1
|
Guardiola-Diaz HM, DiBenedictis BT, Prendaj E, Bansal R. Diverse Responses of Oligodendrocytes to Different FGF-Family Members: Uncoupling Structure-Function Relationship Within FGF Subfamilies. ASN Neuro 2024; 16:2371163. [PMID: 39024549 PMCID: PMC11262039 DOI: 10.1080/17590914.2024.2371163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/01/2024] [Indexed: 07/20/2024] Open
Abstract
The fifteen canonical paracrine fibroblast growth factors (FGFs) are organized in five subfamilies that interact with four FGF-receptors (FGFRs) and heparan sulfate proteoglycan (HSPG) co-receptors. Many of these FGFs are expressed in CNS regions where oligodendrocyte (OL) progenitors originate, migrate or differentiate. FGF2 (basic FGF) is considered a prototype FGF and the information about the effects of FGF signaling on OL-lineage cells has evolved largely from the study of FGF2. However, other FGFs from four subfamilies ((FGF1 (FGF1,-2), FGF4 (FGF4,-5,-6), FGF8 (FGF8,-17,-18) and FGF9 (FGF9,-16,-20)) that can interact with the isoforms of FGFRs expressed in OL-lineage cells may also play important roles. We previously reported OL-responses to FGF8 family members. Here, we investigate the effects of members of the FGF1,-4, and -9 subfamilies on proliferation and differentiation of OL progenitors (OPCs), and on cell cycle re-entry and down-regulation of myelin proteins by mature OLs. We found that while FGF2 induced all these responses strongly, FGF4,-6,-9 could do so only transiently and in the presence of exogenous HSPGs, and that FGF5,-16,-20 could not do so even in the presence of heparin or at higher concentrations. Furthermore, we noted that structurally similar FGFs within subfamilies did not always show similarities in their biological effects on OL-lineage cells. Taken together, these studies reveal that FGFs differ in the way they regulate the OL-lineage cells, emphasizes the selectivity and importance of HSPGs as FGF co-receptors in OL-lineage cells and suggests that structural similarity among FGF-subfamily members may not always predict their overlapping biological functions.
Collapse
Affiliation(s)
- Hebe M Guardiola-Diaz
- Department of Biology and Neuroscience Program, Trinity College, Hartford, Connecticut, USA
| | - Brett T DiBenedictis
- Department of Neuroscience, University of Connecticut Medical School, Farmington, Connecticut, USA
| | - Erealda Prendaj
- Department of Neuroscience, University of Connecticut Medical School, Farmington, Connecticut, USA
| | - Rashmi Bansal
- Department of Neuroscience, University of Connecticut Medical School, Farmington, Connecticut, USA
| |
Collapse
|
2
|
Wang D, Liu G, Meng Y, Chen H, Ye Z, Jing J. The Configuration of GRB2 in Protein Interaction and Signal Transduction. Biomolecules 2024; 14:259. [PMID: 38540680 PMCID: PMC10968029 DOI: 10.3390/biom14030259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 07/02/2024] Open
Abstract
Growth-factor-receptor-binding protein 2 (GRB2) is a non-enzymatic adaptor protein that plays a pivotal role in precisely regulated signaling cascades from cell surface receptors to cellular responses, including signaling transduction and gene expression. GRB2 binds to numerous target molecules, thereby modulating a complex cell signaling network with diverse functions. The structural characteristics of GRB2 are essential for its functionality, as its multiple domains and interaction mechanisms underpin its role in cellular biology. The typical signaling pathway involving GRB2 is initiated by the ligand stimulation to its receptor tyrosine kinases (RTKs). The activation of RTKs leads to the recruitment of GRB2 through its SH2 domain to the phosphorylated tyrosine residues on the receptor. GRB2, in turn, binds to the Son of Sevenless (SOS) protein through its SH3 domain. This binding facilitates the activation of Ras, a small GTPase, which triggers a cascade of downstream signaling events, ultimately leading to cell proliferation, survival, and differentiation. Further research and exploration into the structure and function of GRB2 hold great potential for providing novel insights and strategies to enhance medical approaches for related diseases. In this review, we provide an outline of the proteins that engage with domains of GRB2, along with the function of different GRB2 domains in governing cellular signaling pathways. This furnishes essential points of current studies for the forthcoming advancement of therapeutic medications aimed at GRB2.
Collapse
Affiliation(s)
- Dingyi Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Guoxia Liu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
- School of Life Science, Tianjin University, Tianjin 200072, China
| | - Yuxin Meng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Hongjie Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Zu Ye
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Hangzhou 310022, China
| | - Ji Jing
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Hangzhou 310022, China
| |
Collapse
|
3
|
Ladbury JE, Lin CC, Suen KM. Phase separation enhances probability of receptor signalling and drug targeting. Trends Biochem Sci 2023; 48:428-436. [PMID: 36759237 DOI: 10.1016/j.tibs.2023.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 02/10/2023]
Abstract
The probability of a given receptor tyrosine kinase (RTK) triggering a defined cellular outcome is low because of the promiscuous nature of signalling, the randomness of molecular diffusion through the cell, and the ongoing nonfunctional submembrane signalling activity or noise. Signal transduction is therefore a 'numbers game', where enough cell surface receptors and effector proteins must initially be engaged to guarantee formation of a functional signalling complex against a background of redundant events. The presence of intracellular liquid-liquid phase separation (LLPS) at the plasma membrane provides a mechanism through which the probabilistic nature of signalling can be weighted in favour of the required, discrete cellular outcome and mutual exclusivity in signal initiation.
Collapse
Affiliation(s)
- John E Ladbury
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Chi-Chuan Lin
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Kin Man Suen
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
4
|
Roy A, Patra SK. Lipid Raft Facilitated Receptor Organization and Signaling: A Functional Rheostat in Embryonic Development, Stem Cell Biology and Cancer. Stem Cell Rev Rep 2023; 19:2-25. [PMID: 35997871 DOI: 10.1007/s12015-022-10448-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2022] [Indexed: 01/29/2023]
Abstract
Molecular views of plasma membrane organization and dynamics are gradually changing over the past fifty years. Dynamics of plasma membrane instigate several signaling nexuses in eukaryotic cells. The striking feature of plasma membrane dynamics is that, it is internally transfigured into various subdomains of clustered macromolecules. Lipid rafts are nanoscale subdomains, enriched with cholesterol and sphingolipids, reside as floating entity mostly on the exoplasmic leaflet of the lipid bilayer. In terms of functionality, lipid rafts are unique among other membrane subdomains. Herein, advances on the roles of lipid rafts in cellular physiology and homeostasis are discussed, precisely, on how rafts dynamically harbor signaling proteins, including GPCRs, catalytic receptors, and ionotropic receptors within it and orchestrate multiple signaling pathways. In the developmental proceedings signaling are designed for patterning of overall organism and they differ from the somatic cell physiology and signaling of fully developed organisms. Some of the developmental signals are characteristic in maintenance of stemness and activated during several types of tumor development and cancer progression. The harmony between extracellular signaling and lineage specific transcriptional programs are extremely important for embryonic development. The roles of plasma membrane lipid rafts mediated signaling in lineage specificity, early embryonic development, stem cell maintenance are emerging. In view of this, we have highlighted and analyzed the roles of lipid rafts in receptor organization, cell signaling, and gene expression during embryonic development; from pre-implantation through the post-implantation phase, in stem cell and cancer biology.
Collapse
Affiliation(s)
- Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
5
|
Narine M, Colognato H. Current Insights Into Oligodendrocyte Metabolism and Its Power to Sculpt the Myelin Landscape. Front Cell Neurosci 2022; 16:892968. [PMID: 35573837 PMCID: PMC9097137 DOI: 10.3389/fncel.2022.892968] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/06/2022] [Indexed: 12/20/2022] Open
Abstract
Once believed to be part of the nervenkitt or "nerve glue" network in the central nervous system (CNS), oligodendroglial cells now have established roles in key neurological functions such as myelination, neuroprotection, and motor learning. More recently, oligodendroglia has become the subject of intense investigations aimed at understanding the contributions of its energetics to CNS physiology and pathology. In this review, we discuss the current understanding of oligodendroglial metabolism in regulating key stages of oligodendroglial development and health, its role in providing energy to neighboring cells such as neurons, as well as how alterations in oligodendroglial bioenergetics contribute to disease states. Importantly, we highlight how certain inputs can regulate oligodendroglial metabolism, including extrinsic and intrinsic mediators of cellular signaling, pharmacological compounds, and even dietary interventions. Lastly, we discuss emerging studies aimed at discovering the therapeutic potential of targeting components within oligodendroglial bioenergetic pathways.
