1
|
Taylor OB, Patel SP, Hawthorn EC, El-Hodiri HM, Fischer AJ. ID factors regulate the ability of Müller glia to become proliferating neurogenic progenitor-like cells. Glia 2024; 72:1236-1258. [PMID: 38515287 PMCID: PMC11334223 DOI: 10.1002/glia.24523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
The purpose of this study was to investigate how ID factors regulate the ability of Müller glia (MG) to reprogram into proliferating MG-derived progenitor cells (MGPCs) in the chick retina. We found that ID1 is transiently expressed by maturing MG (mMG), whereas ID4 is maintained in mMG in embryonic retinas. In mature retinas, ID4 was prominently expressed by resting MG, but following retinal damage ID4 was rapidly upregulated and then downregulated in MGPCs. By contrast, ID1, ID2, and ID3 were low in resting MG and then upregulated in MGPCs. Inhibition of ID factors following retinal damage decreased numbers of proliferating MGPCs. Inhibition of IDs, after MGPC proliferation, significantly increased numbers of progeny that differentiated as neurons. In damaged or undamaged retinas inhibition of IDs increased levels of p21Cip1 in MG. In response to damage or insulin+FGF2 levels of CDKN1A message and p21Cip1 protein were decreased, absent in proliferating MGPCs, and elevated in MG returning to a resting phenotype. Inhibition of notch- or gp130/Jak/Stat-signaling in damaged retinas increased levels of ID4 but not p21Cip1 in MG. Although ID4 is the predominant isoform expressed by MG in the chick retina, id1 and id2a are predominantly expressed by resting MG and downregulated in activated MG and MGPCs in zebrafish retinas. We conclude that ID factors have a significant impact on regulating the responses of MG to retinal damage, controlling the ability of MG to proliferate by regulating levels of p21Cip1, and suppressing the neurogenic potential of MGPCs.
Collapse
Affiliation(s)
- Olivia B. Taylor
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Snehal P. Patel
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Evan C. Hawthorn
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Heithem M. El-Hodiri
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Andy J. Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
2
|
Holden JM, Wareham LK, Calkins DJ. Morphological and electrophysiological characterization of a novel displaced astrocyte in the mouse retina. Glia 2024; 72:1356-1370. [PMID: 38591270 PMCID: PMC11081821 DOI: 10.1002/glia.24536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/08/2024] [Accepted: 03/30/2024] [Indexed: 04/10/2024]
Abstract
Astrocytes throughout the central nervous system are heterogeneous in both structure and function. This diversity leads to tissue-specific specialization where morphology is adapted to the surrounding neuronal circuitry, as seen in Bergman glia of the cerebellum and Müller glia of the retina. Because morphology can be a differentiating factor for cellular classification, we recently developed a mouse where glial-fibrillary acidic protein (GFAP)-expressing cells stochastically label for full membranous morphology. Here we utilize this tool to investigate whether morphological and electrophysiological features separate types of mouse retinal astrocytes. In this work, we report on a novel glial population found in the inner plexiform layer and ganglion cell layer which expresses the canonical astrocyte markers GFAP, S100β, connexin-43, Sox2 and Sox9. Apart from their retinal layer localization, these cells are unique in their radial distribution. They are notably absent from the mid-retina but are heavily concentrated near the optic nerve head, and to a lesser degree the peripheral retina. Additionally, their morphology is distinct from both nerve fiber layer astrocytes and Müller glia, appearing more similar to amacrine cells. Despite this structural similarity, these cells lack protein expression of common neuronal markers. Additionally, they do not exhibit action potentials, but rather resemble astrocytes and Müller glia in their small amplitude, graded depolarization to both light onset and offset. Their structure, protein expression, physiology, and intercellular connections suggest that these cells are astrocytic, displaced from their counterparts in the nerve fiber layer. As such, we refer to these cells as displaced retinal astrocytes.
Collapse
Affiliation(s)
- Joseph Matthew Holden
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN 37212
- Vanderbilt Neuroscience Graduate Program, Vanderbilt University, Nashville, TN 37212
| | - Lauren Katie Wareham
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN 37212
| | - David John Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN 37212
| |
Collapse
|
3
|
Campbell WA, El-Hodiri HM, Torres D, Hawthorn EC, Kelly LE, Volkov L, Akanonu D, Fischer AJ. Chromatin access regulates the formation of Müller glia-derived progenitor cells in the retina. Glia 2023; 71:1729-1754. [PMID: 36971459 PMCID: PMC11335016 DOI: 10.1002/glia.24366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 03/06/2023] [Accepted: 03/12/2023] [Indexed: 03/29/2023]
Abstract
Chromatin access and epigenetic control over gene expression play important roles in regulating developmental processes. However, little is known about how chromatin access and epigenetic gene silencing influence mature glial cells and retinal regeneration. Herein, we investigate the expression and functions of S-adenosylhomocysteine hydrolase (SAHH; AHCY) and histone methyltransferases (HMTs) during the formation of Müller glia (MG)-derived progenitor cells (MGPCs) in the chick and mouse retinas. In chick, AHCY, AHCYL1 and AHCYL2, and many different HMTs are dynamically expressed by MG and MGPCs in damaged retinas. Inhibition of SAHH reduced levels of H3K27me3 and potently blocks the formation of proliferating MGPCs. By using a combination of single cell RNA-seq and single cell ATAC-seq, we find significant changes in gene expression and chromatin access in MG with SAHH inhibition and NMDA-treatment; many of these genes are associated with glial and neuronal differentiation. A strong correlation across gene expression, chromatin access, and transcription factor motif access in MG was observed for transcription factors known to convey glial identity and promote retinal development. By comparison, in the mouse retina, inhibition of SAHH has no influence on the differentiation of neuron-like cells from Ascl1-overexpressing MG. We conclude that in the chick the activity of SAHH and HMTs are required for the reprogramming of MG into MGPCs by regulating chromatin access to transcription factors associated with glial differentiation and retinal development.
Collapse
Affiliation(s)
- Warren A. Campbell
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Heithem M. El-Hodiri
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Diego Torres
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Evan C. Hawthorn
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Lisa E. Kelly
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Leo Volkov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - David Akanonu
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
| | - Andy J. Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
4
|
Liu X, Shen Q, Zhang S. Cross-species cell-type assignment from single-cell RNA-seq data by a heterogeneous graph neural network. Genome Res 2023; 33:96-111. [PMID: 36526433 PMCID: PMC9977153 DOI: 10.1101/gr.276868.122] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Cross-species comparative analyses of single-cell RNA sequencing (scRNA-seq) data allow us to explore, at single-cell resolution, the origins of the cellular diversity and evolutionary mechanisms that shape cellular form and function. Cell-type assignment is a crucial step to achieve that. However, the poorly annotated genome and limited known biomarkers hinder us from assigning cell identities for nonmodel species. Here, we design a heterogeneous graph neural network model, CAME, to learn aligned and interpretable cell and gene embeddings for cross-species cell-type assignment and gene module extraction from scRNA-seq data. CAME achieves significant improvements in cell-type characterization across distant species owing to the utilization of non-one-to-one homologous gene mapping ignored by early methods. Our large-scale benchmarking study shows that CAME significantly outperforms five classical methods in terms of cell-type assignment and model robustness to insufficiency and inconsistency of sequencing depths. CAME can transfer the major cell types and interneuron subtypes of human brains to mouse and discover shared cell-type-specific functions in homologous gene modules. CAME can align the trajectories of human and macaque spermatogenesis and reveal their conservative expression dynamics. In short, CAME can make accurate cross-species cell-type assignments even for nonmodel species and uncover shared and divergent characteristics between two species from scRNA-seq data.
Collapse
Affiliation(s)
- Xingyan Liu
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China;,School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qunlun Shen
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China;,School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shihua Zhang
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China;,School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China;,Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
5
|
Campbell WA, Tangeman A, El-Hodiri HM, Hawthorn EC, Hathoot M, Blum S, Hoang T, Blackshaw S, Fischer AJ. Fatty acid-binding proteins and fatty acid synthase influence glial reactivity and promote the formation of Müller glia-derived progenitor cells in the chick retina. Development 2022; 149:274285. [PMID: 35132991 PMCID: PMC8959147 DOI: 10.1242/dev.200127] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/18/2022] [Indexed: 11/20/2022]
Abstract
A recent comparative transcriptomic study of Müller glia (MG) in vertebrate retinas revealed that fatty acid binding proteins (FABPs) are among the most highly expressed genes in chick ( Hoang et al., 2020). Here, we investigate how FABPs and fatty acid synthase (FASN) influence glial cells in the chick retina. During development, FABP7 is highly expressed by retinal progenitor cells and maturing MG, whereas FABP5 is upregulated in maturing MG. PMP2 (FABP8) is expressed by oligodendrocytes and FABP5 is expressed by non-astrocytic inner retinal glial cells, and both of these FABPs are upregulated by activated MG. In addition to suppressing the formation of Müller glia-derived progenitor cells (MGPCs), we find that FABP-inhibition suppresses the proliferation of microglia. FABP-inhibition induces distinct changes in single cell transcriptomic profiles, indicating transitions of MG from resting to reactive states and suppressed MGPC formation, with upregulation of gene modules for gliogenesis and decreases in neurogenesis. FASN-inhibition increases the proliferation of microglia and suppresses the formation of MGPCs. We conclude that fatty acid metabolism and cell signaling involving fatty acids are important in regulating the reactivity and dedifferentiation of MG, and the proliferation of microglia and MGPCs.
Collapse
Affiliation(s)
- Warren A Campbell
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Allen Tangeman
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Heithem M El-Hodiri
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Evan C Hawthorn
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Maddie Hathoot
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Sydney Blum
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Thanh Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
6
|
El-Hodiri HM, Campbell WA, Kelly LE, Hawthorn EC, Schwartz M, Jalligampala A, McCall MA, Meyer K, Fischer AJ. Nuclear Factor I in neurons, glia and during the formation of Müller glia-derived progenitor cells in avian, porcine and primate retinas. J Comp Neurol 2021; 530:1213-1230. [PMID: 34729776 DOI: 10.1002/cne.25270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/21/2021] [Indexed: 11/10/2022]
Abstract
The regenerative potential of Müller glia (MG) is extraordinary in fish, poor in chick and terrible in mammals. In the chick model, MG readily reprogram into proliferating Müller glia-derived progenitor cells (MGPCs), but neuronal differentiation is very limited. The factors that suppress the neurogenic potential of MGPCs in the chick are slowly being revealed. Isoforms of Nuclear Factor I (NFI) are cell-intrinsic factors that limit neurogenic potential; these factors are required for the formation of MG in the developing mouse retina (Clark et al., 2019) and deletion of these factors reprograms MG into neuron-like cells in mature mouse retina (Hoang et al., 2020). Accordingly, we sought to characterize the patterns of expression NFIs in the developing, mature and damaged chick retina. In addition, we characterized patterns of expression of NFIs in the retinas of large mammals, pigs and monkeys. Using a combination of single cell RNA-sequencing (scRNA-seq) and immunolabeling we probed for patterns of expression. In embryonic chick, levels of NFIs are very low in early E5 (embryonic day 5) retinal progenitor cells (RPCs), up-regulated in E8 RPCs, further up-regulated in differentiating MG at E12 and E15. NFIs are maintained in mature resting MG, microglia and neurons. Levels of NFIs are reduced in activated MG in retinas treated with NMDA and/or insulin+FGF2, and further down-regulated in proliferating MGPCs. However, levels of NFIs in MGPCs were significantly higher than those seen in RPCs. Immunolabeling for NFIA and NFIB closely matched patterns of expression revealed in different types of retinal neurons and glia, consistent with findings from scRNA-seq. In addition, we find expression of NFIA and NFIB through progenitors in the circumferential marginal zone at the far periphery of the retina. We find similar patterns of expression for NFIs in scRNA-seq databases for pig and monkey retinas. Patterns of expression of NFIA and NFIB were validated with immunofluorescence in pig and monkey retinas wherein these factors were predominantly detected in MG and a few types of inner retinal neurons. In summary, NFIA and NFIB are prominently expressed in developing chick retina and by mature neurons and glia in the retinas of chicks, pigs and monkeys. Although levels of NFIs are decreased in chick, in MGPCs these levels remain higher than those seen in neurogenic RPCs. We propose that the neurogenic potential of MGPCs in the chick retina is suppressed by NFIs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Heithem M El-Hodiri
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH.,Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY
| | - Warren A Campbell
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Lisa E Kelly
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Evan C Hawthorn
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Maura Schwartz
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH
| | - Archana Jalligampala
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY
| | - Maureen A McCall
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY
| | - Kathrin Meyer
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
7
|
Haverkamp S, Albert L, Balaji V, Němec P, Dedek K. Expression of cell markers and transcription factors in the avian retina compared with that in the marmoset retina. J Comp Neurol 2021; 529:3171-3193. [PMID: 33834511 DOI: 10.1002/cne.25154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
In the vertebrate retina, amacrine and ganglion cells represent the most diverse cell classes. They can be classified into different cell types by several features, such as morphology, light responses, and gene expression profile. Although birds possess high visual acuity (similar to primates that we used here for comparison) and tetrachromatic color vision, data on the expression of transcription factors in retinal ganglion cells of birds are largely missing. In this study, we tested various transcription factors, known to label subpopulations of cells in mammalian retinae, in two avian species: the common buzzard (Buteo buteo), a raptor with exceptional acuity, and the domestic pigeon (Columba livia domestica), a good navigator and widely used model for visual cognition. Staining for the transcription factors Foxp2, Satb1 and Satb2 labeled most ganglion cells in the avian ganglion cell layer. CtBP2 was established as marker for displaced amacrine cells, which allowed us to reliably distinguish ganglion cells from displaced amacrine cells and assess their densities in buzzard and pigeon. When we additionally compared the temporal and central fovea of the buzzard with the fovea of primates, we found that the cellular organization in the pits was different in primates and raptors. In summary, we demonstrate that the expression of transcription factors is a defining feature of cell types not only in the retina of mammals but also in the retina of birds. The markers, which we have established, may provide useful tools for more detailed studies on the retinal circuitry of these highly visual animals.
