1
|
Asbelaoui N, Abi-Ghanem C, Schlecht-Louf G, Oukil H, Degerny C, Schumacher M, Ghoumari AM. Interplay between androgen and CXCR4 chemokine signaling in myelin repair. Acta Neuropathol Commun 2024; 12:18. [PMID: 38291527 PMCID: PMC10826258 DOI: 10.1186/s40478-024-01730-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
In men, reduced levels of testosterone are associated with the prevalence and progression of multiple sclerosis (MS), a chronic and disabling demyelinating disorder. Testosterone has been shown to promote myelin repair. Here, we demonstrate that the cooperation between testosterone and CXCR4 signaling involving astrocytes is required for myelin regeneration after focal demyelination produced in the ventral mouse spinal cord by the infusion of lysolecithin. The testosterone-dependent remyelination of axons by oligodendrocytes was accompanied by an increase in astrocytes expressing CXCR4, its ligand CXCL12 and the androgen receptor (AR) within the demyelinated area. Depriving males of their testosterone or pharmacological inhibition of CXCR4, with the selective antagonist AMD3100, prevented the appearance of astrocytes expressing CXCR4, CXCL12 and AR within the demyelinated area and the concomitant recruitment of myelin forming oligodendrocytes. Conditional genetic ablation of either CXCR4 or AR in astrocytes also completely blocked the formation of new myelin by oligodendrocytes. Interestingly, the gain of function mutation in CXCR4 causing WHIM syndrome allows remyelination to take place, even in the absence of testosterone, but its potentiating effects remained observable. After testosterone deprivation or CXCR4 inhibition, the absence of astrocytes within the demyelinated area led to the incursion of Schwann cells, most likely derived from spinal nerves, and the formation of peripheral nerve type myelin. In patients with progressive MS, astrocytes expressing CXCR4 and AR surrounded myelin lesions, and their presence opposed the incursion of Schwann cells. These results highlight a mechanism of promyelinating testosterone signaling and the importance of normalizing its levels in combined myelin repair therapies.
Collapse
Affiliation(s)
- Narimène Asbelaoui
- UMR1195, "Diseases and Hormones of the Nervous System", Inserm and University Paris-Saclay, 80, Rue du Général Leclerc, 94276, Kremlin-Bicêtre, France
| | - Charly Abi-Ghanem
- UMR1195, "Diseases and Hormones of the Nervous System", Inserm and University Paris-Saclay, 80, Rue du Général Leclerc, 94276, Kremlin-Bicêtre, France
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, 12208, USA
| | - Géraldine Schlecht-Louf
- INSERM UMR 996, Inserm, Inflammation, Microbiome and Immunosurveillance, Faculté de Pharmacie, Université Paris-Saclay, Orsay, France
| | - Hania Oukil
- UMR1195, "Diseases and Hormones of the Nervous System", Inserm and University Paris-Saclay, 80, Rue du Général Leclerc, 94276, Kremlin-Bicêtre, France
| | - Cindy Degerny
- UMR1195, "Diseases and Hormones of the Nervous System", Inserm and University Paris-Saclay, 80, Rue du Général Leclerc, 94276, Kremlin-Bicêtre, France
| | - Michael Schumacher
- UMR1195, "Diseases and Hormones of the Nervous System", Inserm and University Paris-Saclay, 80, Rue du Général Leclerc, 94276, Kremlin-Bicêtre, France.
| | - Abdel Mouman Ghoumari
- UMR1195, "Diseases and Hormones of the Nervous System", Inserm and University Paris-Saclay, 80, Rue du Général Leclerc, 94276, Kremlin-Bicêtre, France.
| |
Collapse
|
2
|
Yuan J, Tao Y, Wang M, Huang F, Wu X. Natural compounds as potential therapeutic candidates for multiple sclerosis: Emerging preclinical evidence. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155248. [PMID: 38096716 DOI: 10.1016/j.phymed.2023.155248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Multiple sclerosis is a chronic neurodegenerative disease, with main characteristics of pathological inflammation, neural damage and axonal demyelination. Current mainstream treatments demonstrate more or less side effects, which limit their extensive use. PURPOSE Increasing studies indicate that natural compounds benefit multiple sclerosis without remarkable side effects. Given the needs to explore the potential effects of natural compounds of plant origin on multiple sclerosis and their mechanisms, we review publications involving the role of natural compounds in animal models of multiple sclerosis, excluding controlled trials. STUDY DESIGN AND METHODS Articles were conducted on PubMed and Web of Science databases using the keywords ``multiple sclerosis'' and ``natural compounds'' published from January 1, 2008, to September 1, 2023. RESULTS This review summarized the effects of natural ingredients (flavonoids, terpenoids, polyphenols, alkaloids, glycosides, and others) from three aspects: immune regulation, oxidative stress suppression, and myelin protection and regeneration in multiple sclerosis. CONCLUSION Overall, we concluded 80 studies to show the preclinical evidence that natural compounds may attenuate multiple sclerosis progression via suppressing immune attacks and/or promoting myelin protection or endogenous repair processes. It would pave the roads for the future development of effective therapeutic regiments of multiple sclerosis.
Collapse
Affiliation(s)
- Jinfeng Yuan
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanlin Tao
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mengxue Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Forston MD, Wei GZ, Chariker JH, Stephenson T, Andres K, Glover C, Rouchka EC, Whittemore SR, Hetman M. Enhanced oxidative phosphorylation, re-organized intracellular signaling, and epigenetic de-silencing as revealed by oligodendrocyte translatome analysis after contusive spinal cord injury. Sci Rep 2023; 13:21254. [PMID: 38040794 PMCID: PMC10692148 DOI: 10.1038/s41598-023-48425-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023] Open
Abstract
Reducing the loss of oligodendrocytes (OLs) is a major goal for neuroprotection after spinal cord injury (SCI). Therefore, the OL translatome was determined in Ribotag:Plp1-CreERT2 mice at 2, 10, and 42 days after moderate contusive T9 SCI. At 2 and 42 days, mitochondrial respiration- or actin cytoskeleton/cell junction/cell adhesion mRNAs were upregulated or downregulated, respectively. The latter effect suggests myelin sheath loss/morphological simplification which is consistent with downregulation of cholesterol biosynthesis transcripts on days 10 and 42. Various regulators of pro-survival-, cell death-, and/or oxidative stress response pathways showed peak expression acutely, on day 2. Many acutely upregulated OL genes are part of the repressive SUZ12/PRC2 operon suggesting that epigenetic de-silencing contributes to SCI effects on OL gene expression. Acute OL upregulation of the iron oxidoreductase Steap3 was confirmed at the protein level and replicated in cultured OLs treated with the mitochondrial uncoupler FCCP. Hence, STEAP3 upregulation may mark mitochondrial dysfunction. Taken together, in SCI-challenged OLs, acute and subchronic enhancement of mitochondrial respiration may be driven by axonal loss and subsequent myelin sheath degeneration. Acutely, the OL switch to oxidative phosphorylation may lead to oxidative stress that is further amplified by upregulation of such enzymes as STEAP3.
Collapse
Affiliation(s)
- Michael D Forston
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - George Z Wei
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- MD/PhD Program, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Julia H Chariker
- Kentucky IDeA Networks of Biomedical Research Excellence (KY INBRE) Bioinformatics Core, University of Louisville, Louisville, KY, 40202, USA
- Neuroscience Training, University Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Tyler Stephenson
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Kariena Andres
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Charles Glover
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Eric C Rouchka
- Kentucky IDeA Networks of Biomedical Research Excellence (KY INBRE) Bioinformatics Core, University of Louisville, Louisville, KY, 40202, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Scott R Whittemore
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- MD/PhD Program, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Michal Hetman
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- MD/PhD Program, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
4
|
Kurihara K, Sasaki M, Nagahama H, Obara H, Fukushi R, Hirota R, Yoshimoto M, Teramoto A, Kocsis JD, Yamashita T, Honmou O. Repeated intravenous infusion of mesenchymal stem cells enhances recovery of motor function in a rat model with chronic spinal cord injury. Brain Res 2023; 1817:148484. [PMID: 37442249 DOI: 10.1016/j.brainres.2023.148484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Spinal cord injury (SCI) can cause paralysis with a high disease burden with limited treatment options. A single intravenous infusion of mesenchymal stem cells (MSCs) improves motor function in rat SCI models, possibly through the induction of axonal sprouting and remyelination. Repeated infusions (thrice at weekly intervals) of MSCs were administered to rats with chronic SCI to determine if multiple-dosing regimens enhance motor improvement. Chronic SCI rats were randomized and infused with vehicle (vehicle), single MSC injection at week 6 (MSC-1) or repeatedly injections of MSCs at 6, 7, and 8 weeks (MSC-3) after SCI induction. In addition, a single high dose of MSCs (HD-MSC) equivalent to thrice the single dose was infused at week 6. Locomotor function, light and electron microscopy, immunohistochemistry and ex vivo diffusion tensor imaging were performed. Repeated infusion of MSCs (MSC-3) provided the greatest functional recovery compared to single and single high-dose infusions. The density of remyelinated axons in the injured spinal cord was the greatest in the MSC-3 group, followed by the MSC-1, HD-MSC and vehicle groups. Increased sprouting of the corticospinal tract and serotonergic axon density was the greatest in the MSC-3 group, followed by MSC-1, HD-MSC, and vehicle groups. Repeated infusion of MSCs over three weeks resulted in greater functional improvement than single administration of MSCs, even when the number of infused cells was tripled. MSC-treated rats showed axonal sprouting and remyelination in the chronic phase of SCI.
Collapse
Affiliation(s)
- Kota Kurihara
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Masanori Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Hiroshi Nagahama
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; Division of Radioisotope Research, Biomedical Research, Education and Instrumentation Center, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8556, Japan
| | - Hisashi Obara
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Ryunosuke Fukushi
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Ryosuke Hirota
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Mitsunori Yoshimoto
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Atsushi Teramoto
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Jeffery D Kocsis
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Toshihiko Yamashita
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Osamu Honmou
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
5
|
Forston MD, Wei G, Chariker JH, Stephenson T, Andres K, Glover C, Rouchka EC, Whittemore SR, Hetman M. Enhanced oxidative phosphorylation, re-organized intracellular signaling, and epigenetic de-silencing as revealed by oligodendrocyte translatome analysis after contusive spinal cord injury. RESEARCH SQUARE 2023:rs.3.rs-3164618. [PMID: 37546871 PMCID: PMC10402259 DOI: 10.21203/rs.3.rs-3164618/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Reducing the loss of oligodendrocytes (OLs) is a major goal for neuroprotection after spinal cord injury (SCI). Therefore, the OL translatome was determined in Ribotag:Plp1-CreERT2 mice at 2, 10, and 42 days after moderate contusive T9 SCI. At 2 and 42 days, mitochondrial respiration- or actin cytoskeleton/cell junction/cell adhesion mRNAs were upregulated or downregulated, respectively. The latter effect suggests myelin sheath loss/morphological simplification which is consistent with downregulation of cholesterol biosynthesis transcripts on days 10 and 42. Various regulators of pro-survival-, cell death-, and/or oxidative stress response pathways showed peak expression acutely, on day 2. Many acutely upregulated OL genes are part of the repressive SUZ12/PRC2 operon suggesting that epigenetic de-silencing contributes to SCI effects on OL gene expression. Acute OL upregulation of the iron oxidoreductase Steap3 was confirmed at the protein level and replicated in cultured OLs treated with the mitochondrial uncoupler FCCP. Hence, STEAP3 upregulation may mark mitochondrial dysfunction. Taken together, in SCI-challenged OLs, acute and subchronic enhancement of mitochondrial respiration may be driven by axonal loss and subsequent myelin sheath degeneration. Acutely, the OL switch to oxidative phosphorylation may lead to oxidative stress that is further amplified by upregulation of such enzymes as STEAP3.