Collapse
Affiliation(s)
- Mohanlall Narine
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
- Department of Neurobiology, & Behavior, Stony Brook University, Stony Brook, NY, United States
| | - Holly Colognato
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
6
|
Correale J, Ysrraelit MC. Multiple Sclerosis and Aging: The Dynamics of Demyelination and Remyelination. ASN Neuro 2022; 14:17590914221118502. [PMID: 35938615 PMCID: PMC9364177 DOI: 10.1177/17590914221118502] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system
(CNS) leading to demyelination and neurodegeneration. Life expectancy and age of onset in
MS patients have been rising over the last decades, and previous studies have shown that
age affects disease progression. Therefore, age appears as one of the most important
factors in accumulating disability in MS patients. Indeed, the degeneration of
oligodendrocytes (OGDs) and OGD precursors (OPCs) increases with age, in association with
increased inflammatory activity of astrocytes and microglia. Similarly, age-related
neuronal changes such as mitochondrial alterations, an increase in oxidative stress, and
disrupted paranodal junctions can impact myelin integrity. Conversely, once myelination is
complete, the long-term integrity of axons depends on OGD supply of energy. These
alterations determine pathological myelin changes consisting of myelin outfolding,
splitting, and accumulation of multilamellar fragments. Overall, these data demonstrate
that old mature OGDs lose their ability to produce and maintain healthy myelin over time,
to induce de novo myelination, and to remodel pre-existing myelinated
axons that contribute to neural plasticity in the CNS. Furthermore, as observed in other
tissues, aging induces a general decline in regenerative processes and, not surprisingly,
progressively hinders remyelination in MS. In this context, this review will provide an
overview of the current knowledge of age-related changes occurring in cells of the
oligodendroglial lineage and how they impact myelin synthesis, axonal degeneration, and
remyelination efficiency.
Collapse
Affiliation(s)
- Jorge Correale
- Departamento de Neurología, 58782Fleni, Buenos Aires, Argentina
| | | |
Collapse
|
7
|
Klimaschewski L, Claus P. Fibroblast Growth Factor Signalling in the Diseased Nervous System. Mol Neurobiol 2021; 58:3884-3902. [PMID: 33860438 PMCID: PMC8280051 DOI: 10.1007/s12035-021-02367-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
Fibroblast growth factors (FGFs) act as key signalling molecules in brain development, maintenance, and repair. They influence the intricate relationship between myelinating cells and axons as well as the association of astrocytic and microglial processes with neuronal perikarya and synapses. Advances in molecular genetics and imaging techniques have allowed novel insights into FGF signalling in recent years. Conditional mouse mutants have revealed the functional significance of neuronal and glial FGF receptors, not only in tissue protection, axon regeneration, and glial proliferation but also in instant behavioural changes. This review provides a summary of recent findings regarding the role of FGFs and their receptors in the nervous system and in the pathogenesis of major neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Lars Klimaschewski
- Department of Anatomy, Histology and Embryology, Institute of Neuroanatomy, Medical University of Innsbruck, Innsbruck, Austria.
| | - Peter Claus
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
8
|
Rohwedder A, Knipp S, Roberts LD, Ladbury JE. Composition of receptor tyrosine kinase-mediated lipid micro-domains controlled by adaptor protein interaction. Sci Rep 2021; 11:6160. [PMID: 33731760 PMCID: PMC7969938 DOI: 10.1038/s41598-021-85578-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/03/2021] [Indexed: 11/25/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are highly regulated, single pass transmembrane proteins, fundamental to cellular function and survival. Aberrancies in regulation lead to corruption of signal transduction and a range of pathological outcomes. Although control mechanisms associated with the receptors and their ligands are well understood, little is known with respect to the impact of lipid/lipid and lipid/protein interactions in the proximal plasma membrane environment. Given that the transmembrane regions of RTKs change in response to extracellular ligand binding, the lipid interactions have important consequences in influencing signal transduction. Fibroblast growth factor receptor 2 (FGFR2) is a highly regulated RTK, including under basal conditions. Binding of the adaptor protein, growth factor receptor-bound protein 2 (GRB2) to FGFR2 prevents full activation and recruitment of downstream signalling effector proteins in the absence of extracellular stimulation. Here we demonstrate that the FGFR2-GRB2 complex is sustained in a defined lipid environment. Dissociation of GRB2 from this complex due to ligand binding, or reduced GRB2 expression, facilitates the dispersion of FGFR2 into detergent-resistant membrane (DRM) micro-domains. This modification of the plasma membrane proximal to FGFR2 provides a further regulatory checkpoint which controls receptor degradation, recycling and recruitment of intracellular signalling proteins.
Collapse
Affiliation(s)
- Arndt Rohwedder
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Sabine Knipp
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
- School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Lee D Roberts
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS29JT, UK
| | - John E Ladbury
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
9
|
Yurtsever D, Lorent JH. Structural Modifications Controlling Membrane Raft Partitioning and Curvature in Human and Viral Proteins. J Phys Chem B 2020; 124:7574-7585. [PMID: 32813532 PMCID: PMC7476027 DOI: 10.1021/acs.jpcb.0c03435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Membrane
proteins and lipids have the capacity to associate into
lateral domains in cell membranes through mutual or collective interactions.
Lipid rafts are functional lateral domains that are formed through
collective interactions of certain lipids and which can include or
exclude proteins. These domains have been implicated in cell signaling
and protein trafficking and seem to be of importance for virus–host
interactions. We therefore want to investigate if raft and viral membrane
proteins present similar structural features, and how these features
are distributed throughout viruses. For this purpose, we performed
a bioinformatics analysis of raft and viral membrane proteins from
available online databases and compared them to nonraft proteins.
In general, transmembrane proteins of rafts and viruses had higher
proportions of palmitoyl and phosphoryl residues compared to nonraft
proteins. They differed in terms of transmembrane domain length and
thickness, with viral proteins being generally shorter and having
a smaller accessible surface area per residue. Nontransmembrane raft
proteins had increased amounts of palmitoyl, prenyl, and phosphoryl
moieties while their viral counterparts were largely myristoylated
and phosphorylated. Several of these structural determinants such
as phosphorylation are new to the raft field and are extensively discussed
in terms of raft functionality and phase separation. Surprisingly,
the proportion of palmitoylated viral transmembrane proteins was inversely
correlated to the virus size which indicated the implication of palmitoylation
in virus membrane curvature and possibly budding. The current results
provide new insights into the raft–virus interplay and unveil
possible targets for antiviral compounds.
Collapse
Affiliation(s)
- Deniz Yurtsever
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, NL-3584CH Utrecht, The Netherlands
| | - Joseph Helmuth Lorent
- Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, NL-3584CH Utrecht, The Netherlands
| |
Collapse
|
10
|
Igarashi M, Honda A, Kawasaki A, Nozumi M. Neuronal Signaling Involved in Neuronal Polarization and Growth: Lipid Rafts and Phosphorylation. Front Mol Neurosci 2020; 13:150. [PMID: 32922262 PMCID: PMC7456915 DOI: 10.3389/fnmol.2020.00150] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
Neuronal polarization and growth are developmental processes that occur during neuronal cell differentiation. The molecular signaling mechanisms involved in these events in in vivo mammalian brain remain unclear. Also, cellular events of the neuronal polarization process within a given neuron are thought to be constituted of many independent intracellular signal transduction pathways (the "tug-of-war" model). However, in vivo results suggest that such pathways should be cooperative with one another among a given group of neurons in a region of the brain. Lipid rafts, specific membrane domains with low fluidity, are candidates for the hotspots of such intracellular signaling. Among the signals reported to be involved in polarization, a number are thought to be present or translocated to the lipid rafts in response to extracellular signals. As part of our analysis, we discuss how such novel molecular mechanisms are combined for effective regulation of neuronal polarization and growth, focusing on the significance of the lipid rafts, including results based on recently introduced methods.
