as an early causative factor. Moreover, data from various epidemiological and clinicopathological studies have indicated a relationship between CSVD and AD where endothelial cells are a source of oxidative stress. These cells are also closely related to oligodendrocytes, which are, in particular, sensitive to oxidation and lead to myelination being compromised. The sleep/wake cycle is another important control in the proliferation, migration, and differentiation of oligodendrocytes, and sleep loss reduces myelin thickness. Moreover, sleep plays a crucial role in resistance against CSVD, and poor sleep quality increases the silent markers of this vascular disease. Sleep disruption is another early occurrence in AD and is related to an increase in oxidative stress. In this study, the relationship between CSVD, oligodendrocyte dysfunction, and sleep disorders is discussed while focusing on oxidative stress as a common occurrence and its possible role in the onset of AD.
Collapse
Affiliation(s)
- Ana Lloret
- INCLIVA, CIBERFES, Department of Physiology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Daniel Esteve
- INCLIVA, CIBERFES, Department of Physiology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Maria Angeles Lloret
- Department of Clinical Neurophysiology, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Paloma Monllor
- INCLIVA, CIBERFES, Department of Physiology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Begoña López
- Department of Neurology, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - José Luis León
- Departament of Neuroradiology, Ascires Biomedical Group, Hospital Clinico Universitario, Valencia, Spain
| | - Ana Cervera-Ferri
- Department of Anatomy and Human Embryology, University of Valencia, Valencia, Spain
| |
Collapse
|
12
|
Liu T, Song Y, Hu A. Neuroprotective mechanisms of mangiferin in neurodegenerative diseases. Drug Dev Res 2021; 82:494-502. [PMID: 33458836 DOI: 10.1002/ddr.21783] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 11/10/2022]
Abstract
The central nervous system (CNS) regulates and coordinates an extensive array of complex processes requiring harmonious regulation of specific genes. CNS disorders represent a large burden on society and cause enormous disability and economic losses. Traditional Chinese medicine (TCM) has been used for many years in the treatment of neurological illnesses, such as Alzheimer's disease, Parkinson's disease, stroke, and depression, as the combination of TCM and Western medicine has superior therapeutic efficacy and minimal toxic side effects. Mangiferin (MGF) is an active compound of the traditional Chinese herb rhizome anemarrhenae, which has antioxidant, anti-inflammation, anti-lipid peroxidation, immunomodulatory, and anti-apoptotic functions in the CNS. MGF has been demonstrated to have therapeutic effects in CNS diseases through a multitude of mechanisms. This review outlines the latest research on the neuroprotective ability of MGF and the diverse molecular mechanisms involved.
Collapse
Affiliation(s)
- Tingjun Liu
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, PR China
| | - Yuanjian Song
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China.,Department of Genetics, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, China
| | - Ankang Hu
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, PR China
| |
Collapse
|
13
|
Shaw JC, Crombie GK, Palliser HK, Hirst JJ. Impaired Oligodendrocyte Development Following Preterm Birth: Promoting GABAergic Action to Improve Outcomes. Front Pediatr 2021; 9:618052. [PMID: 33634057 PMCID: PMC7901941 DOI: 10.3389/fped.2021.618052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/12/2021] [Indexed: 11/21/2022] Open
Abstract
Preterm birth is associated with poor long-term neurodevelopmental and behavioral outcomes, even in the absence of obvious brain injury at the time of birth. In particular, behavioral disorders characterized by inattention, social difficulties and anxiety are common among children and adolescents who were born moderately to late preterm (32-37 weeks' gestation). Diffuse deficits in white matter microstructure are thought to play a role in these poor outcomes with evidence suggesting that a failure of oligodendrocytes to mature and myelinate axons is responsible. However, there remains a major knowledge gap over the mechanisms by which preterm birth interrupts normal oligodendrocyte development. In utero neurodevelopment occurs in an inhibitory-dominant environment due to the action of placentally derived neurosteroids on the GABAA receptor, thus promoting GABAergic inhibitory activity and maintaining the fetal behavioral state. Following preterm birth, and the subsequent premature exposure to the ex utero environment, this action of neurosteroids on GABAA receptors is greatly reduced. Coinciding with a reduction in GABAergic inhibition, the preterm neonatal brain is also exposed to ex utero environmental insults such as periods of hypoxia and excessive glucocorticoid concentrations. Together, these insults may increase levels of the excitatory neurotransmitter glutamate in the developing brain and result in a shift in the balance of inhibitory: excitatory activity toward excitatory. This review will outline the normal development of oligodendrocytes, how it is disrupted under excitation-dominated conditions and highlight how shifting the balance back toward an inhibitory-dominated environment may improve outcomes.
Collapse
Affiliation(s)
- Julia C Shaw
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Gabrielle K Crombie
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Hannah K Palliser
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jonathan J Hirst
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
14
|
Smortsova Y, Gaillard J, Miannay FA, Cornard JP. A Picosecond Time-Resolved Spectroscopic Investigation of the Effect of pH on Morin Fluorescence. Chemphyschem 2020; 21:2680-2691. [PMID: 32991037 DOI: 10.1002/cphc.202000608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/22/2020] [Indexed: 11/10/2022]
Abstract
In this work, we investigated for the first time morin in MeOH at different pH values by picosecond time-resolved fluorescence. We identified the two species responsible for the fluorescence at low and high pH. The solvated morin-solvent hydrogen-bonded complex has been experimentally observed for the first time. We give also the typical fluorescence spectra as well as the fluorescence lifetimes of the probable emitting species. In this work we put forward new insights concerning the contribution of free morin to the fluorescence. We hope that these new data improve the accuracy of the interpretation of the cation:morin complexes titration using fluorescence signal.
Collapse
Affiliation(s)
- Yevheniia Smortsova
- Univ. Lille, CNRS, UMR 8516 LASIRE-LAboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, 59655, Villeneuve d'Ascq Cedex, France
| | - Jérémy Gaillard
- Univ. Lille, CNRS, UMR 8516 LASIRE-LAboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, 59655, Villeneuve d'Ascq Cedex, France
| | - François-Alexandre Miannay
- Univ. Lille, CNRS, UMR 8516 LASIRE-LAboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, 59655, Villeneuve d'Ascq Cedex, France
| | - Jean-Paul Cornard
- Univ. Lille, CNRS, UMR 8516 LASIRE-LAboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, 59655, Villeneuve d'Ascq Cedex, France
| |
Collapse
|
15
|
Moujahed S, Ruiz A, Hallegue D, Sakly M. Quercetin alleviates styrene oxide-induced cytotoxicity in cortical neurons in vitro via modulation of oxidative stress and apoptosis. Drug Chem Toxicol 2020; 45:1634-1643. [PMID: 33297769 DOI: 10.1080/01480545.2020.1851706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Styrene 7,8-oxide (SO) is the principal metabolite of styrene, an industrial neurotoxic compound which causes various neurodegenerative disorders. The present study aimed to explore the mechanisms of SO cytotoxicity (0.5 - 4 mM) in primary cortical neurons and to evaluate the neuroprotective potential of quercetin (QUER). Our results showed that exposure to SO decreased viability of cortical neurons in a concentration-dependent manner. In the presence of QUER, cell viability was increased significantly. The neuroprotective effects of QUER were associated with the reduction of intracellular Reactive Oxygen Species (ROS), the decrease in calcium overload and the restoration of mitochondrial membrane depolarization caused by SO. Additionally, to evaluate neuronal death mechanisms triggered by SO, cells were incubated with Ac-DEVD-CHO, Calpeptin and Necrostatin-1, pharmacological inhibitors of caspase-3, calpains and necroptosis respectively. The data showed that the three inhibitors reduced cell death induced by SO and suggested the implication of apoptotic, necrotic and necroptotic pathways. However, western blot analysis showed that QUER attenuated the activation of caspase-3 but did not prevent calpain activity. Taken together, these data indicated that the cytotoxicity of SO was mediated by oxidative stress and apoptosis, necrosis and necroptosis mechanisms, while the neuroprotection provided by QUER against SO depended mainly on its anti-apoptotic activity.
