1
|
Boyle AK, Tetorou K, Suff N, Beecroft L, Mazzaschi M, Karda R, Hristova M, Waddington SN, Peebles D. Ascending Vaginal Infection in Mice Induces Preterm Birth and Neonatal Morbidity. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00040-9. [PMID: 39892780 DOI: 10.1016/j.ajpath.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 12/06/2024] [Accepted: 01/10/2025] [Indexed: 02/04/2025]
Abstract
Preterm birth (PTB; delivery before 37 weeks), the main cause of neonatal death worldwide, can lead to adverse neurodevelopmental outcomes, as well as lung and gut pathology. PTB can be associated with ascending vaginal infection. Previously, it was shown that ascending Escherichia coli infection in pregnant mice induces PTB and reduces pup survival. Here, it is demonstrated that this model recapitulates the pathology observed in human preterm neonates (namely, neuroinflammation, lung injury, and gut inflammation). In neonatal brains, there is widespread cell death, microglial activation, astrogliosis, and reduced neuronal density. The utility of this model is also validated by assessing the efficacy of maternal cervical gene therapy with an adeno-associated viral vector containing human β defensin 3; this improves pup survival and reduces Tnfa mRNA expression in perinatal pup brains exposed to E. coli. This model provides a unique opportunity to evaluate the therapeutic benefit of preterm labor interventions on perinatal pathology.
Collapse
Affiliation(s)
- Ashley K Boyle
- EGA Institute for Women's Health, University College London, London, United Kingdom.
| | - Konstantina Tetorou
- EGA Institute for Women's Health, University College London, London, United Kingdom
| | - Natalie Suff
- Department of Women and Children's Health, St Thomas' Hospital, King's College London, London, United Kingdom
| | - Laura Beecroft
- EGA Institute for Women's Health, University College London, London, United Kingdom
| | - Margherita Mazzaschi
- EGA Institute for Women's Health, University College London, London, United Kingdom
| | - Rajvinder Karda
- EGA Institute for Women's Health, University College London, London, United Kingdom
| | - Mariya Hristova
- EGA Institute for Women's Health, University College London, London, United Kingdom
| | - Simon N Waddington
- EGA Institute for Women's Health, University College London, London, United Kingdom; Faculty of Health Sciences, Wits/SAMRC Antiviral Gene Therapy Research Unit, Johannesburg, South Africa
| | - Donald Peebles
- EGA Institute for Women's Health, University College London, London, United Kingdom
| |
Collapse
|
2
|
Hristova MD, Krishnan T, Rossi CA, Nouza J, White A, Peebles DM, Sebire NJ, Zachary IC, David AL, Vaughan OR. Maternal Uterine Artery Adenoviral Vascular Endothelial Growth Factor (Ad.VEGF-A 165) Gene Therapy Normalises Fetal Brain Growth and Microglial Activation in Nutrient Restricted Pregnant Guinea Pigs. Reprod Sci 2024; 31:2199-2208. [PMID: 38907125 PMCID: PMC11289362 DOI: 10.1007/s43032-024-01604-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/22/2024] [Indexed: 06/23/2024]
Abstract
Fetal growth restriction (FGR) is associated with uteroplacental insufficiency, and neurodevelopmental and structural brain deficits in the infant. It is currently untreatable. We hypothesised that treating the maternal uterine artery with vascular endothelial growth factor adenoviral gene therapy (Ad.VEGF-A165) normalises offspring brain weight and prevents brain injury in a guinea pig model of FGR. Pregnant guinea pigs were fed a restricted diet before and after conception and received Ad.VEGF-A165 (1 × 1010 viral particles, n = 18) or vehicle (n = 18), delivered to the external surface of the uterine arteries, in mid-pregnancy. Pregnant, ad libitum-fed controls received vehicle only (n = 10). Offspring brain weight and histological indices of brain injury were assessed at term and 5-months postnatally. At term, maternal nutrient restriction reduced fetal brain weight and increased microglial ramification in all brain regions but did not alter indices of cell death, astrogliosis or myelination. Ad.VEGF-A165 increased brain weight and reduced microglial ramification in fetuses of nutrient restricted dams. In adult offspring, maternal nutrient restriction did not alter brain weight or markers of brain injury, whilst Ad.VEGF-A165 increased microglial ramification and astrogliosis in the hippocampus and thalamus, respectively. Ad.VEGF-A165 did not affect cell death or myelination in the fetal or offspring brain. Ad.VEGF-A165 normalises brain growth and markers of brain injury in guinea pig fetuses exposed to maternal nutrient restriction and may be a potential intervention to improve childhood neurodevelopmental outcomes in pregnancies complicated by FGR.
Collapse
Affiliation(s)
- M D Hristova
- Elizabeth Garrett Anderson Institute for Women's Health, 86-96 Chenies Mews, University College London, London, WC1E 6HX, UK
| | - T Krishnan
- Elizabeth Garrett Anderson Institute for Women's Health, 86-96 Chenies Mews, University College London, London, WC1E 6HX, UK
| | - C A Rossi
- Elizabeth Garrett Anderson Institute for Women's Health, 86-96 Chenies Mews, University College London, London, WC1E 6HX, UK
| | - J Nouza
- Elizabeth Garrett Anderson Institute for Women's Health, 86-96 Chenies Mews, University College London, London, WC1E 6HX, UK
| | - A White
- Biological Services Unit, Royal Veterinary College, London, UK
| | - D M Peebles
- Elizabeth Garrett Anderson Institute for Women's Health, 86-96 Chenies Mews, University College London, London, WC1E 6HX, UK
| | - N J Sebire
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - I C Zachary
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, University College London, London, UK
| | - A L David
- Elizabeth Garrett Anderson Institute for Women's Health, 86-96 Chenies Mews, University College London, London, WC1E 6HX, UK
| | - O R Vaughan
- Elizabeth Garrett Anderson Institute for Women's Health, 86-96 Chenies Mews, University College London, London, WC1E 6HX, UK.
| |
Collapse
|
3
|
Mayer MG, Fischer T. Microglia at the blood brain barrier in health and disease. Front Cell Neurosci 2024; 18:1360195. [PMID: 38550920 PMCID: PMC10976855 DOI: 10.3389/fncel.2024.1360195] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/23/2024] [Indexed: 01/24/2025] Open
Abstract
The blood brain barrier (BBB) plays a crucial role in maintaining brain homeostasis by selectively preventing the entry of substances from the peripheral blood into the central nervous system (CNS). Comprised of endothelial cells, pericytes, and astrocytes, this highly regulated barrier encompasses the majority of the brain's vasculature. In addition to its protective function, the BBB also engages in significant crosstalk with perivascular macrophages (MΦ) and microglia, the resident MΦ of the brain. These interactions play a pivotal role in modulating the activation state of cells comprising the BBB, as well as MΦs and microglia, themselves. Alterations in systemic metabolic and inflammatory states can promote endothelial cell dysfunction, reducing the integrity of the BBB and potentially allowing peripheral blood factors to leak into the CNS compartment. This may mediate activation of perivascular MΦs, microglia, and astrocytes, and initiate further immune responses within the brain parenchyma, suggesting neuroinflammation can be triggered by signaling from the periphery, without primary injury or disease originating within the CNS. The intricate interplay between the periphery and the CNS through the BBB highlights the importance of understanding the role of microglia in mediating responses to systemic challenges. Despite recent advancements, our understanding of the interactions between microglia and the BBB is still in its early stages, leaving a significant gap in knowledge. However, emerging research is shedding light on the involvement of microglia at the BBB in various conditions, including systemic infections, diabetes, and ischemic stroke. This review aims to provide a comprehensive overview of the current research investigating the intricate relationship between microglia and the BBB in health and disease. By exploring these connections, we hope to advance our understanding of the role of brain immune responses to systemic challenges and their impact on CNS health and pathology. Uncovering these interactions may hold promise for the development of novel therapeutic strategies for neurological conditions that involve immune and vascular mechanisms.
Collapse
Affiliation(s)
- Meredith G. Mayer
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Tracy Fischer
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
4
|
Harry GJ. Microglia Colonization Associated with Angiogenesis and Neural Cell Development. ADVANCES IN NEUROBIOLOGY 2024; 37:163-178. [PMID: 39207692 DOI: 10.1007/978-3-031-55529-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The temporal and spatial pattern of microglia colonization of the nervous system implies a role in early stages of organ development including cell proliferation, differentiation, and neurovascularization. As microglia colonize and establish within the developing nervous system, they assume a neural-specific identity and contribute to key developmental events. Their association around blood vessels implicates them in development of the vascular system or vice versa. A similar association has been reported for neural cell proliferation and associated phenotypic shifts and for cell fate differentiation to neuronal or glial phenotypes. These processes are accomplished by phagocytic activities, cell-cell contact relationships, and secretion of various factors. This chapter will present data currently available from studies evaluating the dynamic and interactive nature of these processes throughout the progression of nervous system development.
Collapse
Affiliation(s)
- G Jean Harry
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
5
|
Pimentel‐Coelho PM. Monocytes in neonatal stroke and hypoxic‐ischemic encephalopathy: Pathophysiological mechanisms and therapeutic possibilities. NEUROPROTECTION 2023; 1:66-79. [DOI: 10.1002/nep3.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/13/2023] [Indexed: 01/03/2025]
Abstract
AbstractNeonatal arterial ischemic stroke (NAIS) and neonatal hypoxic‐ischemic encephalopathy (HIE) are common causes of neurological impairments in infants, for which treatment options are very limited. NAIS and HIE induce an innate immune response that involves the recruitment of peripheral immune cells, including monocytes, into the brain. Monocytes and monocyte‐derived cells have the potential to contribute to both harmful and beneficial pathophysiological processes, such as neuroinflammation and brain repair, but their roles in NAIS and HIE remain poorly understood. Furthermore, recent evidence indicates that monocyte‐derived macrophages can persist in the brain for several months following NAIS and HIE in mice, with possible long‐lasting consequences that are still unknown. This review provides a comprehensive overview of the mechanisms of monocyte infiltration and their potential functions in the ischemic brain, focusing on HIE and NAIS. Therapeutic strategies targeting monocytes and the possibility of using monocytes for cell‐based therapies are also discussed.
Collapse
Affiliation(s)
- Pedro M. Pimentel‐Coelho
- Carlos Chagas Filho Biophysics Institute Federal University of Rio de Janeiro Rio de Janeiro Brazil
| |
Collapse
|
6
|
Sun Y, Che J, Zhang J. Emerging non-proinflammatory roles of microglia in healthy and diseased brains. Brain Res Bull 2023; 199:110664. [PMID: 37192719 DOI: 10.1016/j.brainresbull.2023.110664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 04/04/2023] [Accepted: 05/13/2023] [Indexed: 05/18/2023]
Abstract
Microglia, the resident myeloid cells of the central nervous system, are the first line of defense against foreign pathogens, thereby confining the extent of brain injury. However, the role of microglia is not limited to macrophage-like functions. In addition to proinflammatory response mediation, microglia are involved in neurodevelopmental remodeling and homeostatic maintenance in the absence of disease. An increasing number of studies have also elucidated microglia-mediated regulation of tumor growth and neural repair in diseased brains. Here, we review the non-proinflammatory roles of microglia, with the aim of promoting a deeper understanding of the functions of microglia in healthy and diseased brains and contributing to the development of novel therapeutics that target microglia in neurological disorders.
Collapse
Affiliation(s)
- Yinying Sun
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, 200032, Shanghai China.
| | - Ji Che
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, 200032, Shanghai China.
| | - Jun Zhang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, 200032, Shanghai China; Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai China.
| |
Collapse
|
7
|
Sierra-Martín A, Navascués J, Neubrand VE, Sepúlveda MR, Martín-Oliva D, Cuadros MA, Marín-Teva JL. LPS-stimulated microglial cells promote ganglion cell death in organotypic cultures of quail embryo retina. Front Cell Neurosci 2023; 17:1120400. [PMID: 37006469 PMCID: PMC10050569 DOI: 10.3389/fncel.2023.1120400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
During development microglia colonize the central nervous system (CNS) and play an important role in programmed cell death, not only because of their ability to remove dead cells by phagocytosis, but also because they can promote the death of neuronal and glial cells. To study this process, we used as experimental systems the developing in situ quail embryo retina and organotypic cultures of quail embryo retina explants (QEREs). In both systems, immature microglia show an upregulation of certain inflammatory markers, e.g., inducible NO synthase (iNOS), and nitric oxide (NO) under basal conditions, which can be further enhanced with LPS-treatment. Hence, we investigated in the present study the role of microglia in promoting ganglion cell death during retinal development in QEREs. Results showed that LPS-stimulation of microglia in QEREs increases (i) the percentage of retinal cells with externalized phosphatidylserine, (ii) the frequency of phagocytic contacts between microglial and caspase-3-positive ganglion cells, (iii) cell death in the ganglion cell layer, and (iv) microglial production of reactive oxygen/nitrogen species, such as NO. Furthermore, iNOS inhibition by L-NMMA decreases cell death of ganglion cells and increases the number of ganglion cells in LPS-treated QEREs. These data demonstrate that LPS-stimulated microglia induce ganglion cell death in cultured QEREs by a NO-dependent mechanism. The fact that phagocytic contacts between microglial and caspase-3-positive ganglion cells increase suggests that this cell death might be mediated by microglial engulfment, although a phagocytosis-independent mechanism cannot be excluded.