Collapse
Affiliation(s)
- Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, Niigata University School of Medicine and Graduate School of Medical/Dental Sciences, Niigata, Japan
| | - Atsuko Honda
- Department of Neurochemistry and Molecular Cell Biology, Niigata University School of Medicine and Graduate School of Medical/Dental Sciences, Niigata, Japan
| | - Asami Kawasaki
- Department of Neurochemistry and Molecular Cell Biology, Niigata University School of Medicine and Graduate School of Medical/Dental Sciences, Niigata, Japan
| | - Motohiro Nozumi
- Department of Neurochemistry and Molecular Cell Biology, Niigata University School of Medicine and Graduate School of Medical/Dental Sciences, Niigata, Japan
| |
Collapse
|
11
|
Carmody LC, Blau H, Danis D, Zhang XA, Gourdine JP, Vasilevsky N, Krawitz P, Thompson MD, Robinson PN. Significantly different clinical phenotypes associated with mutations in synthesis and transamidase+remodeling glycosylphosphatidylinositol (GPI)-anchor biosynthesis genes. Orphanet J Rare Dis 2020; 15:40. [PMID: 32019583 PMCID: PMC7001271 DOI: 10.1186/s13023-020-1313-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/21/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Defects in the glycosylphosphatidylinositol (GPI) biosynthesis pathway can result in a group of congenital disorders of glycosylation known as the inherited GPI deficiencies (IGDs). To date, defects in 22 of the 29 genes in the GPI biosynthesis pathway have been identified in IGDs. The early phase of the biosynthetic pathway assembles the GPI anchor (Synthesis stage) and the late phase transfers the GPI anchor to a nascent peptide in the endoplasmic reticulum (ER) (Transamidase stage), stabilizes the anchor in the ER membrane using fatty acid remodeling and then traffics the GPI-anchored protein to the cell surface (Remodeling stage). RESULTS We addressed the hypothesis that disease-associated variants in either the Synthesis stage or Transamidase+Remodeling-stage GPI pathway genes have distinct phenotypic spectra. We reviewed clinical data from 58 publications describing 152 individual patients and encoded the phenotypic information using the Human Phenotype Ontology (HPO). We showed statistically significant differences between the Synthesis and Transamidase+Remodeling Groups in the frequencies of phenotypes in the musculoskeletal system, cleft palate, nose phenotypes, and cognitive disability. Finally, we hypothesized that phenotypic defects in the IGDs are likely to be at least partially related to defective GPI anchoring of their target proteins. Twenty-two of one hundred forty-two proteins that receive a GPI anchor are associated with one or more Mendelian diseases and 12 show some phenotypic overlap with the IGDs, represented by 34 HPO terms. Interestingly, GPC3 and GPC6, members of the glypican family of heparan sulfate proteoglycans bound to the plasma membrane through a covalent GPI linkage, are associated with 25 of these phenotypic abnormalities. CONCLUSIONS IGDs associated with Synthesis and Transamidase+Remodeling stages of the GPI biosynthesis pathway have significantly different phenotypic spectra. GPC2 and GPC6 genes may represent a GPI target of general disruption to the GPI biosynthesis pathway that contributes to the phenotypes of some IGDs.
Collapse
Affiliation(s)
- Leigh C Carmody
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA
| | - Hannah Blau
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA
| | - Daniel Danis
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA
| | - Xingman A Zhang
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA
| | | | | | - Peter Krawitz
- Institute of Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Miles D Thompson
- Department of Pediatrics, UCSD School of Medicine, La Jolla, CA, 92093, USA
| | - Peter N Robinson
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA.
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA.
| |
Collapse
|
12
|
Furusho M, Ishii A, Hebert JM, Bansal R. Developmental stage-specific role of Frs adapters as mediators of FGF receptor signaling in the oligodendrocyte lineage cells. Glia 2019; 68:617-630. [PMID: 31670856 DOI: 10.1002/glia.23743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/16/2019] [Accepted: 10/12/2019] [Indexed: 11/12/2022]
Abstract
FGF signaling is important for numerous cellular processes and produces diverse cellular responses. Our recent studies using mice conditionally lacking FGF-Receptor-1 (Fgfr1) or Fgfr2 during different stages of myelinogenesis revealed that Fgfr signaling is first required embryonically for the specification of oligodendrocyte progenitors (OPCs) and then later postnatally for the growth of the myelin sheath during active myelination but not for OPC proliferation, differentiation, or ensheathment of axons. What intracellular signal transduction pathways are recruited immediately downstream of Fgfrs and mediate these distinct developmentally regulated stage-specific responses remain unclear. The adapter protein Fibroblast-Growth-Factor-Receptor-Substrate-2 (Frs2) is considered a key immediate downstream target of Fgfrs. Therefore, here, we investigated the in vivo role of Frs adapters in the oligodendrocyte lineage cells, using a novel genetic approach where mice were engineered to disrupt binding of Frs2 to Fgfr1 or Fgfr2, thus specifically uncoupling Frs2 and Fgfr signaling. In addition, we used conditional mutants with complete ablation of Frs2 and Frs3. We found that Frs2 is required for specification of OPCs in the embryonic telencephalon downstream of Fgfr1. In contrast, Frs2 is largely dispensable for transducing Fgfr2-mediated signals for the growth of the myelin sheath during postnatal myelination, implying the potential involvement of other adapters downstream of Fgfr2 for this function. Together, our data demonstrate a developmental stage-specific function of Frs2 in the oligodendrocyte lineage cells. This contextual requirement of adapter proteins, downstream of Fgfrs, could partly explain the distinct responses elicited by the activation of Fgfrs during different stages of myelinogenesis.
Collapse
Affiliation(s)
- Miki Furusho
- Department of Neuroscience, University of Connecticut Medical School, Farmington, Connecticut
| | - Akihiro Ishii
- Department of Neuroscience, University of Connecticut Medical School, Farmington, Connecticut
| | - Jean M Hebert
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Rashmi Bansal
- Department of Neuroscience, University of Connecticut Medical School, Farmington, Connecticut
| |
Collapse
|
13
|
Kim Y, Liu G, Leugers CJ, Mueller JD, Francis MB, Hefti MM, Schneider JA, Lee G. Tau interacts with SHP2 in neuronal systems and in Alzheimer's disease brains. J Cell Sci 2019; 132:jcs.229054. [PMID: 31201283 DOI: 10.1242/jcs.229054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/05/2019] [Indexed: 01/14/2023] Open
Abstract
Microtubule-associated protein tau, an integral component of neurofibrillary tangles, interacts with a variety of signaling molecules. Previously, our laboratory reported that nerve growth factor (NGF)-induced MAPK activation in a PC12-derived cell line was potentiated by tau, with phosphorylation at T231 being required. Therefore, we sought to identify a signaling molecule involved in the NGF-induced Ras-MAPK pathway that interacted with phospho-T231-tau. Here, we report that the protein tyrosine phosphatase SHP2 (also known as PTPN11) interacted with tau, with phospho-T231 significantly enhancing the interaction. By using proximity ligation assays, we found that endogenous tau-SHP2 complexes were present in neuronal cells, where the number of tau-SHP2 complexes significantly increased when the cells were treated with NGF, with phosphorylation at T231 being required for the increase. The interaction did not require microtubule association, and an association between tau and activated SHP2 was also found. Tau-SHP2 complexes were also found in both primary mouse hippocampal cultures and adult mouse brain. Finally, SHP2 levels were upregulated in samples from patients with mild and severe Alzheimer's disease (AD), and the level of tau-SHP2 complexes were increased in AD patient samples. These findings strongly suggest a role for the tau-SHP2 interaction in NGF-stimulated neuronal development and in AD.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Yohan Kim
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Guanghao Liu
- Interdisciplinary Program in Neuroscience, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Chad J Leugers
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Joseph D Mueller
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Meghan B Francis
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Marco M Hefti
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Julie A Schneider
- Department of Pathology, Rush Medical College, Chicago, IL 60612, USA
| | - Gloria Lee
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA .,Interdisciplinary Program in Neuroscience, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
14
|
Boksha IS, Prokhorova TA, Savushkina OK, Tereshkina EB. Klotho protein: Its role in aging and central nervous system pathology. BIOCHEMISTRY (MOSCOW) 2017; 82:990-1005. [DOI: 10.1134/s0006297917090024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Signaling by FGF Receptor 2, Not FGF Receptor 1, Regulates Myelin Thickness through Activation of ERK1/2-MAPK, Which Promotes mTORC1 Activity in an Akt-Independent Manner. J Neurosci 2017; 37:2931-2946. [PMID: 28193689 DOI: 10.1523/jneurosci.3316-16.2017] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/06/2017] [Accepted: 02/01/2017] [Indexed: 12/21/2022] Open
Abstract
FGF signaling has emerged as a significant "late-stage" regulator of myelin thickness in the CNS, independent of oligodendrocyte differentiation. Therefore, it is critically important to identify the specific FGF receptor type and its downstream signaling molecules in oligodendrocytes to obtain better insights into the regulatory mechanisms of myelin growth. Here, we show that FGF receptor type 2 (FGFR2) is highly enriched at the paranodal loops of myelin. Conditional ablation of this receptor-type, but not FGF receptor type 1 (FGFR1), resulted in attenuation of myelin growth, expression of major myelin genes, key transcription factor Myrf and extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) activity. This was rescued by upregulating ERK1/2 activity in these mice, strongly suggesting that ERK1/2 are key transducers of FGFR2 signals for myelin growth. However, given that the PI3K/Akt/mechanistic target of rapamycin (mTOR) pathway is also known to regulate myelin thickness, we examined FGFR2-deficient mice for the expression of key signaling molecules in this pathway. A significant downregulation of p-mTOR, p-Raptor, and p-S6RP was observed, which was restored to normal by elevating ERK1/2 activity in these mice. Similar downregulation of these molecules was observed in ERK1/2 knock-out mice. Interestingly, since p-Akt levels remained largely unchanged in these mice, it suggests a mechanism of mTORC1 activation by ERK1/2 in an Akt-independent manner in oligodendrocytes. Taken together, these data support a model in which FGFs, possibly from axons, activate FGFR2 in the oligodendrocyte/myelin compartment to increase ERK1/2 activation, which ultimately targets Myrf, as well as converges with the PI3K/Akt/mTOR pathway at the level of mTORC1, working together to drive the growth of the myelin sheath, thus increasing myelin thickness.SIGNIFICANCE STATEMENT It is well accepted that myelin is a biologically active membrane in active communication with the axons. However, the axonal signals, the receptors on myelin, and the integration of intracellular signaling pathways emanating downstream from these receptors that drive the growth of the myelin sheath remain poorly understood in the CNS. This study brings up the intriguing possibility that FGF receptor 2, in the oligodendrocyte/myelin compartment, may be one such signal. Importantly, it provides compelling evidence linking FGFR2 with the ERK1/2-MAPK pathway, which converges with the PI3K/Akt/mTOR (mechanistic target of rapamycin) pathway at the level of mTORC1 and also regulates the transcription factor Myrf, together providing a mechanistic framework for regulating both the transcriptional and translational machinery required for the proper growth of the myelin sheath.