Collapse
Affiliation(s)
- Sabrine Moujahed
- Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, University of Carthage, Jarzouna, Tunisia
| | - Asier Ruiz
- Faculty of Medicine and Nursing, Department of Neurosciences, University of the Basque Country, Vizcaya, Spain
| | - Dorsaf Hallegue
- Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, University of Carthage, Jarzouna, Tunisia
| | - Mohsen Sakly
- Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, University of Carthage, Jarzouna, Tunisia
| |
Collapse
|
16
|
Yessenkyzy A, Saliev T, Zhanaliyeva M, Masoud AR, Umbayev B, Sergazy S, Krivykh E, Gulyayev A, Nurgozhin T. Polyphenols as Caloric-Restriction Mimetics and Autophagy Inducers in Aging Research. Nutrients 2020; 12:E1344. [PMID: 32397145 PMCID: PMC7285205 DOI: 10.3390/nu12051344] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
It has been thought that caloric restriction favors longevity and healthy aging where autophagy plays a vital role. However, autophagy decreases during aging and that can lead to the development of aging-associated diseases such as cancer, diabetes, neurodegeneration, etc. It was shown that autophagy can be induced by mechanical or chemical stress. In this regard, various pharmacological compounds were proposed, including natural polyphenols. Apart from the ability to induce autophagy, polyphenols, such as resveratrol, are capable of modulating the expression of pro- and anti-apoptotic factors, neutralizing free radical species, affecting mitochondrial functions, chelating redox-active transition metal ions, and preventing protein aggregation. Moreover, polyphenols have advantages compared to chemical inducers of autophagy due to their intrinsic natural bio-compatibility and safety. In this context, polyphenols can be considered as a potential therapeutic tool for healthy aging either as a part of a diet or as separate compounds (supplements). This review discusses the epigenetic aspect and the underlying molecular mechanism of polyphenols as an anti-aging remedy. In addition, the recent advances of studies on NAD-dependent deacetylase sirtuin-1 (SIRT1) regulation of autophagy, the role of senescence-associated secretory phenotype (SASP) in cells senescence and their regulation by polyphenols have been highlighted as well. Apart from that, the review also revised the latest information on how polyphenols can help to improve mitochondrial function and modulate apoptosis (programmed cell death).
Collapse
Affiliation(s)
- Assylzhan Yessenkyzy
- Research Institute of Fundamental and Applied Medicine named after B. Atchabarov, S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan; (A.Y.); (T.N.)
| | - Timur Saliev
- Research Institute of Fundamental and Applied Medicine named after B. Atchabarov, S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan; (A.Y.); (T.N.)
| | - Marina Zhanaliyeva
- Department of Human Anatomy, NSC “Medical University of Astana”, Nur-Sultan 010000, Kazakhstan;
| | - Abdul-Razak Masoud
- Department of Biological Sciences, Louisiana Tech University, Ruston, LA 71270, USA;
| | - Bauyrzhan Umbayev
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (B.U.); (S.S.); (A.G.)
| | - Shynggys Sergazy
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (B.U.); (S.S.); (A.G.)
| | - Elena Krivykh
- Khanty-Mansiysk State Medical Academy, Tyumen Region, Khanty-Mansiysk Autonomous Okrug—Ugra, Khanty-Mansiysk 125438, Russia;
| | - Alexander Gulyayev
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (B.U.); (S.S.); (A.G.)
| | - Talgat Nurgozhin
- Research Institute of Fundamental and Applied Medicine named after B. Atchabarov, S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan; (A.Y.); (T.N.)
| |
Collapse
|
17
|
Li HW, Lan TJ, Yun CX, Yang KD, Du ZC, Luo XF, Hao EW, Deng JG. Mangiferin exerts neuroprotective activity against lead-induced toxicity and oxidative stress via Nrf2 pathway. CHINESE HERBAL MEDICINES 2020; 12:36-46. [PMID: 36117559 PMCID: PMC9476390 DOI: 10.1016/j.chmed.2019.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Hao-wen Li
- Community Health Services Management center, University of Chinese Academy of Sciences – Shenzhen Hospital, Shenzhen 518106, China
- MOE Key Lab of Environment and Health, Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Tai-jin Lan
- School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning 530200, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Chen-xia Yun
- School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Ke-di Yang
- MOE Key Lab of Environment and Health, Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zheng-cai Du
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xue-fei Luo
- Department of Clinical Laboratory, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, China
| | - Er-wei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Jia-gang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
- Corresponding author.
| |
Collapse
|
18
|
Hussein MMA, Gad E, Ahmed MM, Arisha AH, Mahdy HF, Swelum AAA, Tukur HA, Saadeldin IM. Amelioration of titanium dioxide nanoparticle reprotoxicity by the antioxidants morin and rutin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:29074-29084. [PMID: 31392614 DOI: 10.1007/s11356-019-06091-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
The present study aimed to examine the ameliorative effects of morin and rutin on the reproductive toxicity induced by titanium dioxide nanoparticles (TiO2NPs) in male rats. A total of seventy adult male Sprague-Dawley rats were randomly divided into seven groups, each comprising ten rats. Nanoreprotoxicity was induced by treating rats with TiO2NPs at a dosage of 300 mg/kg body weight for 30 days. Morin (30 mg/kg body weight) and rutin (100 mg/kg body weight) were co-administered with or without TiO2NPs to rats either individually or combined. Only distilled water was administered to the control group. The results showed that TiO2NPs enhanced oxidative stress, indicated by reduced levels of antioxidants such as superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) in testicular tissues, and increased levels of the lipid peroxidation marker malondialdehyde (MDA). TiO2NPs significantly reduced the levels of sex hormones (testosterone, FSH, and LH), reduced sperm motility, viability, and sperm cell count, and increased sperm abnormalities, in addition to damaging the testicular histological architecture. TiO2NPs resulted in the downregulation of 17β-HSD and the upregulation of proapoptotic gene (Bax) transcripts in the testicular tissues. Conversely, morin and/or rutin had a protective effect on testicular tissue. They effectively counteracted TiO2NP-induced oxidative damage and morphological injury in the testis by conserving the endogenous antioxidant mechanisms and scavenging free radicals. Thus, we suggest that morin and rutin could be used to alleviate the toxicity and oxidative damage associated with TiO2NP intake.
Collapse
Affiliation(s)
- Mohamed M A Hussein
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Emad Gad
- Department of Chemistry, Faculty of Sciences, Suez Canal University, Ismailia, Egypt
| | - Mona M Ahmed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Ahmed H Arisha
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Hasnaa F Mahdy
- Department of Chemistry, Faculty of Sciences, Suez Canal University, Ismailia, Egypt
| | - Ayman Abdel-Aziz Swelum
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Hammed A Tukur
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Islam M Saadeldin
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia.
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
19
|
Feng ST, Wang ZZ, Yuan YH, Sun HM, Chen NH, Zhang Y. Mangiferin: A multipotent natural product preventing neurodegeneration in Alzheimer's and Parkinson's disease models. Pharmacol Res 2019; 146:104336. [PMID: 31271846 DOI: 10.1016/j.phrs.2019.104336] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are recognized as the universal neurodegenerative diseases, with the involvement of misfolded proteins pathology, leading to oxidative stress, glial cells activation, neuroinflammation, mitochondrial dysfunction, and cellular apoptosis. Several discoveries indicate that accumulation of pathogenic proteins, i.e. amyloid β (Aβ), the microtubule-binding protein tau, and α-synuclein, are parallel with oxidative stress, neuroinflammation, and mitochondrial dysfunction. Whether the causative factors are misfolded proteins or these pathophysiological changes, leading to neurodegeneration still remain ambiguous. Importantly, directing pharmacological researches towards the prevention of AD and PD seem a promising approach to detect these complicating mechanisms, and provide new insight into therapy for AD and PD patients. Mangiferin (MGF, 2-C-β-D-glucopyranosyl-1, 3, 6, 7-tetrahydroxyxanthone), well-known as a natural product, is detached from multiple plants, including Mangifera indica L. With the structure of C-glycosyl and phenolic moiety, MGF possesses multipotent properties starting from anti-oxidant effects, to the alleviation of mitochondrial dysfunction, neuroinflammation, and cellular apoptosis. In particular, MGF can cross the blood-brain barrier to exert neuronal protection. Different researches implicate that MGF is able to protect the central nervous system from oxidative stress, mitochondrial dysfunction, neuroinflammation, and apoptosis under in vitro and in vivo models. Additional facts support that MGF plays a role in improving the declined memory and cognition of rat models. Taken together, the neuroprotective capacity of MGF may stand out as an agent candidate for AD and PD therapy.