Collapse
|
8
|
Hattori Y. The microglia-blood vessel interactions in the developing brain. Neurosci Res 2023; 187:58-66. [PMID: 36167249 DOI: 10.1016/j.neures.2022.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/03/2022] [Accepted: 09/16/2022] [Indexed: 11/19/2022]
Abstract
Microglia are the immune cells in the central nervous system (CNS). Once microglial progenitors are generated in the yolk sac, these cells enter the CNS and colonize its structures by migrating and proliferating during development. Although the microglial population in the CNS is still low in this stage compared to adults, these cells can associate with many surrounding cells, such as neural lineage cells and vascular-structure-composing cells, by extending their filopodia and with their broad migration capacity. Previous studies revealed multifaceted microglial actions on neural lineage cells, such as regulating the differentiation of neural progenitors and modulating neuronal positioning. Notably, microglia not only act on neural lineage cells but also interact with blood vessels, for example, by supporting vascular formation and integrity. On the other hand, blood vessels contribute to microglial colonization into the CNS and their migration at local tissues. Importantly, pericytes, the cells that encompass vascular endothelial cells, have been suggested to play a profound role in microglial function. This review summarizes recent advances in the understanding of the interaction of microglia and blood vessels, especially focusing on the significance of this interaction in CNS development, and discusses how microglial and blood vessel dysfunction leads to developmental disorders.
Collapse
Affiliation(s)
- Yuki Hattori
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
9
|
Var SR, Strell P, Johnson ST, Roman A, Vasilakos Z, Low WC. Transplanting Microglia for Treating CNS Injuries and Neurological Diseases and Disorders, and Prospects for Generating Exogenic Microglia. Cell Transplant 2023; 32:9636897231171001. [PMID: 37254858 PMCID: PMC10236244 DOI: 10.1177/09636897231171001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/18/2023] [Accepted: 04/05/2023] [Indexed: 06/01/2023] Open
Abstract
Microglia are associated with a wide range of both neuroprotective and neuroinflammatory functions in the central nervous system (CNS) during development and throughout lifespan. Chronically activated and dysfunctional microglia are found in many diseases and disorders, such as Alzheimer's disease, Parkinson's disease, and CNS-related injuries, and can accelerate or worsen the condition. Transplantation studies designed to replace and supplement dysfunctional microglia with healthy microglia offer a promising strategy for addressing microglia-mediated neuroinflammation and pathologies. This review will cover microglial involvement in neurological diseases and disorders and CNS-related injuries, current microglial transplantation strategies, and different approaches and considerations for generating exogenic microglia.
Collapse
Affiliation(s)
- Susanna R. Var
- Department of Neurosurgery, Medical
School, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
| | - Phoebe Strell
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
- Department of Veterinary and Biomedical
Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Sether T. Johnson
- Department of Neurosurgery, Medical
School, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
| | - Alex Roman
- Department of Neuroscience, University
of Minnesota, Minneapolis, MN, USA
| | - Zoey Vasilakos
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
- Department of Neuroscience, University
of Minnesota, Minneapolis, MN, USA
| | - Walter C. Low
- Department of Neurosurgery, Medical
School, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
- Department of Veterinary and Biomedical
Sciences, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
10
|
Döhne N, Falck A, Janach GMS, Byvaltcev E, Strauss U. Interferon-γ augments GABA release in the developing neocortex via nitric oxide synthase/soluble guanylate cyclase and constrains network activity. Front Cell Neurosci 2022; 16:913299. [PMID: 36035261 PMCID: PMC9401097 DOI: 10.3389/fncel.2022.913299] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Interferon-γ (IFN-γ), a cytokine with neuromodulatory properties, has been shown to enhance inhibitory transmission. Because early inhibitory neurotransmission sculpts functional neuronal circuits, its developmental alteration may have grave consequences. Here, we investigated the acute effects of IFN-γ on γ-amino-butyric acid (GABA)ergic currents in layer 5 pyramidal neurons of the somatosensory cortex of rats at the end of the first postnatal week, a period of GABA-dependent cortical maturation. IFN-γ acutely increased the frequency and amplitude of spontaneous/miniature inhibitory postsynaptic currents (s/mIPSC), and this could not be reversed within 30 min. Neither the increase in amplitude nor frequency of IPSCs was due to upregulated interneuron excitability as revealed by current clamp recordings of layer 5 interneurons labeled with VGAT-Venus in transgenic rats. As we previously reported in more mature animals, IPSC amplitude increase upon IFN-γ activity was dependent on postsynaptic protein kinase C (PKC), indicating a similar activating mechanism. Unlike augmented IPSC amplitude, however, we did not consistently observe an increased IPSC frequency in our previous studies on more mature animals. Focusing on increased IPSC frequency, we have now identified a different activating mechanism-one that is independent of postsynaptic PKC but is dependent on inducible nitric oxide synthase (iNOS) and soluble guanylate cyclase (sGC). In addition, IFN-γ shifted short-term synaptic plasticity toward facilitation as revealed by a paired-pulse paradigm. The latter change in presynaptic function was not reproduced by the application of a nitric oxide donor. Functionally, IFN-γ-mediated alterations in GABAergic transmission overall constrained early neocortical activity in a partly nitric oxide-dependent manner as revealed by microelectrode array field recordings in brain slices analyzed with a spike-sorting algorithm. In summary, with IFN-γ-induced, NO-dependent augmentation of spontaneous GABA release, we have here identified a mechanism by which inflammation in the central nervous system (CNS) plausibly modulates neuronal development.
Collapse
Affiliation(s)
- Noah Döhne
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alice Falck
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gabriel M. S. Janach
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Egor Byvaltcev
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Neuroscience, Lobachevsky State, University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Ulf Strauss
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
11
|
Metformin Improves the Prognosis of Adult Mice with Sepsis-Associated Encephalopathy Better than That of Aged Mice. J Immunol Res 2022; 2022:3218452. [PMID: 35571566 PMCID: PMC9095413 DOI: 10.1155/2022/3218452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/08/2022] [Accepted: 04/06/2022] [Indexed: 12/26/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) is often associated with increased ICU occupancy and hospital mortality and poor long-term outcomes, with currently no specific treatment. Pathophysiological mechanisms of SAE are complex and may involve activation of microglia, multiple intracranial inflammatory factors, and inflammatory pathways. We hypothesized that metformin may have an effect on microglia, which affects the prognosis of SAE. In this study, metformin treatment of mice with SAE induced by lipopolysaccharide (LPS) reduced the expression of microglia protein and related inflammatory factors. Poor prognosis of SAE is related to increased expression of tumor necrosis factor-α (TNF-α) and interleukin-1 beta (IL-1β) in brain tissues. Levels of inflammatory cytokines produced by LPS-induced SAE mouse microglia were significantly increased compared with those in the sham group. In addition, ionized calcium-binding adapter molecule 1 (Iba-1) was significantly reduced in metformin-treated SAE mice compared with untreated SAE mice, suggesting that metformin can reduce microgliosis and inhibit central nervous system inflammation, thereby improving patient outcomes. In conclusion, our results stipulate that metformin inhibits inflammation through the adenosine 5′-monophosphate (AMP-) activated protein kinase pathway by inhibiting nuclear factor kappa beta (NF-κB). Metformin can partially reverse the severe prognosis caused by sepsis by blocking microglial proliferation and inhibiting the production of inflammatory factors.
Collapse
|
12
|
Redefining microglia states: Lessons and limits of human and mouse models to study microglia states in neurodegenerative diseases. Semin Immunol 2022; 60:101651. [PMID: 36155944 DOI: 10.1016/j.smim.2022.101651] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/03/2022] [Indexed: 01/15/2023]
Abstract
Microglia are resident macrophages of the brain parenchyma and play an essential role in various aspects of brain development, plasticity, and homeostasis. With recent advances in single-cell RNA-sequencing, heterogeneous microglia transcriptional states have been identified in both animal models of neurodegenerative disorders and patients. However, the functional roles of these microglia states remain unclear; specifically, the question of whether individual states or combinations of states are protective or detrimental (or both) in the context of disease progression. To attempt to answer this, the field has largely relied on studies employing mouse models, human in vitro and chimeric models, and human post-mortem tissue, all of which have their caveats, but used in combination can enable new biological insight and validation of candidate disease pathways and mechanisms. In this review, we summarize our current understanding of disease-associated microglia states and phenotypes in neurodegenerative disorders, discuss important considerations when comparing mouse and human microglia states and functions, and identify areas of microglia biology where species differences might limit our understanding of microglia state.
Collapse
|
13
|
Trnski S, Nikolić B, Ilic K, Drlje M, Bobic-Rasonja M, Darmopil S, Petanjek Z, Hranilovic D, Jovanov-Milosevic N. The Signature of Moderate Perinatal Hypoxia on Cortical Organization and Behavior: Altered PNN-Parvalbumin Interneuron Connectivity of the Cingulate Circuitries. Front Cell Dev Biol 2022; 10:810980. [PMID: 35295859 PMCID: PMC8919082 DOI: 10.3389/fcell.2022.810980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/11/2022] [Indexed: 11/29/2022] Open
Abstract
This study was designed in a rat model to determine the hallmarks of possible permanent behavioral and structural brain alterations after a single moderate hypoxic insult. Eighty-two Wistar Han (RccHan: WIST) rats were randomly subjected to hypoxia (pO2 73 mmHg/2 h) or normoxia at the first postnatal day. The substantially increased blood lactate, a significantly decreased cytochrome-C-oxygenase expression in the brain, and depleted subventricular zone suggested a high vulnerability of subset of cell populations to oxidative stress and consequent tissue response even after a single, moderate, hypoxic event. The results of behavioral tests (open-field, hole-board, social-choice, and T-maze) applied at the 30–45th and 70–85th postnatal days revealed significant hyperactivity and a slower pace of learning in rats subjected to perinatal hypoxia. At 3.5 months after hypoxic insult, the histochemical examination demonstrated a significantly increased number of specific extracellular matrix—perineuronal nets and increased parvalbumin expression in a subpopulation of interneurons in the medial and retrosplenial cingulate cortex of these animals. Conclusively, moderate perinatal hypoxia in rats causes a long-lasting reorganization of the connectivity in the cingulate cortex and consequent alterations of related behavioral and cognitive abilities. This non-invasive hypoxia model in the rat successfully and complementarily models the moderate perinatal hypoxic injury in fetuses and prematurely born human babies and may enhance future research into new diagnostic and therapeutic strategies for perinatal medicine.
Collapse
Affiliation(s)
- Sara Trnski
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Barbara Nikolić
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Katarina Ilic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroimaging, BRAIN Centre, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Matea Drlje
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mihaela Bobic-Rasonja
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Sanja Darmopil
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Zdravko Petanjek
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dubravka Hranilovic
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Natasa Jovanov-Milosevic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
- *Correspondence: Natasa Jovanov-Milosevic,
| |
Collapse
|
14
|
Sobierajski E, Lauer G, Aktas M, Beemelmans C, Beemelmans C, Meyer G, Wahle P. Development of microglia in fetal and postnatal neocortex of the pig, the European wild boar (Sus scrofa). J Comp Neurol 2021; 530:1341-1362. [PMID: 34817865 DOI: 10.1002/cne.25280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 01/01/2023]
Abstract
Knowledge on cortical development is based mainly on rodents besides primates and carnivores, all being altricial. Here, we analyzed a precocial animal, the pig, looking at dorsoparietal cortex from E45 to P90. At E45, most ionized calcium-binding adapter molecule 1-positive (Iba1+) cells had a macrophage-like morphology and resided in meninges and choroid plexus. Only a few cells were scattered in the ventricular and subventricular zone (VZ and SVZ). At E60/E70, all laminar compartments displayed microglia cells at a low-to-moderate density, being highest in VZ and SVZ followed by intermediate zone/white matter (IZ/WM). The cortical plate and marginal zone displayed only a few Iba1+ cells. Cells were intensely labeled, but still had poorly arborized somata and many resembled ameboid, macrophage-like microglia. Concurrent with a massive increase in cortical volume, microglia cell density increased until E85, and further until E100/E110 (birth at E114) to densities that resemble those seen postnatally. A fraction of microglia colabeled with Ki67 suggesting proliferation in all laminar compartments. Cell-to-cell distance decreased substantially during this time, and the fraction of microglia to all nuclei and to neurons increases in the laminar compartments. Eventually, of all cortical DAPI+ nuclei 7-12% were Iba1+ microglia. From E70 onwards, more and more cells with ramified processes were present in MZ down to IZ/WM, showing, for instance, a close association with NeuN+, NPY+, and GAD65/67+ somata and axon initial segments. These results suggested that the development of microglia cell density and morphology proceeds rapidly from mid-gestation onwards reaching near-adult status already before birth.