Collapse
Affiliation(s)
| | - George Wei
- University of Louisville School of Medicine
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Packer D, Fresenko EE, Harrington EP. Remyelination in animal models of multiple sclerosis: finding the elusive grail of regeneration. Front Mol Neurosci 2023; 16:1207007. [PMID: 37448959 PMCID: PMC10338073 DOI: 10.3389/fnmol.2023.1207007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Remyelination biology and the therapeutic potential of restoring myelin sheaths to prevent neurodegeneration and disability in multiple sclerosis (MS) has made considerable gains over the past decade with many regeneration strategies undergoing tested in MS clinical trials. Animal models used to investigate oligodendroglial responses and regeneration of myelin vary considerably in the mechanism of demyelination, involvement of inflammatory cells, neurodegeneration and capacity for remyelination. The investigation of remyelination in the context of aging and an inflammatory environment are of considerable interest for the potential translation to progressive multiple sclerosis. Here we review how remyelination is assessed in mouse models of demyelination, differences and advantages of these models, therapeutic strategies that have emerged and current pro-remyelination clinical trials.
Collapse
|
7
|
Rawji KS, Neumann B, Franklin RJM. Glial aging and its impact on central nervous system myelin regeneration. Ann N Y Acad Sci 2023; 1519:34-45. [PMID: 36398864 DOI: 10.1111/nyas.14933] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aging is a major risk factor for several neurodegenerative diseases and is associated with cognitive decline. In addition to affecting neuronal function, the aging process significantly affects the functional phenotype of the glial cell compartment, comprising oligodendrocyte lineage cells, astrocytes, and microglia. These changes result in a more inflammatory microenvironment, resulting in a condition that is favorable for neuron and synapse loss. In addition to facilitating neurodegeneration, the aging glial cell population has negative implications for central nervous system remyelination, a regenerative process that is of particular importance to the chronic demyelinating disease multiple sclerosis. This review will discuss the changes that occur with aging in the three main glial populations and provide an overview of the studies documenting the impact these changes have on remyelination.
Collapse
Affiliation(s)
- Khalil S Rawji
- Altos Labs, Cambridge Institute of Science, Cambridge, UK
| | - Björn Neumann
- Altos Labs, Cambridge Institute of Science, Cambridge, UK
| | | |
Collapse
|
8
|
Zawadzka M, Yeghiazaryan M, Niedziółka S, Miazga K, Kwaśniewska A, Bekisz M, Sławińska U. Forced Remyelination Promotes Axon Regeneration in a Rat Model of Spinal Cord Injury. Int J Mol Sci 2022; 24:ijms24010495. [PMID: 36613945 PMCID: PMC9820536 DOI: 10.3390/ijms24010495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022] Open
Abstract
Spinal cord injuries result in the loss of motor and sensory functions controlled by neurons located at the site of the lesion and below. We hypothesized that experimentally enhanced remyelination supports axon preservation and/or growth in the total spinal cord transection in rats. Multifocal demyelination was induced by injection of ethidium bromide (EB), either at the time of transection or twice during transection and at 5 days post-injury. We demonstrated that the number of oligodendrocyte progenitor cells (OPCs) significantly increased 14 days after demyelination. Most OPCs differentiated into mature oligodendrocytes by 60-90 dpi in double-EB-injected rats; however, most axons were remyelinated by Schwann cells. A significant number of axons passed the injury epicenter and entered the distant segments of the spinal cord in the double-EB-injected rats. Moreover, some serotoninergic fibers, not detected in control animals, grew caudally through the injury site. Behavioral tests performed at 60-90 dpi revealed significant improvement in locomotor function recovery in double-EB-injected rats, which was impaired by the blockade of serotonin receptors, confirming the important role of restored serotonergic fibers in functional recovery. Our findings indicate that enhanced remyelination per se, without substantial inhibition of glial scar formation, is an important component of spinal cord injury regeneration.
Collapse
|
9
|
Fu H, Hu D, Chen J, Wang Q, Zhang Y, Qi C, Yu T. Repair of the Injured Spinal Cord by Schwann Cell Transplantation. Front Neurosci 2022; 16:800513. [PMID: 35250447 PMCID: PMC8891437 DOI: 10.3389/fnins.2022.800513] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/27/2022] [Indexed: 01/12/2023] Open
Abstract
Spinal cord injury (SCI) can result in sensorimotor impairments or disability. Studies of the cellular response to SCI have increased our understanding of nerve regenerative failure following spinal cord trauma. Biological, engineering and rehabilitation strategies for repairing the injured spinal cord have shown impressive results in SCI models of both rodents and non-human primates. Cell transplantation, in particular, is becoming a highly promising approach due to the cells’ capacity to provide multiple benefits at the molecular, cellular, and circuit levels. While various cell types have been investigated, we focus on the use of Schwann cells (SCs) to promote SCI repair in this review. Transplantation of SCs promotes functional recovery in animal models and is safe for use in humans with subacute SCI. The rationales for the therapeutic use of SCs for SCI include enhancement of axon regeneration, remyelination of newborn or sparing axons, regulation of the inflammatory response, and maintenance of the survival of damaged tissue. However, little is known about the molecular mechanisms by which transplanted SCs exert a reparative effect on SCI. Moreover, SC-based therapeutic strategies face considerable challenges in preclinical studies. These issues must be clarified to make SC transplantation a feasible clinical option. In this review, we summarize the recent advances in SC transplantation for SCI, and highlight proposed mechanisms and challenges of SC-mediated therapy. The sparse information available on SC clinical application in patients with SCI is also discussed.
Collapse
Affiliation(s)
- Haitao Fu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Die Hu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao Eye Hospital, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China
| | - Jinli Chen
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Qizun Wang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingze Zhang
- Key Laboratory of Biomechanics of Hebei Province, Department of Trauma Emergency Center, The Third Hospital of Hebei Medical University, Orthopaedics Research Institution of Hebei Province, Shijiazhuang, China
| | - Chao Qi
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- *Correspondence: Chao Qi,
| | - Tengbo Yu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Tengbo Yu,
| |
Collapse
|
10
|
Chen CZ, Neumann B, Förster S, Franklin RJM. Schwann cell remyelination of the central nervous system: why does it happen and what are the benefits? Open Biol 2021; 11:200352. [PMID: 33497588 PMCID: PMC7881176 DOI: 10.1098/rsob.200352] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
Myelin sheaths, by supporting axonal integrity and allowing rapid saltatory impulse conduction, are of fundamental importance for neuronal function. In response to demyelinating injuries in the central nervous system (CNS), oligodendrocyte progenitor cells (OPCs) migrate to the lesion area, proliferate and differentiate into new oligodendrocytes that make new myelin sheaths. This process is termed remyelination. Under specific conditions, demyelinated axons in the CNS can also be remyelinated by Schwann cells (SCs), the myelinating cell of the peripheral nervous system. OPCs can be a major source of these CNS-resident SCs-a surprising finding given the distinct embryonic origins, and physiological compartmentalization of the peripheral and central nervous system. Although the mechanisms and cues governing OPC-to-SC differentiation remain largely undiscovered, it might nevertheless be an attractive target for promoting endogenous remyelination. This article will (i) review current knowledge on the origins of SCs in the CNS, with a particular focus on OPC to SC differentiation, (ii) discuss the necessary criteria for SC myelination in the CNS and (iii) highlight the potential of using SCs for myelin regeneration in the CNS.
Collapse
Affiliation(s)
| | | | | | - Robin J. M. Franklin
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, UK
| |
Collapse
|
11
|
Hart CG, Karimi-Abdolrezaee S. Bone morphogenetic proteins: New insights into their roles and mechanisms in CNS development, pathology and repair. Exp Neurol 2020; 334:113455. [PMID: 32877654 DOI: 10.1016/j.expneurol.2020.113455] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023]
Abstract
Bone morphogenetic proteins (BMPs) are a highly conserved and diverse family of proteins that play essential roles in various stages of development including the formation and patterning of the central nervous system (CNS). Bioavailability and function of BMPs are regulated by input from a plethora of transcription factors and signaling pathways. Intriguingly, recent literature has uncovered novel roles for BMPs in regulating homeostatic and pathological responses in the adult CNS. Basal levels of BMP ligands and receptors are widely expressed in the adult brain and spinal cord with differential expression patterns across CNS regions, cell types and subcellular locations. Recent evidence indicates that several BMP isoforms are transiently or chronically upregulated in the aged or pathological CNS. Genetic knockout and pharmacological studies have elucidated that BMPs regulate several aspects of CNS injury and repair including cell survival and differentiation, reactive astrogliosis and glial scar formation, axon regeneration, and myelin preservation and repair. Several BMP isoforms can be upregulated in the injured or diseased CNS simultaneously yet exert complementary or opposing effects on the endogenous cell responses after injury. Emerging studies also show that dysregulation of BMPs is associated with various CNS pathologies. Interestingly, modulation of BMPs can lead to beneficial or detrimental effects on CNS injury and repair mechanisms in a ligand, temporally or spatially specific manner, which reflect the complexity of BMP signaling. Given the significance of BMPs in neurodevelopment, a better understanding of their role in the context of injury may provide new therapeutic targets for the pathologic CNS. This review will provide a timely overview on the foundation and recent advancements in knowledge regarding the role and mechanisms of BMP signaling in the developing and adult CNS, and their implications in pathological responses and repair processes after injury or diseases.