Collapse
Affiliation(s)
- Si-Tong Feng
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hong-Mei Sun
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
20
|
Coenzyme Q10 Protects Astrocytes from Ultraviolet B-Induced Damage Through Inhibition of ERK 1/2 Pathway Overexpression. Neurochem Res 2019; 44:1755-1763. [PMID: 31093903 DOI: 10.1007/s11064-019-02812-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/02/2019] [Accepted: 05/04/2019] [Indexed: 01/04/2023]
Abstract
Overexpression of extracellular signal-regulated kinase ½ (ERK ½) signaling pathway leads to overproduction of reactive oxygen species (ROS) which induces oxidative stress. Coenzyme Q10 (CoQ10) scavenges ROS and protects cells against oxidative stress. The present study was designed to examine whether the protection of Coenzyme Q10 against oxidative damage in astrocytes is through regulating ERK 1/2 pathway. Ultraviolet B (UVB) irradiation was chosen as a tool to induce oxidative stress. Murine astrocytes were treated with 10 μg/ml and 25 μg/ml of CoQ10 for 24 h prior to UVB and maintained during UVB and 24 h post-UVB. Cell viability was evaluated by counting viable cells and MTT conversion assay. ROS production was measured using fluorescent probes. Levels of p-ERK 1/2, ERK 1/2, p-PKA, PKA were detected using immunocytochemistry and/or Western blotting. The results showed that UVB irradiation decreased the number of viable cells. This damaging effect was associated with accumulation of ROS and elevations of p-ERK 1/2 and p-PKA. Treatment with CoQ10 at 25 μg/ml significantly increased the number of viable cells and prevented the UVB-induced increases of ROS, p-ERK 1/2, and p-PKA. It is concluded that suppression of the PKA-ERK 1/2 signaling pathway may be one of the important mechanisms by which CoQ10 protects astrocytes from UVB-induced oxidative damage.
Collapse
|
21
|
Chatterjee J, Langhnoja J, Pillai PP, Mustak MS. Neuroprotective effect of quercetin against radiation-induced endoplasmic reticulum stress in neurons. J Biochem Mol Toxicol 2018; 33:e22242. [DOI: 10.1002/jbt.22242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/16/2018] [Accepted: 09/07/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Jit Chatterjee
- Department of Applied Zoology; Mangalore University, Mangalagangotri; Mangalore India
| | - Jaldeep Langhnoja
- Division of Neurobiology, Department of Zoology; Maharaja Sayajirao University of Baroda; Pratapgunj, Vadodara, Gujarat India
| | - Prakash P Pillai
- Division of Neurobiology, Department of Zoology; Maharaja Sayajirao University of Baroda; Pratapgunj, Vadodara, Gujarat India
| | - Mohammed S Mustak
- Department of Applied Zoology; Mangalore University, Mangalagangotri; Mangalore India
| |
Collapse
|
22
|
Chlorogenic Acid Prevents AMPA-Mediated Excitotoxicity in Optic Nerve Oligodendrocytes Through a PKC and Caspase-Dependent Pathways. Neurotox Res 2018; 34:559-573. [PMID: 30006682 DOI: 10.1007/s12640-018-9911-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/30/2018] [Accepted: 05/16/2018] [Indexed: 01/24/2023]
Abstract
In the CNS, including the optic nerve, oligodendrocytes play a critical role in the myelination of axons. Oligodendrocytes are exceptionally sensitive to insults to the CNS, such as injury, ischemia, or inflammation, which result in the loss of oligodendrocytes and myelin and eventually secondary axon degeneration. Oligodendrocytes are sensitive to excitotoxic insults mediated by overactivation of their AMPA ionotropic glutamate receptors. Phenolic compounds, which are widely distributed in fruits and vegetables, received the great attention of scientists due to their antioxidant activities and free radical scavenging abilities. Chlorogenic acid (CGA) has been demonstrated to possess potent neuroprotective activities against oxidative stress in various cellular models and pathological conditions. Hence, CGA protect against oxidative stress and excitotoxic insults mediated by AMPA receptors and that the protective mechanisms involve free radical scavenging, Ca2+ handling in the cytosol, and modulating antioxidant enzyme system. CGA was associated with the protein kinase A (PKC) signaling pathways transduction. Caspases and calpains have been studied as apoptotic mediators and cell death in this model of AMPA toxicity. Inhibitors of caspases initiators, caspases 1, 8, and 9, the upstream of caspase 3 effectors, have totally abrogated the protective activity of CGA. Inhibitors of calpains also totally abrogated the protective activity of CGA. In addition, a potential role for the CGA in inhibiting Bax in oligodendrocyte cell model undergoing AMPA is inducing excitotoxic death. Our results indicate that CGA exhibits a protective potential via antioxidant and apoptosis caspases and calpains dependent against AMPA-mediated excitotoxicity, and these finding indicate that CGA is able to be a good candidate for preventive approach for neurodegenerative disorders associated with loss and damage in oligodendrocytes and AMPA-mediated excitotoxicity.
Collapse
|
23
|
Catalpol Inhibits Ischemia-Induced Premyelinating Oligodendrocyte Damage through Regulation of Intercellular Calcium Homeostasis via Na⁺/Ca 2+ Exchanger 3. Int J Mol Sci 2018; 19:ijms19071925. [PMID: 29966349 PMCID: PMC6073132 DOI: 10.3390/ijms19071925] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/15/2018] [Accepted: 06/22/2018] [Indexed: 12/18/2022] Open
Abstract
The heightened vulnerability of premyelinating oligodendrocytes (PreOLs) in response to hypoxia⁻ischemia may contribute to perinatal white matter injury and subsequent neurobehavioral dysfunction. Intracellular Ca2+ overload is considered a crucial mechanism predisposing PreOLs to ischemic injury. We previously reported that catalpol, an iridoid glycoside extracted from Rehmannia root, inhibits intracellular Ca2+ overload of PreOLs in an in vitro ischemia model. However, the exact underlying mechanisms remain elusive. In the present study, we aimed to investigate the protective effects of catalpol on PreOLs and to explore the underlying mechanisms involved in the modulation of intracellular Ca2+ homeostasis. Postnatal day 2 (P2) Sprague-Dawley (SD) rats subjected to bilateral common carotid artery ligation followed by exposure to 8% oxygen for 10 min were used as a rat model of neonatal hypoxia⁻ischemia. We found that catalpol significantly improved behavioral functions and prevented PreOL loss and myelination deficit after hypoxia⁻ischemia. Our in vitro studies also confirmed the direct effects of catalpol on oxygen-glucose deprivation (OGD)-induced cell death and arrested maturation of PreOLs. Moreover, we demonstrated that catalpol significantly inhibited intracellular Ca2+ overload and promoted the expression of Na⁺/Ca2+ exchanger 3 (NCX3). Finally, we found that catalpol significantly reduced mitochondrial damage and subsequent extracellular signal-regulated kinase 1/2 (ERK1/2) and poly-ADP-ribose polymerase-1 (PARP-1) activation. Treatment with NCX3-preferring inhibitor 2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea (KB-R7943) significantly reversed the protective effects of catalpol on PreOLs under OGD. Overall, our data suggest that catalpol protects PreOLs from ischemic injury through regulation of intercellular Ca2+ homeostasis via upregulation of NCX3 activity.