Collapse
Affiliation(s)
- Eric Sobierajski
- Department of Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - German Lauer
- Department of Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Meriyem Aktas
- Department of Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | | | | | - Gundela Meyer
- Department of Basic Medical Science, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - Petra Wahle
- Department of Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
15
|
Abstract
Microglia are the resident immune cells of the central nervous system. Microglial progenitors are generated in the yolk sac during the early embryonic stage. Once microglia enter the brain primordium, these cells colonize the structure through migration and proliferation during brain development. Microglia account for a minor population among the total cells that constitute the developing cortex, but they can associate with many surrounding neural lineage cells by extending their filopodia and through their broad migration capacity. Of note, microglia change their distribution in a stage-dependent manner in the developing brain: microglia are homogenously distributed in the pallium in the early and late embryonic stages, whereas these cells are transiently absent from the cortical plate (CP) from embryonic day (E) 15 to E16 and colonize the ventricular zone (VZ), subventricular zone (SVZ), and intermediate zone (IZ). Previous studies have reported that microglia positioned in the VZ/SVZ/IZ play multiple roles in neural lineage cells, such as regulating neurogenesis, cell survival and neuronal circuit formation. In addition to microglial functions in the zones in which microglia are replenished, these cells indirectly contribute to the proper maturation of post-migratory neurons by exiting the CP during the mid-embryonic stage. Overall, microglial time-dependent distributional changes are necessary to provide particular functions that are required in specific regions. This review summarizes recent advances in the understanding of microglial colonization and multifaceted functions in the developing brain, especially focusing on the embryonic stage, and discuss the molecular mechanisms underlying microglial behaviors.
Collapse
|
16
|
Zetter MA, Hernández VS, Roque A, Hernández-Pérez OR, Gómora MJ, Ruiz-Velasco S, Eiden LE, Zhang L. Microglial synaptic pruning on axon initial segment spines of dentate granule cells: Sexually dimorphic effects of early-life stress and consequences for adult fear response. J Neuroendocrinol 2021; 33:e12969. [PMID: 33890333 DOI: 10.1111/jne.12969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/22/2022]
Abstract
Axon initial segments (AIS) of dentate granule cells in the hippocampus exhibit prominent spines (AISS) during early development that are associated with microglial contacts. In the present study, we investigated whether developmental changes in AISS could be modified by early-life stress (ELS), specifically neonatal maternal separation (MS), through stress hormones and microglial activation and examined the potential behavioural consequences. We examined AISS at postnatal day (PND)5, 15 and 50, using Golgi-Cox staining and anatomical analysis. Neurone-microglial interaction was assessed using antibodies against ankyrin-G, PSD-95 and Iba1, for AIS, AISS and microglia visualisation, respectively, in normally reared and neonatal maternally separated male and female rats. We observed a higher density of AISS in ELS rats at both PND15 and PND50 compared to controls. Effects were more pronounced in females than males. AIS-associated microglia in ELS rats showed a hyper-ramified morphology and less co-localisation with PSD-95 compared to controls at PND15. ELS-associated alteration in microglial morphology and synaptic pruning was mimicked by treatment of acute hippocampal slices of normally reared rats with vasopressin. ELS rats exhibited increased freezing behaviour during auditory fear memory testing, which was more pronounced in female subjects and corresponded with increased Fos expression in dorsal and ventral dentate granule cells. Thus, microglial synaptic pruning in dentate AIS of hippocampus is influenced by ELS, with demonstrable sex bias regarding its anatomical characteristics and subsequent fear-induced defensive behaviours.
Collapse
Affiliation(s)
- Mario A Zetter
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Vito S Hernández
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Angélica Roque
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Oscar R Hernández-Pérez
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - María J Gómora
- Department of Embryology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Silvia Ruiz-Velasco
- Department of Probability and Statistics, Applied Mathematics and Systems Research Institute, National Autonomous University of Mexico, Mexico City, Mexico
| | - Lee E Eiden
- Section on Molecular Neuroscience, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - Limei Zhang
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
17
|
Wang C, Wang L, Gu Y. Microglia, synaptic dynamics and forgetting. Brain Res Bull 2021; 174:173-183. [PMID: 34129917 DOI: 10.1016/j.brainresbull.2021.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 01/08/2023]
Abstract
Microglia are the major immune cells in the brain parenchyma. Besides their immune functions, microglia are important in regulating the dynamics of synapses. It is believed that the stability of synapses is essential for long-term storage and retrieval of memories, whereas microglial regulation of synaptic dynamics could affect the stability of memories, thus providing a potential mechanism for forgetting. In this review, we focus on the regulation of synaptic dynamics by microglia, as well as the subsequent effects on memory and forgetting, under physiological and pathological conditions. Revealing microglial regulation of synaptic dynamics will not only illuminate the physiological functions of microglia in the brain, but also provide us a new perspective to study the molecular and cellular mechanisms underlying forgetting. In addition, this will also improve our understanding of the process of memory encoding, storage and retrieval in the brain. Furthermore, uncovering the mechanisms through which microglia act on synaptic dynamics in pathological conditions will provide new strategies for the prevention and treatment of memory impairment in diseases.
Collapse
Affiliation(s)
- Chao Wang
- Center of Stem Cell and Regenerative Medicine, Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Lang Wang
- Department of Neurology of the First Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Yan Gu
- Center of Stem Cell and Regenerative Medicine, Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
18
|
Qiao O, Ji H, Zhang Y, Zhang X, Zhang X, Liu N, Huang L, Liu C, Gao W. New insights in drug development for Alzheimer's disease based on microglia function. Biomed Pharmacother 2021; 140:111703. [PMID: 34083109 DOI: 10.1016/j.biopha.2021.111703] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/26/2022] Open
Abstract
One of the biggest challenges in drug development for Alzheimer's disease (AD) is how to effectively remove deposits of amyloid-beta (Aβ). Recently, the relationship between microglia and Aβ has become a research hotspot. Emerging evidence suggests that Aβ-induced microglia-mediated neuroinflammation further aggravates the decline of cognitive function, while microglia are also involved in the process of Aβ clearance. Hence, microglia have become a potential therapeutic target for the treatment or prevention of AD. An in-depth understanding of the role played by microglia in the development of AD will help us to broaden therapeutic strategies for AD. In this review, we provide an overview of the dual roles of microglia in AD progression: the positive effect of phagocytosis of Aβ and its negative effect on neuroinflammation after over-activation. With the advantages of novel structure, high efficiency, and low toxicity, small-molecule compounds as modulators of microglial function have attracted considerable attention in the therapeutic areas of AD. In this review, we also summarize the therapeutic potential of small molecule compounds (SMCs) and their structure-activity relationship for AD treatment through modulating microglial phagocytosis and inhibiting neuroinflammation. For example, the position and number of phenolic hydroxyl groups on the B ring are the key to the activity of flavonoids, and the substitution of hydroxyl groups on the benzene ring enhances the anti-inflammatory activity of phenolic acids. This review is expected to be useful for developing effective modulators of microglial function from SMCs for the amelioration and treatment of AD.
Collapse
Affiliation(s)
- Ou Qiao
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin 300072, China
| | - Haixia Ji
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin 300072, China
| | - Yi Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin 300072, China
| | - Xinyu Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin 300072, China
| | - Xueqian Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin 300072, China
| | - Na Liu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin 300072, China
| | - Luqi Huang
- Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Changxiao Liu
- The State Key Laboratories of Pharmacodynamics and Pharmacokinetics, Tianjin 300193, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin 300072, China.
| |
Collapse
|
19
|
Netrin-G1 Regulates Microglial Accumulation along Axons and Supports the Survival of Layer V Neurons in the Postnatal Mouse Brain. Cell Rep 2021; 31:107580. [PMID: 32348754 DOI: 10.1016/j.celrep.2020.107580] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/02/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
Microglia, the resident immune cells of the central nervous system, accumulate along subcerebral projection axons and support neuronal survival during the early postnatal period. It remains unknown how microglia follow an axon-specific distribution pattern to maintain neural circuits. Here, we investigated the mechanisms of microglial accumulation along subcerebral projection axons that were necessary for microglial accumulation in the internal capsule. Screening of molecules involved in this accumulation of microglia to axons of layer V cortical neurons identified netrin-G1, a member of the netrin family of axon guidance molecules with a glycosyl-phosphatidylinositol anchor. Deletion or knockdown of the netrin-G1 gene Ntng1 reduced microglial accumulation and caused loss of cortical neurons. Netrin-G1 ligand-Ngl1 knockout-mice-derived microglia showed reduced accumulation along the axons compared with wild-type microglia. Thus, microglia accumulate around the subcerebral projection axons via NGL1-netrin-G1 signaling and support neuronal survival. Our observations unveil bidirectional neurotrophic interactions between neurons and microglia.
Collapse
|
20
|
Fujita Y, Yamashita T. Mechanisms and significance of microglia-axon interactions in physiological and pathophysiological conditions. Cell Mol Life Sci 2021; 78:3907-3919. [PMID: 33507328 PMCID: PMC11072252 DOI: 10.1007/s00018-021-03758-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/28/2020] [Accepted: 01/06/2021] [Indexed: 12/15/2022]
Abstract
Microglia are the resident immune cells of the central nervous system, and are important for cellular processes. In addition to their classical roles in pathophysiological conditions, these immune cells also dynamically interact with neurons and influence their structure and function in physiological conditions. Microglia have been shown to contact neurons at various points, including the dendrites, cell bodies, synapses, and axons, and support various developmental functions, such as neuronal survival, axon elongation, and maturation of the synaptic circuit. This review summarizes the current knowledge regarding the roles of microglia in brain development, with particular emphasis on microglia-axon interactions. We will review recent findings regarding the functions and signaling pathways involved in the reciprocal interactions between microglia and neurons. Moreover, as these interactions are altered in disease and injury conditions, we also discuss the effect and alteration of microglia-axon interactions in disease progression and the potential role of microglia in developmental brain disorders.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
- WPI Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
- WPI Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Graduate School of Frontier Bioscience, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
21
|
Lyu J, Xie D, Bhatia TN, Leak RK, Hu X, Jiang X. Microglial/Macrophage polarization and function in brain injury and repair after stroke. CNS Neurosci Ther 2021; 27:515-527. [PMID: 33650313 PMCID: PMC8025652 DOI: 10.1111/cns.13620] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Stroke is a leading cause of disability and mortality, with limited treatment options. After stroke injury, microglia and CNS‐resident macrophages are rapidly activated and regulate neuropathological processes to steer the course of functional recovery. To accelerate this recovery, microglia can engulf dying cells and clear irreparably‐damaged tissues, thereby creating a microenvironment that is more suitable for the formation of new neural circuitry. In addition, monocyte‐derived macrophages cross the compromised blood‐brain barrier to infiltrate the injured brain. The specific functions of myeloid lineage cells in brain injury and repair are diverse and dependent on phenotypic polarization statuses. However, it remains to be determined to what degree the CNS‐invading macrophages occupy different functional niches from CNS‐resident microglia. In this review, we describe the physiological characteristics and functions of microglia in the developing and adult brain. We also review (a) the activation and phenotypic polarization of microglia and macrophages after stroke, (b) molecular mechanisms that control polarization status, and (c) the contribution of microglia to brain pathology versus repair. Finally, we summarize current breakthroughs in therapeutic strategies that calibrate microglia/macrophage responses after stroke. The present review summarizes recent advances in microglial research in relation to stroke with emphases on microglial/macrophage phenotypic polarization and function in brain injury and repair. It also reviews the physiological characteristics and functions of microglia in the developing and adult brain, and describes current breakthroughs in therapeutic strategies that calibrate microglia/macrophage responses after stroke.
![]()
Collapse
Affiliation(s)
- Junxuan Lyu
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Di Xie
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tarun N Bhatia
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - Xiaoming Hu
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh, Pittsburgh, PA, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Xiaoyan Jiang
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh, Pittsburgh, PA, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| |
Collapse
|
22
|
Neuroprotective function of microglia in the developing brain. Neuronal Signal 2021; 5:NS20200024. [PMID: 33532089 PMCID: PMC7823182 DOI: 10.1042/ns20200024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system and are important for immune processes. Besides their classical roles in pathological conditions, these cells also dynamically interact with neurons and influence their structure and function in physiological conditions. Recent evidence revealed their role in healthy brain homeostasis, including the regulation of neurogenesis, cell survival, and synapse maturation and elimination, especially in the developing brain. In this review, we summarize the current state of knowledge on microglia in brain development, with a focus on their neuroprotective function. We will also discuss how microglial dysfunction may lead to the impairment of brain function, thereby contributing to disease development.