Collapse
Affiliation(s)
- Christopher G Hart
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
12
|
Rawji KS, Gonzalez Martinez GA, Sharma A, Franklin RJ. The Role of Astrocytes in Remyelination. Trends Neurosci 2020; 43:596-607. [DOI: 10.1016/j.tins.2020.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/05/2020] [Accepted: 05/26/2020] [Indexed: 12/21/2022]
|
13
|
Assinck P, Sparling JS, Dworski S, Duncan GJ, Wu DL, Liu J, Kwon BK, Biernaskie J, Miller FD, Tetzlaff W. Transplantation of Skin Precursor-Derived Schwann Cells Yields Better Locomotor Outcomes and Reduces Bladder Pathology in Rats with Chronic Spinal Cord Injury. Stem Cell Reports 2020; 15:140-155. [PMID: 32559459 PMCID: PMC7363874 DOI: 10.1016/j.stemcr.2020.05.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/20/2022] Open
Abstract
Cell transplantation for spinal cord injury (SCI) has largely been studied in sub-acute settings within 1–2 weeks of injury. In contrast, here we transplanted skin-derived precursors differentiated into Schwann cells (SKP-SCs) into the contused rat spinal cord 8 weeks post-injury (wpi). Twenty-one weeks later (29 wpi), SKP-SCs were found to have survived transplantation, integrated with host tissue, and mitigated the formation of a dense glial scar. Furthermore, transplanted SKP-SCs filled much of the lesion sites and greatly enhanced the presence of endogenous SCs, which myelinated thousands of sprouting/spared host axons in and around the injury site. In addition, SKP-SC transplantation improved locomotor outcomes and decreased pathological thickening of bladder wall. To date, functional improvements have very rarely been observed with cell transplantation beyond the sub-acute stage of injury. Hence, these findings indicate that skin-derived SCs are a promising candidate cell type for the treatment of chronic SCI. SKP-SCs injected 8 weeks after SCI survive long-term and integrate with host tissue SKP-SC transplants boosted the presence of endogenous SCs in the chronic SCI site Treated spinal cords showed enhanced growth and SC myelination of axons Treated rats displayed better locomotor outcomes with reduced bladder pathologies
Collapse
Affiliation(s)
- Peggy Assinck
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - Joseph S Sparling
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Shaalee Dworski
- Neuroscience and Mental Health Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Greg J Duncan
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Di L Wu
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
| | - Jie Liu
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
| | - Brian K Kwon
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada
| | - Jeff Biernaskie
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Freda D Miller
- Neuroscience and Mental Health Program, Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Zoology, University of British Columbia, Vancouver, BC, Canada; Department of Surgery, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
14
|
Roles of Progesterone, Testosterone and Their Nuclear Receptors in Central Nervous System Myelination and Remyelination. Int J Mol Sci 2020; 21:ijms21093163. [PMID: 32365806 PMCID: PMC7246940 DOI: 10.3390/ijms21093163] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/14/2022] Open
Abstract
Progesterone and testosterone, beyond their roles as sex hormones, are neuroactive steroids, playing crucial regulatory functions within the nervous system. Among these, neuroprotection and myelin regeneration are important ones. The present review aims to discuss the stimulatory effects of progesterone and testosterone on the process of myelination and remyelination. These effects have been demonstrated in vitro (i.e., organotypic cultures) and in vivo (cuprizone- or lysolecithin-induced demyelination and experimental autoimmune encephalomyelitis (EAE)). Both steroids stimulate myelin formation and regeneration by acting through their respective intracellular receptors: progesterone receptors (PR) and androgen receptors (AR). Activation of these receptors results in multiple events involving direct transcription and translation, regulating general homeostasis, cell proliferation, differentiation, growth and myelination. It also ameliorates immune response as seen in the EAE model, resulting in a significant decrease in inflammation leading to a fast recovery. Although natural progesterone and testosterone have a therapeutic potential, their synthetic derivatives—the 19-norprogesterone (nestorone) and 7α-methyl-nortestosterone (MENT), already used as hormonal contraception or in postmenopausal hormone replacement therapies, may offer enhanced benefits for myelin repair. We summarize here a recent advancement in the field of myelin biology, to treat demyelinating disorders using the natural as well as synthetic analogs of progesterone and testosterone.
Collapse
|
15
|
Hart CG, Dyck SM, Kataria H, Alizadeh A, Nagakannan P, Thliveris JA, Eftekharpour E, Karimi-Abdolrezaee S. Acute upregulation of bone morphogenetic protein-4 regulates endogenous cell response and promotes cell death in spinal cord injury. Exp Neurol 2019; 325:113163. [PMID: 31881217 DOI: 10.1016/j.expneurol.2019.113163] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/10/2019] [Accepted: 12/24/2019] [Indexed: 01/11/2023]
Abstract
Traumatic spinal cord injury (SCI) elicits a cascade of secondary injury mechanisms that induce profound changes in glia and neurons resulting in their activation, injury or cell death. The resultant imbalanced microenvironment of acute SCI also negatively impacts regenerative processes in the injured spinal cord. Thus, it is imperative to uncover endogenous mechanisms that drive these acute injury events. Here, we demonstrate that the active form of bone morphogenetic protein-4 (BMP4) is robustly and transiently upregulated in acute SCI in rats. BMP4 is a key morphogen in neurodevelopment; however, its role in SCI is not fully defined. Thus, we elucidated the ramification of BMP4 upregulation in a preclinical model of compressive/contusive SCI in the rat by employing noggin, an endogenous antagonist of BMP ligands, and LDN193189, an intracellular inhibitor of BMP signaling. In parallel, we studied cell-specific effects of BMP4 on neural precursor cells (NPCs), oligodendrocyte precursor cells (OPCs), neurons and astrocytes in vitro. We demonstrate that activation of BMP4 inhibits differentiation of spinal cord NPCs and OPCs into mature myelin-expressing oligodendrocytes, and acute blockade of BMPs promotes oligodendrogenesis, oligodendrocyte preservation and remyelination after SCI. Importantly, we report for the first time that BMP4 directly induces caspase-3 mediated apoptosis in neurons and oligodendrocytes in vitro, and noggin and LDN193189 remarkably attenuate caspase-3 activation and lipid peroxidation in acute SCI. BMP4 also enhances the production of inhibitory chondroitin sulfate proteoglycans (CSPGs) in activated astrocytes in vitro and after SCI. Interestingly, our work reveals that despite the beneficial effects of BMP inhibition in acute SCI, neither noggin nor LDN193189 treatment resulted in long-term functional recovery. Collectively, our findings suggest a role for BMP4 in regulating acute secondary injury mechanisms following SCI, and a potential target for combinatorial approaches to improve endogenous cell response and remyelination.
Collapse
Affiliation(s)
- Christopher G Hart
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Scott M Dyck
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hardeep Kataria
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Arsalan Alizadeh
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Pandian Nagakannan
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James A Thliveris
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Eftekhar Eftekharpour
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
16
|
Sanabria-Castro A, Flores-Díaz M, Alape-Girón A. Biological models in multiple sclerosis. J Neurosci Res 2019; 98:491-508. [PMID: 31571267 DOI: 10.1002/jnr.24528] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022]
Abstract
Considering the etiology of multiple sclerosis (MS) is still unknown, experimental models resembling specific aspects of this immune-mediated demyelinating human disease have been developed to increase the understanding of processes related to pathogenesis, disease evolution, evaluation of therapeutic interventions, and demyelination and remyelination mechanisms. Based on the nature of the investigation, biological models may include in vitro, in vivo, and ex vivo assessments. Even though these approaches have disclosed valuable information, every disease animal model has limitations and can only replicate specific features of MS. In vitro and ex vivo models generally do not reflect what occurs in the organism, and in vivo animal models are more likely used; nevertheless, they are able to reproduce only certain stages of the disease. In vivo MS disease animal models in mammals include: experimental autoimmune encephalomyelitis, viral encephalomyelitis, and induced demyelination. This review examines and describes the most common biological disease animal models for the study of MS, their specific characteristics and limitations.
Collapse
Affiliation(s)
- Alfredo Sanabria-Castro
- Research Unit, San Juan de Dios Hospital CCSS, San José, Costa Rica.,School of Pharmacy, University of Costa Rica, San José, Costa Rica
| | | | | |
Collapse
|
17
|
Mi R, Tammia M, Shinn D, Li Y, Martin R, Mao HQ, Höke A. Oligodendrocyte precursors gain Schwann cell-like phenotype and remyelinate axons upon engraftment into peripheral nerves. J Tissue Eng Regen Med 2019; 13:1854-1860. [PMID: 31306565 DOI: 10.1002/term.2935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/12/2019] [Accepted: 07/11/2019] [Indexed: 11/08/2022]
Abstract
The ability to treat large peripheral nerve injuries may be greatly advanced if an accessible source of human myelinating cells is identified, as it overcomes one of the major limitations of acellular or synthetic nerve guides compared with autografts, the gold standard for large defect repair. Methods to derive oligodendrocyte precursor cells (OPCs) from human pluripotent stem cells have advanced to the point where they have been shown capable of myelination and are being evaluated in clinical trials. Here, we test the hypothesis that OPCs can survive and remyelinate axons in the peripheral nervous system during a repair process. Using freshly isolated OPCs from mouse post-natal brains, we engrafted these OPCs into the tibial nerve immediately after it being subjected to cryolesioning. At 1-month postengraftment, we found numerous graft-derived cells that survived in this environment, and many transplanted cells expressed Schwann cell markers such as periaxin and S100β coexpressed with myelin basic protein, whereas oligodendrocyte markers O4 and Olig2 were virtually absent. Our results demonstrate that OPCs can survive in a peripheral nervous system micro-environment and undergo niche-dependent transdifferentiation into Schwann cell-like cells as has previously been observed in central nervous system focal demyelination models, suggesting that OPCs constitute an accessible source of cells for peripheral nerve cell therapies.
Collapse
Affiliation(s)
- Ruifa Mi
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Markus Tammia
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Daniel Shinn
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ying Li
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Russell Martin
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Hai-Quan Mao
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Ahmet Höke
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
18
|
Ulanska-Poutanen J, Mieczkowski J, Zhao C, Konarzewska K, Kaza B, Pohl HB, Bugajski L, Kaminska B, Franklin RJ, Zawadzka M. Injury-induced perivascular niche supports alternative differentiation of adult rodent CNS progenitor cells. eLife 2018; 7:30325. [PMID: 30222103 PMCID: PMC6141235 DOI: 10.7554/elife.30325] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/03/2018] [Indexed: 01/06/2023] Open
Abstract
Following CNS demyelination, oligodendrocyte progenitor cells (OPCs) are able to differentiate into either remyelinating oligodendrocytes (OLs) or remyelinating Schwann cells (SCs). However, the signals that determine which type of remyelinating cell is generated and the underlying mechanisms involved have not been identified. Here, we show that distinctive microenvironments created in discrete niches within demyelinated white matter determine fate decisions of adult OPCs. By comparative transcriptome profiling we demonstrate that an ectopic, injury-induced perivascular niche is enriched with secreted ligands of the BMP and Wnt signalling pathways, produced by activated OPCs and endothelium, whereas reactive astrocyte within non-vascular area express the dual BMP/Wnt antagonist Sostdc1. The balance of BMP/Wnt signalling network is instructive for OPCs to undertake fate decision shortly after their activation: disruption of the OPCs homeostasis during demyelination results in BMP4 upregulation, which, in the absence of Socstdc1, favours SCs differentiation.