Collapse
|
24
|
Mangiferin and Morin Attenuate Oxidative Stress, Mitochondrial Dysfunction, and Neurocytotoxicity, Induced by Amyloid Beta Oligomers. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2856063. [PMID: 30013719 PMCID: PMC6022276 DOI: 10.1155/2018/2856063] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/28/2018] [Accepted: 04/12/2018] [Indexed: 11/18/2022]
Abstract
Amyloid beta- (Aβ-) mediated ROS overproduction disrupts intraneuronal redox balance and exacerbates mitochondrial dysfunction which leads to neuronal injury. Polyphenols have been investigated as therapeutic agents that promote neuroprotective effects in experimental models of brain injury and neurodegenerative diseases. The aim of this study was to identify the neuroprotective effects of morin and mangiferin against Aβ oligomers in cultured cortical neurons and organotypic slices as well as their mechanisms of action. Cell death caused by Aβ oligomers in neuronal cultures was decreased in the presence of micromolar concentrations of mangiferin or morin, which in turn attenuated oxidative stress. The neuroprotective effects of antioxidants against Aβ were associated with the reduction of Aβ-induced calcium load to mitochondria; mitochondrial membrane depolarization; and release of cytochrome c from mitochondria, a key trigger of apoptosis. Additionally, we observed that both polyphenols activated the endogenous enzymatic antioxidant system and restored oxidized protein levels. Finally, Aβ induced an impairment of energy homeostasis due to a decreased respiratory capacity that was mitigated by morin and mangiferin. Overall, the beneficial effects of polyphenols in preventing mitochondrial dysfunction and neuronal injury in AD cell models suggest that morin and mangiferin hold promise for the treatment of this neurological disorder.
Collapse
|
25
|
Olonode ET, Aderibigbe AO, Adeoluwa OA, Ajayi AM. Protective Effects of Morin Hydrate on Acute Stress-Induced Behavioral and Biochemical Alterations in Mice. Basic Clin Neurosci 2018; 9:195-208. [PMID: 30034650 PMCID: PMC6037426 DOI: 10.29252/nirp.bcn.9.3.195] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 01/31/2017] [Accepted: 09/11/2017] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION As stress affects the brain both physiologically and chemically, researchers try to find novel anti-stress compounds with beneficial therapeutic effects. In this regard, the effect of stress and its modulation by Morin hydrate was studied using different acute models in mice. METHODS The models employed were anoxic tolerance, swimming endurance, and acute restraint test. Morin hydrate or the vehicle was administered 30 minutes prior to each stress exposure while in the acute restraint test; the animals were pretreated for 7 days with Morin hydrate, vehicle, imipramine, or diazepam before stress exposure. The measured parameters were the onset of convulsion and immobility time in the anoxic tolerance and swimming endurance test, respectively, while in the acute restraint test, the animals were assessed for stress-induced anxiety using the elevated plus maze and depression using the forced swim test. Thereafter blood was withdrawn from the retro-orbital plexus and plasma separated, the brain was also isolated, homogenized, centrifuged, and the supernatant was obtained for biochemical estimation. RESULTS Morin hydrate (5, 10, 20 mg/kg) produced a significant reduction in immobility time in the swimming endurance test, while significantly increased the anoxic stress tolerance time. Acute restraint stress caused a significant decrease in reduced glutathione levels (which was reversed by Morin hydrate) and increased the level of malondialdehyde, a thiobarbituric acid reactive substance which is an index of oxidative stress and nitrite. These effects were attenuated by Morin hydrate. Also, pretreatment with Morin hydrate attenuates acute restraint stress-associated anxiety and depression, reversed the hyperglycemia evoked by the stressful exposure and normalized serum cholesterol levels. CONCLUSION These findings suggest that Morin hydrate exhibits anti-stress effects and may be useful in the relief of stress.
Collapse
Affiliation(s)
- Elizabeth Toyin Olonode
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University, Ado Ekiti, Nigeria
- Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Olusegun Adebayo Adeoluwa
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University, Ado Ekiti, Nigeria
| | - Abayomi Mayowa Ajayi
- Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
26
|
Pinto JV, Passos IC, Librenza-Garcia D, Marcon G, Schneider MA, Conte JH, Abreu da Silva JP, Lima LP, Quincozes-Santos A, Kauer-Sant’Anna M, Kapczinski F. Neuron-glia Interaction as a Possible Pathophysiological Mechanism of Bipolar Disorder. Curr Neuropharmacol 2018; 16:519-532. [PMID: 28847296 PMCID: PMC5997869 DOI: 10.2174/1570159x15666170828170921] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/26/2017] [Accepted: 08/24/2017] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence has shown the importance of glial cells in the neurobiology of bipolar disorder. Activated microglia and inflammatory cytokines have been pointed out as potential biomarkers of bipolar disorder. Indeed, recent studies have shown that bipolar disorder involves microglial activation in the hippocampus and alterations in peripheral cytokines, suggesting a potential link between neuroinflammation and peripheral toxicity. These abnormalities may also be the biological underpinnings of outcomes related to neuroprogression, such as cognitive impairment and brain changes. Additionally, astrocytes may have a role in the progression of bipolar disorder, as these cells amplify inflammatory response and maintain glutamate homeostasis, preventing excitotoxicity. The present review aims to discuss neuron-glia interactions and their role in the pathophysiology and treatment of bipolar disorder.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Flávio Kapczinski
- Address correspondence to this author at the Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton-ON, Canada; Tel: +55 512 101 8845; E-mails: ,
| |
Collapse
|
27
|
Rebai O, Belkhir M, Sanchez-Gomez MV, Matute C, Fattouch S, Amri M. Differential Molecular Targets for Neuroprotective Effect of Chlorogenic Acid and its Related Compounds Against Glutamate Induced Excitotoxicity and Oxidative Stress in Rat Cortical Neurons. Neurochem Res 2017; 42:3559-3572. [PMID: 28948515 DOI: 10.1007/s11064-017-2403-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/19/2017] [Accepted: 09/11/2017] [Indexed: 10/18/2022]
Abstract
The present study has been designed to explore the molecular mechanism and signaling pathway targets of chlorogenic acid (CGA) and its main hydrolysates, caffeic (CA) and quinic acid in the protective effect against glutamate-excitotoxicity. For this purpose 8-DIV cortical neurons in primary culture were exposed to 50 μM L-glutamic acid plus 10 µM glycine, with or without 10-100 μM tested compounds. Chlorogenic acid and caffeic acid via their antioxidant properties inhibited cell death induced by glutamate in dose depended manner. However, quinic acid slightly protects neurons at a higher dose. DCF, JC-1 and Ca2+sensitive fluorescent dye fura-2, were used to measure intracellular ROS accumulation, mitochondrial membrane potential integration and intracellular calcium concentration [Ca2+] i . Results indicate that similarly, CGA acts as a protective agent against glutamate-induced cortical neurons injury by suppressing the accumulation of endogenous ROS and restore the mitochondrial membrane potential, activate the enzymatic antioxidant system by the increase levels of SOD activity and modulate the rise of intracellular calcium levels by increasing the rise of intracellular concentrations of Ca2+caused by glutamate overstimulation. PKC signaling cascade appear to be engaged in this protective mechanism. Interseling, CGA and CA also exhibit antiapoptotic properties against glutamate-induced cleaved activation of pro-caspases; caspase 1,8 and 9 and calpain (PD 150606,Calpeptin and MDL 28170).These data suggest that neuroprotective activity of CGA ester may occurs throught its hydrolysate,the caffeic acid and its interaction with intracellular molecules suggesting that CGA exert its neuroprotection via its caffeoly acid group that might potentially be used as a therapeutic agent in neurodegeneratives disorders associated with glutamate excitotoxicity.
Collapse
Affiliation(s)
- Olfa Rebai
- Research Unit of Functional Neurophysiology and Pathology, 00/UR/08-01, Department of Biological Sciences, Faculty of Science of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia.