Collapse
|
23
|
Fujita Y, Yamashita T. Alterations in Chromatin Structure and Function in the Microglia. Front Cell Dev Biol 2021; 8:626541. [PMID: 33553166 PMCID: PMC7858661 DOI: 10.3389/fcell.2020.626541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/28/2020] [Indexed: 12/01/2022] Open
Abstract
Microglia are resident immune cells in the central nervous system (CNS). Microglia exhibit diversity in their morphology, density, electrophysiological properties, and gene expression profiles, and play various roles in neural development and adulthood in both physiological and pathological conditions. Recent transcriptomic analysis using bulk and single-cell RNA-seq has revealed that microglia can shift their gene expression profiles in various contexts, such as developmental stages, aging, and disease progression in the CNS, suggesting that the heterogeneity of microglia may be associated with their distinct functions. Epigenetic changes, including histone modifications and DNA methylation, coordinate gene expression, thereby contributing to the regulation of cellular state. In this review, we summarize the current knowledge regarding the epigenetic mechanisms underlying spatiotemporal and functional diversity of microglia that are altered in response to developmental stages and disease conditions. We also discuss how this knowledge may lead to advances in therapeutic approaches for diseases.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Graduate School of Frontier Bioscience, Osaka University, Osaka, Japan.,Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
24
|
Benmamar-Badel A, Owens T, Wlodarczyk A. Protective Microglial Subset in Development, Aging, and Disease: Lessons From Transcriptomic Studies. Front Immunol 2020; 11:430. [PMID: 32318054 PMCID: PMC7147523 DOI: 10.3389/fimmu.2020.00430] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/25/2020] [Indexed: 12/25/2022] Open
Abstract
Microglial heterogeneity has been the topic of much discussion in the scientific community. Elucidation of their plasticity and adaptability to disease states triggered early efforts to characterize microglial subsets. Over time, their phenotypes, and later on their homeostatic signature, were revealed, through the use of increasingly advanced transcriptomic techniques. Recently, an increasing number of these "microglial signatures" have been reported in various homeostatic and disease contexts. Remarkably, many of these states show similar overlapping microglial gene expression patterns, both in homeostasis and in disease or injury. In this review, we integrate information from these studies, and we propose a unique subset, for which we introduce a core signature, based on our own research and reports from the literature. We describe that this subset is found in development and in normal aging as well as in diverse diseases. We discuss the functions of this subset as well as how it is induced.
Collapse
Affiliation(s)
- Anouk Benmamar-Badel
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
- BRIDGE, Brain Research - Inter-Disciplinary Guided Excellence, Odense, Denmark
- Department of Neurology, Slagelse Hospital, Institute of Regional Health Research, Slagelse, Denmark
| | - Trevor Owens
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
- BRIDGE, Brain Research - Inter-Disciplinary Guided Excellence, Odense, Denmark
| | - Agnieszka Wlodarczyk
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
- BRIDGE, Brain Research - Inter-Disciplinary Guided Excellence, Odense, Denmark
| |
Collapse
|
25
|
Merlo S, Luaces JP, Spampinato SF, Toro-Urrego N, Caruso GI, D’Amico F, Capani F, Sortino MA. SIRT1 Mediates Melatonin's Effects on Microglial Activation in Hypoxia: In Vitro and In Vivo Evidence. Biomolecules 2020; 10:biom10030364. [PMID: 32120833 PMCID: PMC7175216 DOI: 10.3390/biom10030364] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/31/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023] Open
Abstract
Melatonin exerts direct neuroprotection against cerebral hypoxic damage, but the mechanisms of its action on microglia have been less characterized. Using both in vitro and in vivo models of hypoxia, we here focused on the role played by silent mating type information regulation 2 homolog 1 (SIRT1) in melatonin's effects on microglia. Viability of rat primary microglia or microglial BV2 cells and SH-SY5Y neurons was significantly reduced after chemical hypoxia with CoCl2 (250 μM for 24 h). Melatonin (1 μM) significantly attenuated CoCl2 toxicity on microglia, an effect prevented by selective SIRT1 inhibitor EX527 (5 μM) and AMP-activated protein kinase (AMPK) inhibitor BML-275 (2 μM). CoCl2 did not modify SIRT1 expression, but prevented nuclear localization, while melatonin appeared to restore it. CoCl2 induced nuclear localization of hypoxia-inducible factor-1α (HIF-1α) and nuclear factor-kappa B (NF-kB), an effect contrasted by melatonin in an EX527-dependent fashion. Treatment of microglia with melatonin attenuated potentiation of neurotoxicity. Common carotid occlusion was performed in p7 rats, followed by intraperitoneal injection of melatonin (10 mg/kg). After 24 h, the number of Iba1+ microglia in the hippocampus of hypoxic rats was significantly increased, an effect not prevented by melatonin. At this time, SIRT1 was only detectable in the amoeboid, Iba1+ microglial population selectively localized in the corpus callosum. In these cells, nuclear localization of SIRT1 was significantly lower in hypoxic animals, an effect prevented by melatonin. NF-kB showed an opposite expression pattern, where nuclear localization in Iba1+ cells was significantly higher in hypoxic, but not in melatonin-treated animals. Our findings provide new evidence for a direct effect of melatonin on hypoxic microglia through SIRT1, which appears as a potential pharmacological target against hypoxic-derived neuronal damage.
Collapse
Affiliation(s)
- Sara Merlo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (S.M.); (S.F.S.); (G.I.C.)
| | - Juan Pablo Luaces
- Laboratorio de Citoarquitectura y Plasticidad, Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1122, Argentina; (J.P.L.); (N.T.-U.); (F.C.)
| | - Simona Federica Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (S.M.); (S.F.S.); (G.I.C.)
| | - Nicolas Toro-Urrego
- Laboratorio de Citoarquitectura y Plasticidad, Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1122, Argentina; (J.P.L.); (N.T.-U.); (F.C.)
| | - Grazia Ilaria Caruso
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (S.M.); (S.F.S.); (G.I.C.)
| | - Fabio D’Amico
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Francisco Capani
- Laboratorio de Citoarquitectura y Plasticidad, Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1122, Argentina; (J.P.L.); (N.T.-U.); (F.C.)
| | - Maria Angela Sortino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (S.M.); (S.F.S.); (G.I.C.)
- Correspondence: ; Tel.: +39-095-4781192
| |
Collapse
|
26
|
Fisch U, Brégère C, Geier F, Chicha L, Guzman R. Neonatal hypoxia-ischemia in rat elicits a region-specific neurotrophic response in SVZ microglia. J Neuroinflammation 2020; 17:26. [PMID: 31954397 PMCID: PMC6969423 DOI: 10.1186/s12974-020-1706-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/08/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Recent findings describe microglia as modulators of neurogenesis in the subventricular zone (SVZ). SVZ microglia in the adult rat are thought to adopt a neurotrophic phenotype after ischemic stroke. Early postnatal microglia are endogenously activated and may therefore exhibit an increased sensitivity to neonatal hypoxia-ischemia (HI). The goal of this study was to investigate the impact of cortico-striatal HI on the microglial phenotype, function, and gene expression in the early postnatal SVZ. METHODS Postnatal day (P)7 rats underwent sham or right-hemispheric HI surgery. Microglia in the SVZ, the uninjured cortex, and corpus callosum were immunohistochemically analyzed at P10, P20, and P40. The transcriptome of microdissected SVZ and cortical microglia was analyzed at P10 and P20, and the effect of P10 SVZ microglia on neurosphere generation in vitro was studied. RESULTS The microglial response to HI was region-specific. In the SVZ, a microglial accumulation, prolonged activation and phagocytosis was noted that was not observed in the cortex and corpus callosum. The transcriptome of SVZ microglia and cortical microglia were distinct, and after HI, SVZ microglia concurrently upregulated pro- and anti-inflammatory as well as neurotrophic genes. In vitro, microglia isolated from the SVZ supported neurosphere generation in a concentration-dependent manner. CONCLUSIONS Microglia are an inherent cellular component of the early postnatal SVZ and undergo developmental changes that are affected on many aspects by neonatal HI injury. Our results demonstrate that early postnatal SVZ microglia are sensitive to HI injury and display a long-lasting region-specific response including neurotrophic features.
Collapse
Affiliation(s)
- Urs Fisch
- Department of Neurology, University Hospital Basel, University Basel, Basel, Switzerland.
- Brain ischemia and regeneration, Department of Biomedicine, University Hospital Basel, University Basel, Basel, Switzerland.
| | - Catherine Brégère
- Brain ischemia and regeneration, Department of Biomedicine, University Hospital Basel, University Basel, Basel, Switzerland
| | - Florian Geier
- Bioinformatics Core Facility, Department of Biomedicine, University Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Laurie Chicha
- Brain ischemia and regeneration, Department of Biomedicine, University Hospital Basel, University Basel, Basel, Switzerland
| | - Raphael Guzman
- Brain ischemia and regeneration, Department of Biomedicine, University Hospital Basel, University Basel, Basel, Switzerland
- Department of Neurosurgery, University Hospital Basel, University Basel, Basel, Switzerland
- Faculty of Medicine, University Basel, Basel, Switzerland
| |
Collapse
|
27
|
Sisa C, Agha-Shah Q, Sanghera B, Carno A, Stover C, Hristova M. Properdin: A Novel Target for Neuroprotection in Neonatal Hypoxic-Ischemic Brain Injury. Front Immunol 2019; 10:2610. [PMID: 31849925 PMCID: PMC6902041 DOI: 10.3389/fimmu.2019.02610] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 10/21/2019] [Indexed: 11/14/2022] Open
Abstract
Background: Hypoxic-ischemic (HI) encephalopathy is a major cause of neonatal mortality and morbidity, with a global incidence of 3 per 1,000 live births. Intrauterine or perinatal complications, including maternal infection, constitute a major risk for the development of neonatal HI brain damage. During HI, inflammatory response and oxidative stress occur, causing subsequent cell death. The presence of an infection sensitizes the neonatal brain, making it more vulnerable to the HI damage. Currently, therapeutic hypothermia is the only clinically approved treatment available for HI encephalopathy, however it is only partially effective in HI alone and its application in infection-sensitized HI is debatable. Therefore, there is an unmet clinical need for the development of novel therapeutic interventions for the treatment of HI. Such an alternative is targeting the complement system. Properdin, which is involved in stabilization of the alternative pathway convertases, is the only known positive regulator of alternative complement activation. Absence of the classical pathway in the neonatal HI brain is neuroprotective. However, there is a paucity of data on the participation of the alternative pathway and in particular the role of properdin in HI brain damage. Objectives: Our study aimed to validate the effect of global properdin deletion in two mouse models: HI alone and LPS-sensitized HI, thus addressing two different clinical scenarios. Results: Our results indicate that global properdin deletion in a Rice-Vannucci model of neonatal HI and LPS-sensitized HI brain damage, in the short term, clearly reduced forebrain cell death and microglial activation, as well as tissue loss. In HI alone, deletion of properdin reduced TUNEL+ cell death and microglial post-HI response at 48 h post insult. Under the conditions of LPS-sensitized HI, properdin deletion diminished TUNEL+ cell death, tissue loss and microglial activation at 48 h post-HI. Conclusion: Overall, our data suggests a critical role for properdin, and possibly also a contribution in neonatal HI alone and in infection-sensitized HI brain damage. Thus, properdin can be considered a novel target for treatment of neonatal HI brain damage.