Collapse
Affiliation(s)
- Justyna Ulanska-Poutanen
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Mieczkowski
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Chao Zhao
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Katarzyna Konarzewska
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Beata Kaza
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Hartmut Bf Pohl
- Department of Biology, Institute of Molecular Health Sciences, Zurich, Switzerland
| | - Lukasz Bugajski
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Robin Jm Franklin
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Malgorzata Zawadzka
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
19
|
Duncan GJ, Manesh SB, Hilton BJ, Assinck P, Liu J, Moulson A, Plemel JR, Tetzlaff W. Locomotor recovery following contusive spinal cord injury does not require oligodendrocyte remyelination. Nat Commun 2018; 9:3066. [PMID: 30076300 PMCID: PMC6076268 DOI: 10.1038/s41467-018-05473-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 06/28/2018] [Indexed: 12/16/2022] Open
Abstract
Remyelination occurs after spinal cord injury (SCI) but its functional relevance is unclear. We assessed the necessity of myelin regulatory factor (Myrf) in remyelination after contusive SCI by deleting the gene from platelet-derived growth factor receptor alpha positive (PDGFRα-positive) oligodendrocyte progenitor cells (OPCs) in mice prior to SCI. While OPC proliferation and density are not altered by Myrf inducible knockout after SCI, the accumulation of new oligodendrocytes is largely prevented. This greatly inhibits myelin regeneration, resulting in a 44% reduction in myelinated axons at the lesion epicenter. However, spontaneous locomotor recovery after SCI is not altered by remyelination failure. In controls with functional MYRF, locomotor recovery precedes the onset of most oligodendrocyte myelin regeneration. Collectively, these data demonstrate that MYRF expression in PDGFRα-positive cell derived oligodendrocytes is indispensable for myelin regeneration following contusive SCI but that oligodendrocyte remyelination is not required for spontaneous recovery of stepping.
Collapse
Affiliation(s)
- Greg J Duncan
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia (UBC), 818 West 10th Avenue, V5Z 1M9, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, 4200-6270 University Blvd, Vancouver, V6T 1Z4, BC, Canada
| | - Sohrab B Manesh
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia (UBC), 818 West 10th Avenue, V5Z 1M9, Vancouver, BC, Canada
- Graduate Program in Neuroscience, University of British Columbia, 3402-2215 Wesbrook Mall, Vancouver, V6T 1Z3, BC, Canada
| | - Brett J Hilton
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia (UBC), 818 West 10th Avenue, V5Z 1M9, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, 4200-6270 University Blvd, Vancouver, V6T 1Z4, BC, Canada
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Sigmund-Freud-Straße 27, 53127, Bonn, Germany
| | - Peggy Assinck
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia (UBC), 818 West 10th Avenue, V5Z 1M9, Vancouver, BC, Canada
- Graduate Program in Neuroscience, University of British Columbia, 3402-2215 Wesbrook Mall, Vancouver, V6T 1Z3, BC, Canada
| | - Jie Liu
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia (UBC), 818 West 10th Avenue, V5Z 1M9, Vancouver, BC, Canada
| | - Aaron Moulson
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia (UBC), 818 West 10th Avenue, V5Z 1M9, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, 4200-6270 University Blvd, Vancouver, V6T 1Z4, BC, Canada
| | - Jason R Plemel
- The Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, T2N 4N1, Calgary, AB, Canada
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia (UBC), 818 West 10th Avenue, V5Z 1M9, Vancouver, BC, Canada.
- Department of Zoology, University of British Columbia, 4200-6270 University Blvd, Vancouver, V6T 1Z4, BC, Canada.
- Department of Surgery, University of British Columbia, 2775 Laurel Street, Vancouver, V5Z 1M9, BC, Canada.
| |
Collapse
|
20
|
Influence of Genetically Modified Human Umbilical Cord Blood Mononuclear Cells on the Expression of Schwann Cell Molecular Determinants in Spinal Cord Injury. Stem Cells Int 2018. [PMID: 29531538 PMCID: PMC5835253 DOI: 10.1155/2018/4695275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Spinal cord injury (SCI) unavoidably results in death of not only neurons but also glial cells. In particular, the death of oligodendrocytes leads to impaired nerve impulse conduction in intact axons. However, after SCI, the Schwann cells (SCs) are capable of migrating towards an area of injury and participating in the formation of functional myelin. In addition to SCI, cell-based therapy can influence the migration of SCs and the expression of their molecular determinants. In a number of cases, it can be explained by the ability of implanted cells to secrete neurotrophic factors (NTFs). Genetically modified stem and progenitor cells overexpressing NTFs have recently attracted special attention of researchers and are most promising for the purposes of regenerative medicine. Therefore, we have studied the effect of genetically modified human umbilical cord blood mononuclear cells on the expression of SC molecular determinants in SCI.
Collapse
|
21
|
Myelinogenic Plasticity of Oligodendrocyte Precursor Cells following Spinal Cord Contusion Injury. J Neurosci 2017; 37:8635-8654. [PMID: 28760862 DOI: 10.1523/jneurosci.2409-16.2017] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 06/22/2017] [Accepted: 07/22/2017] [Indexed: 12/17/2022] Open
Abstract
Spontaneous remyelination occurs after spinal cord injury (SCI), but the extent of myelin repair and identity of the cells responsible remain incompletely understood and contentious. We assessed the cellular origin of new myelin by fate mapping platelet-derived growth factor receptor α (PDGFRα), Olig2+, and P0+ cells following contusion SCI in mice. Oligodendrocyte precursor cells (OPCs; PDGFRα+) produced oligodendrocytes responsible for de novo ensheathment of ∼30% of myelinated spinal axons at injury epicenter 3 months after SCI, demonstrating that these resident cells are a major contributor to oligodendrocyte regeneration. OPCs also produced the majority of myelinating Schwann cells in the injured spinal cord; invasion of peripheral myelinating (P0+) Schwann cells made only a limited contribution. These findings reveal that PDGFRα+ cells perform diverse roles in CNS repair, as multipotential progenitors that generate both classes of myelinating cells. This endogenous repair might be exploited as a therapeutic target for CNS trauma and disease.SIGNIFICANCE STATEMENT Spinal cord injury (SCI) leads to profound functional deficits, though substantial numbers of axons often survive. One possible explanation for these deficits is loss of myelin, creating conduction block at the site of injury. SCI leads to oligodendrocyte death and demyelination, and clinical trials have tested glial transplants to promote myelin repair. However, the degree and duration of myelin loss, and the extent and mechanisms of endogenous repair, have been contentious issues. Here, we use genetic fate mapping to demonstrate that spontaneous myelin repair by endogenous oligodendrocyte precursors is much more robust than previously recognized. These findings are relevant to many types of CNS pathology, raising the possibility that CNS precursors could be manipulated to repair myelin in lieu of glial transplantation.
Collapse
|
22
|
Church JS, Milich LM, Lerch JK, Popovich PG, McTigue DM. E6020, a synthetic TLR4 agonist, accelerates myelin debris clearance, Schwann cell infiltration, and remyelination in the rat spinal cord. Glia 2017; 65:883-899. [PMID: 28251686 DOI: 10.1002/glia.23132] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 12/26/2022]
Abstract
Oligodendrocyte progenitor cells (OPCs) are present throughout the adult brain and spinal cord and can replace oligodendrocytes lost to injury, aging, or disease. Their differentiation, however, is inhibited by myelin debris, making clearance of this debris an important step for cellular repair following demyelination. In models of peripheral nerve injury, TLR4 activation by lipopolysaccharide (LPS) promotes macrophage phagocytosis of debris. Here we tested whether the novel synthetic TLR4 agonist E6020, a Lipid A mimetic, promotes myelin debris clearance and remyelination in spinal cord white matter following lysolecithin-induced demyelination. In vitro, E6020 induced TLR4-dependent cytokine expression (TNFα, IL1β, IL-6) and NF-κB signaling, albeit at ∼10-fold reduced potency compared to LPS. Microinjection of E6020 into the intact rat spinal cord gray/white matter border induced macrophage activation, OPC proliferation, and robust oligodendrogenesis, similar to what we described previously using an intraspinal LPS microinjection model. Finally, a single co-injection of E6020 with lysolecithin into spinal cord white matter increased axon sparing, accelerated myelin debris clearance, enhanced Schwann cell infiltration into demyelinated lesions, and increased the number of remyelinated axons. In vitro assays confirmed that direct stimulation of macrophages by E6020 stimulates myelin phagocytosis. These data implicate TLR4 signaling in promoting repair after CNS demyelination, likely by stimulating phagocytic activity of macrophages, sparing axons, recruiting myelinating cells, and promoting remyelination. This work furthers our understanding of immune-myelin interactions and identifies a novel synthetic TLR4 agonist as a potential therapeutic avenue for white matter demyelinating conditions such as spinal cord injury and multiple sclerosis.
Collapse
Affiliation(s)
- Jamie S Church
- Neuroscience Graduate Program, The Ohio State University, Columbus, Ohio, USA.,Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA
| | - Lindsay M Milich
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| | - Jessica K Lerch
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA.,Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| | - Phillip G Popovich
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA.,Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| | - Dana M McTigue
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA.,Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
23
|
Unexpected central role of the androgen receptor in the spontaneous regeneration of myelin. Proc Natl Acad Sci U S A 2016; 113:14829-14834. [PMID: 27930320 DOI: 10.1073/pnas.1614826113] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lost myelin can be replaced after injury or during demyelinating diseases in a regenerative process called remyelination. In the central nervous system (CNS), the myelin sheaths, which protect axons and allow the fast propagation of electrical impulses, are produced by oligodendrocytes. The abundance and widespread distribution of oligodendrocyte progenitors (OPs) within the adult CNS account for this remarkable regenerative potential. Here, we report a key role for the male gonad, testosterone, and androgen receptor (AR) in CNS remyelination. After lysolecithin-induced demyelination of the male mouse ventral spinal cord white matter, the recruitment of glial fibrillary acidic protein-expressing astrocytes was compromised in the absence of testes and testosterone signaling via AR. Concomitantly, the differentiation of OPs into oligodendrocytes forming myelin basic protein (MBP)+ and proteolipid protein-positive myelin was impaired. Instead, in the absence of astrocytes, axons were remyelinated by protein zero (P0)+ and peripheral myelin protein 22-kDa (PMP22)+ myelin, normally only produced by Schwann cells in the peripheral nervous system. Thus, testosterone favors astrocyte recruitment and spontaneous oligodendrocyte-mediated remyelination. This finding may have important implications for demyelinating diseases, psychiatric disorders, and cognitive aging. The testosterone dependency of CNS oligodendrocyte remyelination may have roots in the evolutionary history of the AR, because the receptor has evolved from an ancestral 3-ketosteroid receptor through gene duplication at the time when myelin appeared in jawed vertebrates.
