1
|
Matusova Z, Dykstra W, de Pablo Y, Zetterdahl OG, Canals I, van Gelder CAGH, Vos HR, Pérez-Sala D, Kubista M, Abaffy P, Ahlenius H, Valihrach L, Hol EM, Pekny M. Aberrant neurodevelopment in human iPS cell-derived models of Alexander disease. Glia 2025; 73:57-79. [PMID: 39308436 DOI: 10.1002/glia.24618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 12/21/2024]
Abstract
Alexander disease (AxD) is a rare and severe neurodegenerative disorder caused by mutations in glial fibrillary acidic protein (GFAP). While the exact disease mechanism remains unknown, previous studies suggest that mutant GFAP influences many cellular processes, including cytoskeleton stability, mechanosensing, metabolism, and proteasome function. While most studies have primarily focused on GFAP-expressing astrocytes, GFAP is also expressed by radial glia and neural progenitor cells, prompting questions about the impact of GFAP mutations on central nervous system (CNS) development. In this study, we observed impaired differentiation of astrocytes and neurons in co-cultures of astrocytes and neurons, as well as in neural organoids, both generated from AxD patient-derived induced pluripotent stem (iPS) cells with a GFAPR239C mutation. Leveraging single-cell RNA sequencing (scRNA-seq), we identified distinct cell populations and transcriptomic differences between the mutant GFAP cultures and a corrected isogenic control. These findings were supported by results obtained with immunocytochemistry and proteomics. In co-cultures, the GFAPR239C mutation resulted in an increased abundance of immature cells, while in unguided neural organoids and cortical organoids, we observed altered lineage commitment and reduced abundance of astrocytes. Gene expression analysis revealed increased stress susceptibility, cytoskeletal abnormalities, and altered extracellular matrix and cell-cell communication patterns in the AxD cultures, which also exhibited higher cell death after stress. Overall, our results point to altered cell differentiation in AxD patient-derived iPS-cell models, opening new avenues for AxD research.
Collapse
Affiliation(s)
- Zuzana Matusova
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
- Faculty of Science, Charles University, Prague, Czechia
| | - Werner Dykstra
- Department of Translational Neuroscience, University Medical Centre Utrecht Brain Centre, Utrecht University, Utrecht, The Netherlands
| | - Yolanda de Pablo
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Oskar G Zetterdahl
- Stem Cells, Aging and Neurodegeneration Lab, Department of Experimental Medical Science, Faculty of Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
- Glial and Neuronal Biology Lab, Department of Experimental Medical Science, Faculty of Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Isaac Canals
- Glial and Neuronal Biology Lab, Department of Experimental Medical Science, Faculty of Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
- Division of Metabolism, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- ITINERARE-Innovative therapies in rare diseases, University Research Priority Program, University of Zurich, Zurich, Switzerland
| | - Charlotte A G H van Gelder
- Oncode Institute and Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Harmjan R Vos
- Oncode Institute and Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
- Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Henrik Ahlenius
- Stem Cells, Aging and Neurodegeneration Lab, Department of Experimental Medical Science, Faculty of Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Centre Utrecht Brain Centre, Utrecht University, Utrecht, The Netherlands
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
2
|
Cui MH, Billett HH, Suzuka SM, Ambadipudi K, Archarya S, Mowrey WB, Branch CA. Corrected cerebral blood flow and reduced cerebral inflammation in berk sickle mice with higher fetal hemoglobin. Transl Res 2022; 244:75-87. [PMID: 35091127 DOI: 10.1016/j.trsl.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/24/2022]
Abstract
Fetal hemoglobin (HbF) is known to lessen the severity of sickle cell disease (SCD), through reductions in peripheral vaso-occlusive disease and reduced risk for cerebrovascular events. However, the influence of HbF on oxygen delivery to high metabolism tissues like the brain, or its influence on cerebral perfusion, metabolism, inflammation or function have not been widely studied. We employed a Berkley mouse model (BERK) of SCD with gamma transgenes q3 expressing exclusively human α- and βS-globins with varying levels of γ globin expression to investigate the effect of HbF expression on the brain using magnetic resonance imaging (MRI), MRI diffusion tensor imaging (DTI) and spectroscopy (MRS) and hematological parameters. Hematological parameters improved with increasing γ level expression, as did markers for brain metabolism, perfusion and inflammation. Brain microstructure assessed by DTI fractional anisotropy improved, while myo-inositol levels increased, suggesting improved microstructural integrity and reduced cell loss. Our results suggest that increasing γ levels not only improves sickle peripheral disease, but also improves brain perfusion and oxygen delivery while reducing brain inflammation while protecting brain microstructural integrity.