Collapse
|
16
|
Rao SNR, Pearse DD. Regulating Axonal Responses to Injury: The Intersection between Signaling Pathways Involved in Axon Myelination and The Inhibition of Axon Regeneration. Front Mol Neurosci 2016; 9:33. [PMID: 27375427 PMCID: PMC4896923 DOI: 10.3389/fnmol.2016.00033] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/02/2016] [Indexed: 01/06/2023] Open
Abstract
Following spinal cord injury (SCI), a multitude of intrinsic and extrinsic factors adversely affect the gene programs that govern the expression of regeneration-associated genes (RAGs) and the production of a diversity of extracellular matrix molecules (ECM). Insufficient RAG expression in the injured neuron and the presence of inhibitory ECM at the lesion, leads to structural alterations in the axon that perturb the growth machinery, or form an extraneous barrier to axonal regeneration, respectively. Here, the role of myelin, both intact and debris, in antagonizing axon regeneration has been the focus of numerous investigations. These studies have employed antagonizing antibodies and knockout animals to examine how the growth cone of the re-growing axon responds to the presence of myelin and myelin-associated inhibitors (MAIs) within the lesion environment and caudal spinal cord. However, less attention has been placed on how the myelination of the axon after SCI, whether by endogenous glia or exogenously implanted glia, may alter axon regeneration. Here, we examine the intersection between intracellular signaling pathways in neurons and glia that are involved in axon myelination and axon growth, to provide greater insight into how interrogating this complex network of molecular interactions may lead to new therapeutics targeting SCI.
Collapse
Affiliation(s)
- Sudheendra N R Rao
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine Miami, FL, USA
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of MedicineMiami, FL, USA; The Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, USA; The Neuroscience Program, University of Miami Miller School of MedicineMiami, FL, USA; The Interdisciplinary Stem Cell Institute, University of Miami Miller School of MedicineMiami, FL, USA; Bruce W. Carter Department of Veterans Affairs Medical CenterMiami, FL, USA
| |
Collapse
|
17
|
Sarabipour S, Hristova K. Mechanism of FGF receptor dimerization and activation. Nat Commun 2016; 7:10262. [PMID: 26725515 PMCID: PMC4725768 DOI: 10.1038/ncomms10262] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/23/2015] [Indexed: 12/21/2022] Open
Abstract
Fibroblast growth factors (fgfs) are widely believed to activate their receptors by mediating receptor dimerization. Here we show, however, that the FGF receptors form dimers in the absence of ligand, and that these unliganded dimers are phosphorylated. We further show that ligand binding triggers structural changes in the FGFR dimers, which increase FGFR phosphorylation. The observed effects due to the ligands fgf1 and fgf2 are very different. The fgf2-bound dimer structure ensures the smallest separation between the transmembrane (TM) domains and the highest possible phosphorylation, a conclusion that is supported by a strong correlation between TM helix separation in the dimer and kinase phosphorylation. The pathogenic A391E mutation in FGFR3 TM domain emulates the action of fgf2, trapping the FGFR3 dimer in its most active state. This study establishes the existence of multiple active ligand-bound states, and uncovers a novel molecular mechanism through which FGFR-linked pathologies can arise.
Collapse
Affiliation(s)
- Sarvenaz Sarabipour
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
18
|
Qu X, Guo R, Zhang Z, Ma L, Wu X, Luo M, Dong F, Yao R. bFGF Protects Pre-oligodendrocytes from Oxygen/Glucose Deprivation Injury to Ameliorate Demyelination. Cell Mol Neurobiol 2015; 35:913-20. [PMID: 25833395 DOI: 10.1007/s10571-015-0186-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 03/19/2015] [Indexed: 02/05/2023]
Abstract
One of the pathological hallmarks of periventricular white matter injury is the vulnerability of pre-oligodendrocytes (preOLs) to hypoxia-ischemia (HI). There is increasing evidence that basic fibroblast growth factor (bFGF) is an important signaling molecule for neurogenesis and neuroprotection in the central nervous system. However, it is unknown whether bFGF protects preOLs from oxygen/glucose deprivation (OGD) damage in vitro and promotes remyelination in HI-induced rats. In this present study, bFGF exerted a protective effect on myelin by increasing the myelin thickness, the number of myelinated axons, and myelin basic protein expression in the HI-induced demyelinated neonatal rat corpus callosum. In vitro, bFGF ameliorated the impaired mitochondria and cell processes induced by OGD to promote the survival of isolated O4-positive preOLs. Additionally, the expression of fibroblast growth factor receptor 3 (FGFR3) was dramatically up-regulated in the preOLs after bFGF administration in vivo and in vitro. Thus, bFGF-stimulated remyelination in HI-induced rats by protecting the preOLs from hypoxic injury, and the mechanism involved may be mediated by FGFR3.
Collapse
Affiliation(s)
- Xuebin Qu
- Department of Neurobiology, Xuzhou Medical College, 209# Tongshan Road, Yunlong District, Xuzhou, 221000, Jiangsu, People's Republic of China.
| | - Rui Guo
- Department of Neurobiology, Xuzhou Medical College, 209# Tongshan Road, Yunlong District, Xuzhou, 221000, Jiangsu, People's Republic of China
| | - Zhenzhong Zhang
- Department of Neurobiology, Xuzhou Medical College, 209# Tongshan Road, Yunlong District, Xuzhou, 221000, Jiangsu, People's Republic of China
| | - Li Ma
- Department of Neurobiology, Xuzhou Medical College, 209# Tongshan Road, Yunlong District, Xuzhou, 221000, Jiangsu, People's Republic of China
| | - Xiuxiang Wu
- Department of Neurobiology, Xuzhou Medical College, 209# Tongshan Road, Yunlong District, Xuzhou, 221000, Jiangsu, People's Republic of China
| | - Mengjiao Luo
- Department of Neurobiology, Xuzhou Medical College, 209# Tongshan Road, Yunlong District, Xuzhou, 221000, Jiangsu, People's Republic of China
| | - Fuxing Dong
- Department of Neurobiology, Xuzhou Medical College, 209# Tongshan Road, Yunlong District, Xuzhou, 221000, Jiangsu, People's Republic of China
| | - Ruiqin Yao
- Department of Neurobiology, Xuzhou Medical College, 209# Tongshan Road, Yunlong District, Xuzhou, 221000, Jiangsu, People's Republic of China.