Collapse
|
24
|
Talbott JF, Nout-Lomas YS, Wendland MF, Mukherjee P, Huie JR, Hess CP, Mabray MC, Bresnahan JC, Beattie MS. Diffusion-Weighted Magnetic Resonance Imaging Characterization of White Matter Injury Produced by Axon-Sparing Demyelination and Severe Contusion Spinal Cord Injury in Rats. J Neurotrauma 2016; 33:929-42. [PMID: 26483094 DOI: 10.1089/neu.2015.4102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alterations in magnetic resonance imaging (MRI)-derived measurements of water diffusion parallel (D∥) and perpendicular (D⊥) to white matter tracts have been specifically attributed to pathology of axons and myelin, respectively. We test the hypothesis that directional diffusion measurements can distinguish between axon-sparing chemical demyelination and severe contusion spinal cord white matter injury. Adult rats received either unilateral ethidium bromide (EB) microinjections (chemical demyelination) into the lateral funiculus of the spinal cord at C5 or were subjected to unilateral severe contusion spinal cord injury (SCI). Diffusion MRI metrics in the lateral funiculus were analyzed at early and late time-points following injury and correlated with histology. Early EB-demyelination resulted in a significant elevation in D⊥ and significant reduction in D∥ at the injury epicenter, with histological evidence of uniform axon preservation. Alterations in D⊥ and D∥ at the epicenter of early EB-demyelination were not significantly different from those observed with severe contusion at the epicenter, where histology demonstrated severe combined axonal and myelin injury. Diffusion abnormalities away from the injury epicenter were seen with contusion injury, but not with EB-demyelination. Chronic EB lesions underwent endogenous remyelination with normalization of diffusion metrics, whereas chronic contusion resulted in persistently altered diffusivities. In the early setting, directional diffusion measurements at the injury epicenter associated with chemical demyelination are indistinguishable from those seen with severe contusive SCI, despite dramatic pathologic differences between injury models. Caution is advised in interpretation of diffusion metrics with respect to specific white matter structural alterations. Diffusion analysis should not be limited to the epicenter of focal spinal lesions as alterations marginal to the epicenter are useful for assessing the nature of focal white matter injury.
Collapse
Affiliation(s)
- Jason F Talbott
- 1 Department of Radiology and Biomedical Imaging, San Francisco General Hospital and University of California , San Francisco, San Francisco, California.,4 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California
| | - Yvette S Nout-Lomas
- 2 College of Veterinary Medicine and Biomedical Sciences, Colorado State University , Fort Collins, Colorado
| | - Michael F Wendland
- 1 Department of Radiology and Biomedical Imaging, San Francisco General Hospital and University of California , San Francisco, San Francisco, California
| | - Pratik Mukherjee
- 1 Department of Radiology and Biomedical Imaging, San Francisco General Hospital and University of California , San Francisco, San Francisco, California.,4 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California
| | - J Russell Huie
- 3 Department of Neurological Surgery, University of California , San Francisco, San Francisco, California.,4 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California
| | - Christopher P Hess
- 1 Department of Radiology and Biomedical Imaging, San Francisco General Hospital and University of California , San Francisco, San Francisco, California
| | - Marc C Mabray
- 1 Department of Radiology and Biomedical Imaging, San Francisco General Hospital and University of California , San Francisco, San Francisco, California
| | - Jacqueline C Bresnahan
- 3 Department of Neurological Surgery, University of California , San Francisco, San Francisco, California.,4 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California
| | - Michael S Beattie
- 3 Department of Neurological Surgery, University of California , San Francisco, San Francisco, California.,4 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California
| |
Collapse
|
25
|
Monteiro de Castro G, Deja NA, Ma D, Zhao C, Franklin RJM. Astrocyte Activation via Stat3 Signaling Determines the Balance of Oligodendrocyte versus Schwann Cell Remyelination. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2431-40. [PMID: 26193667 PMCID: PMC4597277 DOI: 10.1016/j.ajpath.2015.05.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 04/15/2015] [Accepted: 05/07/2015] [Indexed: 11/26/2022]
Abstract
Remyelination within the central nervous system (CNS) most often is the result of oligodendrocyte progenitor cells differentiating into myelin-forming oligodendrocytes. In some cases, however, Schwann cells, the peripheral nervous system myelinating glia, are found remyelinating demyelinated regions of the CNS. The reason for this peripheral type of remyelination in the CNS and what governs it is unknown. Here, we used a conditional astrocytic phosphorylated signal transducer and activator of transcription 3 knockout mouse model to investigate the effect of abrogating astrocyte activation on remyelination after lysolecithin-induced demyelination of spinal cord white matter. We show that oligodendrocyte-mediated remyelination decreases and Schwann cell remyelination increases in lesioned knockout mice in comparison with lesioned controls. Our study shows that astrocyte activation plays a crucial role in the balance between Schwann cell and oligodendrocyte remyelination in the CNS, and provides further insight into remyelination of CNS axons by Schwann cells.
Collapse
Affiliation(s)
- Glaucia Monteiro de Castro
- Wellcome Trust-MRC Cambridge Stem Cell Institute, and the Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Department of Biosciences, Sao Paulo Federal University, Santos, Brazil
| | - Natalia A Deja
- Wellcome Trust-MRC Cambridge Stem Cell Institute, and the Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Dan Ma
- Wellcome Trust-MRC Cambridge Stem Cell Institute, and the Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Chao Zhao
- Wellcome Trust-MRC Cambridge Stem Cell Institute, and the Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.
| | - Robin J M Franklin
- Wellcome Trust-MRC Cambridge Stem Cell Institute, and the Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
26
|
Plemel JR, Keough MB, Duncan GJ, Sparling JS, Yong VW, Stys PK, Tetzlaff W. Remyelination after spinal cord injury: Is it a target for repair? Prog Neurobiol 2014; 117:54-72. [DOI: 10.1016/j.pneurobio.2014.02.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 02/15/2014] [Accepted: 02/20/2014] [Indexed: 12/12/2022]
|
27
|
Kegler K, Imbschweiler I, Ulrich R, Kovermann P, Fahlke C, Deschl U, Kalkuhl A, Baumgärnter W, Wewetzer K. CNS Schwann cells display oligodendrocyte precursor-like potassium channel activation and antigenic expression in vitro. J Neural Transm (Vienna) 2014; 121:569-81. [PMID: 24487976 DOI: 10.1007/s00702-014-1163-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/18/2014] [Indexed: 12/14/2022]
Abstract
Central nervous system (CNS) injury triggers production of myelinating Schwann cells from endogenous oligodendrocyte precursors (OLPs). These CNS Schwann cells may be attractive candidates for novel therapeutic strategies aiming to promote endogenous CNS repair. However, CNS Schwann cells have been so far mainly characterized in situ regarding morphology and marker expression, and it has remained enigmatic whether they display functional properties distinct from peripheral nervous system (PNS) Schwann cells. Potassium channels (K+) have been implicated in progenitor and glial cell proliferation after injury and may, therefore, represent a suitable pharmacological target. In the present study, we focused on the function and expression of voltage-gated K+ channels Kv(1-12) and accessory β-subunits in purified adult canine CNS and PNS Schwann cell cultures using electrophysiology and microarray analysis and characterized their antigenic phenotype. We show here that K+ channels differed significantly in both cell types. While CNS Schwann cells displayed prominent K D-mediated K+ currents, PNS Schwann cells elicited K(D-) and K(A-type) K+ currents. Inhibition of K+ currents by TEA and Ba2+ was more effective in CNS Schwann cells. These functional differences were not paralleled by differential mRNA expression of Kv(1-12) and accessory β-subunits. However, O4/A2B5 and GFAP expressions were significantly higher and lower, respectively, in CNS than in PNS Schwann cells. Taken together, this is the first evidence that CNS Schwann cells display specific properties not shared by their peripheral counterpart. Both Kv currents and increased O4/A2B5 expression were reminiscent of OLPs suggesting that CNS Schwann cells retain OLP features during maturation.
Collapse
Affiliation(s)
- Kristel Kegler
- Department of Pathology, University of Veterinary Medicine, Bünteweg 17, 30559, Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Liu NK, Titsworth WL, Zhang YP, Xhafa AI, Shields CB, Xu XM. Characterizing phospholipase A2-induced spinal cord injury-a comparison with contusive spinal cord injury in adult rats. Transl Stroke Res 2013; 2:608-18. [PMID: 23585818 DOI: 10.1007/s12975-011-0089-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To assess whether phospholipase A2 (PLA2) plays a role in the pathogenesis of spinal cord injury (SCI), we compared lesions either induced by PLA2 alone or by a contusive SCI. At 24-h post-injury, both methods induced a focal hemorrhagic pathology. The PLA2 injury was mainly confined within the ventrolateral white matter, whereas the contusion injury widely affected both the gray and white matter. A prominent difference between the two models was that PLA2 induced a massive demyelination with axons remaining in the lesion area, whereas the contusion injury induced axonal damage and myelin breakdown. At 4 weeks, no cavitation was found within the PLA2 lesion, and numerous axons were myelinated by host-migrated Schwann cells. Among them, 45% of animals had early transcranial magnetic motor-evoked potential (tcMMEP) responses. In contrast, the contusive SCI induced a typical centralized cavity with reactive astrocytes forming a glial border. Only 15% of rats had early tcMMEP responses after the contusion. BBB scores were similarly reduced in both models. Our study indicates that PLA2 may play a unique role in mediating secondary SCI likely by targeting glial cells, particularly those of oligodendrocytes. This lesion model could also be used for studying demyelination and remyelination in the injured spinal cord associated with PLA2-mediated secondary SCI.