| | - Manel Belkhir
- Research Unit of Functional Neurophysiology and Pathology, 00/UR/08-01, Department of Biological Sciences, Faculty of Science of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - María Victoria Sanchez-Gomez
- Departamento de Neurociencias, Facultad de Medicina y Odontologia, Universidad Del Paıs Vasco, Leioa, Vizcaya, Spain
| | - Carlos Matute
- Departamento de Neurociencias, Facultad de Medicina y Odontologia, Universidad Del Paıs Vasco, Leioa, Vizcaya, Spain
| | - Sami Fattouch
- Laboratoire de Biochimie Alimentaire, INSAT, University of Carthage, Tunis, Tunisia
| | - Mohamed Amri
- Research Unit of Functional Neurophysiology and Pathology, 00/UR/08-01, Department of Biological Sciences, Faculty of Science of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| |
Collapse
|
28
|
Das S, Paul A, Mumbrekar KD, Rao SBS. Harmonization of Mangiferin on methylmercury engendered mitochondrial dysfunction. ENVIRONMENTAL TOXICOLOGY 2017; 32:630-644. [PMID: 28071871 DOI: 10.1002/tox.22265] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 06/06/2023]
Abstract
Mangiferin (MGN), a C-glucosylxanthone abundantly found in mango plants, was studied for its potential to ameliorate methylmercury (MeHg) induced mitochondrial damage in HepG2 (human hepatocarcinoma) cell line. Cell viability experiments performed using 3-[4,5-dimethylthiazol-2-yl]-2,5- diphenyltetrazolium bromide (MTT) showed protective property of MGN in annulling MeHg-induced cytotoxicity. Conditioning the cells with optimal dose of MGN (50 µM) lowered MeHg-induced oxidative stress, calcium influx/efflux, depletion of mitochondrial trans-membrane potential and prevented mitochondrial fission as observed by decrease in Mitotracker red fluorescence, expression of pDRP1 (serine 616), and DRP1 levels. MGN pre-treated cells demonstrated elevation in the activities of glutathione (GSH), Glutathione-S-transferase (GST), Glutathione peroxidase (GPx), Glutathione reductase (GR), reduced levels of Aspartate aminotransferase (AST) and Alanine aminotransferase (ALT) and mitochondrial electron transport chain (ETC) enzyme complexes. In addition, the anti-apoptotic effect of MGN was clearly indicated by the reduction in MeHg-induced apoptotic cells analyzed by flowcytometric analysis after Annexin V-FITC/propidium iodide staining. In conclusion, the present work demonstrates the ability of a dietary polyphenol, MGN to ameliorate MeHg-mediated mitochondrial dysfunction in human hepatic cells in vitro. This hepatoprotective potential may be attributed predominantly to the free radical scavenging/antioxidant property of MGN, by facilitating the balancing of cellular Ca2+ ions, maintenance of redox homeostasis and intracellular antioxidant activities, ultimately preserving the mitochondrial function and cell viability after MeHg intoxication. As MeHg intoxication occurs over a period of time, continuous consumption of such dietary compounds may prove to be very useful in promoting human health. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 630-644, 2017.
Collapse
Affiliation(s)
- Shubhankar Das
- Department of Radiation Biology and Toxicology, School of Life Sciences, Manipal University, Manipal, Karnataka, India, 576104
| | - Ajanta Paul
- Department of Biotechnology, School of Life Sciences, Manipal University, Manipal, Karnataka, India, 576104
| | - Kamalesh D Mumbrekar
- Department of Radiation Biology and Toxicology, School of Life Sciences, Manipal University, Manipal, Karnataka, India, 576104
| | - Satish B S Rao
- Department of Radiation Biology and Toxicology, School of Life Sciences, Manipal University, Manipal, Karnataka, India, 576104
| |
Collapse
|
29
|
Núñez Selles AJ, Daglia M, Rastrelli L. The potential role of mangiferin in cancer treatment through its immunomodulatory, anti-angiogenic, apoptopic, and gene regulatory effects. Biofactors 2016; 42:475-491. [PMID: 27219221 DOI: 10.1002/biof.1299] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/01/2016] [Accepted: 05/02/2016] [Indexed: 12/13/2022]
Abstract
Mangiferin (1,3,6,7-tetrahydroxyxanthone-C2-β-D-glucoside) is a natural bioactive xanthonoid that can be found in many plant species, among which the mango tree (Mangifera indica L), a plant widely used in the traditional medicinal, is one of its primary sources. The use of mangiferin for cancer treatment has attracted the attention of research groups around the World. Single administration of mangiferin or in combination with known anticancer chemicals has shown the potential benefits of this molecule in lung, brain, breast, cervix, and prostate cancers, and leukemia. Mangiferin mechanisms of action against cancer cells through in vitro, ex vivo, or in vivo models are discussed besides its antioxidant and anti-inflammatory properties. Nevertheless, pharmaceutical development and, therefore, clinical trials on cancer targets are still lacking. © 2016 BioFactors, 42(5):475-491, 2016.
Collapse
Affiliation(s)
- Alberto J Núñez Selles
- National Evangelic University, Research Division, Paseo De Los Periodistas 54, Santo Domingo, Dominican Republic
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Luca Rastrelli
- Dipartimento Di Farmacia, Università Degli Studi Di Salerno, via Giovanni Paolo II, Fisciano, Italy.
| |
Collapse
|
30
|
Kaltalioglu K, Coskun-Cevher S. Potential of morin and hesperidin in the prevention of cisplatin-induced nephrotoxicity. Ren Fail 2016; 38:1291-9. [PMID: 27425870 DOI: 10.1080/0886022x.2016.1209383] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is one of the important mechanisms of cisplatin-induced nephrotoxicity. Therefore, this study was designed to explore the potential protective effects of morin and/or hesperidin on oxidative stress in cisplatin-induced nephrotoxicity. This study was performed on 42 Wistar rats. Rats were divided into seven groups: control, morin, hesperidin, cisplatin, cisplatin + morin, cisplatin + hesperidin, and cisplatin + morin + hesperidin. Morin and/or hesperidin were given for 10 consecutive days by oral gavage and on the 4th day a single dose of cisplatin (7 mg/kg) was injected intraperitoneally. After administrations, on the 11th day of the experiment the animals were killed, and malondialdehyde (MDA), nitric oxide (NOx), glutathione (GSH) levels and myeloperoxidase (MPO), catalase (CAT), superoxide dismutase (SOD) activity were measured. Cisplatin-treated rats showed increased levels of MDA, and decreased levels of NOx also activity of CAT. Morin and/or hesperidin pretreatment prevent oxidative stress in kidney tissue, while they increase the NOx level, CAT activity, and decrease MPO activity. In conclusion, morin + hesperidin pretreatment may have a significant potential for protection of cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Kaan Kaltalioglu
- a Espiye Vocational School, Giresun University , Giresun , Turkey
| | - Sule Coskun-Cevher
- b Department of Biology, Faculty of Science , Gazi University , Ankara , Turkey
| |
Collapse
|
31
|
Chandrasekaran S, Muthu IV, Enoch V. Host–guest association of Morin with β-CD and C-hexylpyrogallol[4]arene: Structure of the complexes and the effect of pH. J STRUCT CHEM+ 2016. [DOI: 10.1134/s0022476615070136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Ghosh P, Bag S, Singha Roy A, Subramani E, Chaudhury K, Dasgupta S. Solubility enhancement of morin and epicatechin through encapsulation in an albumin based nanoparticulate system and their anticancer activity against the MDA-MB-468 breast cancer cell line. RSC Adv 2016. [DOI: 10.1039/c6ra20441d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mor-HSA-NPs and EC-HSA-NPs are effective on MDA-MB-468 breast cancer cell lines.
Collapse
Affiliation(s)
- Pooja Ghosh
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Sudipta Bag
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Atanu Singha Roy
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Elavarasan Subramani
- School of Medical Science and Technology
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Koel Chaudhury
- School of Medical Science and Technology
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Swagata Dasgupta
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| |
Collapse
|
33
|
Abstract
With increasing life expectancy as a result of better quality of life and improved health care, the incidence of aging related diseases and disorders is heading toward epidemic proportions. Dementia, a spectrum of neurological diseases associated with aging, is an increasingly prevalent disease. No cure exists yet for dementia; however, there are many potential candidates for treatment of dementia that merit more exploration. Polyphenols, which constitute one such class of compounds, are dietary agents that are globally found in commonly consumed food. Many processes that are associated with the pathophysiology of dementia can be modulated by polyphenols. Polyphenolic compounds can alleviate oxidative stress by acting as direct scavengers of free radicals and clearing superoxide and hydroxyl radicals and by increasing the level of antioxidant enzymes such as glutathione peroxidase. They also chelate metal ions to prevent free radical formation. Polyphenols can also combat inflammation by affecting transcription factors such as NF-κB. Some polyphenols may have the potential to inhibit excitotoxicity by regulating intracellular calcium ion concentration, inhibiting glutamate receptors and increasing glutamate reuptake at the synapse. The cognitive decline in dementia due to decreased availability of acetylcholine can also be countered by polyphenols that inhibit acetyl-cholinesterase activity. Taken together, these findings suggest that increasing the consumption of polyphenol rich food may alleviate the effects of dementia. Moreover, their effects on controlling multiple mechanisms that are associated with dementia may also prevent or slow down the onset and progress of this devastating disease.