| |
Collapse
|
19
|
Cota CD, Davidson B. Mitotic Membrane Turnover Coordinates Differential Induction of the Heart Progenitor Lineage. Dev Cell 2015; 34:505-19. [PMID: 26300448 DOI: 10.1016/j.devcel.2015.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 04/14/2015] [Accepted: 07/02/2015] [Indexed: 02/07/2023]
Abstract
In response to microenvironmental cues, embryonic cells form adhesive signaling compartments that influence survival and patterning. Dividing cells detach from the surrounding matrix and initiate extensive membrane remodeling, but the in vivo impact of mitosis on adhesion-dependent signaling remains poorly characterized. We investigate in vivo signaling dynamics using the invertebrate chordate, Ciona intestinalis. In Ciona, matrix adhesion polarizes fibroblast growth factor (FGF)-dependent heart progenitor induction. Here, we show that adhesion inhibits mitotic FGF receptor internalization, leading to receptor enrichment along adherent membranes. Targeted disruption of matrix adhesion promotes uniform FGF receptor internalization and degradation while enhanced adhesion suppresses degradation. Chimeric analysis indicates that integrin β chain-specific impacts on induction are dictated by distinct internalization motifs. We also found that matrix adhesion impacts receptor enrichment through Caveolin-rich membrane domains. These results redefine the relationship between cell division and adhesive signaling, revealing how mitotic membrane turnover orchestrates adhesion-dependent signal polarization.
Collapse
Affiliation(s)
- Christina D Cota
- Department of Biology, Swarthmore College, Swarthmore, PA 19081, USA
| | - Brad Davidson
- Department of Biology, Swarthmore College, Swarthmore, PA 19081, USA.
| |
Collapse
|
20
|
Şişecioğlu M, Budak H, Geffers L, Çankaya M, Çiftci M, Thaller C, Eichele G, Küfrevioğlu Öİ, Özdemir H. A compendium of expression patterns of cholesterol biosynthetic enzymes in the mouse embryo. J Lipid Res 2015; 56:1551-9. [PMID: 26108225 PMCID: PMC4513996 DOI: 10.1194/jlr.m059634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Indexed: 11/20/2022] Open
Abstract
Cholesterol and its biosynthetic pathway intermediates and derivatives are required for many developmental processes including membrane biogenesis, transmembrane receptor signaling, steroid biogenesis, nuclear receptor activation, and posttranslational modification of hedgehog (Hh) proteins. To perform such multifaceted tasks depends on stringent regulation of expression of cholesterol biosynthetic enzymes (CBEs). We established for a whole organism, for the first time, the 3D expression pattern of all genes required for cholesterol biosynthesis (CBS), starting from acetyl-CoA and ending with cholesterol. This data was produced by high-throughput in situ hybridization on serial sections through the mouse fetus. The textually annotated image data were seamlessly integrated into the METscout and GenePaint public databases. This novel information helps in the understanding of why CBEs are expressed at particular locations within the fetus. For example, strong CBE expression is detected at sites of cell proliferation and also where cell growth increases membrane surface, such as in neurons sprouting axons and forming synapses. The CBE data also sheds light on the spatial relationship of cells and tissue that express sonic Hh (Shh) and produce cholesterol, respectively. We discovered that not all cells expressing Shh are capable of CBS. This finding suggests novel ways by which cholesterylation of Shh is regulated.
Collapse
Affiliation(s)
- Melda Şişecioğlu
- Departments of Molecular Biology and Genetics Faculty of Science, Ataturk University, 25240 Erzurum, Turkey
| | - Harun Budak
- Departments of Molecular Biology and Genetics Faculty of Science, Ataturk University, 25240 Erzurum, Turkey Genes and Behavior Department, Max Planck Institute of Biophysical Chemistry, 37077 Goettingen, Germany
| | - Lars Geffers
- Genes and Behavior Department, Max Planck Institute of Biophysical Chemistry, 37077 Goettingen, Germany
| | - Murat Çankaya
- Genes and Behavior Department, Max Planck Institute of Biophysical Chemistry, 37077 Goettingen, Germany Department of Biology, Faculty of Arts and Sciences, Erzincan University, 24100 Erzincan, Turkey
| | - Mehmet Çiftci
- Chemistry, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey Department of Chemistry, Faculty of Arts and Sciences, Bingol University, 12000 Bingol, Turkey
| | - Christina Thaller
- Genes and Behavior Department, Max Planck Institute of Biophysical Chemistry, 37077 Goettingen, Germany
| | - Gregor Eichele
- Genes and Behavior Department, Max Planck Institute of Biophysical Chemistry, 37077 Goettingen, Germany
| | | | - Hasan Özdemir
- Chemistry, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey
| |
Collapse
|
21
|
Ogiso H, Taniguchi M, Okazaki T. Analysis of lipid-composition changes in plasma membrane microdomains. J Lipid Res 2015; 56:1594-605. [PMID: 26116739 DOI: 10.1194/jlr.m059972] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Indexed: 11/20/2022] Open
Abstract
Sphingolipids accumulate in plasma membrane microdomain sites, such as caveolae or lipid rafts. Such microdomains are considered to be important nexuses for signal transduction, although changes in the microdomain lipid components brought about by signaling are poorly understood. Here, we applied a cationic colloidal silica bead method to analyze plasma membrane lipids from monolayer cells cultured in a 10 cm dish. The detergent-resistant fraction from the silica bead-coated membrane was analyzed by LC-MS/MS to evaluate the microdomain lipids. This method revealed that glycosphingolipids composed the microdomains as a substitute for sphingomyelin (SM) in mouse embryonic fibroblasts (tMEFs) from an SM synthase 1/2 double KO (DKO) mouse. The rate of formation of the detergent-resistant region was unchanged compared with that of WT-tMEFs. C2-ceramide (Cer) stimulation caused greater elevations in diacylglycerol and phosphatidic acid levels than in Cer levels within the microdomains of WT-tMEFs. We also found that lipid changes in the microdomains of SM-deficient DKO-tMEFs caused by serum stimulation occurred in the same manner as that of WT-tMEFs. This practical method for analyzing membrane lipids will facilitate future comprehensive analyses of membrane microdomain-associated responses.
Collapse
Affiliation(s)
- Hideo Ogiso
- Department of Hematology/Immunology Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan
| | - Makoto Taniguchi
- Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan
| | - Toshiro Okazaki
- Department of Hematology/Immunology Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan
| |
Collapse
|
22
|
Phosphorylation of RSK2 at Tyr529 by FGFR2-p38 enhances human mammary epithelial cells migration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2461-70. [PMID: 25014166 DOI: 10.1016/j.bbamcr.2014.06.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/29/2014] [Accepted: 06/30/2014] [Indexed: 01/08/2023]
Abstract
The members of p90 ribosomal S6 kinase (RSK) family of Ser/Thr kinases are downstream effectors of MAPK/ERK pathway that regulate diverse cellular processes including cell growth, proliferation and survival. In carcinogenesis, RSKs are thought to modulate cell motility, invasion and metastasis. Herein, we have studied an involvement of RSKs in FGF2/FGFR2-driven behaviours of mammary epithelial and breast cancer cells. We found that both silencing and inhibiting of FGFR2 attenuated phosphorylation of RSKs, whereas FGFR2 overexpression and/or its stimulation with FGF2 enhanced RSKs activity. Moreover, treatment with ERK, Src and p38 inhibitors revealed that p38 kinase acts as an upstream RSK2 regulator. We demonstrate for the first time that in FGF2/FGFR2 signalling, p38 but not MEK/ERK, indirectly activated RSK2 at Tyr529, which facilitated phosphorylation of its other residues (Thr359/Ser363, Thr573 and Ser380). In contrast to FGF2-triggered signalling, inhibition of p38 in the EGF pathway affected only RSK2-Tyr529, without any impact on the remaining RSK phosphorylation sites. p38-mediated phosphorylation of RSK2-Tyr529 was crucial for the transactivation of residues located at kinase C-terminal domain and linker-region, specifically, in the FGF2/FGFR2 signalling pathway. Furthermore, we show that FGF2 promoted anchorage-independent cell proliferation, formation of focal adhesions and cell migration, which was effectively abolished by treatment with RSKs inhibitor (FMK). These indicate that RSK2 activity is indispensable for FGF2/FGFR2-mediated cellular effects. Our findings identified a new FGF2/FGFR2-p38-RSK2 pathway, which may play a significant role in the pathogenesis and progression of breast cancer and, hence, may present a novel therapeutic target in the treatment of FGFR2-expressing tumours.