Collapse
Affiliation(s)
- Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, 950 W Walnut St, R2 Building, Room 402, Indianapolis, IN 46202, USA. Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY 40292, USA. Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | | | | | | | | | | |
Collapse
|
29
|
Crawford A, Chambers C, Franklin R. Remyelination: The True Regeneration of the Central Nervous System. J Comp Pathol 2013; 149:242-54. [DOI: 10.1016/j.jcpa.2013.05.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 04/09/2013] [Accepted: 05/11/2013] [Indexed: 11/25/2022]
|
30
|
Transplantation of oligodendrocyte precursor cells improves locomotion deficits in rats with spinal cord irradiation injury. PLoS One 2013; 8:e57534. [PMID: 23460872 PMCID: PMC3583877 DOI: 10.1371/journal.pone.0057534] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 01/22/2013] [Indexed: 11/19/2022] Open
Abstract
Demyelination contributes to the functional impairment of irradiation injured spinal cord. One potential therapeutic strategy involves replacing the myelin-forming cells. Here, we asked whether transplantation of Olig2(+)-GFP(+)-oligodendrocyte precursor cells (OPCs), which are derived from Olig2-GFP-mouse embryonic stem cells (mESCs), could enhance remyelination and functional recovery after spinal cord irradiation injury. We differentiated Olig2-GFP-mESCs into purified Olig2(+)-GFP(+)-OPCs and transplanted them into the rats' cervical 4-5 dorsal spinal cord level at 4 months after irradiation injury. Eight weeks after transplantation, the Olig2(+)-GFP(+)-OPCs survived and integrated into the injured spinal cord. Immunofluorescence analysis showed that the grafted Olig2(+)-GFP(+)-OPCs primarily differentiated into adenomatous polyposis coli (APC(+)) oligodendrocytes (54.6±10.5%). The staining with luxol fast blue, hematoxylin & eosin (LFB/H&E) and electron microscopy demonstrated that the engrafted Olig2(+)-GFP(+)-OPCs attenuated the demyelination resulted from the irradiation. More importantly, the recovery of forelimb locomotor function was enhanced in animals receiving grafts of Olig2(+)-GFP(+)-OPCs. We concluded that OPC transplantation is a feasible therapy to repair the irradiated lesions in the central nervous system (CNS).
Collapse
|
31
|
Hampton DW, Innes N, Merkler D, Zhao C, Franklin RJ, Chandran S. Focal Immune-Mediated White Matter Demyelination Reveals an Age-Associated Increase in Axonal Vulnerability and Decreased Remyelination Efficiency. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1897-905. [DOI: 10.1016/j.ajpath.2012.01.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 01/16/2012] [Accepted: 01/19/2012] [Indexed: 01/18/2023]
|
32
|
Hansmann F, Pringproa K, Ulrich R, Sun Y, Herder V, Kreutzer M, Baumgärtner W, Wewetzer K. Highly malignant behavior of a murine oligodendrocyte precursor cell line following transplantation into the demyelinated and nondemyelinated central nervous system. Cell Transplant 2012; 21:1161-75. [PMID: 22420305 DOI: 10.3727/096368911x627444] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Understanding the basic mechanisms that control CNS remyelination is of direct clinical relevance. Suitable model systems include the analysis of naturally occurring and genetically generated mouse mutants and the transplantation of oligodendrocyte precursor cells (OPCs) following experimental demyelination. However, aforementioned studies were exclusively carried out in rats and little is known about the in vivo behavior of transplanted murine OPCs. Therefore in the present study, we (i) established a model of ethidium bromide-induced demyelination of the caudal cerebellar peduncle (CCP) in the adult mouse and (ii) studied the distribution and marker expression of the murine OPC line BO-1 expressing the enhanced green fluorescent protein (eGFP) 10 and 17 days after stereotaxic implantation. Injection of ethidium bromide (0.025%) in the CCP resulted in a severe loss of myelin, marked astrogliosis, and mild to moderate axonal alterations. Transplanted cells formed an invasive and liquorogenic metastasizing tumor, classified as murine giant cell glioblastoma. Transplanted BO-1 cells displayed substantially reduced CNPase expression as compared to their in vitro phenotype, low levels of MBP and GFAP, prominent upregulation of NG2, PDGFRα, nuclear p53, and an unaltered expression of signal transducer and activator of transcription (STAT)-3. Summarized environmental signaling in the brain stem was not sufficient to trigger oligodendrocytic differentiation of BO-1 cells and seemed to block CNPase expression. Moreover, the lack of the remyelinating capacity was associated with tumor formation indicating that BO-1 cells may serve as a versatile experimental model to study tumorigenesis of glial tumors.
Collapse
Affiliation(s)
- Florian Hansmann
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Cao Q, Whittemore SR. Cell transplantation: stem cells and precursor cells. HANDBOOK OF CLINICAL NEUROLOGY 2012; 109:551-61. [PMID: 23098736 DOI: 10.1016/b978-0-444-52137-8.00034-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Stem cells have been used to approach four different therapeutic repair strategies in spinal cord injury (SCI): (1) replacement of lost neurons, (2) replacement of oligodendrocytes to promote remyelination of demyelinated and/or regenerated axons, (3) providing a permissive substrate for axonal regeneration to overcome the intrinsic inhibition of surface molecules, and (4) engendering host repair. The first two strategies involve cell-specific differentiation of engrafted neural cells and the latter two may involve grafted neural or non-neural cells. The preclinical data for all of these approaches is at times contradictory and there is no consensus as to what type of stem cell is optimal to facilitate repair in specific injuries. Remyelination has been the most successful stem cell replacement strategy. Partial lineage restriction and pharmacological and/or genetic manipulation to express additional trophic support or restrict responses to host signals appears necessary for optimal neuronal and oligodendrocytic differentiation. However, these modifications will make their clinical application exceedingly difficult. Effects of grafted stem cells on abrogating host immune responses and engendering intrinsic repair is also a mechanism through which stem cells are likely therapeutically beneficial. While clinical trials with stem cell grafting into the injured spinal cord are ongoing, preclinical studies have yet to define mechanisms of action that can be definitively translated to those clinical approaches.
Collapse
Affiliation(s)
- Qilin Cao
- Department of Neurosurgery, University of Texas Medical School, Houston, TX, USA
| | | |
Collapse
|
34
|
Imbschweiler I, Seehusen F, Peck CT, Omar M, Baumgärtner W, Wewetzer K. Increased p75 neurotrophin receptor expression in the canine distemper virus model of multiple sclerosis identifies aldynoglial Schwann cells that emerge in response to axonal damage. Glia 2011; 60:358-71. [PMID: 22072443 DOI: 10.1002/glia.22270] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 10/24/2011] [Indexed: 12/15/2022]
Abstract
Gliogenesis under pathophysiological conditions is of particular clinical relevance since it may provide regeneration-promoting cells recruitable for therapeutic purposes. There is accumulating evidence that aldynoglial cells with Schwann cell-like growth-promoting properties emerge in the lesioned CNS. However, the characterization of these cells and the signals triggering their in situ generation have remained enigmatic. In the present study, we used the p75 neurotrophin receptor (p75(NTR) ) as a marker for Schwann cells to study gliogenesis in the well-defined canine distemper virus (CDV)-induced demyelination model. White matter lesions of CDV-infected dogs contained bi- to multipolar, p75(NTR) -expressing cells that neither expressed MBP, GFAP, BS-1, or P0 identifying oligodendroglia, astrocytes, microglia, and myelinating Schwann cells nor CDV antigen. Interestingly, p75(NTR) -expression became apparent prior to the onset of demyelination in parallel to the expression of β-amyloid precursor protein (β-APP), nonphosphorylated neurofilament (n-NF), BS-1, and CD3, and peaked in subacute lesions with inflammation. To study the role of infiltrating immune cells during differentiation of Schwann cell-like glia, organotypic slice cultures from the normal olfactory bulb were established. Despite the absence of infiltrating lymphocytes and macrophages, a massive appearance of p75(NTR) -positive Schwann-like cells and BS-1-positive microglia was noticed at 10 days in vitro. It is concluded that axonal damage as an early signal triggers the differentiation of tissue-resident precursor cells into p75(NTR) -expressing aldynoglial Schwann cells that retain an immature pre-myelin state. Further studies have to address the role of microglia during this process and the regenerative potential of aldynoglial cells in CDV infection and other demyelinating diseases.
Collapse
Affiliation(s)
- Ilka Imbschweiler
- Department of Pathology, University of Veterinary Medicine, Bünteweg 17, D-30559 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Kipp M, van der Star B, Vogel DYS, Puentes F, van der Valk P, Baker D, Amor S. Experimental in vivo and in vitro models of multiple sclerosis: EAE and beyond. Mult Scler Relat Disord 2011; 1:15-28. [PMID: 25876447 DOI: 10.1016/j.msard.2011.09.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 09/05/2011] [Indexed: 12/16/2022]
Abstract
Although the primary cause of multiple sclerosis (MS) is unknown, the widely accepted view is that aberrant (auto)immune responses possibly arising following infection(s) are responsible for the destructive inflammatory demyelination and neurodegeneration in the central nervous system (CNS). This notion, and the limited access of human brain tissue early in the course of MS, has led to the development of autoimmune, viral and toxin-induced demyelination animal models as well as the development of human CNS cell and organotypic brain slice cultures in an attempt to understand events in MS. The autoimmune models, collectively known as experimental autoimmune encephalomyelitis (EAE), and viral models have shaped ideas of how environmental factors may trigger inflammation, demyelination and neurodegeneration in the CNS. Understandably, these models have also heavily influenced the development of therapies targeting the inflammatory aspect of MS. Demyelination and remyelination in the absence of overt inflammation are better studied in toxin-induced demyelination models using cuprizone and lysolecithin. The paradigm shift of MS as an autoimmune disease of myelin to a neurodegenerative disease has required more appropriate models reflecting the axonal and neuronal damage. Thus, secondary progressive EAE and spastic models have been crucial to develop neuroprotective approaches. In this review the current in vivo and in vitro experimental models to examine pathological mechanisms involved in inflammation, demyelination and neuronal degeneration, as well as remyelination and repair in MS are discussed. Since this knowledge is the basis for the development of new therapeutic approaches for MS, we particularly address whether the currently available models truly reflect the human disease, and discuss perspectives to further optimise and develop more suitable experimental models to study MS.