Collapse
Affiliation(s)
- Claudia Sisa
- Perinatal Brain Repair Group, UCL Institute for Women's Health, Maternal & Fetal Medicine, London, United Kingdom
| | - Qudsiyah Agha-Shah
- Perinatal Brain Repair Group, UCL Institute for Women's Health, Maternal & Fetal Medicine, London, United Kingdom
| | - Balpreet Sanghera
- Perinatal Brain Repair Group, UCL Institute for Women's Health, Maternal & Fetal Medicine, London, United Kingdom
| | - Ariela Carno
- Perinatal Brain Repair Group, UCL Institute for Women's Health, Maternal & Fetal Medicine, London, United Kingdom
| | - Cordula Stover
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Mariya Hristova
- Perinatal Brain Repair Group, UCL Institute for Women's Health, Maternal & Fetal Medicine, London, United Kingdom
| |
Collapse
|
28
|
Rocha-Ferreira E, Sisa C, Bright S, Fautz T, Harris M, Contreras Riquelme I, Agwu C, Kurulday T, Mistry B, Hill D, Lange S, Hristova M. Curcumin: Novel Treatment in Neonatal Hypoxic-Ischemic Brain Injury. Front Physiol 2019; 10:1351. [PMID: 31798458 PMCID: PMC6863777 DOI: 10.3389/fphys.2019.01351] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a major cause of mortality and morbidity in neonates, with an estimated global incidence of 3/1,000 live births. HIE brain damage is associated with an inflammatory response and oxidative stress, resulting in the activation of cell death pathways. At present, therapeutic hypothermia is the only clinically approved treatment available for HIE. This approach, however, is only partially effective. Therefore, there is an unmet clinical need for the development of novel therapeutic interventions for the treatment of HIE. Curcumin is an antioxidant reactive oxygen species scavenger, with reported anti-tumor and anti-inflammatory activity. Curcumin has been shown to attenuate mitochondrial dysfunction, stabilize the cell membrane, stimulate proliferation, and reduce injury severity in adult models of spinal cord injury, cancer, and cardiovascular disease. The role of curcumin in neonatal HIE has not been widely studied due to its low bioavailability and limited aqueous solubility. The aim of this study was to investigate the effect of curcumin treatment in neonatal HIE, including time of administration and dose-dependent effects. Our results indicate that curcumin administration prior to HIE in neonatal mice elevated cell and tissue loss, as well as glial activation compared to HI alone. However, immediate post-treatment with curcumin was significantly neuroprotective, reducing grey and white matter tissue loss, TUNEL+ cell death, microglia activation, reactive astrogliosis, and iNOS oxidative stress when compared to vehicle-treated littermates. This effect was dose-dependent, with 200 μg/g body weight as the optimal dose-regimen, and was maintained when curcumin treatment was delayed by 60 or 120 min post-HI. Cell proliferation measurements showed no changes between curcumin and HI alone, suggesting that the protective effects of curcumin on the neonatal brain following HI are most likely due to curcumin’s anti-inflammatory and antioxidant properties, as seen in the reduced glial and iNOS activity. In conclusion, this study suggests curcumin as a potent neuroprotective agent with potential for the treatment of HIE. The delayed application of curcumin further increases its clinical relevance.
Collapse
Affiliation(s)
- Eridan Rocha-Ferreira
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom.,Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Claudia Sisa
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom
| | - Sarah Bright
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom
| | - Tessa Fautz
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom
| | - Michael Harris
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom
| | - Ingrid Contreras Riquelme
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom
| | - Chinedu Agwu
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom
| | - Tugce Kurulday
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom.,Department of Molecular Biology and Genetics, Izmir Institute of Technology, İzmir, Turkey
| | - Beenaben Mistry
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom
| | - Daniel Hill
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom.,Department of Visual Neuroscience, Glaucoma and Retinal Neurodegeneration Group, UCL Institute of Ophthalmology, London, United Kingdom
| | - Sigrun Lange
- School of Life Sciences, Tissue Architecture and Regeneration Research Group, University of Westminster, London, United Kingdom
| | - Mariya Hristova
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom
| |
Collapse
|
29
|
Staszewski O, Hagemeyer N. Unique microglia expression profile in developing white matter. BMC Res Notes 2019; 12:367. [PMID: 31262353 PMCID: PMC6604453 DOI: 10.1186/s13104-019-4410-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/26/2019] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE Recently we demonstrated that amoeboid microglia in white matter regions are essential for proper oligodendrocyte homeostasis and myelinogenesis in the first postnatal week. Amoeboid microglia in the mouse corpus callosum change their activation profile within few days after postnatal day (P)7 with microglia of the cerebellum showing similar features. Here we expanded our previous transcriptional analysis and performed detailed bulk RNA sequencing of microglia from corpus callosum, cortex and cerebellum at P7, P10 and P42. The goal of this study was to identify a specific gene profile for both, white matter and grey matter microglia during development. RESULTS Microglia in white matter regions display unique characteristics in the first postnatal week of murine life. In both the corpus callosum and cerebellum microglia show amoeboid morphology and a similar transcription profile during development including high expression of genes related to priming of microglia, phagocytosis and migration at P7; characteristics which are already lost at P10. Together these data verify our previous transcriptional data obtained by microarray analysis and enable a more complete view into white matter and grey matter microglia at different developmental stages.
Collapse
Affiliation(s)
- Ori Staszewski
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Nora Hagemeyer
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany.
| |
Collapse
|
30
|
Subhramanyam CS, Wang C, Hu Q, Dheen ST. Microglia-mediated neuroinflammation in neurodegenerative diseases. Semin Cell Dev Biol 2019; 94:112-120. [PMID: 31077796 DOI: 10.1016/j.semcdb.2019.05.004] [Citation(s) in RCA: 543] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022]
Abstract
Microglia, being the resident immune cells of the central nervous system, play an important role in maintaining tissue homeostasis and contributes towards brain development under normal conditions. However, when there is a neuronal injury or other insult, depending on the type and magnitude of stimuli, microglia will be activated to secrete either proinflammatory factors that enhance cytotoxicity or anti-inflammatory neuroprotective factors that assist in wound healing and tissue repair. Excessive microglial activation damages the surrounding healthy neural tissue, and the factors secreted by the dead or dying neurons in turn exacerbate the chronic activation of microglia, causing progressive loss of neurons. It is the case observed in many neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. This review gives a detailed account of the microglia-mediated neuroinflammation in various neurodegenerative diseases. Hence, resolving chronic inflammation mediated by microglia bears great promise as a novel treatment strategy to reduce neuronal damage and to foster a permissive environment for further regeneration effort.
Collapse
Affiliation(s)
| | - Cheng Wang
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, 117594, Singapore
| | - Qidong Hu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, 117594, Singapore.
| | - S Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, 117594, Singapore.
| |
Collapse
|
31
|
Sisa C, Kholia S, Naylor J, Herrera Sanchez MB, Bruno S, Deregibus MC, Camussi G, Inal JM, Lange S, Hristova M. Mesenchymal Stromal Cell Derived Extracellular Vesicles Reduce Hypoxia-Ischaemia Induced Perinatal Brain Injury. Front Physiol 2019; 10:282. [PMID: 30941062 PMCID: PMC6433879 DOI: 10.3389/fphys.2019.00282] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/04/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Neonatal hypoxic-ischemic (HI) insult is a leading cause of disability and death in newborns, with therapeutic hypothermia being the only currently available clinical intervention. Thus there is a great need for adjunct and novel treatments for enhanced or alternative post-HI neuroprotection. Extracellular vesicles (EVs) derived from mesenchymal stromal/stem cells (MSCs) have recently been shown to exhibit regenerative effects in various injury models. Here we present findings showing neuroprotective effects of MSC-derived EVs in the Rice-Vannucci model of severe HI-induced neonatal brain insult. METHODS Mesenchymal stromal/stem cell-derived EVs were applied intranasally immediately post HI-insult and behavioral outcomes were observed 48 h following MSC-EV treatment, as assessed by negative geotaxis. Brains were thereafter excised and assessed for changes in glial responses, cell death, and neuronal loss as markers of damage at 48 h post HI-insult. RESULTS Brains of the MSC-EV treated group showed a significant decrease in microglial activation, cell death, and percentage tissue volume loss in multiple brain regions, compared to the control-treated groups. Furthermore, negative geotaxis test showed improved behavioral outcomes at 48 h following MSC-EV treatment. CONCLUSION Our findings highlight the clinical potential of using MSC-derived EVs following neonatal hypoxia-ischaemia.
Collapse
Affiliation(s)
- Claudia Sisa
- Perinatal Brain Protection and Repair Group, EGA Institute for Women’s Health, University College London, London, United Kingdom
| | - Sharad Kholia
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Jordan Naylor
- Perinatal Brain Protection and Repair Group, EGA Institute for Women’s Health, University College London, London, United Kingdom
| | | | - Stefania Bruno
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Maria Chiara Deregibus
- 2i3T, Incubator and Technology Transfer, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Jameel M. Inal
- Extracellular Vesicle Research Unit and Bioscience Research Group, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Mariya Hristova
- Perinatal Brain Protection and Repair Group, EGA Institute for Women’s Health, University College London, London, United Kingdom
| |
Collapse
|
32
|
Cengiz P, Zafer D, Chandrashekhar JH, Chanana V, Bogost J, Waldman A, Novak B, Kintner DB, Ferrazzano PA. Developmental differences in microglia morphology and gene expression during normal brain development and in response to hypoxia-ischemia. Neurochem Int 2019; 127:137-147. [PMID: 30639264 DOI: 10.1016/j.neuint.2018.12.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/27/2018] [Accepted: 12/27/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Neuroinflammation plays an important role in ischemic brain injury and recovery, however the interplay between brain development and the neuroinflammatory response is poorly understood. We previously described age-dependent differences in the microglial response and the effect of microglial inhibition. Here we investigate whether age-dependent microglial responses may be related to pre-injury developmental differences in microglial phenotype. METHODS Measures of microglia morphology were quantified using semi-automated software analysis of immunostained sections from postnatal day 2 (P2), P9, P30 and P60 mice using IMARIS. Microglia were isolated from P2, P9, P30 and P60 mice, and expression of markers of classical and alternative microglial activation was assessed, as well as transforming growth factor beta (TGF-β) receptor, Serpine1, Mer Tyrosine Kinase (MerTK), and the suppressor of cytokine signaling (SOCS3). Hypoxia-ischemia (HI) was induced in P9 and P30 mice using unilateral carotid artery ligation and exposure to 10% oxygen for 50 min. Microglia morphology and microglial expression of genes in the TGF-β and MerTK pathways were determined in ipsilateral and contralateral hippocampus. RESULTS A progressive and significant increase in microglia branching morphology was seen in all brain regions from P2 to P30. No consistent classical or alternative activation profile was seen in isolated microglia. A clear transition to increased expression of TGF-β and its downstream effector serpine1 was seen between P9 and P30. A similar increase in expression was seen in MerTK and its downstream effector SOCS3. HI resulted in a significant decrease in branching morphology only in the P9 mice, and expression of TGF-β receptor, Serpine1, MerTK, and SOCS3 were elevated in P30 mice compared to P9 post-HI. CONCLUSION Microglia maturation is associated with changes in morphology and gene expression, and microglial responses to ischemia in the developing brain differ based on the age at which injury occurs.
Collapse
Affiliation(s)
- Pelin Cengiz
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Waisman Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Dila Zafer
- Waisman Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jayadevi H Chandrashekhar
- Waisman Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; University of Illinois at Urbana-Champaign, IL, USA
| | - Vishal Chanana
- Waisman Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jacob Bogost
- Waisman Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Alex Waldman
- Waisman Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Emory University School of Medicine, Atlanta, GA, USA
| | - Becca Novak
- Waisman Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Douglas B Kintner
- Waisman Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Peter A Ferrazzano
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Waisman Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
33
|
Wake H, Horiuchi H, Kato D, Moorhouse AJ, Nabekura J. Physiological Implications of Microglia-Synapse Interactions. Methods Mol Biol 2019; 2034:69-80. [PMID: 31392678 DOI: 10.1007/978-1-4939-9658-2_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Microglia are the sole immune responding cells in the central nervous system. Their role as neuroimmune cells in the pathogenesis of various neurodegenerative and infectious diseases of the brain have been extensively studied. Upon brain disease and infection, they adopt an activated phenotype associated with the release of cytokines and neurotrophic factors and resulting in neuroprotective or neurotoxic outcomes. However, microglia are resident also in the healthy or physiological brain, but much less is known about their role(s) in the healthy brain, partly due to technical limitations regarding investigation of these highly reactive cells in the intact brain. Recent developments in molecular probes and in vivo optical imaging techniques has now helped to characterize microglia in the physiological or healthy brain. In vivo two-photon imaging of fluorescently labeled microglia have revealed that they are highly motile cells in the healthy brain, extending and retracting their processes that extend from a largely stationary cell soma. In this chapter, we briefly summarize some of the physiological functions of microglia in the uninjured brain, with a focus on interactions they have with synapses.