Collapse
Affiliation(s)
- Silke Haverkamp
- Department of Computational Neuroethology, Center of Advanced European Studies and Research (caesar), Bonn, Germany
| | - László Albert
- Animal Navigation/Neurosensorics Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Vaishnavi Balaji
- Animal Navigation/Neurosensorics Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Pavel Němec
- Department of Zoology, Charles University, Prague, Czech Republic
| | - Karin Dedek
- Animal Navigation/Neurosensorics Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
8
|
Yamagata M, Yan W, Sanes JR. A cell atlas of the chick retina based on single-cell transcriptomics. eLife 2021; 10:e63907. [PMID: 33393903 PMCID: PMC7837701 DOI: 10.7554/elife.63907] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/01/2021] [Indexed: 12/14/2022] Open
Abstract
Retinal structure and function have been studied in many vertebrate orders, but molecular characterization has been largely confined to mammals. We used single-cell RNA sequencing (scRNA-seq) to generate a cell atlas of the chick retina. We identified 136 cell types plus 14 positional or developmental intermediates distributed among the six classes conserved across vertebrates - photoreceptor, horizontal, bipolar, amacrine, retinal ganglion, and glial cells. To assess morphology of molecularly defined types, we adapted a method for CRISPR-based integration of reporters into selectively expressed genes. For Müller glia, we found that transcriptionally distinct cells were regionally localized along the anterior-posterior, dorsal-ventral, and central-peripheral retinal axes. We also identified immature photoreceptor, horizontal cell, and oligodendrocyte types that persist into late embryonic stages. Finally, we analyzed relationships among chick, mouse, and primate retinal cell classes and types. Our results provide a foundation for anatomical, physiological, evolutionary, and developmental studies of the avian visual system.
Collapse
Affiliation(s)
- Masahito Yamagata
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Wenjun Yan
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
9
|
Sükösd AK, Szabadfi K, Szabó-Meleg E, Gáspár B, Stodulka P, Sétáló G, Gábriel R, Nyitrai M, Biró Z, Ábrahám H. Surgical stress and cytoskeletal changes in lens epithelial cells following manual and femtosecond laser-assisted capsulotomy. Int J Ophthalmol 2020; 13:927-934. [PMID: 32566504 DOI: 10.18240/ijo.2020.06.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 03/16/2020] [Indexed: 11/23/2022] Open
Abstract
AIM To study the effect of mechanical stress on the cytoskeleton in lens epithelial cells following conventional phacoemulsification surgery (CPS) and femtosecond laser-assisted cataract surgery (FLACS). METHODS The cytoskeleton of the epithelial cells of the anterior lens capsules (ALC) removed by CPS and FLACS was examined by immunohistochemistry. Expression of the intermediate filament, glial fibrillary acidic protein (GFAP), and glutamine synthetase (GS) immunoreactivity were detected. In order to map the actin network of cells, fluorescently labeled phalloidin was used. The samples were examined using confocal laser scanning microscopy. RESULTS GFAP expression was visible in a larger number of the epithelial cells after CPS compared to FLACS. In CPS sample's epithelial cells, GFAP immunoreactivity indicated robust morphological change. Regarding the actin filaments, the presence of tubular elements connecting epithelial cells, regular actin pattern and marked cortical network after CPS were found. Following FLACS, the actin cytoskeleton of the epithelial cells remained densely structured, and the tubular elements were undetectable, however, the above-mentioned regular actin pattern and the marked cortical network were visible. CONCLUSION The conventional removal of the ALC induces more robust changes of the cytoskeleton of the lens epithelial cells.
Collapse
Affiliation(s)
- Andrea Krisztina Sükösd
- Department of Ophthalmology, University of Pécs Medical School and Clinical Centre, Pécs 7623, Hungary
| | - Krisztina Szabadfi
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs 7624, Hungary
| | - Edina Szabó-Meleg
- Department of Biophysics, University of Pécs Medical School and Clinical Centre, Pécs 7624, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs 7624, Hungary
| | | | | | - György Sétáló
- János Szentágothai Research Centre, University of Pécs, Pécs 7624, Hungary.,Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Pécs 7624, Hungary
| | - Róbert Gábriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs 7624, Hungary
| | - Miklós Nyitrai
- Department of Biophysics, University of Pécs Medical School and Clinical Centre, Pécs 7624, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs 7624, Hungary
| | - Zsolt Biró
- Department of Ophthalmology, University of Pécs Medical School and Clinical Centre, Pécs 7623, Hungary.,Optimum Laser Centre, Budapest 1124, Hungary
| | - Hajnalka Ábrahám
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Pécs 7624, Hungary
| |
Collapse
|
10
|
Fleming T, Balderas-Márquez JE, Epardo D, Ávila-Mendoza J, Carranza M, Luna M, Harvey S, Arámburo C, Martínez-Moreno CG. Growth Hormone Neuroprotection Against Kainate Excitotoxicity in the Retina is Mediated by Notch/PTEN/Akt Signaling. Invest Ophthalmol Vis Sci 2020; 60:4532-4547. [PMID: 31675424 DOI: 10.1167/iovs.19-27473] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose In the retina, growth hormone (GH) promotes axonal growth, synaptic restoration, and protective actions against excitotoxicity. Notch signaling pathway is critical for neural development and participates in the retinal neuroregenerative process. We investigated the interaction of GH with Notch signaling pathway during its neuroprotective effect against excitotoxic damage in the chicken retina. Methods Kainate (KA) was used as excitotoxic agent and changes in the mRNA expression of several signaling markers were determined by qPCR. Also, changes in phosphorylation and immunoreactivity were determined by Western blotting. Histology and immunohistochemistry were performed for morphometric analysis. Overexpression of GH was performed in the quail neuroretinal-derived immortalized cell line (QNR/D) cell line. Exogenous GH was administered to retinal primary cell cultures to study the activation of signaling pathways. Results KA disrupted the retinal cytoarchitecture and induced significant cell loss in several retinal layers, but the coaddition of GH effectively prevented these adverse effects. We showed that GH upregulates the Notch signaling pathway during neuroprotection leading to phosphorylation of the PI3K/Akt signaling pathways through downregulation of PTEN. In contrast, cotreatment of GH with the Notch signaling inhibitor, DAPT, prevented its neuroprotective effect against KA. We identified binding sites in Notch1 and Notch2 genes for STAT5. Also, GH prevented Müller cell transdifferentiation and downregulated Sox2, FGF2, and PCNA after cotreatment with KA. Additionally, GH modified TNF receptors immunoreactivity suggesting anti-inflammatory actions. Conclusions Our data indicate that the neuroprotective effects of GH against KA injury in the retina are mediated through the regulation of Notch signaling. Additionally, anti-inflammatory and antiproliferative effects were observed.
Collapse
Affiliation(s)
- Thomas Fleming
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México.,Department of Physiology, University of Alberta, Edmonton, Canada
| | - Jerusa E Balderas-Márquez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - David Epardo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - José Ávila-Mendoza
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
| | - Martha Carranza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Maricela Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Steve Harvey
- Department of Physiology, University of Alberta, Edmonton, Canada
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Carlos G Martínez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| |
Collapse
|
11
|
Midena E, Micera A, Frizziero L, Pilotto E, Esposito G, Bini S. Sub-threshold micropulse laser treatment reduces inflammatory biomarkers in aqueous humour of diabetic patients with macular edema. Sci Rep 2019; 9:10034. [PMID: 31296907 PMCID: PMC6624368 DOI: 10.1038/s41598-019-46515-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/21/2019] [Indexed: 12/23/2022] Open
Abstract
Subthreshold micropulse laser (SMPL) is a tissue-sparing technique whose efficacy is demonstrated for diabetic macular edema (DME) treatment. However, its mechanism of action is poorly known. A prospective observational study was performed on naïve DME patients treated with SMPL, to evaluate the changes of aqueous humor (AH) inflammatory and vaso-active biomarkers after treatments. AH samples of eighteen DME eyes were collected before and after SMPL. Ten non-diabetic AH samples served as controls. Full ophthalmic evaluation, spectral domain optical coherence tomography (SD-OCT) and fluorescein angiography were performed in DME group. Glass chip protein array was used to quantify 58 inflammatory molecules. Central retinal thickness (CRT) and visual acuity were also monitored. Several molecules showed different concentrations in DME eyes versus controls (p value < 0.05). Fas Ligand (FasL), Macrophage Inflammatory Proteins (MIP)-1α, Regulated on Activation Normal T Cell Expressed and Secreted (RANTES) and Vascular Endothelial Growth Factor (VEGF) were increased in DME at baseline versus controls and decreased after SMPL treatments (p < 0.05). CRT reduction and visual acuity improvement were also found. Inflammatory cytokines, mainly produced by the retinal microglia, were significantly reduced after treatments, suggesting that SMPL may act by de-activating microglial cells, and reducing local inflammatory diabetes-related response.