Collapse
Affiliation(s)
- Markus Kipp
- Department of Pathology, VU University Medical Centre, PO Box 7057, 1007 MB Amsterdam, The Netherlands; Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Baukje van der Star
- Department of Pathology, VU University Medical Centre, PO Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Daphne Y S Vogel
- Department of Pathology, VU University Medical Centre, PO Box 7057, 1007 MB Amsterdam, The Netherlands; Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Fabìola Puentes
- Neuroimmunology Unit, Blizard Institute, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, UK
| | - Paul van der Valk
- Department of Pathology, VU University Medical Centre, PO Box 7057, 1007 MB Amsterdam, The Netherlands
| | - David Baker
- Neuroimmunology Unit, Blizard Institute, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, UK
| | - Sandra Amor
- Department of Pathology, VU University Medical Centre, PO Box 7057, 1007 MB Amsterdam, The Netherlands; Neuroimmunology Unit, Blizard Institute, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, UK.
| |
Collapse
|
36
|
Abstract
Demyelinating disorders of the central nervous system are among the most crippling neurological diseases affecting patients at various stages of life. In the most prominent demyelinating disease, multiple sclerosis, the regeneration of myelin sheaths often fails due to a default of the resident stem/precursor cells (oligodendrocyte precursor cells) to differentiate into mature myelin forming cells. Significant advances have been made in our understanding of the molecular and cellular processes involved in remyelination. Furthermore, important insight has been gained from studies investigating the interaction of stem/precursor cells with the distinct environment of demyelinating lesions. These suggest that successful regeneration depends on a signalling environment conducive to remyelination, which is provided in the context of acute inflammation. However, multiple sclerosis lesions also contain factors that inhibit the differentiation of oligodendrocyte precursor cells into myelinating oligodendrocytes. The pattern by which remyelination inducers and inhibitors are expressed in multiple sclerosis lesions may determine a window of opportunity during which oligodendrocyte precursor cells can successfully differentiate. As the first molecules aiming at promoting remyelination are about to enter clinical trials, this review critically evaluates recent advances in our understanding of the biology of oligodendrocyte precursor cells and of the stage-dependent molecular pathology of multiple sclerosis lesions relevant to the regeneration of myelin sheaths. We propose a model that may help to provide cues for how remyelination can be therapeutically enhanced in clinical disease.
Collapse
Affiliation(s)
- Mark R Kotter
- Department of Clinical Neurosciences, MRC Centre for Stem Cells and Regenerative Medicine, University of Cambridge, Addenbrooke's Hospital, Box 167, Hills Road, Cambridge CB22QQ, UK.
| | | | | |
Collapse
|
37
|
Astrocytes from the contused spinal cord inhibit oligodendrocyte differentiation of adult oligodendrocyte precursor cells by increasing the expression of bone morphogenetic proteins. J Neurosci 2011; 31:6053-8. [PMID: 21508230 DOI: 10.1523/jneurosci.5524-09.2011] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Promotion of remyelination is an important therapeutic strategy to facilitate functional recovery after traumatic spinal cord injury (SCI). Transplantation of neural stem cells (NSCs) or oligodendrocyte precursor cells (OPCs) has been used to enhance remyelination after SCI. However, the microenvironment in the injured spinal cord is inhibitory for oligodendrocyte (OL) differentiation of NSCs or OPCs. Identifying the signaling pathways that inhibit OL differentiation in the injured spinal cord could lead to new therapeutic strategies to enhance remyelination and functional recovery after SCI. In the present study, we show that reactive astrocytes from the injured rat spinal cord or their conditioned media inhibit OL differentiation of adult OPCs with concurrent promotion of astrocyte differentiation. The expression of bone morphogenetic proteins (BMP) is dramatically increased in the reactive astrocytes and their conditioned media. Importantly, blocking BMP activity by BMP receptor antagonist, noggin, reverse the effects of active astrocytes on OPC differentiation by increasing the differentiation of OL from OPCs while decreasing the generation of astrocytes. These data indicate that the upregulated bone morphogenetic proteins in the reactive astrocytes are major factors to inhibit OL differentiation of OPCs and to promote its astrocyte differentiation. These data suggest that manipulation of BMP signaling in the endogenous or grafted NSCs or OPCs may be a useful therapeutic strategy to increase their OL differentiation and remyelination and enhance functional recovery after SCI.
Collapse
|
38
|
Sasaki M, Lankford KL, Radtke C, Honmou O, Kocsis JD. Remyelination after olfactory ensheathing cell transplantation into diverse demyelinating environments. Exp Neurol 2011; 229:88-98. [DOI: 10.1016/j.expneurol.2011.01.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 01/10/2011] [Accepted: 01/16/2011] [Indexed: 01/07/2023]
|
39
|
Walczak P, All AH, Rumpal N, Gorelik M, Kim H, Maybhate A, Agrawal G, Campanelli JT, Gilad AA, Kerr DA, Bulte JWM. Human glial-restricted progenitors survive, proliferate, and preserve electrophysiological function in rats with focal inflammatory spinal cord demyelination. Glia 2010; 59:499-510. [PMID: 21264955 DOI: 10.1002/glia.21119] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 11/09/2010] [Indexed: 12/20/2022]
Abstract
Transplantation of glial progenitor cells results in transplant-derived myelination and improved function in rodents with genetic dysmyelination or chemical demyelination. However, glial cell transplantation in adult CNS inflammatory demyelinating models has not been well studied. Here we transplanted human glial-restricted progenitor (hGRP) cells into the spinal cord of adult rats with inflammatory demyelination, and monitored cell fate in chemically immunosuppressed animals. We found that hGRPs migrate extensively, expand within inflammatory spinal cord lesions, do not form tumors, and adopt a mature glial phenotype, albeit at a low rate. Human GRP-transplanted rats, but not controls, exhibited preserved electrophysiological conduction across the spinal cord, though no differences in behavioral improvement were noted between the two groups. Although these hGRPs myelinated extensively after implantation into neonatal shiverer mouse brain, only marginal remyelination was observed in the inflammatory spinal cord demyelination model. The low rate of transplant-derived myelination in adult rat spinal cord may reflect host age, species, transplant environment/location, and/or immune suppression regime differences. We conclude that hGRPs have the capacity to myelinate dysmyelinated neonatal rodent brain and preserve conduction in the inflammatory demyelinated adult rodent spinal cord. The latter benefit is likely dependent on trophic support and suggests further exploration of potential of glial progenitors in animal models of chronic inflammatory demyelination.
Collapse
Affiliation(s)
- Piotr Walczak
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zawadzka M, Rivers LE, Fancy SPJ, Zhao C, Tripathi R, Jamen F, Young K, Goncharevich A, Pohl H, Rizzi M, Rowitch DH, Kessaris N, Suter U, Richardson WD, Franklin RJM. CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell 2010; 6:578-90. [PMID: 20569695 DOI: 10.1016/j.stem.2010.04.002] [Citation(s) in RCA: 483] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 02/26/2010] [Accepted: 04/11/2010] [Indexed: 01/01/2023]
Abstract
After central nervous system (CNS) demyelination-such as occurs during multiple sclerosis-there is often spontaneous regeneration of myelin sheaths, mainly by oligodendrocytes but also by Schwann cells. The origins of the remyelinating cells have not previously been established. We have used Cre-lox fate mapping in transgenic mice to show that PDGFRA/NG2-expressing glia, a distributed population of stem/progenitor cells in the adult CNS, produce the remyelinating oligodendrocytes and almost all of the Schwann cells in chemically induced demyelinated lesions. In contrast, the great majority of reactive astrocytes in the vicinity of the lesions are derived from preexisting FGFR3-expressing cells, likely to be astrocytes. These data resolve a long-running debate about the origins of the main players in CNS remyelination and reveal a surprising capacity of CNS precursors to generate Schwann cells, which normally develop from the embryonic neural crest and are restricted to the peripheral nervous system.
Collapse
Affiliation(s)
- Malgorzata Zawadzka
- MRC Cambridge Centre for Stem Cell Biology and Regenerative Medicine, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Rivera FJ, Steffenhagen C, Kremer D, Kandasamy M, Sandner B, Couillard-Despres S, Weidner N, Küry P, Aigner L. Deciphering the oligodendrogenic program of neural progenitors: cell intrinsic and extrinsic regulators. Stem Cells Dev 2010; 19:595-606. [PMID: 19938982 DOI: 10.1089/scd.2009.0293] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the developing and adult CNS, neural stem/progenitor cells (NSPCs) and oligodendroglial progenitor cells (OPCs) follow an oligodendrogenic process with the aim of myelinating axons. This process is to a high degree regulated by an oligodendrogenic program (OPr) composed of intrinsic and extrinsic factors that modulate the different steps required for NSPCs to differentiate into myelinating oligodendrocytes. Even though NSPCs and OPCs are present in the diseased CNS and have the capacity to generate oligodendrocytes, sparse remyelination of axons constitutes a major constraint in therapies toward multiple sclerosis (MS) and spinal cord injury (SCI). Lack of pro-oligodendrogenic factors and presence of anti-oligodendrogenic activities are thought to be the main reasons for this limitation. Thus, molecular and cellular strategies aiming at remyelination and at targeting such pro- and anti-oligodendrogenic mechanisms are currently under investigation. The present review summarizes the current knowledge on the OPr; it implements our own findings on mesenchymal stem cell-derived pro-oligodendroglial factors and on the role of p57/kip2 in oligodendroglial differentiation. Moreover, it describes molecular and cellular approaches for the development of future therapies toward remyelination.
Collapse
Affiliation(s)
- Francisco J Rivera
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zujovic V, Thibaud J, Bachelin C, Vidal M, Coulpier F, Charnay P, Topilko P, Baron-Van Evercooren A. Boundary cap cells are highly competitive for CNS remyelination: fast migration and efficient differentiation in PNS and CNS myelin-forming cells. Stem Cells 2010; 28:470-9. [PMID: 20039366 DOI: 10.1002/stem.290] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
During development, boundary cap cells (BC) and neural crest cell (NCC) derivatives generate Schwann cells (SC) of the spinal roots and a subpopulation of neurons and satellite cells in the dorsal root ganglia. Despite their stem-like properties, their therapeutic potential in the diseased central nervous system (CNS) was never explored. The aim of this work was to explore BC therapeutic potential for CNS remyelination. We derived BC from Krox20(Cre) x R26R(Yfp) embryos at E12.5, when Krox20 is exclusively expressed by BC. Combining microdissection and cell fate mapping, we show that acutely isolated BC are a unique population closely related but distinct from NCC and SC precursors. Moreover, when grafted in the demyelinated spinal cord, BC progeny expands in the lesion through a combination of time-regulated processes including proliferation and differentiation. Furthermore, when grafted away from the lesion, BC progeny, in contrast to committed SC, show a high migratory potential mediated through enhanced interactions with astrocytes and white matter, and possibly with polysialylated neural cell adhesion molecule expression. In response to demyelinated axons of the CNS, BC progeny generates essentially myelin-forming SC. However, in contact with axons and astrocytes, some of them generate also myelin-forming oligodendrocytes. There are two primary outcomes of this study. First, the high motility of BC and their progeny, in addition to their capacity to remyelinate CNS axons, supports the view that BC are a reservoir of interest to promote CNS remyelination. Second, from a developmental point of view, BC behavior in the demyelinated CNS raises the question of the boundary between central and peripheral myelinating cells.