Collapse
Affiliation(s)
- Hiroaki Wake
- Division of System Neuroscience, Kobe University Graduate School of Medicine, Kobe, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Hiroshi Horiuchi
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, The Graduate School for Advanced Study, Hayama, Japan
| | - Daisuke Kato
- Division of System Neuroscience, Kobe University Graduate School of Medicine, Kobe, Japan.,Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan
| | - Andrew J Moorhouse
- School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Junichi Nabekura
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan. .,Department of Physiological Sciences, The Graduate School for Advanced Study, Hayama, Japan.
| |
Collapse
|
34
|
Konishi H, Kiyama H, Ueno M. Dual functions of microglia in the formation and refinement of neural circuits during development. Int J Dev Neurosci 2018; 77:18-25. [DOI: 10.1016/j.ijdevneu.2018.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/20/2018] [Accepted: 09/30/2018] [Indexed: 12/29/2022] Open
Affiliation(s)
- Hiroyuki Konishi
- Department of Functional Anatomy and NeuroscienceNagoya University Graduate School of MedicineNagoya466‐8550Japan
| | - Hiroshi Kiyama
- Department of Functional Anatomy and NeuroscienceNagoya University Graduate School of MedicineNagoya466‐8550Japan
| | - Masaki Ueno
- Department of System Pathology for Neurological DisordersBrain Research InstituteNiigata UniversityNiigata951‐8585Japan
| |
Collapse
|
35
|
Zheng W, Li Q, Zhao C, Da Y, Zhang HL, Chen Z. Differentiation of Glial Cells From hiPSCs: Potential Applications in Neurological Diseases and Cell Replacement Therapy. Front Cell Neurosci 2018; 12:239. [PMID: 30140204 PMCID: PMC6094089 DOI: 10.3389/fncel.2018.00239] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/17/2018] [Indexed: 12/20/2022] Open
Abstract
Glial cells are the most abundant cell type in the central nervous system (CNS) and play essential roles in maintaining brain homeostasis, forming myelin, and providing support and protection for neurons, etc. Over the past decade, significant progress has been made in the reprogramming field. Given the limited accessibility of human glial cells, in vitro differentiation of human induced pluripotent stem cells (hiPSCs) into glia may provide not only a valuable research tool for a better understanding of the functions of glia in the CNS but also a potential cellular source for clinical therapeutic purposes. In this review, we will summarize up-to-date novel strategies for the committed differentiation into the three major glial cell types, i.e., astrocyte, oligodendrocyte, and microglia, from hiPSCs, focusing on the non-neuronal cell effects on the pathology of some representative neurological diseases. Furthermore, the application of hiPSC-derived glial cells in neurological disease modeling will be discussed, so as to gain further insights into the development of new therapeutic targets for treatment of neurological disorders.
Collapse
Affiliation(s)
- Wei Zheng
- Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China
| | - Qian Li
- Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China
| | - Chao Zhao
- Department of Clinical Neurosciences, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Yuwei Da
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hong-Liang Zhang
- Department of Life Sciences, National Natural Science Foundation of China, Beijing, China
| | - Zhiguo Chen
- Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
36
|
Thei L, Rocha-Ferreira E, Peebles D, Raivich G, Hristova M. Extracellular signal-regulated kinase 2 has duality in function between neuronal and astrocyte expression following neonatal hypoxic-ischaemic cerebral injury. J Physiol 2018; 596:6043-6062. [PMID: 29873394 PMCID: PMC6265549 DOI: 10.1113/jp275649] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/29/2018] [Indexed: 01/08/2023] Open
Abstract
Key points This study identifies phosphorylated extracellular signal‐regulated kinase (ERK) to be immediately diminished followed by a rapid if transient increase for up to 4 h following hypoxic–ischaemic insult (HI) in the neonatal mouse. Phosphorylated ERK up‐regulation was prevented with systemic injection of the mitogen‐activated protein kinase kinase (MEK) inhibitor SL327. Treatment with SL327 both pre‐ and post‐HI gave a strong reduction in the number of dying cells and microgliosis. By utilising transgenic mouse mutations, we observe that neuronal ERK2 significantly contributes to tissue damage, while ERK1 and astrocytic ERK2 are neuroprotective. Compared to global inactivation, selective cell‐specific interference with ERK activity could result in stronger neuroprotection.
Abstract Hypoxia–ischaemia (HI) is a major cause of neonatal brain injury resulting in cerebral palsy, epilepsy, cognitive impairment and other neurological disabilities. The role of extracellular signal‐regulated kinase (ERK) isoforms and their mitogen‐activated protein kinase kinase (MEK)‐dependent phosphorylation in HI has previously been explored but remains unresolved at cellular level. This is pertinent given the growing awareness of the role of non‐neuronal cells in neuroprotection. Using a modified Rice–Vannucci model of HI in the neonatal mouse we observed time‐ and cell‐dependent ERK phosphorylation (pERK), with strongly up‐regulated pERK immunoreactivity first in periventricular white matter axons within 15–45 min of HI, followed by forebrain astrocytes and neurons (1–4 h post‐HI), and return to baseline by 16 h. We explored the effects of pharmacological ERK blockade through the MEK inhibitor SL327 on neonatal HI‐brain damage following HI alone (30 or 60 min) or lipopolysaccharide (LPS)‐sensitised HI insult (30 min). Global inhibition of ERK phosphorylation with systemically applied SL327 abolished forebrain pERK immunoreactivity, and significantly reduced cell death and associated microglial activation at 48 h post‐HI. We then explored the effects of cell‐specific ERK2 deletion alone or in combination with global ERK1 knockout under the same conditions of HI insult. Neuronal ERK2 deletion strongly decreased infarct size, neuronal cell death and microglial activation in grey matter following both HI alone or LPS‐sensitised HI. ERK1 deletion attenuated the protective effect of neuronal ERK2 deletion. Removal of astroglial ERK2 produced a reverse response, with a 3‐ to 4‐fold increase in microglial activation and cell death. Our data suggest a cell‐specific and time‐dependent role of ERK in neonatal HI, with a predominant, neurotoxic effect of neuronal ERK2, which is counteracted by neuroprotection by ERK1 and astrocytic ERK2. Overall, global pharmacological inhibition of ERK phosphorylation is strongly neuroprotective. This study identifies phosphorylated extracellular signal‐regulated kinase (ERK) to be immediately diminished followed by a rapid if transient increase for up to 4 h following hypoxic–ischaemic insult (HI) in the neonatal mouse. Phosphorylated ERK up‐regulation was prevented with systemic injection of the mitogen‐activated protein kinase kinase (MEK) inhibitor SL327. Treatment with SL327 both pre‐ and post‐HI gave a strong reduction in the number of dying cells and microgliosis. By utilising transgenic mouse mutations, we observe that neuronal ERK2 significantly contributes to tissue damage, while ERK1 and astrocytic ERK2 are neuroprotective. Compared to global inactivation, selective cell‐specific interference with ERK activity could result in stronger neuroprotection.
Collapse
Affiliation(s)
- Laura Thei
- UCL Institute for Women's Health, Maternal and Fetal Medicine, Perinatal Brain Repair Group, London, WC1E 6HX, UK.,School of Pharmacy, University of Reading, Reading, RG6 6UA, UK
| | - Eridan Rocha-Ferreira
- UCL Institute for Women's Health, Maternal and Fetal Medicine, Perinatal Brain Repair Group, London, WC1E 6HX, UK.,Institute of Clinical Sciences, University of Gothenburg, Gothenburg, SE 416 85, Sweden
| | - Donald Peebles
- UCL Institute for Women's Health, Maternal and Fetal Medicine, Perinatal Brain Repair Group, London, WC1E 6HX, UK
| | - Gennadij Raivich
- UCL Institute for Women's Health, Maternal and Fetal Medicine, Perinatal Brain Repair Group, London, WC1E 6HX, UK
| | - Mariya Hristova
- UCL Institute for Women's Health, Maternal and Fetal Medicine, Perinatal Brain Repair Group, London, WC1E 6HX, UK
| |
Collapse
|
37
|
Rocha-Ferreira E, Vincent A, Bright S, Peebles DM, Hristova M. The duration of hypothermia affects short-term neuroprotection in a mouse model of neonatal hypoxic ischaemic injury. PLoS One 2018; 13:e0199890. [PMID: 29969470 PMCID: PMC6029790 DOI: 10.1371/journal.pone.0199890] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 06/15/2018] [Indexed: 11/18/2022] Open
Abstract
Neonatal hypoxic-ischaemic encephalopathy (HIE) is major cause of neonatal mortality and morbidity. Therapeutic hypothermia is standard clinical care for moderate hypoxic-ischaemic (HI) brain injury, however it reduces the risk of death and disability only by 11% and 40% of the treated infants still develop disabilities. Thus it is necessary to develop supplementary therapies to complement therapeutic hypothermia in the treatment of neonatal HIE. The modified Rice-Vannucci model of HI in the neonatal mouse is well developed and widely applied with different periods of hypothermia used as neuroprotective strategy in combination with other agents. However, different studies use different periods, time of initiation and duration of hypothermia following HI, with subsequent varying degrees of neuroprotection. So far most rodent data is obtained using exposure to 5-6h of therapeutic hypothermia. Our aim was to compare the effect of exposure to three different short periods of hypothermia (1h, 1.5h and 2h) following HI insult in the postnatal day 7 C57/Bl6 mouse, and to determine the shortest period providing neuroprotection. Our data suggests that 1h and 1.5h of hypothermia delayed by 20min following a 60min exposure to 8%O2 do not prove neuroprotective. However, 2h of hypothermia significantly reduced tissue loss, TUNEL+ cell death and microglia and astroglia activation. We also observed improved functional outcome 7 days after HI. We suggest that the minimal period of cooling necessary to provide moderate short term neuroprotection and appropriate for the development and testing of combined treatment is 2h.
Collapse
Affiliation(s)
- Eridan Rocha-Ferreira
- UCL Institute for Women’s Health, Maternal & Fetal Medicine, Perinatal Brain Repair Group, London, United Kingdom
| | - Amy Vincent
- UCL Institute for Women’s Health, Maternal & Fetal Medicine, Perinatal Brain Repair Group, London, United Kingdom
| | - Sarah Bright
- UCL Institute for Women’s Health, Maternal & Fetal Medicine, Perinatal Brain Repair Group, London, United Kingdom
| | - Donald M. Peebles
- UCL Institute for Women’s Health, Maternal & Fetal Medicine, Perinatal Brain Repair Group, London, United Kingdom
| | - Mariya Hristova
- UCL Institute for Women’s Health, Maternal & Fetal Medicine, Perinatal Brain Repair Group, London, United Kingdom
| |
Collapse
|
38
|
Tanabe S, Yamashita T. The role of immune cells in brain development and neurodevelopmental diseases. Int Immunol 2018; 30:437-444. [DOI: 10.1093/intimm/dxy041] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Shogo Tanabe
- Department of Molecular Neuroscience, World Premier International Immunology Frontier Research Center, Osaka University, Suita-shi, Osaka, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, World Premier International Immunology Frontier Research Center, Osaka University, Suita-shi, Osaka, Japan
- Graduate School of Medicine, Osaka University, Suita-shi, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita-shi, Osaka, Japan
| |
Collapse
|
39
|
Microglia contribute to normal myelinogenesis and to oligodendrocyte progenitor maintenance during adulthood. Acta Neuropathol 2017; 134:441-458. [PMID: 28685323 DOI: 10.1007/s00401-017-1747-1] [Citation(s) in RCA: 363] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/14/2017] [Accepted: 07/01/2017] [Indexed: 12/11/2022]
Abstract
Whereas microglia involvement in virtually all brain diseases is well accepted their role in the control of homeostasis in the central nervous system (CNS) is mainly thought to be the maintenance of neuronal function through the formation, refinement, and monitoring of synapses in both the developing and adult brain. Although the prenatal origin as well as the neuron-centered function of cortical microglia has recently been elucidated, much less is known about a distinct amoeboid microglia population formerly described as the "fountain of microglia" that appears only postnatally in myelinated regions such as corpus callosum and cerebellum. Using large-scale transcriptional profiling, fate mapping, and genetic targeting approaches, we identified a unique molecular signature of this microglia subset that arose from a CNS endogenous microglia pool independent from circulating myeloid cells. Microglia depletion experiments revealed an essential role of postnatal microglia for the proper development and homeostasis of oligodendrocytes and their progenitors. Our data provide new cellular and molecular insights into the myelin-supporting function of microglia in the normal CNS.
Collapse
|
40
|
Arcuri C, Mecca C, Bianchi R, Giambanco I, Donato R. The Pathophysiological Role of Microglia in Dynamic Surveillance, Phagocytosis and Structural Remodeling of the Developing CNS. Front Mol Neurosci 2017; 10:191. [PMID: 28674485 PMCID: PMC5474494 DOI: 10.3389/fnmol.2017.00191] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/30/2017] [Indexed: 12/13/2022] Open
Abstract
In vertebrates, during an early wave of hematopoiesis in the yolk sac between embryonic day E7.0 and E9.0, cells of mesodermal leaflet addressed to macrophage lineage enter in developing central nervous system (CNS) and originate the developing native microglial cells. Depending on the species, microglial cells represent 5–20% of glial cells resident in adult brain. Here, we briefly discuss some canonical functions of the microglia, i.e., cytokine secretion and functional transition from M1 to M2 phenotype. In addition, we review studies on the non-canonical functions of microglia such as regulation of phagocytosis, synaptic pruning, and sculpting postnatal neural circuits. In this latter context the contribution of microglia to some neurodevelopmental disorders is now well established. Nasu-Hakola (NHD) disease is considered a primary microgliopathy with alterations of the DNAX activation protein 12 (DAP12)-Triggering receptor expressed on myeloid cells 2 (TREM-2) signaling and removal of macromolecules and apoptotic cells followed by secondary microglia activation. In Rett syndrome Mecp2-/- microglia shows a substantial impairment of phagocytic ability, although the role of microglia is not yet clear. In a mouse model of Tourette syndrome (TS), microglia abnormalities have also been described, and deficient microglia-mediated neuroprotection is obvious. Here we review the role of microglial cells in neurodevelopmental disorders without inflammation and on the complex role of microglia in developing CNS.