Collapse
Affiliation(s)
- Edoardo Midena
- Department of Ophthalmology, University of Padova, Padova, Italy. .,IRCCS - Fondazione Bietti, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
12
|
Pöyhönen S, Er S, Domanskyi A, Airavaara M. Effects of Neurotrophic Factors in Glial Cells in the Central Nervous System: Expression and Properties in Neurodegeneration and Injury. Front Physiol 2019; 10:486. [PMID: 31105589 PMCID: PMC6499070 DOI: 10.3389/fphys.2019.00486] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 04/08/2019] [Indexed: 12/28/2022] Open
Abstract
Astrocytes, oligodendrocytes, and microglia are abundant cell types found in the central nervous system and have been shown to play crucial roles in regulating both normal and disease states. An increasing amount of evidence points to the critical importance of glia in mediating neurodegeneration in Alzheimer’s and Parkinson’s diseases (AD, PD), and in ischemic stroke, where microglia are involved in initial tissue clearance, and astrocytes in the subsequent formation of a glial scar. The importance of these cells for neuronal survival has previously been studied in co-culture experiments and the search for neurotrophic factors (NTFs) initiated after finding that the addition of conditioned media from astrocyte cultures could support the survival of primary neurons in vitro. This led to the discovery of the potent dopamine neurotrophic factor, glial cell line-derived neurotrophic factor (GDNF). In this review, we focus on the relationship between glia and NTFs including neurotrophins, GDNF-family ligands, CNTF family, and CDNF/MANF-family proteins. We describe their expression in astrocytes, oligodendrocytes and their precursors (NG2-positive cells, OPCs), and microglia during development and in the adult brain. Furthermore, we review existing data on the glial phenotypes of NTF knockout mice and follow NTF expression patterns and their effects on glia in disease models such as AD, PD, stroke, and retinal degeneration.
Collapse
Affiliation(s)
- Suvi Pöyhönen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Safak Er
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Andrii Domanskyi
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Mikko Airavaara
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.,Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Fuentes-Santamaría V, Alvarado JC, Rodríguez-de la Rosa L, Juiz JM, Varela-Nieto I. Neuroglial Involvement in Abnormal Glutamate Transport in the Cochlear Nuclei of the Igf1 -/- Mouse. Front Cell Neurosci 2019; 13:67. [PMID: 30881288 PMCID: PMC6405628 DOI: 10.3389/fncel.2019.00067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/11/2019] [Indexed: 12/25/2022] Open
Abstract
Insulin-like growth factor 1 (IGF-1) is a powerful regulator of synaptic activity and a deficit in this protein has a profound impact on neurotransmission, mostly on excitatory synapses in both the developing and mature auditory system. Adult Igf1−/− mice are animal models for the study of human syndromic deafness; they show altered cochlear projection patterns into abnormally developed auditory neurons along with impaired glutamate uptake in the cochlear nuclei, phenomena that probably reflect disruptions in neuronal circuits. To determine the cellular mechanisms that might be involved in regulating excitatory synaptic plasticity in 4-month-old Igf1−/− mice, modifications to neuroglia, astroglial glutamate transporters (GLTs) and metabotropic glutamate receptors (mGluRs) were assessed in the cochlear nuclei. The Igf1−/− mice show significant decreases in IBA1 (an ionized calcium-binding adapter) and glial fibrillary acidic protein (GFAP) mRNA expression and protein accumulation, as well as dampened mGluR expression in conjunction with enhanced glutamate transporter 1 (GLT1) expression. By contrast, no differences were observed in the expression of glutamate aspartate transporter (GLAST) between these Igf1−/− mice and their heterozygous or wildtype littermates. These observations suggest that congenital IGF-1 deficiency may lead to alterations in microglia and astrocytes, an upregulation of GLT1, and the downregulation of groups I, II and III mGluRs. Understanding the molecular, biochemical and morphological mechanisms underlying neuronal plasticity in a mouse model of hearing deficits will give us insight into new therapeutic strategies that could help to maintain or even improve residual hearing when human deafness is related to IGF-1 deficiency.
Collapse
Affiliation(s)
- Veronica Fuentes-Santamaría
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Juan C Alvarado
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Lourdes Rodríguez-de la Rosa
- Grupo de Neurobiología de la Audición, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), CIBER MP, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - José M Juiz
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Isabel Varela-Nieto
- Grupo de Neurobiología de la Audición, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), CIBER MP, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| |
Collapse
|
14
|
Heisler-Taylor T, Kim B, Reese AY, Hamadmad S, Kusibati R, Fischer AJ, Cebulla CM. A new multichannel method quantitating TUNEL in detached photoreceptor nuclei. Exp Eye Res 2018; 176:121-129. [PMID: 29959928 DOI: 10.1016/j.exer.2018.06.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 11/17/2022]
Abstract
Nuclear co-localization labels are critical to ocular research. Among these, the TUNEL assay has been established as a gold standard of cell death and apoptosis. While several validated computer-based methods exist to quantitate these markers, including ImageJ Retina Analysis (RA) Toolkit and ImagePro, none verify the count with the nuclear counter stain to confirm nuclear co-localization. We established a new ImageJ-based automated multichannel thresholding (MCT) method to quantitate nuclear co-localized labeling. The MCT method was validated by comparing it with the two published TUNEL analysis in TUNEL-positive photoreceptors in an experimental retinal detachment (RD) model. RDs were induced in murine eyes and cross-sectional images of TUNEL and DAPI counter stain were obtained. Images were classified as "typical" or high density "hotspot" TUNEL regions (n = 10/group). Images were analyzed and compared between the MCT method and the published techniques including both "standard" and "high" settings of the RA Toolkit for detecting lower or higher TUNEL densities, respectively. Additional testing of the MCT method with built-in ImageJ thresholding algorithms was performed to produce fully automated measurements. All images were compared with Bland-Altman mean difference plots to assess the difference in counts and linear regression plots to assess correlation. Comparison between the MCT method and the ImagePro method were found to be well correlated (typical: R2 = 0.8972, hotspot: R2 = 0.9000) with minor to non-significant differences. The RA Toolkit settings were found to be mostly well correlated as well (standard/typical: R2 = 0.8036, standard/hotspot: R2 = 0.4309, high/typical: R2 = 0.7895, high/hotspot: R2 = 0.8738) but were often found to have significantly higher counts than the MCT. In conclusion, the MCT method compared favorably with validated computer-based methods of nuclear marker immunofluorescence quantitation and avoids staining artifacts through the incorporation of the nuclear counter stain to confirm positive cells.
Collapse
Affiliation(s)
- Tyler Heisler-Taylor
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University, Columbus, OH, USA; Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Bongsu Kim
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University, Columbus, OH, USA
| | - Alana Y Reese
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University, Columbus, OH, USA
| | - Sumaya Hamadmad
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University, Columbus, OH, USA
| | - Rania Kusibati
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University, Columbus, OH, USA
| | - Andy J Fischer
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Colleen M Cebulla
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
15
|
Todd L, Suarez L, Quinn C, Fischer AJ. Retinoic Acid-Signaling Regulates the Proliferative and Neurogenic Capacity of Müller Glia-Derived Progenitor Cells in the Avian Retina. Stem Cells 2017; 36:392-405. [PMID: 29193451 DOI: 10.1002/stem.2742] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/16/2017] [Accepted: 11/03/2017] [Indexed: 12/26/2022]
Abstract
In the retina, Müller glia have the potential to become progenitor cells with the ability to proliferate and regenerate neurons. However, the ability of Müller glia-derived progenitor cells (MGPCs) to proliferate and produce neurons is limited in higher vertebrates. Using the chick model system, we investigate how retinoic acid (RA)-signaling influences the proliferation and the formation of MGPCs. We observed an upregulation of cellular RA binding proteins (CRABP) in the Müller glia of damaged retinas where the formation of MGPCs is known to occur. Activation of RA-signaling was stimulated, whereas inhibition suppressed the proliferation of MGPCs in damaged retinas and in fibroblast growth factor 2-treated undamaged retinas. Furthermore, inhibition of RA-degradation stimulated the proliferation of MGPCs. Levels of Pax6, Klf4, and cFos were upregulated in MGPCs by RA agonists and downregulated in MGPCs by RA antagonists. Activation of RA-signaling following MGPC proliferation increased the percentage of progeny that differentiated as neurons. Similarly, the combination of RA and insulin-like growth factor 1 (IGF1) significantly increased neurogenesis from retinal progenitors in the circumferential marginal zone (CMZ). In summary, RA-signaling stimulates the formation of proliferating MGPCs and enhances the neurogenic potential of MGPCs and stem cells in the CMZ. Stem Cells 2018;36:392-405.
Collapse
Affiliation(s)
- Levi Todd
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Lilianna Suarez
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Colin Quinn
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
16
|
Wisely CE, Sayed JA, Tamez H, Zelinka C, Abdel-Rahman MH, Fischer AJ, Cebulla CM. The chick eye in vision research: An excellent model for the study of ocular disease. Prog Retin Eye Res 2017; 61:72-97. [PMID: 28668352 PMCID: PMC5653414 DOI: 10.1016/j.preteyeres.2017.06.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/24/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023]
Abstract
The domestic chicken, Gallus gallus, serves as an excellent model for the study of a wide range of ocular diseases and conditions. The purpose of this manuscript is to outline some anatomic, physiologic, and genetic features of this organism as a robust animal model for vision research, particularly for modeling human retinal disease. Advantages include a sequenced genome, a large eye, relative ease of handling and maintenance, and ready availability. Relevant similarities and differences to humans are highlighted for ocular structures as well as for general physiologic processes. Current research applications for various ocular diseases and conditions, including ocular imaging with spectral domain optical coherence tomography, are discussed. Several genetic and non-genetic ocular disease models are outlined, including for pathologic myopia, keratoconus, glaucoma, retinal detachment, retinal degeneration, ocular albinism, and ocular tumors. Finally, the use of stem cell technology to study the repair of damaged tissues in the chick eye is discussed. Overall, the chick model provides opportunities for high-throughput translational studies to more effectively prevent or treat blinding ocular diseases.
Collapse
Affiliation(s)
- C Ellis Wisely
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA
| | - Javed A Sayed
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA
| | - Heather Tamez
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA
| | - Chris Zelinka
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 333 West 10th Avenue, Columbus, OH 43210, USA
| | - Mohamed H Abdel-Rahman
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA
| | - Andy J Fischer
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 333 West 10th Avenue, Columbus, OH 43210, USA.
| | - Colleen M Cebulla
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA.
| |
Collapse
|
17
|
Todd L, Palazzo I, Squires N, Mendonca N, Fischer AJ. BMP- and TGFβ-signaling regulate the formation of Müller glia-derived progenitor cells in the avian retina. Glia 2017; 65:1640-1655. [PMID: 28703293 DOI: 10.1002/glia.23185] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/24/2017] [Accepted: 06/13/2017] [Indexed: 01/20/2023]
Abstract
Müller glia-derived progenitor cells (MGPCs) have the capability to regenerate neurons in the retinas of different vertebrate orders. The formation of MGPCs is regulated by a network of cell-signaling pathways. The purpose of this study was to investigate how BMP/Smad1/5/8- and TGFβ/Smad2/3-signaling are coordinated to influence the formation of MGPCs in the chick model system. We find that pSmad1/5/8 is selectively up-regulated in the nuclei of Müller glia following treatment with BMP4, FGF2, or NMDA-induced damage, and this up-regulation is blocked by a dorsomorphin analogue DMH1. By comparison, Smad2/3 is found in the nuclei of Müller glia in untreated retinas, and becomes localized to the cytoplasm following NMDA- or FGF2-treatment. These findings suggest a decrease in TGFβ- and increase in BMP-signaling when MGPCs are known to form. In both NMDA-damaged and FGF2-treated retinas, inhibition of BMP-signaling suppressed the proliferation of MGPCs, whereas inhibition of TGFβ-signaling stimulated the proliferation of MGPCs. Consistent with these findings, TGFβ2 suppressed the formation of MGPCs in NMDA-damaged retinas. Our findings indicate that BMP/TGFβ/Smad-signaling is recruited into the network of signaling pathways that controls the formation of proliferating MGPCs. We conclude that signaling through BMP4/Smad1/5/8 promotes the formation of MGPCs, whereas signaling through TGFβ/Smad2/3 suppresses the formation of MGPCs.