Collapse
|
23
|
Williams AJ, Umemori H. The best-laid plans go oft awry: synaptogenic growth factor signaling in neuropsychiatric disease. Front Synaptic Neurosci 2014; 6:4. [PMID: 24672476 PMCID: PMC3957327 DOI: 10.3389/fnsyn.2014.00004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/21/2014] [Indexed: 12/27/2022] Open
Abstract
Growth factors play important roles in synapse formation. Mouse models of neuropsychiatric diseases suggest that defects in synaptogenic growth factors, their receptors, and signaling pathways can lead to disordered neural development and various behavioral phenotypes, including anxiety, memory problems, and social deficits. Genetic association studies in humans have found evidence for similar relationships between growth factor signaling pathways and neuropsychiatric phenotypes. Accumulating data suggest that dysfunction in neuronal circuitry, caused by defects in growth factor-mediated synapse formation, contributes to the susceptibility to multiple neuropsychiatric diseases, including epilepsy, autism, and disorders of thought and mood (e.g., schizophrenia and bipolar disorder, respectively). In this review, we will focus on how specific synaptogenic growth factors and their downstream signaling pathways might be involved in the development of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Aislinn J Williams
- Department of Psychiatry, University of Michigan Ann Arbor, MI, USA ; Molecular and Behavioral Neuroscience Institute, University of Michigan Ann Arbor, MI, USA
| | - Hisashi Umemori
- Molecular and Behavioral Neuroscience Institute, University of Michigan Ann Arbor, MI, USA ; Department of Neurology, F.M. Kirby Neurobiology Center, Harvard Medical School, Boston Children's Hospital Boston, MA, USA
| |
Collapse
|
24
|
Haenzi B, Bonny O, Masson R, Lienhard S, Dey JH, Kuro-o M, Hynes NE. Loss of Memo, a novel FGFR regulator, results in reduced lifespan. FASEB J 2013; 28:327-36. [PMID: 24056085 DOI: 10.1096/fj.13-228320] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Memo is a widely expressed 33-kDa protein required for heregulin (HRG)-, epidermal growth factor (EGF)-, and fibroblast growth factor (FGF)-induced cell motility. Studies in mouse embryonic fibroblasts, wild-type or knockout for Memo, were performed to further investigate the role of Memo downstream of FGFR. We demonstrated that Memo associates with the FGFR signalosome and is necessary for optimal activation of signaling. To uncover Memo's physiological role, Memo conditional-knockout mice were generated. These animals showed a reduced life span, increased insulin sensitivity, small stature, graying hair, alopecia, kyphosis, loss of subcutaneous fat, and loss of spermatozoa in the epididymis. Memo-knockout mice also have elevated serum levels of active vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D), and calcium compared to control littermates expressing Memo. In summary, the results from in vivo and in vitro models support the hypothesis that Memo is a novel regulator of FGFR signaling with a role in controlling 1,25(OH)2D production and normal calcium homeostasis.
Collapse
Affiliation(s)
- Barbara Haenzi
- 1Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
25
|
Annenkov A. Receptor tyrosine kinase (RTK) signalling in the control of neural stem and progenitor cell (NSPC) development. Mol Neurobiol 2013; 49:440-71. [PMID: 23982746 DOI: 10.1007/s12035-013-8532-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/09/2013] [Indexed: 01/04/2023]
Abstract
Important developmental responses are elicited in neural stem and progenitor cells (NSPC) by activation of the receptor tyrosine kinases (RTK), including the fibroblast growth factor receptors, epidermal growth factor receptor, platelet-derived growth factor receptors and insulin-like growth factor receptor (IGF1R). Signalling through these RTK is necessary and sufficient for driving a number of developmental processes in the central nervous system. Within each of the four RTK families discussed here, receptors are activated by sets of ligands that do not cross-activate receptors of the other three families, and therefore, their activation can be independently regulated by ligand availability. These RTK pathways converge on a conserved core of signalling molecules, but differences between the receptors in utilisation of signalling molecules and molecular adaptors for intracellular signal propagation become increasingly apparent. Intracellular inhibitors of RTK signalling are widely involved in the regulation of developmental signalling in NSPC and often determine developmental outcomes of RTK activation. In addition, cellular responses of NSPC to the activation of a given RTK may be significantly modulated by signal strength. Cellular propensity to respond also plays a role in developmental outcomes of RTK signalling. In combination, these mechanisms regulate the balance between NSPC maintenance and differentiation during development and in adulthood. Attribution of particular developmental responses of NSPC to specific pathways of RTK signalling becomes increasingly elucidated. Co-activation of several RTK in developing NSPC is common, and analysis of co-operation between their signalling pathways may advance knowledge of RTK role in NSPC development.
Collapse
Affiliation(s)
- Alexander Annenkov
- Bone and Joint Research Unit, William Harvey Research Institute, Bart's and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK,
| |
Collapse
|
26
|
Miki T, Kaneda M, Iida K, Hasegawa G, Murakami M, Yamamoto N, Asou H, Kasahara K. An anti-sulfatide antibody O4 immunoprecipitates sulfatide rafts including Fyn, Lyn and the G protein α subunit in rat primary immature oligodendrocytes. Glycoconj J 2013; 30:819-23. [DOI: 10.1007/s10719-013-9487-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 07/07/2013] [Accepted: 07/08/2013] [Indexed: 01/06/2023]
|
27
|
Ahrendsen JT, Macklin W. Signaling mechanisms regulating myelination in the central nervous system. Neurosci Bull 2013; 29:199-215. [PMID: 23558589 DOI: 10.1007/s12264-013-1322-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/22/2013] [Indexed: 12/19/2022] Open
Abstract
The precise and coordinated production of myelin is essential for proper development and function of the nervous system. Diseases that disrupt myelin, including multiple sclerosis, cause significant functional disability. Current treatment aims to reduce the inflammatory component of the disease, thereby preventing damage resulting from demyelination. However, therapies are not yet available to improve natural repair processes after damage has already occurred. A thorough understanding of the signaling mechanisms that regulate myelin generation will improve our ability to enhance repair. in this review, we summarize the positive and negative regulators of myelination, focusing primarily on central nervous system myelination. Axon-derived signals, extracellular signals from both diffusible factors and the extracellular matrix, and intracellular signaling pathways within myelinating oligodendrocytes are discussed. Much is known about the positive regulators that drive myelination, while less is known about the negative regulators that shift active myelination to myelin maintenance at the appropriate time. Therefore, we also provide new data on potential negative regulators of CNS myelination.
Collapse
Affiliation(s)
- Jared T Ahrendsen
- Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | | |
Collapse
|
28
|
The antiaging protein Klotho enhances oligodendrocyte maturation and myelination of the CNS. J Neurosci 2013; 33:1927-39. [PMID: 23365232 DOI: 10.1523/jneurosci.2080-12.2013] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We have previously shown that myelin abnormalities characterize the normal aging process of the brain and that an age-associated reduction in Klotho is conserved across species. Predominantly generated in brain and kidney, Klotho overexpression extends life span, whereas loss of Klotho accelerates the development of aging-like phenotypes. Although the function of Klotho in brain is unknown, loss of Klotho expression leads to cognitive deficits. We found significant effects of Klotho on oligodendrocyte functions, including induced maturation of rat primary oligodendrocytic progenitor cells (OPCs) in vitro and myelination. Phosphoprotein analysis indicated that Klotho's downstream effects involve Akt and ERK signal pathways. Klotho increased OPC maturation, and inhibition of Akt or ERK function blocked this effect on OPCs. In vivo studies of Klotho knock-out mice and control littermates revealed that knock-out mice have a significant reduction in major myelin protein and gene expression. By immunohistochemistry, the number of total and mature oligodendrocytes was significantly lower in Klotho knock-out mice. Strikingly, at the ultrastructural level, Klotho knock-out mice exhibited significantly impaired myelination of the optic nerve and corpus callosum. These mice also displayed severe abnormalities at the nodes of Ranvier. To decipher the mechanisms by which Klotho affects oligodendrocytes, we used luciferase pathway reporters to identify the transcription factors involved. Together, these studies provide novel evidence for Klotho as a key player in myelin biology, which may thus be a useful therapeutic target in efforts to protect brain myelin against age-dependent changes and promote repair in multiple sclerosis.