Collapse
Affiliation(s)
- Min-Hui Cui
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, New York, New York; Department of Radiology, Albert Einstein College of Medicine, New York, New York; Department of Medicine, Albert Einstein College of Medicine, New York, New York
| | - Henny H Billett
- Department of Medicine, Albert Einstein College of Medicine, New York, New York; Department of Pathology, Albert Einstein College of Medicine, New York, New York
| | - Sandra M Suzuka
- Department of Medicine, Albert Einstein College of Medicine, New York, New York
| | - Kamalakar Ambadipudi
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, New York, New York; Department of Radiology, Albert Einstein College of Medicine, New York, New York
| | - Seetharama Archarya
- Department of Medicine, Albert Einstein College of Medicine, New York, New York; Department of Physiology & Biophysics, Albert Einstein College of Medicine, New York, New York
| | - Wenzhu B Mowrey
- Department of Epidemiology and Public Health, Albert Einstein College of Medicine, New York, New York
| | - Craig A Branch
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, New York, New York; Department of Radiology, Albert Einstein College of Medicine, New York, New York; Department of Physiology & Biophysics, Albert Einstein College of Medicine, New York, New York.
| |
Collapse
|
3
|
Petrenko V, van de Looij Y, Mihhailova J, Salmon P, Hüppi PS, Sizonenko SV, Kiss JZ. Multimodal MRI Imaging of Apoptosis-Triggered Microstructural Alterations in the Postnatal Cerebral Cortex. Cereb Cortex 2019; 28:949-962. [PMID: 28158611 DOI: 10.1093/cercor/bhw420] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Indexed: 12/17/2022] Open
Abstract
Prematurely born children often develop neurodevelopmental delay that has been correlated with reduced growth and microstructural alterations in the cerebral cortex. Much research has focused on apoptotic neuronal cell death as a key neuropathological features following preterm brain injuries. How scattered apoptotic death of neurons may contribute to microstructural alterations remains unknown. The present study investigated in a rat model the effects of targeted neuronal apoptosis on cortical microstructure using in vivo MRI imaging combined with neuronal reconstruction and histological analysis. We describe that mild, targeted death of layer IV neurons in the developing rat cortex induces MRI-defined metabolic and microstructural alterations including increased cortical fractional anisotropy. Delayed architectural modifications in cortical gray matter and myelin abnormalities in the subcortical white matter such as hypomyelination and microglia activation follow the acute phase of neuronal death and axonal degeneration. These results establish the link between mild cortical apoptosis and MRI-defined microstructure changes that are reminiscent to those previously observed in preterm babies.
Collapse
Affiliation(s)
- Volodymyr Petrenko
- Department of Neurosciences, University of Geneva Medical School, Geneva, Switzerland
| | - Yohan van de Looij
- Division of Child Growth & Development, Department of Pediatrics, University of Geneva, Geneva, Switzerland.,Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jevgenia Mihhailova
- Department of Neurosciences, University of Geneva Medical School, Geneva, Switzerland
| | - Patrick Salmon
- Department of Neurosciences, University of Geneva Medical School, Geneva, Switzerland
| | - Petra S Hüppi
- Division of Child Growth & Development, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| | - Stéphane V Sizonenko
- Division of Child Growth & Development, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| | - Jozsef Z Kiss
- Department of Neurosciences, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
4
|
Gómez-Pinedo U, Duran-Moreno M, Sirerol-Piquer S, Matias-Guiu J. Myelin changes in Alexander disease. NEUROLOGÍA (ENGLISH EDITION) 2018. [DOI: 10.1016/j.nrleng.2017.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
5
|
Gómez-Pinedo U, Sirerol-Piquer MS, Durán-Moreno M, García-Verdugo JM, Matias-Guiu J. Alexander Disease Mutations Produce Cells with Coexpression of Glial Fibrillary Acidic Protein and NG2 in Neurosphere Cultures and Inhibit Differentiation into Mature Oligodendrocytes. Front Neurol 2017; 8:255. [PMID: 28634469 PMCID: PMC5459916 DOI: 10.3389/fneur.2017.00255] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/22/2017] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Alexander disease (AxD) is a rare disease caused by mutations in the gene encoding glial fibrillary acidic protein (GFAP). The disease is characterized by presence of GFAP aggregates in the cytoplasm of astrocytes and loss of myelin. OBJECTIVES Determine the effect of AxD-related mutations on adult neurogenesis. METHODS We transfected different types of mutant GFAP into neurospheres using the nucleofection technique. RESULTS We find that mutations may cause coexpression of GFAP and NG2 in neurosphere cultures, which would inhibit the differentiation of precursors into oligodendrocytes and thus explain the myelin loss occurring in the disease. Transfection produces cells that differentiate into new cells marked simultaneously by GFAP and NG2 and whose percentage increased over days of differentiation. Increased expression of GFAP is due to a protein with an anomalous structure that forms aggregates throughout the cytoplasm of new cells. These cells display down-expression of vimentin and nestin. Up-expression of cathepsin D and caspase-3 in the first days of differentiation suggest that apoptosis as a lysosomal response may be at work. HSP27, a protein found in Rosenthal bodies, is expressed less at the beginning of the process although its presence increases in later stages. CONCLUSION Our findings seem to suggest that the mechanism of development of AxD may not be due to a function gain due to increase of GFAP, but to failure in the differentiation process may occur at the stage in which precursor cells transform into oligodendrocytes, and that possibility may provide the best explanation for the clinical and radiological images described in AxD.