Collapse
Affiliation(s)
- Levi Todd
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, Ohio, 43210
| | - Isabella Palazzo
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, Ohio, 43210
| | - Natalie Squires
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, Ohio, 43210
| | - Ninoshka Mendonca
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, Ohio, 43210
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, Ohio, 43210
| |
Collapse
|
18
|
Dharmarajan S, Fisk DL, Sorenson CM, Sheibani N, Belecky-Adams TL. Microglia activation is essential for BMP7-mediated retinal reactive gliosis. J Neuroinflammation 2017; 14:76. [PMID: 28381236 PMCID: PMC5382432 DOI: 10.1186/s12974-017-0855-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/27/2017] [Indexed: 02/08/2023] Open
Abstract
Background Our previous studies have shown that BMP7 is able to trigger activation of retinal macroglia. However, these studies showed the responsiveness of Müller glial cells and retinal astrocytes in vitro was attenuated in comparison to those in vivo, indicating other retinal cell types may be mediating the response of the macroglial cells to BMP7. In this study, we test the hypothesis that BMP7-mediated gliosis is the result of inflammatory signaling from retinal microglia. Methods Adult mice were injected intravitreally with BMP7 and eyes harvested 1, 3, or 7 days postinjection. Some mice were treated with PLX5622 (PLX) to ablate microglia and were subsequently injected with control or BMP7. Processed tissue was analyzed via immunofluorescence, RT-qPCR, or ELISA. In addition, cultures of retinal microglia were treated with vehicle, lipopolysaccharide, or BMP7 to determine the effects of BMP7-isolated cells. Results Mice injected with BMP7 showed regulation of various inflammatory markers at the RNA level, as well as changes in microglial morphology. Isolated retinal microglia also showed an upregulation of BMP-signaling components following treatment. In vitro treatment of retinal astrocytes with conditioned media from activated microglia upregulated RNA levels of gliosis markers. In the absence of microglia, the mouse retina showed a subdued gliosis and inflammatory response when exposed to BMP7. Conclusions Gliosis resulting from BMP7 is mediated through an inflammatory response from retinal microglia. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0855-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Subramanian Dharmarajan
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 W Michigan St, SL306, Indianapolis, IN, 46202, USA.,Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, 723 W Michigan St, Indianapolis, IN, 46202, USA
| | - Debra L Fisk
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, 9453 WIMR, Madison, WI, 53705, USA
| | - Christine M Sorenson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, 9453 WIMR, Madison, WI, 53705, USA
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, 9453 WIMR, Madison, WI, 53705, USA
| | - Teri L Belecky-Adams
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 W Michigan St, SL306, Indianapolis, IN, 46202, USA. .,Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, 723 W Michigan St, Indianapolis, IN, 46202, USA.
| |
Collapse
|
19
|
Evidence of BrdU-positive retinal neurons after application of an Alpha7 nicotinic acetylcholine receptor agonist. Neuroscience 2017; 346:437-446. [PMID: 28147247 DOI: 10.1016/j.neuroscience.2017.01.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 11/23/2022]
Abstract
Irreversible vision loss due to disease or age is responsible for a reduced quality of life. The experiments in this study test the hypothesis that the α7 nicotinic acetylcholine receptor agonist, PNU-282987, leads to the generation of retinal neurons in an adult mammalian retina in the absence of retinal injury or exogenous growth factors. Using antibodies against BrdU, retinal ganglion cells, progenitor cells and Müller glia, the results of this study demonstrate that multiple types of retinal cells and neurons are generated after eye drop application of PNU-282987 in adult Long Evans rats in a dose-dependent manner. The results of this study provide evidence that progenitor cells, derived from Müller glia after treatment with PNU-282987, differentiate and migrate to the photoreceptor and retinal ganglion cell layers. If retinas were treated with the alpha7 nAChR antagonist, methyllycaconitine, before agonist treatment, BrdU-positive cells were significantly reduced. As adult mammalian neurons do not typically regenerate or proliferate, these results have implications for reversing vision loss due to neurodegenerative disease or the aging process to improve the quality of life for millions of patients.
Collapse
|
20
|
Carr BJ, Stell WK. Nitric Oxide (NO) Mediates the Inhibition of Form-Deprivation Myopia by Atropine in Chicks. Sci Rep 2016; 6:9. [PMID: 28442706 PMCID: PMC5431363 DOI: 10.1038/s41598-016-0002-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 08/22/2016] [Indexed: 11/30/2022] Open
Abstract
Myopia is the most common childhood refractive disorder. Atropine inhibits myopia progression, but its mechanism is unknown. Here, we show that myopia-prevention by atropine requires production of nitric oxide (NO). Form-deprivation myopia (FDM) was induced in week-old chicks by diffusers over the right eye (OD); the left eye (OS) remained ungoggled. On post-goggling days 1, 3, and 5, OD received intravitreally 20 µL of phosphate-buffered saline (vehicle), or vehicle plus: NO source: L-arginine (L-Arg, 60–6,000 nmol) or sodium nitroprusside (SNP, 10–1,000 nmol); atropine (240 nmol); NO inhibitors: L-NIO or L-NMMA (6 nmol); negative controls: D-Arg (10 µmol) or D-NMMA (6 nmol); or atropine plus L-NIO, L-NMMA, or D-NMMA; OS received vehicle. On day 6 post-goggling, refractive error, axial length, equatorial diameter, and wet weight were measured. Vehicle-injected goggled eyes developed significant FDM. This was inhibited by L-Arg (ED50 = 400 nmol) or SNP (ED50 = 20 nmol), but not D-Arg. Higher-dose SNP, but not L-Arg, was toxic to retina/RPE. Atropine inhibited FDM as expected; adding NOS-inhibitors (L-NIO, L-NMMA) to atropine inhibited this effect dose-dependently, but adding D-NMMA did not. Equatorial diameter, wet weight, and metrics of control eyes were not affected by any treatment. In summary, intraocular NO inhibits myopia dose-dependently and is obligatory for inhibition of myopia by atropine.
Collapse
Affiliation(s)
- Brittany J Carr
- Neuroscience Graduate Program, Snyder Institute for Chronic Diseases, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - William K Stell
- Department of Cell Biology and Anatomy and Department of Surgery; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
21
|
Todd L, Squires N, Suarez L, Fischer AJ. Jak/Stat signaling regulates the proliferation and neurogenic potential of Müller glia-derived progenitor cells in the avian retina. Sci Rep 2016; 6:35703. [PMID: 27759082 PMCID: PMC5069623 DOI: 10.1038/srep35703] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 10/04/2016] [Indexed: 12/26/2022] Open
Abstract
Müller glia are capable of de-differentiating and proliferating to become Müller glia-derived progenitor cells (MGPCs) with the ability to regenerate retinal neurons. One of the cell-signaling pathways that drives the reprogramming of Müller glia into MGPCs in the zebrafish retina is the Jak/Stat-pathway. However, nothing is known about the influence of Jak/Stat-signaling during the formation of MGPCs in the retinas of warm-blooded vertebrates. Accordingly, we examined whether Jak/Stat-signaling influences the formation of MGPCs and differentiation of progeny in the avian retina. We found that Jak/Stat-signaling is activated in Müller glia in response to NMDA-induced retinal damage or by CNTF or FGF2 in the absence of retinal damage. Inhibition of gp130, Jak2, or Stat3 suppressed the formation of proliferating MGPCs in NMDA-damaged and FGF2-treated retinas. Additionally, CNTF combined with FGF2 enhanced the formation of proliferating MGPCs in the absence of retinal damage. In contrast to the zebrafish model, where activation of gp130/Jak/Stat is sufficient to drive neural regeneration from MGPCs, signaling through gp130 inhibits the neurogenic potential of MGPCs and promotes glial differentiation. We conclude that gp130/Jak/Stat-signaling plays an important role in the network of pathways that drives the formation of proliferating MGPCs; however, this pathway inhibits the neural differentiation of the progeny.
Collapse
Affiliation(s)
- Levi Todd
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, OH 43210, USA
| | - Natalie Squires
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, OH 43210, USA
| | - Lilianna Suarez
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, OH 43210, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, OH 43210, USA
| |
Collapse
|
22
|
Kaya A. Comment to: Dual effect hypothesis of insulin analogs on diabetic retinopathy. Indian J Ophthalmol 2016; 64:476-7. [PMID: 27488166 PMCID: PMC4991190 DOI: 10.4103/0301-4738.187693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Abdullah Kaya
- Department of Ophthalmology, Anıttepe Military Dispensary, Ankara, Turkey
| |
Collapse
|
23
|
Zelinka CP, Volkov L, Goodman ZA, Todd L, Palazzo I, Bishop WA, Fischer AJ. mTor signaling is required for the formation of proliferating Müller glia-derived progenitor cells in the chick retina. Development 2016; 143:1859-73. [PMID: 27068108 PMCID: PMC4920162 DOI: 10.1242/dev.133215] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/04/2016] [Indexed: 12/29/2022]
Abstract
We investigate the roles of mTor signaling in the formation of Müller glia-derived progenitor cells (MGPCs) in the chick retina. During embryonic development, pS6 (a readout of active mTor signaling) is present in early-stage retinal progenitors, differentiating amacrine and ganglion cells, and late-stage progenitors or maturing Müller glia. By contrast, pS6 is present at low levels in a few scattered cell types in mature, healthy retina. Following retinal damage, in which MGPCs are known to form, mTor signaling is rapidly activated in Müller glia. Inhibition of mTor in damaged retinas prevented the accumulation of pS6 in Müller glia and reduced numbers of proliferating MGPCs. Inhibition of mTor had no effect on MAPK signaling or on upregulation of the stem cell factor Klf4, whereas Pax6 upregulation was significantly reduced. Inhibition of mTor potently blocked the MGPC-promoting effects of Hedgehog, Wnt and glucocorticoid signaling in damaged retinas. In the absence of retinal damage, insulin, IGF1 and FGF2 induced pS6 in Müller glia, and this was blocked by mTor inhibitor. In FGF2-treated retinas, in which MGPCs are known to form, inhibition of mTor blocked the accumulation of pS6, the upregulation of Pax6 and the formation of proliferating MGPCs. We conclude that mTor signaling is required, but not sufficient, to stimulate Müller glia to give rise to proliferating progenitors, and the network of signaling pathways that drive the formation of MGPCs requires activation of mTor.
Collapse
Affiliation(s)
- Christopher P Zelinka
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Avenue, Columbus, OH 43210-1239, USA
| | - Leo Volkov
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Avenue, Columbus, OH 43210-1239, USA
| | - Zachary A Goodman
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Avenue, Columbus, OH 43210-1239, USA
| | - Levi Todd
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Avenue, Columbus, OH 43210-1239, USA
| | - Isabella Palazzo
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Avenue, Columbus, OH 43210-1239, USA
| | - William A Bishop
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Avenue, Columbus, OH 43210-1239, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Avenue, Columbus, OH 43210-1239, USA
| |
Collapse
|
24
|
Hamon A, Roger JE, Yang XJ, Perron M. Müller glial cell-dependent regeneration of the neural retina: An overview across vertebrate model systems. Dev Dyn 2016; 245:727-38. [PMID: 26661417 PMCID: PMC4900950 DOI: 10.1002/dvdy.24375] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/12/2015] [Accepted: 11/22/2015] [Indexed: 12/21/2022] Open
Abstract
Retinal dystrophies are a major cause of blindness for which there are currently no curative treatments. Transplantation of stem cell‐derived neuronal progenitors to replace lost cells has been widely investigated as a therapeutic option. Another promising strategy would be to trigger self‐repair mechanisms in patients, through the recruitment of endogenous cells with stemness properties. Accumulating evidence in the past 15 year0s has revealed that several retinal cell types possess neurogenic potential, thus opening new avenues for regenerative medicine. Among them, Müller glial cells have been shown to be able to undergo a reprogramming process to re‐acquire a stem/progenitor state, allowing them to proliferate and generate new neurons for repair following retinal damages. Although Müller cell–dependent spontaneous regeneration is remarkable in some species such as the fish, it is extremely limited and ineffective in mammals. Understanding the cellular events and molecular mechanisms underlying Müller cell activities in species endowed with regenerative capacities could provide knowledge to unlock the restricted potential of their mammalian counterparts. In this context, the present review provides an overview of Müller cell responses to injury across vertebrate model systems and summarizes recent advances in this rapidly evolving field. Developmental Dynamics 245:727–738, 2016. © 2015 The Authors. Developmental Dynamics published by Wiley Periodicals, Inc. The present review provides an overview of Müller cell responses to injury across vertebrate model systems and summarizes recent advances in this rapidly evolving field.