Collapse
|
29
|
Azim K, Raineteau O, Butt AM. Intraventricular injection of FGF-2 promotes generation of oligodendrocyte-lineage cells in the postnatal and adult forebrain. Glia 2012; 60:1977-90. [PMID: 22951928 DOI: 10.1002/glia.22413] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 08/02/2012] [Indexed: 11/09/2022]
Abstract
FGF2 is considered a key factor in the generation of oligodendrocytes (OLs) derived from neural stem cells (NSCs) located within the subventricular zone (SVZ). Here, we have examined FGF2 signaling in the forebrain of postnatal and adult mice. Using qPCR of microdissected microdomains of the dorsal SVZ (dSVZ) and lateral SVZ (lSVZ), and prominin1-sorted NSCs purified from these microdomains, we show that transcripts for FGF receptor 1 (FGFR1) and FGFR2 are enriched in the dSVZ, from which OLs are largely derived, whereas FGFR3 are significantly enriched within prominen1-sorted NSC of the lSVZ, which mainly generate olfactory interneurons. We show that direct administration of FGF2 into the lateral ventricle increased the generation of oligodendrocyte progenitors (OPCs) throughout the SVZ, both within the dSVZ and ectopically in the lSVZ and ependymal wall of the SVZ. Furthermore, FGF2 stimulated proliferation of neural progenitors (NPs) and their differentiation into OPCs. The results indicate that FGF2 increased specification of OPCs, inducing NPs to follow an oligodendrocyte developmental pathway. Notably, FGF2 did not block OPC differentiation and increased the number of oligodendrocytes in the periventricular white matter (PVWM) and cortex. However, FGF2 markedly disrupted myelination in the PVWM. A key finding was that FGF2 had equivalent actions on the generation of OPCs and myelin disruption in postnatal and adult mice. This study demonstrates a central role for FGF2 in promoting oligodendrocyte generation in the developing and adult brain.
Collapse
Affiliation(s)
- Kasum Azim
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Science, University of Portsmouth, St Michael's Building, Portsmouth, United Kingdom
| | | | | |
Collapse
|
30
|
Inhibition of basal FGF receptor signaling by dimeric Grb2. Cell 2012; 149:1514-24. [PMID: 22726438 DOI: 10.1016/j.cell.2012.04.033] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 02/14/2012] [Accepted: 04/13/2012] [Indexed: 01/07/2023]
Abstract
Receptor tyrosine kinase activity is known to occur in the absence of extracellular stimuli. Importantly, this "background" level of receptor phosphorylation is insufficient to effect a downstream response, suggesting that strict controls are present and prohibit full activation. Here a mechanism is described in which control of FGFR2 activation is provided by the adaptor protein Grb2. Dimeric Grb2 binds to the C termini of two FGFR2 molecules. This heterotetramer is capable of a low-level receptor transphosphorylation, but C-terminal phosphorylation and recruitment of signaling proteins are sterically hindered. Upon stimulation, FGFR2 phosphorylates tyrosine residues on Grb2, promoting dissociation from the receptor and allowing full activation of downstream signaling. These observations establish a role for Grb2 as an active regulator of RTK signaling.
Collapse
|
31
|
Fibroblast growth factor receptor signaling in oligodendrocytes regulates myelin sheath thickness. J Neurosci 2012; 32:6631-41. [PMID: 22573685 DOI: 10.1523/jneurosci.6005-11.2012] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Formation of the CNS white matter is developmentally tightly regulated, but the molecules and mechanisms of myelination control in the postnatal CNS are poorly understood. Here, we show that myelin growth is controlled by fibroblast growth factor (FGF) signaling, originally identified as a proliferative signal for oligodendrocyte precursor cells (OPCs) in vitro. We created two lines of mice lacking both FGF receptor 1 (Fgfr1) and Fgfr2 in oligodendrocyte-lineage cells but found that in these mice OPC proliferation and differentiation were unaffected. In addition, axonal ensheathment and the initiation of myelination were on time. However, the rapid growth of CNS myelin, normally occurring in the second postnatal week, was strongly inhibited. Throughout adulthood, the myelin sheath remained disproportionately thin relative to the axon caliber. In adult mice, mutant oligodendrocytes were normal in number, whereas the transcription of major myelin genes was reduced. This FGF receptor-mediated stimulation of mature oligodendrocytes could also be modeled in vitro, demonstrating that enhanced expansion of oligodendroglial processes requires signaling by extracellular signal regulated kinase-1 and -2 (Erk1/2), downstream mediators of mitogen-activated protein kinase (MAPK). In vivo, Erk1/2-MAPK activity was reduced in the hypomyelinated CNS of Fgfr1/Fgfr2 mutant mice. These studies reveal a previously unrecognized function of FGF receptor signaling in oligodendrocytes that contributes to the regulation of myelin sheath thickness and that uncouples the initiation of ensheathment from the later phase of continued myelin growth.
Collapse
|
32
|
Gibson NJ, Tolbert LP, Oland LA. Activation of glial FGFRs is essential in glial migration, proliferation, and survival and in glia-neuron signaling during olfactory system development. PLoS One 2012; 7:e33828. [PMID: 22493675 PMCID: PMC3320908 DOI: 10.1371/journal.pone.0033828] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 02/22/2012] [Indexed: 11/18/2022] Open
Abstract
Development of the adult olfactory system of the moth Manduca sexta depends on reciprocal interactions between olfactory receptor neuron (ORN) axons growing in from the periphery and centrally-derived glial cells. Early-arriving ORN axons induce a subset of glial cells to proliferate and migrate to form an axon-sorting zone, in which later-arriving ORN axons will change their axonal neighbors and change their direction of outgrowth in order to travel with like axons to their target areas in the olfactory (antennal) lobe. These newly fasciculated axon bundles will terminate in protoglomeruli, the formation of which induces other glial cells to migrate to surround them. Glial cells do not migrate unless ORN axons are present, axons fail to fasciculate and target correctly without sufficient glial cells, and protoglomeruli are not maintained without a glial surround. We have shown previously that Epidermal Growth Factor receptors and the IgCAMs Neuroglian and Fasciclin II play a role in the ORN responses to glial cells. In the present work, we present evidence for the importance of glial Fibroblast Growth Factor receptors in glial migration, proliferation, and survival in this developing pathway. We also report changes in growth patterns of ORN axons and of the dendrites of olfactory (antennal lobe) neurons following blockade of glial FGFR activation that suggest that glial FGFR activation is important in reciprocal communication between neurons and glial cells.
Collapse
Affiliation(s)
- Nicholas J Gibson
- Department of Neuroscience, University of Arizona, Tucson, Arizona, United States of America.
| | | | | |
Collapse
|
33
|
Ladbury JE, Arold ST. Noise in cellular signaling pathways: causes and effects. Trends Biochem Sci 2012; 37:173-8. [PMID: 22341496 DOI: 10.1016/j.tibs.2012.01.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/10/2012] [Accepted: 01/13/2012] [Indexed: 11/17/2022]
Abstract
Noise caused by stochastic fluctuations in genetic circuits (transcription and translation) is now appreciated as a central aspect of cell function and phenotypic behavior. Noise has also been detected in signaling networks, but the origin of this noise and how it shapes cellular outcomes remain poorly understood. Here, we argue that noise in signaling networks results from the intrinsic promiscuity of protein-protein interactions (PPIs), and that this noise has shaped cellular signal transduction. Features promoted by the presence of this molecular signaling noise include multimerization and clustering of signaling components, pleiotropic effects of gross changes in protein concentration, and a probabilistic rather than a linear view of signal propagation.
Collapse
Affiliation(s)
- John E Ladbury
- Department of Biochemistry and Molecular Biology, Unit 1000, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | | |
Collapse
|
34
|
Bieberich E. It's a lipid's world: bioactive lipid metabolism and signaling in neural stem cell differentiation. Neurochem Res 2012; 37:1208-29. [PMID: 22246226 DOI: 10.1007/s11064-011-0698-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 12/31/2011] [Indexed: 01/20/2023]
Abstract
Lipids are often considered membrane components whose function is to embed proteins into cell membranes. In the last two decades, studies on brain lipids have unequivocally demonstrated that many lipids have critical cell signaling functions; they are called "bioactive lipids". Pioneering work in Dr. Robert Ledeen's laboratory has shown that two bioactive brain sphingolipids, sphingomyelin and the ganglioside GM1 are major signaling lipids in the nuclear envelope. In addition to derivatives of the sphingolipid ceramide, the bioactive lipids discussed here belong to the classes of terpenoids and steroids, eicosanoids, and lysophospholipids. These lipids act mainly through two mechanisms: (1) direct interaction between the bioactive lipid and a specific protein binding partner such as a lipid receptor, protein kinase or phosphatase, ion exchanger, or other cell signaling protein; and (2) formation of lipid microdomains or rafts that regulate the activity of a group of raft-associated cell signaling proteins. In recent years, a third mechanism has emerged, which invokes lipid second messengers as a regulator for the energy and redox balance of differentiating neural stem cells (NSCs). Interestingly, developmental niches such as the stem cell niche for adult NSC differentiation may also be metabolic compartments that respond to a distinct combination of bioactive lipids. The biological function of these lipids as regulators of NSC differentiation will be reviewed and their application in stem cell therapy discussed.