Collapse
Affiliation(s)
- Abhishek Desai
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
34
|
Biomolecular bases of the senescence process and cancer. A new approach to oncological treatment linked to ageing. Ageing Res Rev 2015; 23:125-38. [PMID: 25847820 DOI: 10.1016/j.arr.2015.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 03/30/2015] [Indexed: 01/07/2023]
Abstract
Human ageing is associated with a gradual decline in the physiological functions of the body at multiple levels and it is a key risk factor for many diseases, including cancer. Ageing process is intimately related to widespread cellular senescence, characterised by an irreversible loss of proliferative capacity and altered functioning associated with telomere attrition, accumulation of DNA damage and compromised mitochondrial and metabolic function. Tumour and senescent cells may be generated in response to the same stimuli, where either cellular senescence or transformation would constitute two opposite outcomes of the same degenerative process. This paper aims to review the state of knowledge on the biomolecular relationship between cellular senescence, ageing and cancer. Importantly, many of the cell signalling pathways that are found to be altered during both cellular senescence and tumourigenesis are regulated through shared epigenetic mechanisms and, therefore, they are potentially reversible. MicroRNAs are emerging as pivotal players linking ageing and cancer. These small RNA molecules have generated great interest from the point of view of future clinical therapy for cancer because successful experimental results have been obtained in animal models. Micro-RNA therapies for cancer are already being tested in clinical phase trials. These findings have potential importance in cancer treatment in aged people although further research-based knowledge is needed to convert them into an effective molecular therapies for cancer linked to ageing.
Collapse
|
35
|
MadanKumar P, NaveenKumar P, Devaraj H, NiranjaliDevaraj S. Morin, a dietary flavonoid, exhibits anti-fibrotic effect and induces apoptosis of activated hepatic stellate cells by suppressing canonical NF-κB signaling. Biochimie 2015; 110:107-118. [DOI: 10.1016/j.biochi.2015.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/01/2015] [Indexed: 02/09/2023]
|
36
|
Yamashita D, Sun GW, Cui Y, Mita S, Otsuki N, Kanzaki S, Nibu KI, Ogawa K, Matsunaga T. Neuroprotective effects of cutamesine, a ligand of the sigma-1 receptor chaperone, against noise-induced hearing loss. J Neurosci Res 2015; 93:788-95. [PMID: 25612541 DOI: 10.1002/jnr.23543] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 10/28/2014] [Accepted: 11/21/2014] [Indexed: 11/10/2022]
Abstract
The sigma-1 receptor, which is expressed throughout the brain, provides physiological benefits that include higher brain function. The sigma-1 receptor functions as a chaperone in the endoplasmic reticulum and may control cell death and regeneration within the central nervous system. Cutamesine (1-(3,4-dimethoxyphenethyl)-4-(3-phenylpropyl) piperazine dihydrochloride) is a ligand selective for this receptor and may mediate neuroprotective effects in the context of neurodegenerative disease. We therefore assessed whether cutamesine protects the inner ear from noise-induced or aging-associated hearing loss. Immunohistochemistry and Western blotting revealed that the sigma-1 receptor is present in adult cochlea. We treated mice with 0, 3, or 30 mg/kg cutamesine from 10 days before noise exposure until the end of the study. All subjects were exposed to a 120-dB, 4-kHz octave-band noise for 2 hr. We assessed auditory thresholds by measuring the auditory-evoked brainstem responses at 4, 8, and 16 kHz, prior to and 1 week, 1 month, or 3 months following noise exposure. For the aging study, measurements were made before treatment was initiated and after 3 or 9 months of cutamesine treatment. Damage to fibrocytes within the cochlear spiral limbus was assessed by quantitative histology. Cutamesine significantly reduced threshold shifts and cell death within the spiral limbus in response to intense noise. These effects were not dose or time dependent. Conversely, cutamesine did not prevent aging-associated hearing loss. These results suggest that cutamesine reduces noise-induced hearing loss and cochlear damage during the acute phase that follows exposure to an intense noise.
Collapse
Affiliation(s)
- Daisuke Yamashita
- Department of Otolaryngology, School of Medicine, Kobe University, Kobe, Japan; Laboratory of Auditory Disorders, Division of Hearing and Balance Research, National Institute of Sensory Organs, National Tokyo Medical Center, Tokyo, Japan; Department of Otolaryngology, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Trehalose improves human fibroblast deficits in a new CHIP-mutation related ataxia. PLoS One 2014; 9:e106931. [PMID: 25259530 PMCID: PMC4178022 DOI: 10.1371/journal.pone.0106931] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 08/10/2014] [Indexed: 11/19/2022] Open
Abstract
In this work we investigate the role of CHIP in a new CHIP-mutation related ataxia and the therapeutic potential of trehalose. The patient's fibroblasts with a new form of hereditary ataxia, related to STUB1 gene (CHIP) mutations, and three age and sex-matched controls were treated with epoxomicin and trehalose. The effects on cell death, protein misfolding and proteostasis were evaluated. Recent studies have revealed that mutations in STUB-1 gene lead to a growing list of molecular defects as deregulation of protein quality, inhibition of proteasome, cell death, decreased autophagy and alteration in CHIP and HSP70 levels. In this CHIP-mutant patient fibroblasts the inhibition of proteasome with epoxomicin induced severe pathophysiological age-associated changes, cell death and protein ubiquitination. Additionally, treatment with epoxomicin produced a dose-dependent increase in the number of cleaved caspase-3 positive cells. However, co-treatment with trehalose, a disaccharide of glucose present in a wide variety of organisms and known as a autophagy enhancer, reduced these pathological events. Trehalose application also increased CHIP and HSP70 expression and GSH free radical levels. Furthermore, trehalose augmented macro and chaperone mediated autophagy (CMA), rising the levels of LC3, LAMP2, CD63 and increasing the expression of Beclin-1 and Atg5-Atg12. Trehalose treatment in addition increased the percentage of immunoreactive cells to HSC70 and LAMP2 and reduced the autophagic substrate, p62. Although this is an individual case based on only one patient and the statistical comparisons are not valid between controls and patient, the low variability among controls and the obvious differences with this patient allow us to conclude that trehalose, through its autophagy activation capacity, anti-aggregation properties, anti-oxidative effects and lack of toxicity, could be very promising for the treatment of CHIP-mutation related ataxia, and possibly a wide spectrum of neurodegenerative disorders related to protein disconformation.
Collapse
|
38
|
Mifsud G, Zammit C, Muscat R, Di Giovanni G, Valentino M. Oligodendrocyte pathophysiology and treatment strategies in cerebral ischemia. CNS Neurosci Ther 2014; 20:603-12. [PMID: 24703424 DOI: 10.1111/cns.12263] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/06/2014] [Accepted: 03/07/2014] [Indexed: 12/19/2022] Open
Abstract
Oligodendrocytes (OLs), the myelin-forming cells of the central nervous system, form a functional unit with axons and play a crucial role in axonal integrity. An episode of hypoxia-ischemia causes rapid and severe damage to these particularly vulnerable cells via multiple pathways such as overactivation of glutamate and ATP receptors, oxidative stress, and disruption of mitochondrial function. The cardinal effect of OL pathology is demyelination and dysmyelination, and this has profound effects on axonal function, transport, structure, metabolism, and survival. The OL is a primary target of ischemia in adult-onset stroke and especially in periventricular leukomalacia and should be considered as a primary therapeutic target in these conditions. More emphasis is needed on therapeutic strategies that target OLs, myelin, and their receptors, as these have the potential to significantly attenuate white matter injury and to establish functional recovery of white matter after stroke. In this review, we will summarize recent progress on the role of OLs in white matter ischemic injury and the current and emerging principles that form the basis for protective strategies against OL death.