Collapse
Affiliation(s)
- Ulises Gómez-Pinedo
- Neurobiology Laboratory, Neuroscience Institute, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Maria Salomé Sirerol-Piquer
- Laboratory of Comparative Neurobiology, Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Universidad de Valencia, Valencia, Spain
| | - María Durán-Moreno
- Laboratory of Comparative Neurobiology, Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Universidad de Valencia, Valencia, Spain
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Universidad de Valencia, Valencia, Spain
| | - Jorge Matias-Guiu
- Neurobiology Laboratory, Neuroscience Institute, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
6
|
Gómez-Pinedo U, Duran-Moreno M, Sirerol-Piquer S, Matias-Guiu J. Myelin changes in Alexander disease. Neurologia 2017; 33:526-533. [PMID: 28342553 DOI: 10.1016/j.nrl.2017.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 01/26/2017] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Alexander disease (AxD) is a type of leukodystrophy. Its pathological basis, along with myelin loss, is the appearance of Rosenthal bodies, which are cytoplasmic inclusions in astrocytes. Mutations in the gene coding for GFAP have been identified as a genetic basis for AxD. However, the mechanism by which these variants produce the disease is not understood. DEVELOPMENT The most widespread hypothesis is that AxD develops when a gain of function mutation causes an increase in GFAP. However, this mechanism does not explain myelin loss, given that experimental models in which GFAP expression is normal or mutated do not exhibit myelin disorders. This review analyses other possibilities that may explain this alteration, such as epigenetic or inflammatory alterations, presence of NG2 (+) - GFAP (+) cells, or post-translational modifications in GFAP that are unrelated to increased expression. CONCLUSIONS The different hypotheses analysed here may explain the myelin alteration affecting these patients, and multiple mechanisms may coexist. These theories raise the possibility of designing therapies based on these mechanisms.
Collapse
Affiliation(s)
- U Gómez-Pinedo
- Laboratorio de Neurobiología, Servicio de Neurología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España.
| | - M Duran-Moreno
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Valencia, España
| | - S Sirerol-Piquer
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Valencia, España
| | - J Matias-Guiu
- Laboratorio de Neurobiología, Servicio de Neurología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| |
Collapse
|
7
|
Zhang C, Wang C, Ren J, Guo X, Yun K. Morphine Protects Spinal Cord Astrocytes from Glutamate-Induced Apoptosis via Reducing Endoplasmic Reticulum Stress. Int J Mol Sci 2016; 17:ijms17101523. [PMID: 27783050 PMCID: PMC5085616 DOI: 10.3390/ijms17101523] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/30/2016] [Accepted: 09/04/2016] [Indexed: 12/24/2022] Open
Abstract
Glutamate is not only a neurotransmitter but also an important neurotoxin in central nervous system (CNS). Chronic elevation of glutamate induces both neuronal and glial cell apoptosis. However, its effect on astrocytes is complex and still remains unclear. In this study, we investigated whether morphine, a common opioid ligand, could affect glutamate-induced apoptosis in astrocytes. Primary cultured astrocytes were incubated with glutamate in the presence/absence of morphine. It was found that morphine could reduce glutamate-induced apoptosis of astrocytes. Furthermore, glutamate activated Ca2+ release, thereby inducing endoplasmic reticulum (ER) stress in astrocytes, while morphine attenuated this deleterious effect. Using siRNA to reduce the expression of κ-opioid receptor, morphine could not effectively inhibit glutamate-stimulated Ca2+ release in astrocytes, the protective effect of morphine on glutamate-injured astrocytes was also suppressed. These results suggested that morphine could protect astrocytes from glutamate-induced apoptosis via reducing Ca2+ overload and ER stress pathways. In conclusion, this study indicated that excitotoxicity participated in the glutamate mediated apoptosis in astrocytes, while morphine attenuated this deleterious effect via regulating Ca2+ release and ER stress.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Forensic Medicine, Shanxi Medical University, 56 South Xinjian Road, Taiyuan 030001, China.
| | - Chendan Wang
- Department of Nephrology, People's Hospital of Shanxi Province, 29 Shuang-ta Street, Taiyuan 030012, China.
| | - Jianbo Ren
- Department of Forensic Medicine, Shanxi Medical University, 56 South Xinjian Road, Taiyuan 030001, China.
| | - Xiangjie Guo
- Department of Forensic Medicine, Shanxi Medical University, 56 South Xinjian Road, Taiyuan 030001, China.