Collapse
Affiliation(s)
- Annaïg Hamon
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, France.,Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, France
| | - Jérôme E Roger
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, France.,Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, France
| | - Xian-Jie Yang
- Stein Eye Institute, University of California Los Angeles, Los Angeles, California
| | - Muriel Perron
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, France.,Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, France.,Stein Eye Institute, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
25
|
Gallina D, Palazzo I, Steffenson L, Todd L, Fischer AJ. Wnt/β-catenin-signaling and the formation of Müller glia-derived progenitors in the chick retina. Dev Neurobiol 2015; 76:983-1002. [PMID: 26663639 DOI: 10.1002/dneu.22370] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 11/25/2015] [Accepted: 12/02/2015] [Indexed: 11/12/2022]
Abstract
Müller glia can be stimulated to de-differentiate, proliferate, and form Müller glia-derived progenitor cells (MGPCs) that are capable of producing retinal neurons. The signaling pathways that influence the de-differentiation of mature Müller glia and proliferation of MGPCs may include the Wnt-pathway. The purpose of this study was to investigate how Wnt-signaling influences the formation of MGPCs in the chick retina in vivo. In NMDA-damaged retinas where MGPCs are known to form, we find dynamic changes in retinal levels of potential readouts of Wnt-signaling, including dkk1, dkk3, axin2, c-myc, tcf-1, and cd44. We find accumulations of nuclear β-catenin in MGPCs that peaks at 3 days and rapidly declines by 5 days after NMDA-treatment. Inhibition of Wnt-signaling with XAV939 in damaged retinas suppressed the formation of MGPCs, increased expression of ascl1a and decreased hes5, but had no effect upon the differentiation of progeny produced by MGPCs. Activation of Wnt-signaling, with GSK3β-inhibitors, in the absence of retinal damage, failed to stimulate the formation of MGPCs, whereas activation of Wnt-signaling in damaged retinas stimulated the formation of MGPCs. In the absence of retinal damage, FGF2/MAPK-signaling stimulated the formation of MGPCs by activating a signaling network that includes Wnt/β-catenin. In FGF2-treated retinas, inhibition of Wnt-signaling reduced numbers of proliferating MGPCs, whereas activation of Wnt-signaling failed to influence the formation of proliferating MGPCs. Our findings indicate that Wnt-signaling is part of a network initiated by FGF2/MAPK or retinal damage, and activation of canonical Wnt-signaling is required for the formation of proliferating MGPCs. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 983-1002, 2016.
Collapse
Affiliation(s)
- Donika Gallina
- Department of Neuroscience, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Isabella Palazzo
- Department of Neuroscience, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Lillia Steffenson
- Department of Neuroscience, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Levi Todd
- Department of Neuroscience, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
26
|
Todd L, Volkov LI, Zelinka C, Squires N, Fischer AJ. Heparin-binding EGF-like growth factor (HB-EGF) stimulates the proliferation of Müller glia-derived progenitor cells in avian and murine retinas. Mol Cell Neurosci 2015; 69:54-64. [PMID: 26500021 DOI: 10.1016/j.mcn.2015.10.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/11/2015] [Accepted: 10/13/2015] [Indexed: 11/19/2022] Open
Abstract
Müller glia can be stimulated to de-differentiate, proliferate and form Müller glia-derived progenitor cells (MGPCs) that regenerate retinal neurons. In the zebrafish retina, heparin-binding EGF-like growth factor (HB-EGF) may be one of the key factors that stimulate the formation of proliferating MGPCs. Currently nothing is known about the influence of HB-EGF on the proliferative potential of Müller glia in retinas of birds and rodents. In the chick retina, we found that levels of both hb-egf and egf-receptor are rapidly and transiently up-regulated following NMDA-induced damage. Although intraocular injections of HB-EGF failed to stimulate cell-signaling or proliferation of Müller glia in normal retinas, HB-EGF stimulated proliferation of MGPCs in damaged retinas. By comparison, inhibition of the EGF-receptor (EGFR) decreased the proliferation of MGPCs in damaged retinas. HB-EGF failed to act synergistically with FGF2 to stimulate the formation of MGPCs in the undamaged retina and inhibition of EGF-receptor did not suppress FGF2-mediated formation of MGPCs. In the mouse retina, HB-EGF stimulated the proliferation of Müller glia following NMDA-induced damage. Furthermore, HB-EGF not only stimulated MAPK-signaling in Müller glia/MGPCs, but also activated mTor- and Jak/Stat-signaling. We propose that levels of expression of EGFR are rate-limiting to the responses of Müller glia to HB-EGF and the expression of EGFR can be induced by retinal damage, but not by FGF2-treatment. We conclude that HB-EGF is mitogenic to Müller glia in both chick and mouse retinas, and HB-EGF is an important player in the formation of MGPCs in damaged retinas.
Collapse
Affiliation(s)
- Levi Todd
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, OH 43210, USA
| | - Leo I Volkov
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, OH 43210, USA
| | - Chris Zelinka
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, OH 43210, USA
| | - Natalie Squires
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, OH 43210, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, OH 43210, USA.
| |
Collapse
|
27
|
Coaxial Electrospray of Ranibizumab-Loaded Microparticles for Sustained Release of Anti-VEGF Therapies. PLoS One 2015; 10:e0135608. [PMID: 26273831 PMCID: PMC4537102 DOI: 10.1371/journal.pone.0135608] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/24/2015] [Indexed: 12/22/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of vision loss and blindness in people over age 65 in industrialized nations. Intravitreous injection of anti-VEGF (vascular endothelial growth factor) therapies, such as ranibizumab (trade name: Lucentis), provides an effective treatment option for neovascular AMD. We have developed an improved coaxial electrospray (CES) process to encapsulate ranibizumab in poly(lactic-co-glycolic) acid (PLGA) microparticles (MPs) for intravitreous injection and sustained drug release. This microencapsulation process is advantageous for maintaining the stability of the coaxial cone-jet configurations and producing drug-loaded MPs with as high as 70% encapsulation rate and minimal loss of bioactivitiy. The utility of this emerging process in intravitreous drug delivery has been demonstrated in both benchtop and in vivo experiments. The benchtop test simulates ocular drug release using PLGA MPs encapsulating a model drug. The in vivo experiment evaluates the inflammation and retinal cell death after intravitreal injection of the MPs in a chick model. The experimental results show that the drug-load MPs are able to facilitate sustained drug release for longer than one month. No significant long term microglia reaction or cell death is observed after intravitreal injection of 200 μg MPs. The present study demonstrates the technical feasibility of using the improved CES process to encapsulate water-soluble drugs at a high concentration for sustained release of anti-VEGF therapy.
Collapse
|
28
|
Gallina D, Zelinka CP, Cebulla CM, Fischer AJ. Activation of glucocorticoid receptors in Müller glia is protective to retinal neurons and suppresses microglial reactivity. Exp Neurol 2015; 273:114-25. [PMID: 26272753 DOI: 10.1016/j.expneurol.2015.08.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/05/2015] [Accepted: 08/08/2015] [Indexed: 01/06/2023]
Abstract
Reactive microglia and macrophages are prevalent in damaged retinas. Glucocorticoid signaling is known to suppress inflammation and the reactivity of microglia and macrophages. In the vertebrate retina, the glucocorticoid receptor (GCR) is known to be activated and localized to the nuclei of Müller glia (Gallina et al., 2014). Accordingly, we investigated how signaling through GCR influences the survival of neurons using the chick retina in vivo as a model system. We applied intraocular injections of GCR agonist or antagonist, assessed microglial reactivity, and the survival of retinal neurons following different damage paradigms. Microglial reactivity was increased in retinas from eyes that were injected with vehicle, and this reactivity was decreased by GCR-agonist dexamethasone (Dex) and increased by GCR-antagonist RU486. We found that activation of GCR suppresses the reactivity of microglia and inhibited the loss of retinal neurons resulting from excitotoxicity. We provide evidence that the protection-promoting effects of Dex were maintained when the microglia were selectively ablated. Similarly, intraocular injections of Dex protected ganglion cells from colchicine-treatment and protected photoreceptors from damage caused by retinal detachment. We conclude that activation of GCR promotes the survival of ganglion cells in colchicine-damaged retinas, promotes the survival of amacrine and bipolar cells in excitotoxin-damaged retinas, and promotes the survival of photoreceptors in detached retinas. We propose that suppression of microglial reactivity is secondary to activation of GCR in Müller glia, and this mode of signaling is an effective means to lessen the damage and vision loss resulting from different types of retinal damage.
Collapse
Affiliation(s)
- Donika Gallina
- Department of Neuroscience, College of Medicine, Wexner Medical Center, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave., Columbus, OH 43210-1239, USA
| | - Christopher Paul Zelinka
- Department of Neuroscience, College of Medicine, Wexner Medical Center, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave., Columbus, OH 43210-1239, USA
| | - Colleen M Cebulla
- Havener Eye Institute, Department of Ophthalmology and Visual Science, College of Medicine, The Ohio State University, 915 Olentangy River Road, Suite 5000, Columbus, OH 43212, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, Wexner Medical Center, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave., Columbus, OH 43210-1239, USA.
| |
Collapse
|
29
|
Todd L, Fischer AJ. Hedgehog signaling stimulates the formation of proliferating Müller glia-derived progenitor cells in the chick retina. Development 2015; 142:2610-22. [PMID: 26116667 DOI: 10.1242/dev.121616] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 06/15/2015] [Indexed: 12/29/2022]
Abstract
Müller glia can be stimulated to de-differentiate and become proliferating progenitor cells that regenerate neurons in the retina. The signaling pathways that regulate the formation of proliferating Müller glia-derived progenitor cells (MGPCs) are beginning to be revealed. The purpose of this study was to investigate whether Hedgehog (Hh) signaling influences the formation of MGPCs in the chick retina. We find that Hh signaling is increased in damaged retinas where MGPCs are known to form. Sonic Hedgehog (Shh) is normally present in the axons of ganglion cells, but becomes associated with Müller glia and MGPCs following retinal damage. Activation of Hh signaling with recombinant human SHH (rhShh) or smoothened agonist (SAG) increased levels of Ptch1, Gli1, Gli2, Gli3, Hes1 and Hes5, and stimulated the formation of proliferating MGPCs in damaged retinas. In undamaged retinas, SAG or rhShh had no apparent effect upon the Müller glia. However, SAG combined with FGF2 potentiated the formation of MGPCs, whereas SAG combined with IGF1 stimulated the nuclear migration of Müller glia, but not the formation of MGPCs. Conversely, inhibition of Hh signaling with KAAD-cyclopamine, Gli antagonists or antibody to Shh reduced numbers of proliferating MGPCs in damaged and FGF2-treated retinas. Hh signaling potentiates Pax6, Klf4 and cFos expression in Müller glia during the formation of MGPCs. We find that FGF2/MAPK signaling recruits Hh signaling into the signaling network that drives the formation of proliferating MGPCs. Our findings implicate Hh signaling as a key component of the network of signaling pathways that promote the de-differentiation of Müller glia and proliferation of MGPCs.