Collapse
Affiliation(s)
- Cataldo Arcuri
- Department of Experimental Medicine, Centro Universitario per la Ricerca sulla Genomica Funzionale, Perugia Medical School, University of PerugiaPerugia, Italy
| | - Carmen Mecca
- Department of Experimental Medicine, Centro Universitario per la Ricerca sulla Genomica Funzionale, Perugia Medical School, University of PerugiaPerugia, Italy
| | - Roberta Bianchi
- Department of Experimental Medicine, Centro Universitario per la Ricerca sulla Genomica Funzionale, Perugia Medical School, University of PerugiaPerugia, Italy
| | - Ileana Giambanco
- Department of Experimental Medicine, Centro Universitario per la Ricerca sulla Genomica Funzionale, Perugia Medical School, University of PerugiaPerugia, Italy
| | - Rosario Donato
- Department of Experimental Medicine, Centro Universitario per la Ricerca sulla Genomica Funzionale, Perugia Medical School, University of PerugiaPerugia, Italy
| |
Collapse
|
41
|
Brown SM, Peters R, Lawrence AB. Up-regulation of IGF-1 in the frontal cortex of piglets exposed to an environmentally enriched arena. Physiol Behav 2017; 173:285-292. [PMID: 28238777 PMCID: PMC5358774 DOI: 10.1016/j.physbeh.2017.02.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 01/09/2023]
Abstract
Environmental enrichment (EE) is widely used in the life sciences to study effects of environment on the brain. In pigs, despite lack of EE being a key welfare issue there is little understanding of brain effects of EE in pigs. This project aimed to study the effects of exposure to an EE arena on piglet behaviours and on brain gene expression levels with a focus on IGF-1 and related genes. Eight litters of large white×landrace×Hampshire piglets were farrowed and raised in a free farrowing system (PigSAFE). At 42days of age, 6pigletsperlitter were given access to an enriched arena with plentiful peat, straw and space, (in groups of 4 made up of stable pairs) for 15min per day on 5 consecutive days to allow them to habituate to the apparatus. Piglet behaviours were recorded in the arena for 15min periods on 3 consecutive days. On the final day only one pair of test piglets per litter was given access to the arena. Brain tissue was collected within 45min of the test from piglets exposed to the arena on the day and their non-exposed littermate controls. RNA was extracted from the frontal cortex and QRT-PCR for selected genes run on a Stratgene MX3005P. In both the home pen and the EE arena litters spent the largest proportion of time engaging in foraging behaviour which was significantly increased in the enriched arena (t7=5.35, df=6, p=0.001). There were decreases in non-running play (t7=4.82, p=0.002) and inactivity (t7=4.6, p=0.002) in the arena. A significant fold change increase (FC=1.07, t=4.42, p=0.002) was observed in IGF-1 gene expression in the frontal cortex of piglets exposed to the enriched arena compared to those not exposed on the day of culling. No change in expression was observed in CSF1, the IGF-1 receptor gene nor in any of the binding proteins tested (IGFBP1-6). There was a weak tendency for increased expression of the neurotrophic factor BDNF1 (fold change: 1.03; t7=1.54, p=0.1). We believe this work is the first to explore effects of EE on pig brain physiology and development, and also points to a potential role for IGF-1 in brain effects of EE.
Collapse
Affiliation(s)
- Sarah M. Brown
- University of Edinburgh, Roslin Institute, Penicuik EH25 9RG, United Kingdom,Corresponding author.
| | - Rebecca Peters
- SRUC, West Mains Road, Edinburgh EH9 3JG, United Kingdom
| | | |
Collapse
|
42
|
Wang F, Xiao M, Chen RJ, Lin XJ, Siddiq M, Liu L. Adoptive transfer of T regulatory cells inhibits lipopolysaccharide-induced inflammation in fetal brain tissue in a late-pregnancy preterm birth mouse model. Cell Biol Int 2017; 41:155-162. [PMID: 27888557 DOI: 10.1002/cbin.10710] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 11/22/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Fan Wang
- Department of Neonatology; College of Medicine; The First Affiliated Hospital; Xi'an Jiaotong University; Yanta West Road No. 277 Xian 710049 Shanxi Province China
| | - Mi Xiao
- Department of Neonatology; College of Medicine; The First Affiliated Hospital; Xi'an Jiaotong University; Yanta West Road No. 277 Xian 710049 Shanxi Province China
| | - Ru-Juan Chen
- Department of Neonatology; College of Medicine; The First Affiliated Hospital; Xi'an Jiaotong University; Yanta West Road No. 277 Xian 710049 Shanxi Province China
| | - Xiao-Jie Lin
- Department of Neonatology; College of Medicine; The First Affiliated Hospital; Xi'an Jiaotong University; Yanta West Road No. 277 Xian 710049 Shanxi Province China
| | - Muhammad Siddiq
- Department of Neonatology; College of Medicine; The First Affiliated Hospital; Xi'an Jiaotong University; Yanta West Road No. 277 Xian 710049 Shanxi Province China
| | - Li Liu
- Department of Neonatology; College of Medicine; The First Affiliated Hospital; Xi'an Jiaotong University; Yanta West Road No. 277 Xian 710049 Shanxi Province China
| |
Collapse
|
43
|
Broad KD, Hassell J, Fleiss B, Kawano G, Ezzati M, Rocha-Ferreira E, Hristova M, Bennett K, Fierens I, Burnett R, Chaban B, Alonso-Alconada D, Oliver-Taylor A, Tachsidis I, Rostami J, Gressens P, Sanders RD, Robertson NJ. Isoflurane Exposure Induces Cell Death, Microglial Activation and Modifies the Expression of Genes Supporting Neurodevelopment and Cognitive Function in the Male Newborn Piglet Brain. PLoS One 2016; 11:e0166784. [PMID: 27898690 PMCID: PMC5127656 DOI: 10.1371/journal.pone.0166784] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/03/2016] [Indexed: 12/02/2022] Open
Abstract
Exposure of the brain to general anesthesia during early infancy may adversely affect its neural and cognitive development. The mechanisms mediating this are complex, incompletely understood and may be sexually dimorphic, but include developmentally inappropriate apoptosis, inflammation and a disruption to cognitively salient gene expression. We investigated the effects of a 6h isoflurane exposure on cell death, microglial activation and gene expression in the male neonatal piglet brain. Piglets (n = 6) were randomised to: (i) naive controls or (ii) 6h isoflurane. Cell death (TUNEL and caspase-3) and microglial activation were recorded in 7 brain regions. Changes in gene expression (microarray and qPCR) were assessed in the cingulate cortex. Electroencephalography (EEG) was recorded throughout. Isoflurane anesthesia induced significant increases in cell death in the cingulate and insular cortices, caudate nucleus, thalamus, putamen, internal capsule, periventricular white matter and hippocampus. Dying cells included both neurons and oligodendrocytes. Significantly, microglial activation was observed in the insula, pyriform, hippocampus, internal capsule, caudate and thalamus. Isoflurane induced significant disruption to the expression of 79 gene transcripts, of these 26 are important for the control of transcription and 23 are important for the mediation of neural plasticity, memory formation and recall. Our observations confirm that isoflurane increases apoptosis and inflammatory responses in the neonatal piglet brain but also suggests novel additional mechanisms by which isoflurane may induce adverse neural and cognitive development by disrupting the expression of genes mediating activity dependent development of neural circuits, the predictive adaptive responses of the brain, memory formation and recall.
Collapse
Affiliation(s)
- Kevin D. Broad
- Institute for Women’s Health, University College London, London, United Kingdom
| | - Jane Hassell
- Institute for Women’s Health, University College London, London, United Kingdom
| | - Bobbi Fleiss
- Centre for the Developing Brain, Kings College, St Thomas’s Campus, London, United Kingdom
- Inserm, Paris, France
- University Paris Diderot, Sorbonne Paris Cite, Paris, France
| | - Go Kawano
- Institute for Women’s Health, University College London, London, United Kingdom
| | - Mojgan Ezzati
- Institute for Women’s Health, University College London, London, United Kingdom
| | | | - Mariya Hristova
- Institute for Women’s Health, University College London, London, United Kingdom
| | - Kate Bennett
- Institute for Women’s Health, University College London, London, United Kingdom
| | - Igor Fierens
- Institute for Women’s Health, University College London, London, United Kingdom
| | - Ryan Burnett
- Institute for Women’s Health, University College London, London, United Kingdom
| | - Badr Chaban
- Institute for Women’s Health, University College London, London, United Kingdom
| | | | - Aaron Oliver-Taylor
- Institute for Women’s Health, University College London, London, United Kingdom
| | - Ilias Tachsidis
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Jamshid Rostami
- Institute for Women’s Health, University College London, London, United Kingdom
| | - Pierre Gressens
- Centre for the Developing Brain, Kings College, St Thomas’s Campus, London, United Kingdom
- Inserm, Paris, France
- University Paris Diderot, Sorbonne Paris Cite, Paris, France
| | - Robert D. Sanders
- Department of Anesthesiology, University of Wisconsin, Madison, United States of America
- Wellcome Department of Imaging Neuroscience, University College London, London, United Kingdom
- Surgical Outcomes Research Centre, University College London Hospital, London, United Kingdom
| | - Nicola J. Robertson
- Institute for Women’s Health, University College London, London, United Kingdom
| |
Collapse
|
44
|
Miyamoto A, Wake H, Ishikawa AW, Eto K, Shibata K, Murakoshi H, Koizumi S, Moorhouse AJ, Yoshimura Y, Nabekura J. Microglia contact induces synapse formation in developing somatosensory cortex. Nat Commun 2016; 7:12540. [PMID: 27558646 PMCID: PMC5007295 DOI: 10.1038/ncomms12540] [Citation(s) in RCA: 463] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 07/12/2016] [Indexed: 01/17/2023] Open
Abstract
Microglia are the immune cells of the central nervous system that play important roles in brain pathologies. Microglia also help shape neuronal circuits during development, via phagocytosing weak synapses and regulating neurogenesis. Using in vivo multiphoton imaging of layer 2/3 pyramidal neurons in the developing somatosensory cortex, we demonstrate here that microglial contact with dendrites directly induces filopodia formation. This filopodia formation occurs only around postnatal day 8-10, a period of intense synaptogenesis and when microglia have an activated phenotype. Filopodia formation is preceded by contact-induced Ca(2+) transients and actin accumulation. Inhibition of microglia by genetic ablation decreases subsequent spine density, functional excitatory synapses and reduces the relative connectivity from layer 4 neurons. Our data provide the direct demonstration of microglial-induced spine formation and provide further insights into immune system regulation of neuronal circuit development, with potential implications for developmental disorders of immune and brain dysfunction.
Collapse
Affiliation(s)
- Akiko Miyamoto
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Hiroaki Wake
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
- Department of Physiological Sciences, The Graduate School for Advanced Study, Hayama 240-0193, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama 102-0076, Japan
| | - Ayako Wendy Ishikawa
- Department of Physiological Sciences, The Graduate School for Advanced Study, Hayama 240-0193, Japan
- Division of Visual Information Processing, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Kei Eto
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
- Department of Physiological Sciences, The Graduate School for Advanced Study, Hayama 240-0193, Japan
| | - Keisuke Shibata
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
- Department of Pharmacology, Graduated School of Medical and Engineering, Yamanashi University, Chuo 409-3898, Japan
| | - Hideji Murakoshi
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama 102-0076, Japan
- Section of Multiphoton Neuroimaging, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Schuichi Koizumi
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
- Department of Pharmacology, Graduated School of Medical and Engineering, Yamanashi University, Chuo 409-3898, Japan
| | - Andrew J. Moorhouse
- School of Medical Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yumiko Yoshimura
- Department of Physiological Sciences, The Graduate School for Advanced Study, Hayama 240-0193, Japan
- Division of Visual Information Processing, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Junichi Nabekura
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
- Department of Physiological Sciences, The Graduate School for Advanced Study, Hayama 240-0193, Japan
| |
Collapse
|
45
|
Chitu V, Gokhan Ş, Nandi S, Mehler MF, Stanley ER. Emerging Roles for CSF-1 Receptor and its Ligands in the Nervous System. Trends Neurosci 2016; 39:378-393. [PMID: 27083478 DOI: 10.1016/j.tins.2016.03.005] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/07/2016] [Accepted: 03/09/2016] [Indexed: 02/06/2023]
Abstract
The colony-stimulating factor-1 receptor (CSF-1R) kinase regulates tissue macrophage homeostasis, osteoclastogenesis, and Paneth cell development. However, recent studies in mice have revealed that CSF-1R signaling directly controls the development and maintenance of microglia, and cell autonomously regulates neuronal differentiation and survival. While the CSF-1R-cognate ligands, CSF-1 and interleukin-34 (IL-34) compete for binding to the CSF-1R, they are expressed in a largely non-overlapping manner by mature neurons. The recent identification of a dominantly inherited, adult-onset, progressive dementia associated with inactivating mutations in the CSF-1R highlights the importance of CSF-1R signaling in the brain. We review the roles of the CSF-1R and its ligands in microglial and neural development and function, and their relevance to our understanding of neurodegenerative disease.