| | - Keming Yun
- Department of Forensic Medicine, Shanxi Medical University, 56 South Xinjian Road, Taiyuan 030001, China.
| |
Collapse
|
8
|
Minkel HR, Anwer TZ, Arps KM, Brenner M, Olsen ML. Elevated GFAP induces astrocyte dysfunction in caudal brain regions: A potential mechanism for hindbrain involved symptoms in type II Alexander disease. Glia 2015; 63:2285-97. [PMID: 26190408 PMCID: PMC4555878 DOI: 10.1002/glia.22893] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 07/01/2015] [Indexed: 12/14/2022]
Abstract
Alexander Disease (AxD) is a "gliopathy" caused by toxic, dominant gain-of-function mutations in the glial fibrillary acidic protein (GFAP) gene. Two distinct types of AxD exist. Type I AxD affected individuals develop cerebral symptoms by 4 years of age and suffer from macrocephaly, seizures, and physical and mental delays. As detection and diagnosis have improved, approximately half of all AxD patients diagnosed have onset >4 years and brainstem/spinal cord involvement. Type II AxD patients experience ataxia, palatal myoclonus, dysphagia, and dysphonia. No study has examined a mechanistic link between the GFAP mutations and caudal symptoms present in type II AxD patients. We demonstrate that two key astrocytic functions, the ability to regulate extracellular glutamate and to take up K(+) via K+ channels, are compromised in hindbrain regions and spinal cord in AxD mice. Spinal cord astrocytes in AxD transgenic mice are depolarized relative to WT littermates, and have a three-fold reduction in Ba(2+) -sensitive Kir4.1 mediated currents and six-fold reduction in glutamate uptake currents. The loss of these two functions is due to significant decreases in Kir4.1 (>70%) and GLT-1 (>60%) protein expression. mRNA expression for KCNJ10 and SLC1A2, the genes that code for Kir4.1 and GLT-1, are significantly reduced by postnatal Day 7. Protein and mRNA reductions for Kir4.1 and GLT-1 are exacerbated in AxD models that demonstrate earlier accumulation of GFAP and increased Rosenthal fiber formation. These findings provide a mechanistic link between the GFAP mutations/overexpression and the symptoms in those affected with Type II AxD.
Collapse
Affiliation(s)
- Heather R Minkel
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
- Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tooba Z Anwer
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
- Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kara M Arps
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
- Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Michael Brenner
- Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Michelle L Olsen
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
- Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
9
|
In Vivo NMR Studies of the Brain with Hereditary or Acquired Metabolic Disorders. Neurochem Res 2015; 40:2647-85. [PMID: 26610379 DOI: 10.1007/s11064-015-1772-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 11/10/2015] [Accepted: 11/12/2015] [Indexed: 01/09/2023]
Abstract
Metabolic disorders, whether hereditary or acquired, affect the brain, and abnormalities of the brain are related to cellular integrity; particularly in regard to neurons and astrocytes as well as interactions between them. Metabolic disturbances lead to alterations in cellular function as well as microscopic and macroscopic structural changes in the brain with diabetes, the most typical example of metabolic disorders, and a number of hereditary metabolic disorders. Alternatively, cellular dysfunction and degeneration of the brain lead to metabolic disturbances in hereditary neurological disorders with neurodegeneration. Nuclear magnetic resonance (NMR) techniques allow us to assess a range of pathophysiological changes of the brain in vivo. For example, magnetic resonance spectroscopy detects alterations in brain metabolism and energetics. Physiological magnetic resonance imaging (MRI) detects accompanying changes in cerebral blood flow related to neurovascular coupling. Diffusion and T1/T2-weighted MRI detect microscopic and macroscopic changes of the brain structure. This review summarizes current NMR findings of functional, physiological and biochemical alterations within a number of hereditary and acquired metabolic disorders in both animal models and humans. The global view of the impact of these metabolic disorders on the brain may be useful in identifying the unique and/or general patterns of abnormalities in the living brain related to the pathophysiology of the diseases, and identifying future fields of inquiry.