Collapse
Affiliation(s)
- Erhard Bieberich
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, 1120 15th Street Room CA4012, Augusta, GA 30912, USA.
| |
Collapse
|
35
|
Neural cell adhesion molecule differentially interacts with isoforms of the fibroblast growth factor receptor. Neuroreport 2012; 22:727-32. [PMID: 21876469 DOI: 10.1097/wnr.0b013e3283491682] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The fibroblast growth factor receptor (FGFR) can be activated through direct interactions with various fibroblast growth factors or through a number of cell adhesion molecules, including the neural cell adhesion molecule (NCAM). We produced recombinant proteins comprising the ligand-binding immunoglobulin-like modules 2 and 3 of FGFR1b, FGFR1c, FGFR2b, FGFR2c, FGFR3b, FGFR3c, and FGFR4, and found that all FGFR isoforms, except for FGFR4, interacted with NCAM. The binding affinity of NCAM-FGFR interactions was considerably higher for splice variant 'b' than for splice variant 'c'. We suggest that the expression pattern of various FGFR isoforms determines the cell context-specific effects of NCAM signaling through FGFR.
Collapse
|
36
|
Jin S, Zhou F, Katirai F, Li PL. Lipid raft redox signaling: molecular mechanisms in health and disease. Antioxid Redox Signal 2011; 15:1043-83. [PMID: 21294649 PMCID: PMC3135227 DOI: 10.1089/ars.2010.3619] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lipid rafts, the sphingolipid and cholesterol-enriched membrane microdomains, are able to form different membrane macrodomains or platforms upon stimulations, including redox signaling platforms, which serve as a critical signaling mechanism to mediate or regulate cellular activities or functions. In particular, this raft platform formation provides an important driving force for the assembling of NADPH oxidase subunits and the recruitment of other related receptors, effectors, and regulatory components, resulting, in turn, in the activation of NADPH oxidase and downstream redox regulation of cell functions. This comprehensive review attempts to summarize all basic and advanced information about the formation, regulation, and functions of lipid raft redox signaling platforms as well as their physiological and pathophysiological relevance. Several molecular mechanisms involving the formation of lipid raft redox signaling platforms and the related therapeutic strategies targeting them are discussed. It is hoped that all information and thoughts included in this review could provide more comprehensive insights into the understanding of lipid raft redox signaling, in particular, of their molecular mechanisms, spatial-temporal regulations, and physiological, pathophysiological relevances to human health and diseases.
Collapse
Affiliation(s)
- Si Jin
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | | | | | | |
Collapse
|
37
|
Gibson NJ. Cell adhesion molecules in context: CAM function depends on the neighborhood. Cell Adh Migr 2011; 5:48-51. [PMID: 20948304 PMCID: PMC3038097 DOI: 10.4161/cam.5.1.13639] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 09/16/2010] [Indexed: 01/03/2023] Open
Abstract
Cell adhesion molecules (CAMs) are now known to mediate much more than adhesion between cells and between cells and the extracellular matrix. Work by many researchers has illuminated their roles in modulating activation of molecules such as receptor tyrosine kinases, with subsequent effects on cell survival, migration, and process extension. CAMs also are known to serve as substrates for proteases which can create diffusible fragments capable of signaling independently from the CAM. The diversity of interactions is further modulated by membrane rafts, which can co-localize or separate potential signaling partners to affect the likelihood of a given signaling pathway being activated. Given the ever-growing number of known CAMs and the fact that their heterophilic binding in cis or in trans can affect their interactions with other molecules, including membrane-bound receptors, one would predict a wide range of effects attributable to a particular CAM in a particular cell at a particular stage of development. The function(s) of a given CAM must therefore be considered in the context of the history of the cell expressing it and the repertoire of molecules expressed both by that cell and its neighbors.
Collapse
Affiliation(s)
- Nicholas J Gibson
- Department of Neuroscience, University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
38
|
Haughey NJ. Sphingolipids in neurodegeneration. Neuromolecular Med 2010; 12:301-5. [PMID: 20737248 DOI: 10.1007/s12017-010-8135-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 08/13/2010] [Indexed: 11/24/2022]
Abstract
Although the brain contains a high content of sphingolipids, we know relatively little about the roles that sphingolipids play in regulating neural functions. Once regarded only for their structural roles in maintaining the integrity of cellular and sub-cellular compartments, it is now apparent that many sphingolipid species are biologically active and play important roles in regulating signaling events. Recent technological and scientific advances are rapidly increasing our knowledge of the roles that sphingolipids play in regulating normal neural activity. Likewise, we are beginning to understand how perturbations in sphingolipid metabolism contribute to the pathogenesis of a variety of neurodegenerative conditions. In this special issue of NeuroMolecular Medicine, we present a series of review articles that summarize new and emerging technologies for the analysis of sphingolipids, sphingolipid metabolic pathways, and how dysfunctions in sphingolipid metabolism contribute to neurodegeneration in lysosomal storage disorders, Alzheimer's disease and Multiple Sclerosis.
Collapse
Affiliation(s)
- Norman J Haughey
- Department of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological Infections, The Johns Hopkins University School of Medicine, Meyer 6-109, 600 North Wolfe Street, Baltimore, MD 21287, USA.
| |
Collapse
|
39
|
Current Opinion in Clinical Nutrition and Metabolic Care. Current world literature. Curr Opin Clin Nutr Metab Care 2010; 13:215-21. [PMID: 20145440 DOI: 10.1097/mco.0b013e32833643b4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Jackman N, Ishii A, Bansal R. Oligodendrocyte development and myelin biogenesis: parsing out the roles of glycosphingolipids. Physiology (Bethesda) 2009; 24:290-7. [PMID: 19815855 DOI: 10.1152/physiol.00016.2009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The myelin sheath is an extension of the oligoddendrocyte (OL) plasma membrane enriched in lipids that ensheaths the axons of the central and peripheral nervous system. Here, we review the involvement of glycosphingolipids in myelin/OL functions, including the regulation of OL differentiation, lipid raft-mediated trafficking and signaling, and neuron-glia interactions.
Collapse
Affiliation(s)
- Nicole Jackman
- Department of Neuroscience, University of Connecticut Medical School, Farmington, Connecticut, USA
| | | | | |
Collapse
|
41
|
Hryciw T, MacDonald JIS, Phillips R, Seah C, Pasternak S, Meakin SO. The fibroblast growth factor receptor substrate 3 adapter is a developmentally regulated microtubule-associated protein expressed in migrating and differentiated neurons. J Neurochem 2009; 112:924-39. [PMID: 19943849 DOI: 10.1111/j.1471-4159.2009.06503.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fibroblast growth factor (FGF) mediated signaling is essential to many aspects of neural development. Activated FGF receptors signal primarily through the FGF receptor substrate (Frs) adapters, which include Frs2/Frs2alpha and Frs3/Frs2beta. While some studies suggest that Frs3 can compensate for the loss of Frs2 in transfected cells, the lack of an effective Frs3 specific antibody has prevented efforts to determine the role(s) of the endogenous protein. To this end, we have generated a Frs3 specific antibody and have characterized the pattern of Frs3 expression in the developing nervous system, its subcellular localization as well as its biochemical properties. We demonstrate that Frs3 is expressed at low levels in the ventricular zone of developing cortex, between E12 and E15, and it co-localizes with nestin and acetylated alpha-tubulin in radial processes in the ventricular/subventricular zones as well as with betaIII tubulin in differentiated cortical neurons. Subcellular fractionation studies demonstrate that endogenous Frs3 is both soluble and plasma membrane associated while Frs3 expressed in 293T cells associates exclusively with lipid rafts. Lastly, we demonstrate that neuronal Frs3 binds microtubules comparable to the microtubule-associated protein, MAP2, while Frs2 does not. Collectively, these data suggest that neuronal Frs3 functions as a novel microtubule binding protein and they provide the first biochemical evidence that neuronal Frs3 is functionally distinct from Frs2/Frs2alpha.
Collapse
Affiliation(s)
- Todd Hryciw
- Molecular Brain Research Group, Robarts Research Institute, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|