Collapse
Affiliation(s)
- Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Şölen Gokhan
- Institute for Brain Disorders and Neural Regeneration, Departments of Neurology, Neuroscience, and Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sayan Nandi
- Departments of Neuroscience and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mark F Mehler
- Institute for Brain Disorders and Neural Regeneration, Departments of Neurology, Neuroscience, and Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - E Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
46
|
Xie D, Shen F, He S, Chen M, Han Q, Fang M, Zeng H, Chen C, Deng Y. IL-1β induces hypomyelination in the periventricular white matter through inhibition of oligodendrocyte progenitor cell maturation via FYN/MEK/ERK signaling pathway in septic neonatal rats. Glia 2016; 64:583-602. [PMID: 26678483 DOI: 10.1002/glia.22950] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 11/08/2015] [Accepted: 11/18/2015] [Indexed: 02/05/2023]
Abstract
Neuroinflammation elicited by microglia plays a key role in periventricular white matter (PWM) damage (PWMD) induced by infectious exposure. This study aimed to determine if microglia-derived interleukin-1β (IL-1β) would induce hypomyelination through suppression of maturation of oligodendrocyte progenitor cells (OPCs) in the developing PWM. Sprague-Dawley rats (1-day old) were injected with lipopolysaccharide (LPS) (1 mg/kg) intraperitoneally, following which upregulated expression of IL-1β and IL-1 receptor 1 (IL-1R1 ) was observed. This was coupled with enhanced apoptosis and suppressed proliferation of OPCs in the PWM. The number of PDGFR-α and NG2-positive OPCs was significantly decreased in the PWM at 24 h and 3 days after injection of LPS, whereas it was increased at 14 days and 28 days. The protein expression of Olig1, Olig2, and Nkx2.2 was significantly reduced, and mRNA expression of Tcf4 and Axin2 was upregulated in the developing PWM after LPS injection. The expression of myelin basic protein (MBP) and 2',3'-cyclic-nucleotide 3"-phosphodiesterase (CNPase) was downregulated in the PWM at 14 days and 28 days after LPS injection; this was linked to reduction of the proportion of myelinated axons and thinner myelin sheath as revealed by electron microscopy. Primary cultured OPCs treated with IL-1β showed the failure of maturation and proliferation. Furthermore, FYN/MEK/ERK signaling pathway was involved in suppression of maturation of primary OPCs induced by IL-1β administration. Our results suggest that following LPS injection, microglia are activated and produce IL-1β in the PWM in the neonatal rats. Excess IL-1β inhibits the maturation of OPCs via suppression of FYN/MEK/ERK phosphorylation thereby leading to axonal hypomyelination.
Collapse
Affiliation(s)
- Di Xie
- Department of Critical Care and Emergency, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Fengcai Shen
- Department of Critical Care and Emergency, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
- Shantou University Medical College (FCS), Shantou, Guangdong, People's Republic of China. 515063
| | - Shaoru He
- Department of Neonatology, Guangdong General Hospital, Guangzhou, People's Republic of China
| | - Mengmeng Chen
- Department of Critical Care and Emergency, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
- Shantou University Medical College (FCS), Shantou, Guangdong, People's Republic of China. 515063
| | - Qianpeng Han
- Department of Critical Care and Emergency, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Ming Fang
- Department of Critical Care and Emergency, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Hongke Zeng
- Department of Critical Care and Emergency, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Chunbo Chen
- Department of Critical Care and Emergency, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Yiyu Deng
- Department of Critical Care and Emergency, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| |
Collapse
|
47
|
Dudvarski Stankovic N, Teodorczyk M, Ploen R, Zipp F, Schmidt MHH. Microglia-blood vessel interactions: a double-edged sword in brain pathologies. Acta Neuropathol 2016; 131:347-63. [PMID: 26711460 DOI: 10.1007/s00401-015-1524-y] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/09/2015] [Accepted: 12/12/2015] [Indexed: 12/12/2022]
Abstract
Microglia are long-living resident immune cells of the brain, which secure a stable chemical and physical microenvironment necessary for the proper functioning of the central nervous system (CNS). These highly dynamic cells continuously scan their environment for pathogens and possess the ability to react to damage-induced signals in order to protect the brain. Microglia, together with endothelial cells (ECs), pericytes and astrocytes, form the functional blood-brain barrier (BBB), a specialized endothelial structure that selectively separates the sensitive brain parenchyma from blood circulation. Microglia are in bidirectional and permanent communication with ECs and their perivascular localization enables them to survey the influx of blood-borne components into the CNS. Furthermore, they may stimulate the opening of the BBB, extravasation of leukocytes and angiogenesis. However, microglia functioning requires tight control as their dysregulation is implicated in the initiation and progression of numerous neurological diseases. Disruption of the BBB, changes in blood flow, introduction of pathogens in the sensitive CNS niche, insufficient nutrient supply, and abnormal secretion of cytokines or expression of endothelial receptors are reported to prime and attract microglia. Such reactive microglia have been reported to even escalate the damage of the brain parenchyma as is the case in ischemic injuries, brain tumors, multiple sclerosis, Alzheimer's and Parkinson's disease. In this review, we present the current state of the art of the causes and mechanisms of pathological interactions between microglia and blood vessels and explore the possibilities of targeting those dysfunctional interactions for the development of future therapeutics.
Collapse
Affiliation(s)
- Nevenka Dudvarski Stankovic
- Molecular Signal Transduction Laboratories, Institute for Microscopic Anatomy and Neurobiology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn²), University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Marcin Teodorczyk
- Molecular Signal Transduction Laboratories, Institute for Microscopic Anatomy and Neurobiology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn²), University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Robert Ploen
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Research Center for Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn²), University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Research Center for Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn²), University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Mirko H H Schmidt
- Molecular Signal Transduction Laboratories, Institute for Microscopic Anatomy and Neurobiology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn²), University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
48
|
Hristova M, Rocha-Ferreira E, Fontana X, Thei L, Buckle R, Christou M, Hompoonsup S, Gostelow N, Raivich G, Peebles D. Inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) reduces neonatal hypoxic-ischaemic brain damage. J Neurochem 2016; 136:981-94. [PMID: 26669927 PMCID: PMC4843952 DOI: 10.1111/jnc.13490] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/08/2015] [Accepted: 12/04/2015] [Indexed: 01/01/2023]
Abstract
Hypoxic‐ischaemic encephalopathy is a leading cause of child death, with high mortality and morbidity, including cerebral palsy, epilepsy and cognitive disabilities. Hypoxia‐ischaemia (HI) strongly up‐regulates Signal Transducer and Activator of Transcription 3 (STAT3) in the immature brain. Our aim was to establish whether STAT3 up‐regulation is associated with neonatal HI‐brain damage and evaluate the phosphorylated STAT3‐contribution from different cell types in eliciting damage. We subjected postnatal day seven mice to unilateral carotid artery ligation followed by 60 min hypoxia. Neuronal STAT3‐deletion reduced cell death, tissue loss, microglial and astroglial activation in all brain regions. Astroglia‐specific STAT3‐deletion also reduced cell death, tissue loss and microglial activation, although not as strongly as the deletion in neurons. Systemic pre‐insult STAT3‐blockade at tyrosine 705 (Y705) with JAK2‐inhibitor WP1066 reduced microglial and astroglial activation to a more moderate degree, but in a pattern similar to the one produced by the cell‐specific deletions. Our results suggest that STAT3 is a crucial factor in neonatal HI‐brain damage and its removal in neurons or astrocytes, and, to some extent, inhibition of its phosphorylation via JAK2‐blockade reduces inflammation and tissue loss. Overall, the protective effects of STAT3 inactivation make it a possible target for a therapeutic strategy in neonatal HI.
Current data show that neuronal and astroglial STAT3 molecules are involved in the pathways underlying cell death, tissue loss and gliosis following neonatal hypoxia‐ischaemia, but differ with respect to the target of their effect. Y705‐phosphorylation contributes to hypoxic‐ischaemic histopathology. Protective effects of STAT3 inactivation make it a possible target for a therapeutic strategy in neonatal hypoxia‐ischaemia.
Collapse
Affiliation(s)
- Mariya Hristova
- UCL Institute for Women's Health, Maternal & Fetal Medicine, Perinatal Brain Repair Group, London WC1E 6HX, UK
| | - Eridan Rocha-Ferreira
- UCL Institute for Women's Health, Maternal & Fetal Medicine, Perinatal Brain Repair Group, London WC1E 6HX, UK
| | - Xavier Fontana
- Cell Growth and Regeneration Lab, MRC Laboratory for Molecular Cell Biology, University College London, WC1E 6BT, UK
| | - Laura Thei
- UCL Institute for Women's Health, Maternal & Fetal Medicine, Perinatal Brain Repair Group, London WC1E 6HX, UK
| | - Rheanan Buckle
- UCL Institute for Women's Health, Maternal & Fetal Medicine, Perinatal Brain Repair Group, London WC1E 6HX, UK
| | - Melina Christou
- UCL Institute for Women's Health, Maternal & Fetal Medicine, Perinatal Brain Repair Group, London WC1E 6HX, UK
| | - Supanida Hompoonsup
- UCL Institute for Women's Health, Maternal & Fetal Medicine, Perinatal Brain Repair Group, London WC1E 6HX, UK
| | - Naomi Gostelow
- UCL Institute for Women's Health, Maternal & Fetal Medicine, Perinatal Brain Repair Group, London WC1E 6HX, UK
| | - Gennadij Raivich
- UCL Institute for Women's Health, Maternal & Fetal Medicine, Perinatal Brain Repair Group, London WC1E 6HX, UK
| | - Donald Peebles
- UCL Institute for Women's Health, Maternal & Fetal Medicine, Perinatal Brain Repair Group, London WC1E 6HX, UK
| |
Collapse
|
49
|
von Bernhardi R, Eugenín-von Bernhardi J, Flores B, Eugenín León J. Glial Cells and Integrity of the Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 949:1-24. [PMID: 27714682 DOI: 10.1007/978-3-319-40764-7_1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Today, there is enormous progress in understanding the function of glial cells, including astroglia, oligodendroglia, Schwann cells, and microglia. Around 150 years ago, glia were viewed as a glue among neurons. During the course of the twentieth century, microglia were discovered and neuroscientists' views evolved toward considering glia only as auxiliary cells of neurons. However, over the last two to three decades, glial cells' importance has been reconsidered because of the evidence on their involvement in defining central nervous system architecture, brain metabolism, the survival of neurons, development and modulation of synaptic transmission, propagation of nerve impulses, and many other physiological functions. Furthermore, increasing evidence shows that glia are involved in the mechanisms of a broad spectrum of pathologies of the nervous system, including some psychiatric diseases, epilepsy, and neurodegenerative diseases to mention a few. It appears safe to say that no neurological disease can be understood without considering neuron-glia crosstalk. Thus, this book aims to show different roles played by glia in the healthy and diseased nervous system, highlighting some of their properties while considering that the various glial cell types are essential components not only for cell function and integration among neurons, but also for the emergence of important brain homeostasis.
Collapse
Affiliation(s)
- Rommy von Bernhardi
- Department of Neurology, School of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile.
| | - Jaime Eugenín-von Bernhardi
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Pettenkoferstr.12, 80336, Munich, Germany.,Graduate School of Systemic Neuroscience, Ludwig-Maximilians-University, 82152, Planegg-Martinsried, Munich, Germany
| | - Betsi Flores
- Department of Neurology, School of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Jaime Eugenín León
- Department of Biology, Faculty of Chemistry and Biology, USACH, Santiago, Chile
| |
Collapse
|
50
|
Suppression of microglia activation after hypoxia-ischemia results in age-dependent improvements in neurologic injury. J Neuroimmunol 2015; 291:18-27. [PMID: 26857490 DOI: 10.1016/j.jneuroim.2015.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/05/2015] [Accepted: 12/09/2015] [Indexed: 12/14/2022]
Abstract
We previously found increased microglial proliferation and pro-inflammatory cytokine release in infant mice compared to juvenile mice after hypoxia-ischemia (HI). The aim of the current study was to assess for differences in the effect of microglial suppression on HI-induced brain injury in infant and juvenile mice. HI was induced in neonatal (P9) and juvenile (P30) mice and minocycline or vehicle was administered at 2h and 24h post-HI. P9 minocycline-treated mice demonstrated early but transient improvements in neurologic injury, while P30 minocycline-treated mice demonstrated sustained improvements in cerebral atrophy and Morris Water Maze performance at 60days post-HI.
Collapse
|