Collapse
|
10
|
Ricca A, Rufo N, Ungari S, Morena F, Martino S, Kulik W, Alberizzi V, Bolino A, Bianchi F, Del Carro U, Biffi A, Gritti A. Combined gene/cell therapies provide long-term and pervasive rescue of multiple pathological symptoms in a murine model of globoid cell leukodystrophy. Hum Mol Genet 2015; 24:3372-89. [PMID: 25749991 PMCID: PMC4498152 DOI: 10.1093/hmg/ddv086] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/04/2015] [Indexed: 01/11/2023] Open
Abstract
Globoid cell leukodystrophy (GLD) is a lysosomal storage disease caused by deficient activity of β-galactocerebrosidase (GALC). The infantile forms manifest with rapid and progressive central and peripheral demyelination, which represent a major hurdle for any treatment approach. We demonstrate here that neonatal lentiviral vector-mediated intracerebral gene therapy (IC GT) or transplantation of GALC-overexpressing neural stem cells (NSC) synergize with bone marrow transplant (BMT) providing dramatic extension of lifespan and global clinical–pathological rescue in a relevant GLD murine model. We show that timely and long-lasting delivery of functional GALC in affected tissues ensured by the exclusive complementary mode of action of the treatments underlies the outstanding benefit. In particular, the contribution of neural stem cell transplantation and IC GT during the early asymptomatic stage of the disease is instrumental to enhance long-term advantage upon BMT. We clarify the input of central nervous system, peripheral nervous system and periphery to the disease, and the relative contribution of treatments to the final therapeutic outcome, with important implications for treatment strategies to be tried in human patients. This study gives proof-of-concept of efficacy, tolerability and clinical relevance of the combined gene/cell therapies proposed here, which may constitute a feasible and effective therapeutic opportunity for children affected by GLD.
Collapse
Affiliation(s)
- Alessandra Ricca
- San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Telethon Institute for Gene Therapy (TIGET), Via Olgettina 58, Milano 20132, Italy
| | - Nicole Rufo
- San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Telethon Institute for Gene Therapy (TIGET), Via Olgettina 58, Milano 20132, Italy
| | - Silvia Ungari
- San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Telethon Institute for Gene Therapy (TIGET), Via Olgettina 58, Milano 20132, Italy
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, via del Giochetto, Perugia, Italy
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, via del Giochetto, Perugia, Italy
| | - Wilem Kulik
- Laboratory of Genetic Metabolic Diseases, Academic Medical Center AMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands and
| | - Valeria Alberizzi
- Division of Neuroscience, San Raffaele Scientific Institute, INSPE, Via Olgettina 58, Milano, Italy
| | - Alessandra Bolino
- Division of Neuroscience, San Raffaele Scientific Institute, INSPE, Via Olgettina 58, Milano, Italy
| | - Francesca Bianchi
- Division of Neuroscience, San Raffaele Scientific Institute, INSPE, Via Olgettina 58, Milano, Italy
| | - Ubaldo Del Carro
- Division of Neuroscience, San Raffaele Scientific Institute, INSPE, Via Olgettina 58, Milano, Italy
| | - Alessandra Biffi
- San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Telethon Institute for Gene Therapy (TIGET), Via Olgettina 58, Milano 20132, Italy
| | - Angela Gritti
- San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Telethon Institute for Gene Therapy (TIGET), Via Olgettina 58, Milano 20132, Italy,
| |
Collapse
|
11
|
The Glutamine–Glutamate/GABA Cycle: Function, Regional Differences in Glutamate and GABA Production and Effects of Interference with GABA Metabolism. Neurochem Res 2014; 40:402-9. [DOI: 10.1007/s11064-014-1473-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/30/2014] [Accepted: 10/31/2014] [Indexed: 10/24/2022]
|
12
|
Bagga P, Chugani AN, Varadarajan KS, Patel AB. In vivo
NMR studies of regional cerebral energetics in MPTP model of Parkinson's disease: recovery of cerebral metabolism with acute levodopa treatment. J Neurochem 2013; 127:365-77. [DOI: 10.1111/jnc.12407] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/08/2013] [Accepted: 08/15/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Puneet Bagga
- NMR Microimaging and Spectroscopy; CSIR-Centre for Cellular and Molecular Biology; Hyderabad Andhra Pradesh India
| | - Anup N. Chugani
- NMR Microimaging and Spectroscopy; CSIR-Centre for Cellular and Molecular Biology; Hyderabad Andhra Pradesh India
| | - Komanduri S. Varadarajan
- NMR Microimaging and Spectroscopy; CSIR-Centre for Cellular and Molecular Biology; Hyderabad Andhra Pradesh India
| | - Anant B. Patel
- NMR Microimaging and Spectroscopy; CSIR-Centre for Cellular and Molecular Biology; Hyderabad Andhra Pradesh India
| |
Collapse
|
13
|
Region- and age-dependent alterations of glial-neuronal metabolic interactions correlate with CNS pathology in a mouse model of globoid cell leukodystrophy. J Cereb Blood Flow Metab 2013; 33:1127-37. [PMID: 23611871 PMCID: PMC3705444 DOI: 10.1038/jcbfm.2013.64] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/27/2013] [Accepted: 03/27/2013] [Indexed: 01/20/2023]
Abstract
Globoid cell leukodystrophy (GLD) or Krabbe disease is a lysosomal storage disorder caused by genetic defects in the expression and activity of galactosylceramidase, a key enzyme in the catabolism of myelin-enriched sphingolipids. While there are several histologic, biochemical, and functional studies on GLD, correlations between morphologic and biochemical alterations in central nervous system (CNS) tissues during disease progression are lacking. Here, we combined immunohistochemistry and metabolic analysis using (1)H and (13)C magnetic resonance (MR) spectra of spinal cord, cerebellum, and forebrain to investigate glial-neuronal metabolic interactions and dysfunction in a GLD murine model that recapitulates the human pathology. In order to assess the temporal- and region-dependent disease progression and the potential metabolic correlates, we investigated CNS tissues at mildly symptomatic and fully symptomatic stages of the disease. When compared with age-matched controls, GLD mice showed glucose hypometabolism, alterations in neurotransmitter content, N-acetylaspartate, N-acetylaspartylglutamate, and osmolytes levels. Notably, age- and region-dependent patterns of metabolic disturbances were in close agreement with the progression of astrogliosis, microglia activation, apoptosis, and neurodegeneration. We suggest that MR spectroscopy could be used in vivo to monitor disease progression, as well as ex vivo and in vivo to provide criteria for the outcome of experimental therapies.