Collapse
Affiliation(s)
- Levi Todd
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, OH 43210, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, OH 43210, USA
| |
Collapse
|
30
|
Todd L, Suarez L, Squires N, Zelinka CP, Gribbins K, Fischer AJ. Comparative analysis of glucagonergic cells, glia, and the circumferential marginal zone in the reptilian retina. J Comp Neurol 2015; 524:74-89. [PMID: 26053997 DOI: 10.1002/cne.23823] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/19/2015] [Accepted: 05/26/2015] [Indexed: 12/14/2022]
Abstract
Retinal progenitors in the circumferential marginal zone (CMZ) and Müller glia-derived progenitors have been well described for the eyes of fish, amphibians, and birds. However, there is no information regarding a CMZ and the nature of retinal glia in species phylogenetically bridging amphibians and birds. The purpose of this study was to examine the retinal glia and investigate whether a CMZ is present in the eyes of reptilian species. We used immunohistochemical analyses to study retinal glia, neurons that could influence CMZ progenitors, the retinal margin, and the nonpigmented epithelium of ciliary body of garter snakes, queen snakes, anole lizards, snapping turtles, and painted turtles. We compare our observations on reptile eyes to the CMZ and glia of fish, amphibians, and birds. In all species, Sox9, Pax6, and the glucocorticoid receptor are expressed by Müller glia and cells at the retinal margin. However, proliferating cells were found only in the CMZ of turtles and not in the eyes of anoles and snakes. Similar to eyes of chickens, the retinal margin in turtles contains accumulations of GLP1/glucagonergic neurites. We find that filamentous proteins, vimentin and GFAP, are expressed by Müller glia, but have different patterns of subcellular localization in the different species of reptiles. We provide evidence that the reptile retina may contain nonastrocytic inner retinal glial cells, similar to those described in the avian retina. We conclude that the retinal glia, glucagonergic neurons, and CMZ of turtles appear to be most similar to those of fish, amphibians, and birds.
Collapse
Affiliation(s)
- Levi Todd
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, 43210
| | - Lilianna Suarez
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, 43210
| | - Natalie Squires
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, 43210
| | | | - Kevin Gribbins
- Department of Biology, University of Indianapolis, Indianapolis, IN, 47201
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, 43210
| |
Collapse
|
31
|
|
32
|
Fischer AJ, Zelinka C, Milani-Nejad N. Reactive retinal microglia, neuronal survival, and the formation of retinal folds and detachments. Glia 2014; 63:313-27. [PMID: 25231952 DOI: 10.1002/glia.22752] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/02/2014] [Indexed: 01/01/2023]
Abstract
Reactive microglia and macrophages are prevalent in damaged retinas. Accordingly, we investigate how the activation or ablation of microglia/macrophages influences the survival of neurons in the chick retina in vivo. We applied intraocular injections of interleukin 6 (IL6) to stimulate the reactivity of microglia/macrophages and clodronate-liposomes to ablate microglia/macrophages. Activation of the microglia/macrophages with IL6 delays the death of retinal neurons from N-methyl-D-aspartate (NMDA) -induced excitotoxicity. In addition, activation of microglia/macrophages combined with colchicine-mediated retinal damage diminished the survival of ganglion cells. Application of IL6 after an excitotoxic insult greatly exacerbates the damage, and causes widespread retinal detachments and folds, accompanied by accumulation of microglia/macrophages in the subretinal space. Damage-induced retinal folds and detachments were significantly reduced by the ablation of microglia/macrophages. We conclude that microglial reactivity is detrimental to the survival of ganglion cells in colchicine-damaged retinas and detrimental to the survival of photoreceptors in retinal folds. In addition, we conclude that IL6-treatment transiently protects amacrine and bipolar cells against an excitotoxic insult. We propose that suppressing reactivity of microglia/macrophages may be an effective means to lessen the damage and vision loss resulting from damage, in particular during retinal detachment injuries.
Collapse
Affiliation(s)
- Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio
| | | | | |
Collapse
|
33
|
Gallina D, Zelinka C, Fischer AJ. Glucocorticoid receptors in the retina, Müller glia and the formation of Müller glia-derived progenitors. Development 2014; 141:3340-51. [PMID: 25085975 DOI: 10.1242/dev.109835] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Identification of the signaling pathways that influence the reprogramming of Müller glia into neurogenic retinal progenitors is key to harnessing the potential of these cells to regenerate the retina. Glucocorticoid receptor (GCR) signaling is commonly associated with anti-inflammatory responses and GCR agonists are widely used to treat inflammatory diseases of the eye, even though the cellular targets and mechanisms of action in the retina are not well understood. We find that signaling through GCR has a significant impact upon the ability of Müller glia to become proliferating Müller glia-derived progenitor cells (MGPCs). The primary amino acid sequence and pattern of GCR expression in the retina is highly conserved across vertebrate species, including chickens, mice, guinea pigs, dogs and humans. In all of these species we find GCR expressed by the Müller glia. In the chick retina, we find that GCR is expressed by progenitors in the circumferential marginal zone (CMZ) and is upregulated by Müller glia in acutely damaged retinas. Activation of GCR signaling inhibits the formation of MGPCs and antagonizes FGF2/MAPK signaling in the Müller glia. By contrast, we find that inhibition of GCR signaling stimulates the formation of proliferating MGPCs in damaged retinas, and enhances the neuronal differentiation while diminishing glial differentiation. Given the conserved expression pattern of GCR in different vertebrate retinas, we propose that the functions and mechanisms of GCR signaling are highly conserved and are mediated through the Müller glia. We conclude that GCR signaling directly inhibits the formation of MGPCs, at least in part, by interfering with FGF2/MAPK signaling.
Collapse
Affiliation(s)
- Donika Gallina
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Avenue, Columbus, OH 43210, USA
| | - Christopher Zelinka
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Avenue, Columbus, OH 43210, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
34
|
Fischer AJ, Zelinka C, Gallina D, Scott MA, Todd L. Reactive microglia and macrophage facilitate the formation of Müller glia-derived retinal progenitors. Glia 2014; 62:1608-28. [PMID: 24916856 DOI: 10.1002/glia.22703] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/11/2014] [Accepted: 05/16/2014] [Indexed: 12/12/2022]
Abstract
In retinas where Müller glia have been stimulated to become progenitor cells, reactive microglia are always present. Thus, we investigated how the activation or ablation of microglia/macrophage influences the formation of Müller glia-derived progenitor cells (MGPCs) in the retina in vivo. Intraocular injections of the Interleukin-6 (IL6) stimulated the reactivity of microglia/macrophage, whereas other types of retinal glia appear largely unaffected. In acutely damaged retinas where all of the retinal microglia/macrophage were ablated, the formation of proliferating MGPCs was greatly diminished. With the microglia ablated in damaged retinas, levels of Notch and related genes were unchanged or increased, whereas levels of ascl1a, TNFα, IL1β, complement component 3 (C3) and C3a receptor were significantly reduced. In the absence of retinal damage, the combination of insulin and Fibroblast growth factor 2 (FGF2) failed to stimulate the formation of MGPCs when the microglia/macrophage were ablated. In addition, intraocular injections of IL6 and FGF2 stimulated the formation of MGPCs in the absence of retinal damage, and this generation of MGPCs was blocked when the microglia/macrophage were absent. We conclude that the activation of microglia and/or infiltrating macrophage contributes to the formation of proliferating MGPCs, and these effects may be mediated by components of the complement system and inflammatory cytokines.
Collapse
Affiliation(s)
- Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio
| | | | | | | | | |
Collapse
|
35
|
Li Y, Hao H, Tzatzalos E, Lin RK, Doh S, Liu LF, Lyu YL, Cai L. Topoisomerase IIbeta is required for proper retinal development and survival of postmitotic cells. Biol Open 2014; 3:172-84. [PMID: 24463367 PMCID: PMC3925320 DOI: 10.1242/bio.20146767] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Topoisomerase IIbeta (Top2b) is an enzyme that modulates DNA supercoiling by catalyzing the passage of DNA duplexes through one another. It is ubiquitously expressed in postmitotic cells and known to function during the development of neuromuscular junctions in the diaphragm and the proper formation of laminar structure in the cerebral cortex. However, due to the perinatal death phenotype of the traditional constitutive and brain-specific Top2b knockout mice, the precise in vivo function of Top2b, especially during postnatal neural development, remains to be determined. Using both the constitutive and retina-specific knockout mouse models, we showed that Top2b deficiency resulted in delayed neuronal differentiation, degeneration of the plexiform layers and outer segment of photoreceptors, as well as dramatic reduction in cell number in the retina. Genome-wide transcriptome analysis by RNA sequencing revealed that genes involved in neuronal survival and neural system development were preferentially affected in Top2b-deficient retinas. Collectively, our findings have indicated an important function of Top2b in proper development and the maintenance/survival of postmitotic neurons in the retina.
Collapse
Affiliation(s)
- Ying Li
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Kaya A, Kar T, Aksoy Y, Özalper V, Başbuğ B. Insulin analogues may accelerate progression of diabetic retinopathy after impairment of inner blood-retinal barrier. Med Hypotheses 2013; 81:1012-4. [PMID: 24090664 DOI: 10.1016/j.mehy.2013.09.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/03/2013] [Accepted: 09/07/2013] [Indexed: 11/27/2022]
Abstract
Diabetic retinopathy regresses after spontaneous infarction or surgical ablation of pituitary gland. Growth hormone deficiency seems to be a protective factor for development of diabetic retinopathy in dwarfs. Despite the same glycemic control, development of diabetic retinopathy is significantly higher in pubertal subjects than pre-pubertal subjects. These evidences indicate a strong relationship between growth hormone and progression of diabetic retinopathy. Insulin like growth factor-1 (IGF-1) is the most important mediator of effects of growth hormone (GH). It stimulates IGF-1 receptor. Insulin analogues also stimulate IGF-1 receptor. Therefore insulin analogues may show similar effects like growth hormone and deteriorate diabetic retinopathy. However we suggest that impairment degree of inner blood-retinal barrier should be considered for this claim. We hypothesize that insulin analogues have dual effects (beneficial and worsening) depending on stage of impairment of inner blood-retinal barrier. Insulin analogues protect pericytes and blood-retinal barrier by decreasing blood glucose level. Analogues may pass into the retinal tissue in very low amounts when inner blood-retinal barrier is intact. Therefore, insulin analogues may not deteriorate diabetic retinopathy but also have beneficial effect by protecting blood-retinal barrier at this stage. However, they may pass into the retinal tissue in much more amounts when inner blood-retinal barrier impairs. Analogues may deteriorate cellular composition of retina through stimulation of IGF-1 receptors. A number of different cell types, including glia, retinal pigment epithelial cells and fibroblast-like cells have been identified in diabetic epiretinal tissues. Insulin analogues may cause proliferation in these cells. A type of glial cell named Non-astrocytic Inner Retinal Glia-like (NIRG) cell was identified to be stimulated and proliferate by IGF-1. IGF has been reported to generate traction force in retinal pigment epitelium (RPE) and mullerian cells. Mullerian cells also support inner blood-retinal barrier. Insulin analogues may cause proliferation in glial cells and generate traction force in RPE and mullerian cells by stimulating IGF-1 receptor. These effects of analogues may increase after deterioration of inner blood-retinal barrier and cause structural changes in retinal tissue. Deterioration of cellular structure may contribute to impairment of inner blood-retinal barrier, facilitate anjiogenesis and influence vitreoretinal interface. Therefore we suggest that insulin analogues should be used carefully after impairment of inner blood-retinal barrier. Analogues that bind with lesser affinity to IGF-1 receptor should be chosen after impairment. Pharmacologic agents may be developed to antagonize effect of insulin analogues on IGF-1 receptors.