Collapse
Affiliation(s)
- Gabriella Mifsud
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | | | | | | | | |
Collapse
|
39
|
Vanitha P, Uma C, Suganya N, Bhakkiyalakshmi E, Suriyanarayanan S, Gunasekaran P, Sivasubramanian S, Ramkumar KM. Modulatory effects of morin on hyperglycemia by attenuating the hepatic key enzymes of carbohydrate metabolism and β-cell function in streptozotocin-induced diabetic rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:326-335. [PMID: 24384280 DOI: 10.1016/j.etap.2013.11.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 06/03/2023]
Abstract
The present study was aimed to evaluate the effect of morin on blood glucose, insulin level, hepatic glucose regulating enzyme activities and glycogen level in experimental diabetes. Diabetes mellitus was induced by a single intraperitoneal injection of streptozotocin (STZ) (50 mg/kg b.w.). Five days after STZ injection, diabetic rats received morin (25 and 50 mg/kg b.w.) orally for 30 days. Glibenclamide was used as reference drug. Morin treatment significantly reduced the blood glucose and improved the serum insulin levels. Further, a dose-dependent reduction in glucose-6-phosphatase and fructose-1,6-bisphosphatase was observed along with the increase in liver hexokinase and glucose-6-phosphate dehydrogenase activities. Morin supplement were found to be effective in preserving the normal histological appearance of pancreatic islets as well as to preserve insulin-positive β-cells in STZ-rats. Therefore, these findings suggest that morin displays beneficial effects in the treatment of diabetes, mediated through the regulation of carbohydrate metabolic enzyme activities.
Collapse
Affiliation(s)
- P Vanitha
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603 203, Tamilnadu, India
| | - C Uma
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603 203, Tamilnadu, India
| | - N Suganya
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603 203, Tamilnadu, India
| | - E Bhakkiyalakshmi
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603 203, Tamilnadu, India
| | - S Suriyanarayanan
- Department of Water and Health, JSS University, Mysore 570 015, Karnataka, India
| | - P Gunasekaran
- The King Institute of Preventive Medicine and Research, Guindy, Chennai 600 032, Tamilnadu, India
| | - S Sivasubramanian
- The King Institute of Preventive Medicine and Research, Guindy, Chennai 600 032, Tamilnadu, India
| | - K M Ramkumar
- SRM Research Institute, SRM University, Kattankulathur 603 203, Tamilnadu, India.
| |
Collapse
|
40
|
Lapp DW, Zhang SS, Barnstable CJ. Stat3 mediates LIF-induced protection of astrocytes against toxic ROS by upregulating the UPC2 mRNA pool. Glia 2013; 62:159-70. [DOI: 10.1002/glia.22594] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/12/2013] [Accepted: 10/16/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Daniel W. Lapp
- Department of Neural and Behavioral Sciences; Penn State College of Medicine; Hershey Pennsylvania
| | - Samuel S. Zhang
- Department of Neural and Behavioral Sciences; Penn State College of Medicine; Hershey Pennsylvania
- Penn State Hershey Eye Center; Penn State College of Medicine; Hershey Pennsylvania
| | - Colin J. Barnstable
- Department of Neural and Behavioral Sciences; Penn State College of Medicine; Hershey Pennsylvania
- Penn State Hershey Eye Center; Penn State College of Medicine; Hershey Pennsylvania
| |
Collapse
|
41
|
Sokołowska P, Urbańska A, Biegańska K, Wagner W, Ciszewski W, Namiecińska M, Zawilska JB. Orexins protect neuronal cell cultures against hypoxic stress: an involvement of Akt signaling. J Mol Neurosci 2013; 52:48-55. [PMID: 24243084 PMCID: PMC3929148 DOI: 10.1007/s12031-013-0165-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 10/24/2013] [Indexed: 12/28/2022]
Abstract
Orexins A and B are peptides produced mainly by hypothalamic neurons that project to numerous brain structures. We have previously demonstrated that rat cortical neurons express both types of orexin receptors, and their activation by orexins initiates different intracellular signals. The present study aimed to determine the effect of orexins on the Akt kinase activation in the rat neuronal cultures and the significance of that response in neurons subjected to hypoxic stress. We report the first evidence that orexins A and B stimulated Akt in cortical neurons in a concentration- and time-dependent manner. Orexin B more potently than orexin A increased Akt phosphorylation, but the maximal effect of both peptides on the kinase activation was very similar. Next, cultured cortical neurons were challenged with cobalt chloride, an inducer of reactive oxygen species and hypoxia-mediated signaling pathways. Under conditions of chemical hypoxia, orexins potently increased neuronal viability and protected cortical neurons against oxidative stress. Our results also indicate that Akt kinase plays an important role in the pro-survival effects of orexins in neurons, which implies a possible mechanism of the orexin-induced neuroprotection.
Collapse
Affiliation(s)
- Paulina Sokołowska
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Łódź, Poland
| | | | | | | | | | | | | |
Collapse
|
42
|
Sama DM, Norris CM. Calcium dysregulation and neuroinflammation: discrete and integrated mechanisms for age-related synaptic dysfunction. Ageing Res Rev 2013; 12:982-95. [PMID: 23751484 PMCID: PMC3834216 DOI: 10.1016/j.arr.2013.05.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/27/2013] [Accepted: 05/30/2013] [Indexed: 12/30/2022]
Abstract
Some of the best biomarkers of age-related cognitive decline are closely linked to synaptic function and plasticity. This review highlights several age-related synaptic alterations as they relate to Ca(2+) dyshomeostasis, through elevation of intracellular Ca(2+), and neuroinflammation, through production of pro-inflammatory cytokines including interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α). Though distinct in many ways, Ca(2+) and neuroinflammatory signaling mechanisms exhibit extensive cross-talk and bidirectional interactions. For instance, cytokine production in glial cells is strongly dependent on the Ca(2+) dependent protein phosphatase calcineurin, which shows elevated activity in animal models of aging and disease. In turn, pro-inflammatory cytokines, such as TNF, can augment the expression/activity of L-type voltage sensitive Ca(2+) channels in neurons, leading to Ca(2+) dysregulation, hyperactive calcineurin activity, and synaptic depression. Thus, in addition to discussing unique contributions of Ca(2+) dyshomeostasis and neuroinflammation, this review emphasizes how these processes interact to hasten age-related synaptic changes.
Collapse
Affiliation(s)
- Diana M Sama
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| | | |
Collapse
|
43
|
Li HW, Deng JG, Du ZC, Yan MS, Long ZX, Pham Thi PT, Yang KD. Protective effects of mangiferin in subchronic developmental lead-exposed rats. Biol Trace Elem Res 2013; 152:233-42. [PMID: 23359033 DOI: 10.1007/s12011-013-9610-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 01/14/2013] [Indexed: 12/13/2022]
Abstract
Lead is a ubiquitous environmental and industrial pollutant. Exposure to excessive amounts of lead is especially harmful to the central nervous systems of infants and young children, and oxidative stress has been reported as a major mechanism of lead-induced toxicity. To evaluate the ameliorative potential of antioxidant mangiferin (MGN) on lead-induced toxicity, Morris water maze test, determination of blood and bone lead concentration, determination of antioxidant status in plasma, as well as observation of ultrastructural changes in the hippocampus were carried out. In the present study, under a transmission electron microscope, ameliorated morphological damages in the hippocampus were observed in MGN-treated groups. Blood and bone lead concentration in MGN-treated groups lowered to some extent (p < 0.05, p < 0.01). The activities of antioxidant enzymes, glutathione (GSH) content, and the GSH/oxidized glutathione ratio in MGN-treated groups were increased, respectively. Further studies are needed to establish whether the observed differences were a direct cause of mangiferin on lead-induced toxicity or not. This study might provide clues for the treatment of lead-induced toxicity.