Collapse
|
14
|
O'Brien ER, Howarth C, Sibson NR. The role of astrocytes in CNS tumors: pre-clinical models and novel imaging approaches. Front Cell Neurosci 2013; 7:40. [PMID: 23596394 PMCID: PMC3627137 DOI: 10.3389/fncel.2013.00040] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 03/26/2013] [Indexed: 02/06/2023] Open
Abstract
Brain metastasis is a significant clinical problem, yet the mechanisms governing tumor cell extravasation across the blood-brain barrier (BBB) and CNS colonization are unclear. Astrocytes are increasingly implicated in the pathogenesis of brain metastasis but in vitro work suggests both tumoricidal and tumor-promoting roles for astrocyte-derived molecules. Also, the involvement of astrogliosis in primary brain tumor progression is under much investigation. However, translation of in vitro findings into in vivo and clinical settings has not been realized. Increasingly sophisticated resources, such as transgenic models and imaging technologies aimed at astrocyte-specific markers, will enable better characterization of astrocyte function in CNS tumors. Techniques such as bioluminescence and in vivo fluorescent cell labeling have potential for understanding the real-time responses of astrocytes to tumor burden. Transgenic models targeting signaling pathways involved in the astrocytic response also hold great promise, allowing translation of in vitro mechanistic findings into pre-clinical models. The challenging nature of in vivo CNS work has slowed progress in this area. Nonetheless, there has been a surge of interest in generating pre-clinical models, yielding insights into cell extravasation across the BBB, as well as immune cell recruitment to the parenchyma. While the function of astrocytes in the tumor microenvironment is still unknown, the relationship between astrogliosis and tumor growth is evident. Here, we review the role of astrogliosis in both primary and secondary brain tumors and outline the potential for the use of novel imaging modalities in research and clinical settings. These imaging approaches have the potential to enhance our understanding of the local host response to tumor progression in the brain, as well as providing new, more sensitive diagnostic imaging methods.
Collapse
Affiliation(s)
- Emma R. O'Brien
- Department of Oncology, CR-UK/MRC Gray Institute for Radiation Oncology and Biology, Churchill Hospital, University of OxfordOxford, UK
| | | | | |
Collapse
|
15
|
Follow-up study of 22 Chinese children with Alexander disease and analysis of parental origin of de novo GFAP mutations. J Hum Genet 2013; 58:183-8. [DOI: 10.1038/jhg.2012.152] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Shameem M, Patel AB. Glutamatergic and GABAergic metabolism in mouse brain under chronic nicotine exposure: implications for addiction. PLoS One 2012; 7:e41824. [PMID: 22848621 PMCID: PMC3405019 DOI: 10.1371/journal.pone.0041824] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 06/26/2012] [Indexed: 11/19/2022] Open
Abstract
Background and Purpose The effects of nicotine on cerebral metabolism and its influence on smoking behavior is poorly understood. An understanding of the chronic effects of nicotine on excitatory and inhibitory metabolic demand, and corresponding neurotransmission may provide clues for designing strategies for the optimal smoking cessation intervention. The objective of the current study was to investigate neuronal and astroglial metabolism in mice exposed to nicotine (0.5 and 2.0 mg/kg, sc) three times in a day for 4 weeks. Experimental Approach/Principal Findings Metabolic measurements were carried out by co-infusing [U-13C6]glucose and [2-13C]acetate, and monitoring 13C labeling of amino acids in brain tissue extract using 1H-[13C] and 13C-[1H]-NMR spectroscopy. Concentration of 13C-labeled glutamate-C4 was increased significantly from glucose and acetate with chronic nicotine treatment indicating an increase in glucose oxidation by glutamatergic neurons in all brain regions and glutamate-glutamine neurotransmitter cycle in cortical and subcortical regions. However, chronic nicotine treatment led to increased labeling of GABA-C2 from glucose only in the cortical region. Further, increased labeling of glutamine-C4 from [2-13C]acetate is suggestive of increased astroglial activity in subcortical and cerebellum regions of brain with chronic nicotine treatment. Conclusions and Significance Chronic nicotine exposure enhanced excitatory activity in the majority of brain regions while inhibitory and astroglial functions were enhanced only in selected brain regions.