Collapse
Affiliation(s)
- Abdullah Kaya
- Resident of Ophthalmology, GATA Haydarpasa Training Hospital, Department of Ophthalmology, Istanbul, Turkey.
| | | | | | | | | |
Collapse
|
37
|
Bu SY, Yu GH, Xu GX. Expression of insulin-like growth factor 1 receptor in rat retina following optic nerve injury. Acta Ophthalmol 2013; 91:e427-31. [PMID: 23648097 DOI: 10.1111/aos.12096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE To investigate the apoptosis in retinal ganglion cells (RGCs) and insulin-like growth factor 1 receptor (IGF-1R) in the retina following optic nerve crush. METHODS Healthy Wistar rats (N = 70) were divided into two groups: a normal control group and an optic nerve injury group. Immunohistochemistry and flow cytometry were performed to detect the expression of IGF-1R and to measure the apoptosis of RGCs, respectively. RESULTS Immunohistochemistry revealed that at 1 hr after optic nerve injury, IGF-1R immunoreactivity began to increase and reached a maximal level at 24 hr (p < 0.05), where it remained elevated up to 14 days after injury. RGC apoptosis in the normal control group was 0.53%, while the apoptosis rate in the optic nerve injury group increased over time. The apoptosis rate in the optic nerve injury group was 1.4% at 1 hr, 4.4% at 6 hr, 5.2% at 12 hr and reached a maximal level (8.5%) at 24 hr. Subsequently, the rate declined to 1.9% 7 days after injury and 0.9% 2 weeks after injury. CONCLUSION The IGF-1R immunereactivity in the retina increased after optic nerve injury. IGF-1R may regulate the apoptosis and regeneration of RGCs at different stages after optic nerve injury.
Collapse
Affiliation(s)
- Shu-yang Bu
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | | | | |
Collapse
|
38
|
Gallina D, Todd L, Fischer AJ. A comparative analysis of Müller glia-mediated regeneration in the vertebrate retina. Exp Eye Res 2013; 123:121-30. [PMID: 23851023 DOI: 10.1016/j.exer.2013.06.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 06/13/2013] [Accepted: 06/18/2013] [Indexed: 10/26/2022]
Abstract
This article reviews the current state of knowledge regarding the potential of Müller glia to become neuronal progenitor cells in the avian retina. We compare and contrast the remarkable proliferative and neurogenic capacity of Müller glia in the fish retina to the limited capacity of Müller glia in avian and rodent retinas. We summarize recent findings regarding the secreted factors, signaling pathways and cell intrinsic factors that have been implicated in the formation of Müller glia-derived progenitors. We discuss several key similarities and differences between the fish, rodent and chick model systems, highlighting several of the key transcription factors and signaling pathways that regulate the formation of Müller glia-derived progenitors.
Collapse
Affiliation(s)
- Donika Gallina
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, OH 43210-1239, USA
| | - Levi Todd
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, OH 43210-1239, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, OH 43210-1239, USA.
| |
Collapse
|
39
|
Abstract
BACKGROUND Development of retinal detachment models in small animals can be difficult and expensive. Here we create and characterize a novel, cone-rich retinal detachment (RD) model in the chick. METHODOLOGY/PRINCIPAL FINDINGS Retinal detachments were created in chicks between postnatal days 7 and 21 by subretinal injections of either saline (SA) or hyaluronic acid (HA). Injections were performed through a dilated pupil with observation via surgical microscope, using the fellow eye as a control. Immunohistochemical analyses were performed at days 1, 3, 7, 10 and 14 after retinal detachment to evaluate the cellular responses of photoreceptors, Müller glia, microglia and nonastrocytic inner retinal glia (NIRG). Cell proliferation was detected with bromodeoxyuridine (BrdU)-incorporation and by the expression of proliferating cell nuclear antigen (PCNA). Cell death was detected with terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). As in mammalian models of RD, there is shortening of photoreceptor outer segments and mis-trafficking of photoreceptor opsins in areas of RD. Photoreceptor cell death was maximal 1 day after RD, but continued until 14 days after RD. Müller glia up-regulated glial fibriliary acidic protein (GFAP), proliferated, showed interkinetic nuclear migration, and migrated to the subretinal space in areas of detachment. Microglia became reactive; they up-regulated CD45, acquired amoeboid morphology, and migrated toward outer retina in areas of RD. Reactive NIRG cells accumulated in detached areas. CONCLUSIONS/SIGNIFICANCE Subretinal injections of SA or HA in the chick eye successfully produced retinal detachments and cellular responses similar to those seen in standard mammalian models. Given the relatively large eye size, and considering the low cost, the chick model of RD offers advantages for high-throughput studies.
Collapse
|
40
|
Zelinka CP, Scott MA, Volkov L, Fischer AJ. The reactivity, distribution and abundance of Non-astrocytic Inner Retinal Glial (NIRG) cells are regulated by microglia, acute damage, and IGF1. PLoS One 2012; 7:e44477. [PMID: 22973454 PMCID: PMC3433418 DOI: 10.1371/journal.pone.0044477] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/07/2012] [Indexed: 12/05/2022] Open
Abstract
Recent studies have described a novel type of glial cell that is scattered across the inner layers of the avian retina and possibly the retinas of primates. These cells have been termed Non-astrocytic Inner Retinal Glial (NIRG) cells. These cells are stimulated by insulin-like growth factor 1 (IGF1) to proliferate, migrate distally into the retina, and become reactive. These changes in glial activity correlate with increased susceptibility of retinal neurons and Müller glia to excitotoxic damage. The purpose of this study was to further study the NIRG cells in retinas treated with IGF1 or acute damage. In response to IGF1, the reactivity, proliferation and migration of NIRG cells persists through 3 days after treatment. At 7 days after treatment, the numbers and distribution of NIRG cells returns to normal, suggesting that homeostatic mechanisms are in place within the retina to maintain the numbers and distribution of these glial cells. By comparison, IGF1-induced microglial reactivity persists for at least 7 days after treatment. In damaged retinas, we find a transient accumulation of NIRG cells, which parallels the accumulation of reactive microglia, suggesting that the reactivity of NIRG cells and microglia are linked. When the microglia are selectively ablated by the combination of interleukin 6 and clodronate-liposomes, the NIRG cells down-regulate transitin and perish within the following week, suggesting that the survival and phenotype of NIRG cells are somehow linked to the microglia. We conclude that the abundance, reactivity and retinal distribution of NIRG cells can be dynamic, are regulated by homoestatic mechanisms and are tethered to the microglia.
Collapse
Affiliation(s)
- Christopher P. Zelinka
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Melissa A. Scott
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Leo Volkov
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Andy J. Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
41
|
Ritchey ER, Zelinka CP, Tang J, Liu J, Fischer AJ. The combination of IGF1 and FGF2 and the induction of excessive ocular growth and extreme myopia. Exp Eye Res 2012; 99:1-16. [PMID: 22695224 DOI: 10.1016/j.exer.2012.03.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 03/21/2012] [Accepted: 03/28/2012] [Indexed: 01/01/2023]
Abstract
Different growth factors have been shown to influence the development of form-deprivation myopia and lens-induced ametropias. However, growth factors have relatively little effect on the growth of eyes with unrestricted vision. We investigate whether the combination of insulin-like growth factor 1 (IGF1) and fibroblast growth factor 2 (FGF2) influence ocular growth in eyes with unrestricted vision. Different doses of IGF1 and FGF2 were injected into the vitreous chamber of postnatal chicks. Measurements of ocular dimensions and intraocular pressure (IOP) were made during and at the completion of different treatment paradigms. Histological and immunocytochemical analyses were performed to assess cell death, cellular proliferation and integrity of ocular tissues. Treated eyes had significant increases in equatorial diameter and vitreous chamber depth. With significant variability between individuals, IGF1/FGF2-treatment caused hypertrophy of lens and ciliary epithelia, lens thickness was increased, and anterior chamber depth was decreased. Treated eyes developed myopia, in excess of 15 diopters of refractive error. Shortly after treatment, eyes had increased intraocular pressure (IOP), which was increased in a dose-dependent manner. Seven days after treatment with IGF1 and FGF2 changes to anterior chamber depth, lens thickness and elevated IOP were reduced, whereas increases in the vitreous chamber were persistent. Some damage to ganglion cells was detected in peripheral regions of the retina at 7 days after treatment. We conclude that the extreme myopia in IGF1/FGF2-treated eyes results from increased vitreous chamber depth, decreased anterior chamber depth, and changes in the lens. We propose that factor-induced ocular enlargement and myopia result from changes to the sclera, lens and anterior chamber depth.
Collapse
Affiliation(s)
- Eric R Ritchey
- College of Optometry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
42
|
Liu CH, Ren JQ, You Z, Yang J, Liu CM, Uppal R, Liu PK. Noninvasive detection of neural progenitor cells in living brains by MRI. FASEB J 2011; 26:1652-62. [PMID: 22198388 DOI: 10.1096/fj.11-199547] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The presence of pericytes in brain regions undergoing repair is evident of the recruitment of bone marrow-derived multipotent regenerative cells to the neurovascular unit during angiogenesis. At present, post mortem sampling is the only way to identify them. Therefore, such cell typing is inadequate for preserving neural progenitor cells for any meaningful stem cell therapy. We aimed to target cerebral pericytes in vivo using dual gene transcript-targeted MRI (GT-tMRI) in male C57black6 mice after a 60-min bilateral carotid artery occlusion (BCAO). We attached superparamagnetic iron oxide nanoparticles (SPIONs) to phosphorothioate-modified micro-DNA that targets actin or nestin mRNA. Because BCAO compromises the blood-brain barrier (BBB) and induces expression of α-smooth muscle (αSM)-actin and nestin antigens by pericytes in new vessels, we delivered pericyte-specific magnetic resonance contrast agents (SPION-actin or SPION-nestin at 4 mg Fe/kg) by i.p. injection to C57black6 mice that had experienced BCAO. We demonstrated that the surge in cerebral iron content by inductively coupled plasma-mass spectrometry matched the increase in the frequency of relaxivity. We also found that SPION-nestin was colocalized in αSM- actin- and nestin-expressing pericytes in BCAO-treated C57black6 or transgenic mice [B6.Cg-Tg(CAG-mRFP1) 1F1Hadj/J, expressing red fluorescent protein by actin promoter]. We identified pericytes in the repair patch in living brains after BCAO with a voxel size of 0.03 mm(3). The presence of electron-dense nanoparticles in vascular pericytes in the region of BBB injury led us to draw the conclusion that GT-tMRI can noninvasively reveal neural progenitor cells during vascularization.
Collapse
Affiliation(s)
- Christina H Liu
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Fischer AJ. Muller glia, vision-guided ocular growth, retinal stem cells, and a little serendipity: the Cogan lecture. Invest Ophthalmol Vis Sci 2011; 52:7705-10, 7704. [PMID: 21960640 DOI: 10.1167/iovs.11-8330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hypothesis-driven science is expected to result in a continuum of studies and findings along a discrete path. By comparison, serendipity can lead to new directions that branch into different paths. Herein, I describe a diverse series of findings that were motivated by hypotheses, but driven by serendipity. I summarize how investigations into vision-guided ocular growth in the chick eye led to the identification of glucagonergic amacrine cells as key regulators of ocular elongation. Studies designed to assess the impact of the ablation of different types of neurons on vision-guided ocular growth led to the finding of numerous proliferating cells within damaged retinas. These proliferating cells were Müller glia-derived retinal progenitors with a capacity to produce new neurons. Studies designed to investigate Müller glia-derived progenitors led to the identification of a domain of neural stem cells that form a circumferential marginal zone (CMZ) that lines the periphery of the retina. Accelerated ocular growth, caused by visual deprivation, stimulated the proliferation of CMZ progenitors. We formulated a hypothesis that growth-regulating glucagonergic cells may regulate both overall eye size (scleral growth) and the growth of the retina (proliferation of CMZ cells). Subsequent studies identified unusual types of glucagonergic neurons with terminals that ramify within the CMZ; these cells use visual cues to control equatorial ocular growth and the proliferation of CMZ cells. Finally, while studying the signaling pathways that stimulate CMZ and Müller glia-derived progenitors, serendipity led to the discovery of a novel type of glial cell that is scattered across the inner retinal layers.