Collapse
Affiliation(s)
- Hao-Wen Li
- MOE Key Lab of Environment and Health, Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
44
|
Zhang Y, Sun HM, He X, Wang YY, Gao YS, Wu HX, Xu H, Gong XG, Guo ZY. Da-Bu-Yin-Wan and Qian-Zheng-San, two traditional Chinese herbal formulas, up-regulate the expression of mitochondrial subunit NADH dehydrogenase 1 synergistically in the mice model of Parkinson's disease. JOURNAL OF ETHNOPHARMACOLOGY 2013; 146:363-371. [PMID: 23347961 DOI: 10.1016/j.jep.2013.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 12/20/2012] [Accepted: 01/02/2013] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Da-Bu-Yin-Wan (DBYW) and Qian-Zheng-San (QZS), two traditional Chinese herbal formulas, were clinically employed to treat Parkinson's disease (PD) for decades. AIM OF THE STUDY Our previous studies demonstrated neuroprotective effects of DBYW and QZS on mitochondrial function in mice model of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In present research, we aimed to investigate the possible neuroprotective mechanisms of DBYW and QZS. MATERIALS AND METHODS The effects of DBYW and QZS on the behavioral changes (pole test), expression of tyrosine hydroxylase (TH) of substantia nigra by immunohistochemistry, monoaminergic contents and activity of striatum by high performance liquid chromatography, neuronal ultrastructure changes by transmission electron microscopy, mitochondrial DNA (mtDNA) damage by long-extension polymerase chain reaction (PCR), and mRNA expression of mitochondrial subunit NADH dehydrogenase 1(ND1) by qualitative real-time PCR were investigated. RESULTS Present study demonstrated that DBYW and QZS not only ameliorated the behavior induced by the administration of MPTP and synergistically prevented the decreasing of TH expression, but also increased monoaminergic contents and activity, improved the ultrastructural changes, decreased the mtDNA damage, and synergistically up-regulated the expression of ND1 in mRNA level. CONCLUSIONS These results suggest that DBYW and QZS possess anti-parkinsonism and neuroprotective properties.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- Animals
- Behavior, Animal/drug effects
- Biogenic Monoamines/metabolism
- Cerebral Cortex/drug effects
- Cerebral Cortex/metabolism
- DNA, Mitochondrial/genetics
- Disease Models, Animal
- Drug Synergism
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Intracellular Signaling Peptides and Proteins
- Male
- Mice
- Mice, Inbred C57BL
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Neurotoxins
- Parkinson Disease/drug therapy
- Parkinson Disease/metabolism
- Parkinson Disease/physiopathology
- Proteins/genetics
- Proteins/metabolism
- RNA, Messenger/biosynthesis
- Substantia Nigra/drug effects
- Substantia Nigra/ultrastructure
- Tyrosine 3-Monooxygenase/metabolism
Collapse
Affiliation(s)
- Yi Zhang
- Department of Anatomy, School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Jamali AA, Tavakoli A, Ezzati Nazhad Dolatabadi J. Analytical overview of DNA interaction with Morin and its metal complexes. Eur Food Res Technol 2012. [DOI: 10.1007/s00217-012-1778-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
Al Numair KS, Chandramohan G, Alsaif MA, Baskar AA. Protective effect of morin on cardiac mitochondrial function during isoproterenol-induced myocardial infarction in male Wistar rats. Redox Rep 2012; 17:14-21. [PMID: 22340511 DOI: 10.1179/1351000211y.0000000019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Altered mitochondrial function and free radical-mediated tissue damage have been suggested as an important pathological event in isoproterenol (ISO)-induced cardiotoxicity. This study was undertaken to know the preventive effect of morin on mitochondrial damage in ISO-induced cardiotoxicity in male Wistar rats. Myocardial infarction (MI) in rats was induced by ISO (85 mg/kg) at an interval of 24 hours for 2 days. Morin was given to rats as pre-treatment for 30 days orally using an intragastric tube. ISO-treated rats showed a significant elevation of mitochondrial thiobarbituric acid reactive substances (TBARS) and hydrogen peroxide (HP) level and pre-treatment with morin significantly prevented the increase of TBARS and HP level to near normality. The level of enzymic and non-enzymic antioxidants was decreased significantly in ISO-treated rats and pre-treatment with morin significantly increased the levels of superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, glutathione reductase, and reduced glutathione to normality. The activities of mitochondrial enzymes such as isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, and malate dehydrogenase were decreased significantly in ISO-treated myocardial ischemic rats and upon pre-treatment with morin restored these enzymes activity to normality. In addition, the decreased activities of cytochrome-C oxidase and NADH-dehydrogenases were observed in ISO-treated rats and pre-treatment with morin prevented the activities of cytochrome-C oxidase and NADH-dehydrogenase to normality. Pre-treatment with morin favorably restored the biochemical and functional parameters to near normal indicating morin to be a significant protective effect on cardiac mitochondrial function against ISO-induced MI in rats.
Collapse
Affiliation(s)
- Khalid S Al Numair
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | | | | | | |
Collapse
|
47
|
Neuropharmacological effect of Mangiferin on brain cholinesterase and brain biogenic amines in the management of Alzheimer's disease. Eur J Pharmacol 2012; 683:140-7. [DOI: 10.1016/j.ejphar.2012.02.042] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/17/2012] [Accepted: 02/26/2012] [Indexed: 02/07/2023]
|
48
|
Nandhakumar R, Salini K, Niranjali Devaraj S. Morin augments anticarcinogenic and antiproliferative efficacy against 7,12-dimethylbenz(a)-anthracene induced experimental mammary carcinogenesis. Mol Cell Biochem 2012; 364:79-92. [PMID: 22350814 DOI: 10.1007/s11010-011-1207-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Accepted: 12/15/2011] [Indexed: 12/11/2022]
Abstract
In general, oxidative stress resulting from an imbalance between prooxidant and antioxidant systems plays an important role in the pathogenesis of cancer. Morin (3,5,7,2',4'-pentahydroxyflavone), a member of the flavanol group, has been shown to possess chemopreventive potential against hepatocellular and colon cancer in experimental animals. Given the demonstrated importance of morin, aim of the present study was to evaluate the effect of morin on antiproliferative and anticarcinogenic effect against DMBA-induced experimental mammary carcinogenesis. Oral administration of 7,12-dimethylbenz(a)-anthracene (25 mg/kg body weight) to rats resulted in significant reduction of body weight, enzymic antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase), and nonenzymic antioxidants (reduced glutathione, vitamin C, and vitamin E). The levels of lipid peroxidation markers (thiobarbituric acid reactive substances and hydroperoxides) and tumor markers such as CA 15-3, AFP and CEA in serum were increased significantly in cancer-induced animals as compared to control rats. Oral supplementation of morin at a dose of 50 mg/kg body weight significantly improved the body weight, enzymic, and nonenzymic antioxidants and considerably decreased the lipid peroxidation marker and tumor markers levels. Histological observations also correlated with the biochemical parameters. Tumor bearing animals showed marked increase in proliferating cell nuclear antigen-positive cells and also the number of AgNOR/nuclei compared with control rats while this expression levels were significantly reduced upon morin treatment. Thus, this study reveals the possible beneficial effect of morin as chemopreventive agent against the oxidative stress induced during mammary carcinogenesis.
Collapse
Affiliation(s)
- Ramadass Nandhakumar
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, 600025 Tamil Nadu, India.
| | | | | |
Collapse
|
49
|
Fluorescence Enhancement Effect for the Determination of Nucleic Acids With Morin–NanoTiO2. J Inorg Organomet Polym Mater 2011. [DOI: 10.1007/s10904-011-9573-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
50
|
Zhang ZT, Cao XB, Xiong N, Wang HC, Huang JS, Sun SG, Wang T. Morin exerts neuroprotective actions in Parkinson disease models in vitro and in vivo. Acta Pharmacol Sin 2010; 31:900-6. [PMID: 20644549 DOI: 10.1038/aps.2010.77] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
AIM To investigate the neuroprotective effects of morin on 1-methyl-4-phenylpyridinium ion (MPP(+))-induced apoptosis in neuronal differentiated PC12 cells as well as in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson disease (PD). METHODS PC12 cells were challenged with MPP(+) in the presence or absence of morin. Cell viability was determined using MTT assay. Cell apoptosis was measured using flow cytometry. Generation of reactive oxygen species (ROS) was assayed using fluorescence assay. In an MPTP mouse model of PD, behavioral deficits, striatal dopamine content, and number of dopaminergic neurons were measured. RESULTS MPP(+) induced apoptosis and ROS formation in PC12 cells. Concomitant treatment with morin (5-50 mumol/L) significantly attenuated the loss of cell viability and apoptosis when compared with MPP(+) treatment alone. Morin also attenuated ROS formation induced by MPP(+). MPTP induced permanent behavioral deficits and nigrostriatal lesions in mice. When administered prior to MPTP, morin (20 to 100 mg/kg) attenuated behavioral deficits, dopaminergic neuronal death and striatal dopamine depletion in the MPTP mouse model. CONCLUSION The findings suggest that morin has neuroprotective actions both in vitro and in vivo, and may provide a novel therapeutic agent for the treatment of PD and other neurodegenerative diseases.
Collapse
|