Collapse
Affiliation(s)
- Mohammad Shameem
- NMR Microimaging and Spectroscopy, Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Hyderabad, India
| | - Anant Bahadur Patel
- NMR Microimaging and Spectroscopy, Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Hyderabad, India
- * E-mail:
| |
Collapse
|
17
|
Smeland OB, Meisingset TW, Sonnewald U. Dietary supplementation with acetyl-l-carnitine in seizure treatment of pentylenetetrazole kindled mice. Neurochem Int 2012; 61:444-54. [PMID: 22709675 DOI: 10.1016/j.neuint.2012.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 06/01/2012] [Accepted: 06/03/2012] [Indexed: 10/28/2022]
Abstract
In spite of the availability of new antiepileptic drugs a considerable number of epilepsy patients still have pharmacoresistant seizures, and thus there is a need for novel approaches. Acetyl-l-carnitine (ALCAR), which delivers acetyl units to mitochondria for acetyl-CoA production, has been shown to improve brain energy homeostasis and protects against various neurotoxic insults. To our knowledge, this is the first study of ALCAR's effect on metabolism in pentylenetetrazole (PTZ) kindled mice. ALCAR or the commonly used antiepileptic drug valproate, was added to the drinking water of mice for 25days, and animals were injected with PTZ or saline three times a week during the last 21 days. In order to investigate ALCAR's effects on glucose metabolism, mice were injected with [1-(13)C]glucose 15 min prior to microwave fixation. Brain extracts from cortex and the hippocampal formation (HF) were studied using (1)H and (13)C NMR spectroscopy and HPLC. PTZ kindling caused glucose hypometabolism, evidenced by a reduction in both glycolysis and TCA cycle turnover in both brain regions investigated. Glutamatergic and GABAergic neurons were affected in cortex and HF, but the amount of glutamate was only reduced in HF. Slight astrocytic involvement could be detected in the cortex. Interestingly, the dopamine content was increased in the HF. ALCAR attenuated the PTZ induced reduction in [3-(13)C]alanine and the increase in dopamine in the HF. However, TCA cycle metabolism was not different from that seen in PTZ kindled animals. In conclusion, even though ALCAR did not delay the kindling process, it did show some promising ameliorative effects, worthy of further investigation.
Collapse
Affiliation(s)
- Olav B Smeland
- Dept. of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | |
Collapse
|
18
|
Yoshida T, Nakagawa M. Clinical aspects and pathology of Alexander disease, and morphological and functional alteration of astrocytes induced by GFAP mutation. Neuropathology 2011; 32:440-6. [DOI: 10.1111/j.1440-1789.2011.01268.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
19
|
Bagga P, Patel AB. Regional cerebral metabolism in mouse under chronic manganese exposure: implications for manganism. Neurochem Int 2011; 60:177-85. [PMID: 22107705 DOI: 10.1016/j.neuint.2011.10.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 10/14/2011] [Accepted: 10/28/2011] [Indexed: 01/09/2023]
Abstract
Chronic manganese (Mn) exposure in rodents, non-human primates and humans has been linked to Parkinson's disease like condition known as Manganism. Mn being a cofactor for many enzymes in brain has been known to be accumulated in various regions differentially and thus exert toxic effect upon chronic overexposure. In present study, neuropathology of Manganism was investigated by evaluating regional neuronal and astroglial metabolism in mice under chronic Mn exposure. Male C57BL6 mice were treated with MnCl(2) (25 mg/kg, i.p.) for 21 days. Cerebral metabolism was studied by co-infusing [U-(13)C(6)]glucose and [2-(13)C]acetate, and monitoring (13)C labeling of amino acids in brain tissue extract using (1)H-[(13)C] and (13)C-[(1)H]-NMR spectroscopy. Glutamate, choline, N-acetyl aspartate and myo-inositol were found to be reduced in thalamus and hypothalamus indicating a loss in neuronal and astroglial cells due to Mn neurotoxicity. Reduced labeling of Glu(C4) from [U-(13)C(6)]glucose and [2-(13)C]acetate indicates an impairment of glucose oxidation by glutamatergic neurons and glutamate-glutamine neurotransmitter cycle in cortex, striatum, thalamus-hypothalamus and olfactory bulb with chronic Mn exposure. Additionally, reduced labeling of Gln(C4) from [2-(13)C]acetate indicates a decrease in acetate oxidation by astroglia in the same regions. However, GABAergic function was alleviated only in thalamus-hypothalamus. Our findings indicate that chronic Mn impairs excitatory (glutamatergic) function in the majority of regions of brain while inhibitory (GABAergic) activity is perturbed only in basal ganglia.