Collapse
Affiliation(s)
- Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio 43210-1239, USA.
| |
Collapse
|
44
|
Tian C, Zhao T, Zeng Y, Yin ZQ. Increased Müller cell de-differentiation after grafting of retinal stem cell in the sub-retinal space of Royal College of Surgeons rats. Tissue Eng Part A 2011; 17:2523-32. [PMID: 21609182 DOI: 10.1089/ten.tea.2010.0649] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In several vertebrate classes, the Müller glia are capable of de-differentiating, proliferating, and acquiring a progenitor-like state in response to acute retinal injury or in response to exogenous growth factors. Our previous study has shown that Müller cells can be activated and de-differentiated into retinal progenitors during Royal College of Surgeons (RCS) rats' degeneration, although the limited proliferation cannot maintain retinal function. We now report that rat retinal stem cells (rSCs) transplanted into RCS rats slowed the progression of retinal morphological degeneration and prevented the functional disruption. Further, we found that retinal progenitor cells labeled with Chx10 were increased significantly after rSCs transplantation, and most of them are mainly from activated Müller cells. rSCs transplantation also enhances neurogenic potential by producing more recoverin-positive photoreceptors, which was proved coming from Müller glia-derived cells. These results provide evidence that stem cell-based therapy may offer a novel therapeutic approach for the treatment of retinal degeneration, and that Müller glia in mammalian retina can be activated and de-differentiated by rSC transplantation and may have therapeutic effects.
Collapse
Affiliation(s)
- Chunyu Tian
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical University, Chongqing, China
| | | | | | | |
Collapse
|
45
|
Penha AM, Schaeffel F, Feldkaemper M. Insulin, insulin-like growth factor-1, insulin receptor, and insulin-like growth factor-1 receptor expression in the chick eye and their regulation with imposed myopic or hyperopic defocus. Mol Vis 2011; 17:1436-48. [PMID: 21655358 PMCID: PMC3108898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 05/26/2011] [Indexed: 11/04/2022] Open
Abstract
PURPOSE Insulin stimulates eye growth in chicks and this effect is greatly enhanced if the retinal image is degraded by the defocus of either sign. However, it is unclear whether the insulin receptor (IR) is expressed at all in the chicken retina in animals 1-2 weeks post-hatching. We have investigated IR expression and whether IR transcript abundance varies in the fundal layers. To elucidate the possible role of insulin and insulin-like growth factor (IGF)-1 signaling in eye growth regulation, mRNA (mRNA) levels were measured for insulin, IGF-1, IR, and IGF-1 receptor (IGF-1R) during imposed negative or positive defocus. METHODS Chicks were treated binocularly with positive or negative spectacle lenses for 4 or 24 h, or they remained untreated (n=6, for each treatment group). Northern blot analyses were performed to screen for transcription variants in the different fundal layers of untreated animals. Real-time PCR was used to quantify IR, IGF-1R, IGF-1, and insulin mRNA levels in the different fundal layers of the chick eye in the three treatment groups. RESULTS IR mRNA was found in all the studied tissues, although there is evidence of tissue-specific transcript variations. Three major transcripts were detected for IR. The brain, retina, and choroid showed the longest transcript (4.3 kb), which was not present in the liver. Nevertheless, the liver and brain showed a second transcript (2.6 kb) not present in the retina and choroid. A short transcript (1.3 kb) was the predominant form in the liver and choroid, and it seems to be present in the retinal pigment epithelium (RPE) and sclera as well. In the retina, no significant gene expression changes were found when defocus was imposed. Interestingly, in the RPE, both IR and IGF-1R were already downregulated after short periods (4 h) of positive lens wear. In contrast, IR and IGF-1R were upregulated in the choroid and fibrous sclera during treatment with negative, but not positive, lenses. CONCLUSIONS Differences observed in the IR transcript length in different tissues suggest possibly different functions. The differential regulation of IR and IGF-1R in the RPE, choroid, and fibrous sclera is consistent with their involvement in a signaling cascade for emmetropization.
Collapse
|
46
|
Abstract
Using both NADPH diaphorase and anti-nNOS antibodies, we have identified-from retinal flatmounts-neuronal types in the inner retina of the chicken that are likely to be nitrergic. The two methods gave similar results and yielded a total of 15 types of neurons, comprising 9 amacrine cells, 5 ganglion cells, and 1 centrifugal midbrain neuron. Six of these 15 cell types are ubiquitously distributed, comprising 3 amacrine cells, 2 displaced ganglion cells, and a presumed orthotopic ganglion cell. The remaining nine cell types are regionally restricted within the retina. As previously reported, efferent fibers of midbrain neurons and their postsynaptic partners, the unusual axon-bearing target amacrine cells, are entirely confined to the ventral retina. Also confined to the ventral retina, though with somewhat different distributions, are the "bullwhip" amacrine cells thought to be involved in eye growth, an orthotopic ganglion cell, and two types of large axon-bearing amacrine cells whose dendrites and axons lie in stratum 1 of the inner plexiform layer (IPL). Intracellular fills of these two cell types showed that only a minority of otherwise morphologically indistinguishable neurons are nitrergic. Two amacrine cells that branch throughout the IPL are confined to an equatorial band, and one small-field orthotopic ganglion cell that branches in the proximal IPL is entirely dorsal. These findings suggest that the retina uses different processing on different regions of the visual image, though the benefit of this is presently obscure.
Collapse
|
47
|
Quesada A, Aguilera Y, Caparrós R, Prada FA, Santano C, López-López R, Prada C. Myelin oligodendrocyte-specific protein is expressed in Müller cells of myelinated vertebrate retinas. J Neurosci Res 2011; 89:674-88. [PMID: 21337368 DOI: 10.1002/jnr.22586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 11/19/2010] [Accepted: 11/29/2010] [Indexed: 11/07/2022]
Abstract
The retina of nonmammalian vertebrates has a loose myelin that enwraps the large axons of the ganglion cells in all areas, whereas that of mammals lacks myelin, with some exceptions, such as the rabbit retina, which shows compact myelin restricted to the myelinated streak. Electron microscopy studies in chicken retina showed processes of Müller cells (MCs) and oligodendrocytes enwrapping ganglion cell axons. How each of these cells contributes to chicken retina myelination and whether the MC of other myelinated retinas is involved in myelination remain unknown. By immunohistochemistry, with a monoclonal antibody against myelin oligodendrocyte-specific protein (MOSP), we show that MOSP is intensely expressed in the MC and the optic-fiber layer (OFL) in myelinated but not in unmyelinated retinas. By immunocytochemistry with isolated MCs from the chick and rabbit retinas, we show that MOSP is concentrated in the innermost domain of the vitread processes. By immunoblotting, we show that protein extracts from myelinated retinas, but not those from unmyelinated retinas, presented a single band labelled with anti-MOSP of molecular weight similar to that of brain MOSP. In addition, we show that the MC of the embryonic chicken retina starts to express MOSP just before myelination starts. Our results agree with those of electron microscopy studies showing myelin in chick retina formed by MC processes and with those of immunohistochemistry studies in rabbit and human retinas showing expression of other myelin molecules in the MC. Altogether, our results suggest that the MC in myelinated retinas might contribute MOSP to myelin.
Collapse
Affiliation(s)
- Adela Quesada
- Departamento de Anatomía e Instituto de Biología del Desarrollo, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | | | | | | | | | | | | |
Collapse
|
48
|
Fischer AJ, Bongini R. Turning Müller glia into neural progenitors in the retina. Mol Neurobiol 2010; 42:199-209. [PMID: 21088932 DOI: 10.1007/s12035-010-8152-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 11/10/2010] [Indexed: 12/22/2022]
Abstract
Stimulating neuronal regeneration is a potential strategy to treat sight-threatening diseases of the retina. In some classes of vertebrates, retinal regeneration occurs spontaneously to effectively replace neurons lost to acute damage in order to restore visual function. There are different mechanisms and cellular sources of retinal regeneration in different species, include the retinal pigmented epithelium, progenitors seeded across the retina, and the Müller glia. This review briefly summarizes the different mechanisms of retinal regeneration in frogs, fish, chicks, and rodents. The bulk of this review summarizes and discusses recent findings regarding regeneration from Müller glia-derived progenitors, with emphasis on findings in the chick retina. The Müller glia are a promising source of regeneration-supporting cells that are intrinsic to the retina and significant evidence indicated these glias can be stimulated to produce neurons in different classes of vertebrates. The key to harnessing the neurogenic potential of Müller glia is to identify the secreted factors, signaling pathways, and transcription factors that enable de-differentiation, proliferation, and neurogenesis. We review findings regarding the roles of mitogen-activated protein kinase and notch signaling in the proliferation and generation of Müller glia-derived retinal progenitors.
Collapse
Affiliation(s)
- Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, 3020 Graves Hall, 333 West 10th Ave, Columbus, OH 43210-1239, USA.
| | | |
Collapse
|
49
|
Boije H, Ring H, López-Gallardo M, Prada C, Hallböök F. Pax2 is expressed in a subpopulation of Müller cells in the central chick retina. Dev Dyn 2010; 239:1858-66. [PMID: 20503381 DOI: 10.1002/dvdy.22309] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Müller cells in the chick retina are generally thought to be a homogeneous population. We show that the transcription factor Pax2 is expressed by Müller cells in the central chick retina and its expression was first observed at stage 32 (embryonic day [E] 7.5). Birth-dating indicated that the majority of Pax2-positive Müller cells are generated between stage 29 and 33 (E5.5-E8). At stage 42 (E16), several Müller cell markers, such as Sox2 and 2M6, had reached the peripheral retina, while the Pax2 labeling extended approximately half-way. A similar pattern was maintained in the 6-month-old chicken. Neither the Pax2-positive nor the Pax2-negative Müller cells could be specifically associated to proliferative responses in the retina induced by growth factors or N-methyl-D-aspartate. Pax2 was not detected in Müller cells in mouse, rat, guinea-pig, rabbit, or pig retinas; but the zebrafish retina displayed a similar pattern of central Pax2-expressing Müller cells.
Collapse
Affiliation(s)
- Henrik Boije
- Department of Neuroscience, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
50
|
Stanke J, Moose HE, El-Hodiri HM, Fischer AJ. Comparative study of Pax2 expression in glial cells in the retina and optic nerve of birds and mammals. J Comp Neurol 2010; 518:2316-33. [PMID: 20437530 DOI: 10.1002/cne.22335] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Little is known about the expression of Pax2 in mature retina or optic nerve. Here we probed for the expression of Pax2 in late stages of embryonic development and in mature chick retina. We find two distinct Pax2 isoforms expressed by cells within the retina and optic nerve. Surprisingly, Müller glia in central regions of the retina express Pax2, and levels of expression are decreased with increasing distance from the nerve head. In Müller glia, the expression levels of Pax2 are increased by acute retinal damage or treatment with growth factors. At the optic nerve, Pax2 is expressed by peripapillary glia, at the junction of the neural retina and optic nerve head and by glia within the optic nerve. In addition, we assayed for Pax2 expression in glial cells in mammalian retinas. In mammalian retinas, unlike the case in chick retina, the Müller glia do not express Pax2. Pax2-expressing cells are found in the optic nerve and astrocytes within the mouse retina. By comparison, Pax2-positive cells are not found within the guinea pig retina; Pax2-expressing glia are confined to the optic nerve. In dog and monkey (Macaca fascicularis), Pax2 is expressed by astrocytes that are scattered across inner retinal layers and by numerous glia within the optic nerve. Interestingly, Pax2-positive glial cells are found at the peripheral edge of the dog retina, but only in older animals. We conclude that the expression of Pax2 in the vertebrate eye is restricted to retinal astrocytes, peripapillary glia, and glia within the optic nerve.
Collapse
Affiliation(s)
- Jennifer Stanke
- Integrated Biomedical Science Graduate Program, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|