Collapse
Affiliation(s)
- V Zujovic
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, UMR-S975, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Cao Q, He Q, Wang Y, Cheng X, Howard RM, Zhang Y, DeVries WH, Shields CB, Magnuson DSK, Xu XM, Kim DH, Whittemore SR. Transplantation of ciliary neurotrophic factor-expressing adult oligodendrocyte precursor cells promotes remyelination and functional recovery after spinal cord injury. J Neurosci 2010; 30:2989-3001. [PMID: 20181596 PMCID: PMC2836860 DOI: 10.1523/jneurosci.3174-09.2010] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 11/09/2009] [Accepted: 12/26/2009] [Indexed: 12/13/2022] Open
Abstract
Demyelination contributes to the dysfunction after traumatic spinal cord injury (SCI). We explored whether the combination of neurotrophic factors and transplantation of adult rat spinal cord oligodendrocyte precursor cells (OPCs) could enhance remyelination and functional recovery after SCI. Ciliary neurotrophic factor (CNTF) was the most effective neurotrophic factor to promote oligodendrocyte (OL) differentiation and survival of OPCs in vitro. OPCs were infected with retroviruses expressing enhanced green fluorescent protein (EGFP) or CNTF and transplanted into the contused adult thoracic spinal cord 9 d after injury. Seven weeks after transplantation, the grafted OPCs survived and integrated into the injured spinal cord. The survival of grafted CNTF-OPCs increased fourfold compared with EGFP-OPCs. The grafted OPCs differentiated into adenomatus polyposis coli (APC(+)) OLs, and CNTF significantly increased the percentage of APC(+) OLs from grafted OPCs. Immunofluorescent and immunoelectron microscopic analyses showed that the grafted OPCs formed central myelin sheaths around the axons in the injured spinal cord. The number of OL-remyelinated axons in ventrolateral funiculus (VLF) or lateral funiculus (LF) at the injured epicenter was significantly increased in animals that received CNTF-OPC grafts compared with all other groups. Importantly, 75% of rats receiving CNTF-OPC grafts recovered transcranial magnetic motor-evoked potential and magnetic interenlargement reflex responses, indicating that conduction through the demyelinated axons in VLF or LF, respectively, was partially restored. More importantly, recovery of hindlimb locomotor function was significantly enhanced in animals receiving grafts of CNTF-OPCs. Thus, combined treatment with OPC grafts expressing CNTF can enhance remyelination and facilitate functional recovery after traumatic SCI.
Collapse
Affiliation(s)
- Qilin Cao
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Regulation of oligodendrocyte progenitor cell maturation by PPARδ: effects on bone morphogenetic proteins. ASN Neuro 2010; 2:e00025. [PMID: 20001953 PMCID: PMC2807733 DOI: 10.1042/an20090033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 12/07/2009] [Accepted: 12/09/2009] [Indexed: 12/22/2022] Open
Abstract
In EAE (experimental autoimmune encephalomyelitis), agonists of PPARs (peroxisome proliferator-activated receptors) provide clinical benefit and reduce damage. In contrast with PPARγ, agonists of PPARδ are more effective when given at later stages of EAE and increase myelin gene expression, suggesting effects on OL (oligodendrocyte) maturation. In the present study we examined effects of the PPARδ agonist GW0742 on OPCs (OL progenitor cells), and tested whether the effects involve modulation of BMPs (bone morphogenetic proteins). We show that effects of GW0742 are mediated through PPARδ since no amelioration of EAE clinical scores was observed in PPARδ-null mice. In OPCs derived from E13 mice (where E is embryonic day), GW0742, but not the PPARγ agonist pioglitazone, increased the number of myelin-producing OLs. This was due to activation of PPARδ since process formation was reduced in PPARδ-null compared with wild-type OPCs. In both OPCs and enriched astrocyte cultures, GW0742 increased noggin protein expression; however, noggin mRNA was only increased in astrocytes. In contrast, GW0742 reduced BMP2 and BMP4 mRNA levels in OPCs, with lesser effects in astrocytes. These findings demonstrate that PPARδ plays a role in OPC maturation, mediated, in part, by regulation of BMP and BMP antagonists.
Collapse
|
45
|
Hu J, Deng L, Wang X, Xu XM. Effects of extracellular matrix molecules on the growth properties of oligodendrocyte progenitor cells in vitro. J Neurosci Res 2010; 87:2854-62. [PMID: 19472225 DOI: 10.1002/jnr.22111] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The extracellular matrix (ECM) is a component of neural cell niches and regulates multiple functions of diverse cell types. To date, limited information is available concerning its biological effects on the growth properties of oligodendrocyte progenitor cells (OPCs). In the present study, we examined effects of several ECM components, i.e., fibronectin, laminin, and Matrigel, on the survival, proliferation, migration, process extension, and purity of OPCs isolated from embryonic day 15 rat spinal cords. All three ECM components enhanced these biological properties of the OPCs compared with a non-ECM substrate, poly-D-lysine. However, the extents of their effects were somewhat different. Among these ECMs, fibronectin showed the strongest effect on almost all aspects of the growth properties of OPCs, implying that this molecule is a better substrate for the growth of OPCs in vitro. Because of its survival- and growth-promoting effects on OPCs, fibronectin may be considered as a candidate substrate for enhancing OPC-mediated repair under conditions when exogenous delivery or endogenous stimulation of OPCs is applied.
Collapse
Affiliation(s)
- Jianguo Hu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | |
Collapse
|
46
|
Markakis EA, Sasaki M, Lankford KL, Kocsis JD. Convergence of cells from the progenitor fraction of adult olfactory bulb tissue to remyelinating glia in demyelinating spinal cord lesions. PLoS One 2009; 4:e7260. [PMID: 19787061 PMCID: PMC2747269 DOI: 10.1371/journal.pone.0007260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 08/30/2009] [Indexed: 01/18/2023] Open
Abstract
Background Progenitor cells isolated from adult brain tissue are important tools for experimental studies of remyelination. Cells harvested from neurogenic regions in the adult brain such as the subependymal zone have demonstrated remyelination potential. Multipotent cells from the progenitor fraction have been isolated from the adult olfactory bulb (OB) but their potential to remyelinate has not been studied. Methodology/Principal Findings We used the buoyant density gradient centrifugation method to isolate the progenitor fraction and harvest self-renewing multipotent neural cells grown in monolayers from the adult green-fluorescent protein (GFP) transgenic rat OB. OB tissue was mechanically and chemically dissociated and the resultant cell suspension fractionated on a Percoll gradient. The progenitor fraction was isolated and these cells were plated in growth media with serum for 24 hrs. Cells were then propagated in N2 supplemented serum-free media containing b-FGF. Cells at passage 4 (P4) were introduced into a demyelinated spinal cord lesion. The GFP+ cells survived and integrated into the lesion, and extensive remyelination was observed in plastic sections. Immunohistochemistry revealed GFP+ cells in the spinal cord to be glial fibrillary acidic protein (GFAP), neuronal nuclei (NeuN), and neurofilament negative. The GFP+ cells were found among primarily P0+ myelin profiles, although some myelin basic protein (MBP) profiles were present. Immuno-electron microscopy for GFP revealed GFP+ cell bodies adjacent to and surrounding peripheral-type myelin rings. Conclusions/Significance We report that neural cells from the progenitor fraction of the adult rat OB grown in monolayers can be expanded for several passages in culture and that upon transplantation into a demyelinated spinal cord lesion provide extensive remyelination without ectopic neuronal differentiation.
Collapse
Affiliation(s)
- Eleni A Markakis
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America.
| | | | | | | |
Collapse
|
47
|
Buchet D, Baron-Van Evercooren A. In search of human oligodendroglia for myelin repair. Neurosci Lett 2009; 456:112-9. [DOI: 10.1016/j.neulet.2008.09.086] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 08/15/2008] [Accepted: 09/04/2008] [Indexed: 11/15/2022]
|
48
|
Abstract
Remyelination involves reinvesting demyelinated axons with new myelin sheaths. In stark contrast to the situation that follows loss of neurons or axonal damage, remyelination in the CNS can be a highly effective regenerative process. It is mediated by a population of precursor cells called oligodendrocyte precursor cells (OPCs), which are widely distributed throughout the adult CNS. However, despite its efficiency in experimental models and in some clinical diseases, remyelination is often inadequate in demyelinating diseases such as multiple sclerosis (MS), the most common demyelinating disease and a cause of neurological disability in young adults. The failure of remyelination has profound consequences for the health of axons, the progressive and irreversible loss of which accounts for the progressive nature of these diseases. The mechanisms of remyelination therefore provide critical clues for regeneration biologists that help them to determine why remyelination fails in MS and in other demyelinating diseases and how it might be enhanced therapeutically.
Collapse
|
49
|
Transplanted neural stem/progenitor cells generate myelinating oligodendrocytes and Schwann cells in spinal cord demyelination and dysmyelination. Exp Neurol 2008; 213:176-90. [DOI: 10.1016/j.expneurol.2008.05.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 05/12/2008] [Accepted: 05/23/2008] [Indexed: 02/03/2023]
|
50
|
Kulbatski I, Mothe AJ, Parr AM, Kim H, Kang CE, Bozkurt G, Tator CH. Glial precursor cell transplantation therapy for neurotrauma and multiple sclerosis. ACTA ACUST UNITED AC 2008; 43:123-76. [PMID: 18706353 DOI: 10.1016/j.proghi.2008.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Accepted: 04/07/2008] [Indexed: 12/18/2022]
Abstract
Traumatic injury to the brain or spinal cord and multiple sclerosis (MS) share a common pathophysiology with regard to axonal demyelination. Despite advances in central nervous system (CNS) repair in experimental animal models, adequate functional recovery has yet to be achieved in patients in response to any of the current strategies. Functional recovery is dependent, in large part, upon remyelination of spared or regenerating axons. The mammalian CNS maintains an endogenous reservoir of glial precursor cells (GPCs), capable of generating new oligodendrocytes and astrocytes. These GPCs are upregulated following traumatic or demyelinating lesions, followed by their differentiation into oligodendrocytes. However, this innate response does not adequately promote remyelination. As a result, researchers have been focusing their efforts on harvesting, culturing, characterizing, and transplanting GPCs into injured regions of the adult mammalian CNS in a variety of animal models of CNS trauma or demyelinating disease. The technical and logistic considerations for transplanting GPCs are extensive and crucial for optimizing and maintaining cell survival before and after transplantation, promoting myelination, and tracking the fate of transplanted cells. This is especially true in trials of GPC transplantation in combination with other strategies such as neutralization of inhibitors to axonal regeneration or remyelination. Overall, such studies improve our understanding and approach to developing clinically relevant therapies for axonal remyelination following traumatic brain injury (TBI) or spinal cord injury (SCI) and demyelinating diseases such as MS.
Collapse
Affiliation(s)
- Iris Kulbatski
- Krembil Neuroscience Centre, Toronto Western Research Institute, 399 Bathurst Street, McLaughlin Pavilion #12-423, Toronto, Ontario, Canada M5T-2S8.
| | | | | | | | | | | | | |
Collapse
|