Collapse
Affiliation(s)
- Puneet Bagga
- NMR Microimaging and Spectroscopy, Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Hyderabad, India
| | | |
Collapse
|
20
|
Chen YS, Lim SC, Chen MH, Quinlan RA, Perng MD. Alexander disease causing mutations in the C-terminal domain of GFAP are deleterious both to assembly and network formation with the potential to both activate caspase 3 and decrease cell viability. Exp Cell Res 2011; 317:2252-66. [PMID: 21756903 DOI: 10.1016/j.yexcr.2011.06.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 06/23/2011] [Accepted: 06/27/2011] [Indexed: 12/12/2022]
Abstract
Alexander disease is a primary genetic disorder of astrocyte caused by dominant mutations in the astrocyte-specific intermediate filament glial fibrillary acidic protein (GFAP). While most of the disease-causing mutations described to date have been found in the conserved α-helical rod domain, some mutations are found in the C-terminal non-α-helical tail domain. Here, we compare five different mutations (N386I, S393I, S398F, S398Y and D417M14X) located in the C-terminal domain of GFAP on filament assembly properties in vitro and in transiently transfected cultured cells. All the mutations disrupted in vitro filament assembly. The mutations also affected the solubility and promoted filament aggregation of GFAP in transiently transfected MCF7, SW13 and U343MG cells. This correlated with the activation of the p38 stress-activated protein kinase and an increased association with the small heat shock protein (sHSP) chaperone, αB-crystallin. Of the mutants studied, D417M14X GFAP caused the most significant effects both upon filament assembly in vitro and in transiently transfected cells. This mutant also caused extensive filament aggregation coinciding with the sequestration of αB-crystallin and HSP27 as well as inhibition of the proteosome and activation of p38 kinase. Associated with these changes were an activation of caspase 3 and a significant decrease in astrocyte viability. We conclude that some mutations in the C-terminus of GFAP correlate with caspase 3 cleavage and the loss of cell viability, suggesting that these could be contributory factors in the development of Alexander disease.
Collapse
Affiliation(s)
- Yi-Song Chen
- Institute of Molecular Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
| | | | | | | | | |
Collapse
|
21
|
Aasheim E. Forskning på hjernen i Trondheim. TIDSSKRIFT FOR DEN NORSKE LEGEFORENING 2011. [DOI: 10.4045/tidsskr.11.0502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
22
|
Hammerness P, Biederman J, Petty C, Henin A, Moore CM. Brain biochemical effects of methylphenidate treatment using proton magnetic spectroscopy in youth with attention-deficit hyperactivity disorder: a controlled pilot study. CNS Neurosci Ther 2010; 18:34-40. [PMID: 21143432 DOI: 10.1111/j.1755-5949.2010.00226.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION This study conducted spectroscopic analyses using proton (1H) Magnetic Resonance Spectroscopy (at 4 Tesla) in a sample of adolescents with Attention Deficit Hyperactivity Disorder (ADHD), before and after treatment with extended release methylphenidate (OROS MPH), as compared to a sample of healthy comparators. AIMS The main aim of this study is to use 1H MRS to measure differences in brain biochemistry between adolescents with and without ADHD, and to assess changes in cerebral biochemistry, before and after stimulant treatment in ADHD youth. RESULTS Subjects with ADHD were medically healthy adolescents treated in an open label fashion with OROS MPH (mean dose: 54 mg/day; 0.90 mg/kg/day). Subjects with ADHD were scanned before and after OROS MPH treatment. Healthy comparators were scanned once. Magnetic resonance (MR) spectroscopy studies were performed on a 4.0 T Varian Unity/Inova MR scanner; proton spectra were acquired from the Anterior Cingulate Cortex (ACC). Data were analyzed using MANOVA and repeated measurement ANOVA. Higher metabolite ratios (Glutamate/myo-inositol, Glutamine/myo-inositol, Glutamate + Glutamine/myo-inositol) were observed in the ACC in untreated ADHD subjects as compared to controls, and to treated ADHD youth; these group differences did not reach the a priori threshold for statistical significance. CONCLUSIONS These preliminary findings suggest the presence of glutamatergic abnormalities in adolescents with ADHD, which may normalize with MPH treatment. Larger sample, controlled studies are needed to confirm these preliminary findings.
Collapse
Affiliation(s)
- Paul Hammerness
- Clinical and Research Program in Pediatric Psychopharmacology, Massachusetts General Hospital, Boston, 02138, USA.
| | | | | | | | | |
Collapse
|
23
|
Melø T, Bigini P, Sonnewald U, Balosso S, Cagnotto A, Barbera S, Uboldi S, Vezzani A, Mennini T. Neuronal hyperexcitability and seizures are associated with changes in glial-neuronal interactions in the hippocampus of a mouse model of epilepsy with mental retardation. J Neurochem 2010; 115:1445-54. [DOI: 10.1111/j.1471-4159.2010.07048.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|