1
|
Hagen KM, Gordon P, Frederick A, Palmer AL, Edalat P, Zonta YR, Scott L, Flancia M, Reid JK, Joel M, Ousman SS. CRYAB plays a role in terminating the presence of pro-inflammatory macrophages in the older, injured mouse peripheral nervous system. Neurobiol Aging 2024; 133:1-15. [PMID: 38381471 DOI: 10.1016/j.neurobiolaging.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 02/22/2024]
Abstract
Evidence indicates that dysfunction of older Schwann cells and macrophages contributes to poor regeneration of more mature peripheral nervous system (PNS) neurons after damage. Since the underlying molecular factors are largely unknown, we investigated if CRYAB, a small heat shock protein that is expressed by Schwann cells and axons and whose expression declines with age, impacts prominent deficits in the injured, older PNS including down-regulation of cholesterol biosynthesis enzyme genes, Schwann cell dysfunction, and macrophage persistence. Following sciatic nerve transection injury in 3- and 12-month-old wildtype and CRYAB knockout mice, we found by bulk RNA sequencing and RT-PCR, that while gene expression of cholesterol biosynthesis enzymes is markedly dysregulated in the aging, injured PNS, CRYAB is not involved. However, immunohistochemical staining of crushed sciatic nerves revealed that more macrophages of the pro-inflammatory but not immunosuppressive phenotype persisted in damaged 12-month-old knockout nerves. These pro-inflammatory macrophages were more efficient at engulfing myelin debris. CRYAB thus appears to play a role in resolving pro-inflammatory macrophage responses after damage to the older PNS.
Collapse
Affiliation(s)
- Kathleen Margaret Hagen
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Paul Gordon
- Cumming School of Medicine Centre for Health Genomics and Informatics, University of Calgary, Calgary, Alberta, Canada
| | - Ariana Frederick
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Alexandra Louise Palmer
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Pariya Edalat
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Yohan Ricci Zonta
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Lucas Scott
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Melissa Flancia
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jacqueline Kelsey Reid
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Matthew Joel
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Shalina Sheryl Ousman
- Departments of Clinical Neurosciences and Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
2
|
Kuang R, Zhang Y, Wu G, Zhu Z, Xu S, Liu X, Xu Y, Luo Y. Long Non-coding RNAs Influence Aging Process of Sciatic Nerves in SD Rats. Comb Chem High Throughput Screen 2024; 27:2140-2150. [PMID: 37691192 PMCID: PMC11348477 DOI: 10.2174/1386207326666230907115800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/12/2023]
Abstract
OBJECTIVES To investigate the long non-coding RNAs (lncRNAs) changes in the sciatic nerve (SN) in Sprague Dawley (SD) rats during aging. METHODS Eighteen healthy SD rats were selected at the age of 1 month (1M) and 24 months (24M) and SNs were collected. High-throughput transcriptome sequencing and bioinformatics analysis were performed. Protein-protein interaction (PPI) networks and competing endogenous RNA (ceRNA) networks were established according to differentially expressed genes (DEGs). RESULT As the length of lncRNAs increased, its proportion to the total number of lncRNAs decreased. A total of 4079 DElncRNAs were identified in Con vs. 24M. GO analysis was primarily clustered in nerve and lipid metabolism, extracellular matrix, and vascularization-related fields. There were 17 nodes in the PPI network of the target genes of up-regulating genes including Itgb2, Lox, Col11a1, Wnt5a, Kras, etc. Using quantitative RT-PCR, microarray sequencing accuracy was validated. There were 169 nodes constructing the PPI network of down-regulated target genes, mainly including Col1a1, Hmgcs1, Hmgcr. CeRNA interaction networks were constructed. CONCLUSION Lipid metabolism, angiogenesis, and ECM fields might play an important role in the senescence process in SNs. Col3a1, Serpinh1, Hmgcr, and Fdps could be candidates for nerve aging research.
Collapse
Affiliation(s)
- Rui Kuang
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Yi Zhang
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Guanggeng Wu
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Zhaowei Zhu
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Shuqia Xu
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Xiangxia Liu
- Department of Plastic Surgery, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Yangbin Xu
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Yunxiang Luo
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| |
Collapse
|
3
|
Hastings RL, Avila MF, Suneby E, Juros D, O'Young A, Peres da Silva J, Valdez G. Cellular and molecular evidence that synaptic Schwann cells contribute to aging of mouse neuromuscular junctions. Aging Cell 2023; 22:e13981. [PMID: 37771191 PMCID: PMC10652323 DOI: 10.1111/acel.13981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/30/2023] Open
Abstract
Age-induced degeneration of the neuromuscular junction (NMJ) is associated with motor dysfunction and muscle atrophy. While the impact of aging on the NMJ presynapse and postsynapse is well-documented, little is known about the changes perisynaptic Schwann cells (PSCs), the synaptic glia of the NMJ, undergo during aging. Here, we examined PSCs in young, middle-aged, and old mice in three muscles with different susceptibility to aging. Using light and electron microscopy, we found that PSCs acquire age-associated cellular features either prior to or at the same time as the onset of NMJ degeneration. Notably, we found that aged PSCs fail to completely cap the NMJ even though they are more abundant in old compared with young mice. We also found that aging PSCs form processes that either intrude into the synaptic cleft or guide axonal sprouts to innervate other NMJs. We next profiled the transcriptome of PSCs and other Schwann cells (SCs) to identify mechanisms altered in aged PSCs. This analysis revealed that aged PSCs acquire a transcriptional pattern previously shown to promote phagocytosis that is absent in other SCs. It also showed that aged PSCs upregulate unique pro-inflammatory molecules compared to other aged SCs. Interestingly, neither synaptogenesis genes nor genes that are typically upregulated by repair SCs were induced in aged PSCs or other SCs. These findings provide insights into cellular and molecular mechanisms that could be targeted in PSCs to stave off the deleterious effects of aging on NMJs.
Collapse
Affiliation(s)
- Robert Louis Hastings
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | | | - Emma Suneby
- Molecular Biology, Cell Biology, & Biochemistry Graduate Program, Brown University, Providence, Rhode Island, USA
| | - Devin Juros
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Anson O'Young
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Jason Peres da Silva
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Gregorio Valdez
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science, and Center on the Biology of Aging, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
4
|
Park HJ, Tsai E, Huang D, Weaver M, Frick L, Alcantara A, Moran JJ, Patzig J, Melendez-Vasquez CV, Crabtree GR, Feltri M, Svaren J, Casaccia P. ACTL6a coordinates axonal caliber recognition and myelination in the peripheral nerve. iScience 2022; 25:104132. [PMID: 35434551 PMCID: PMC9010646 DOI: 10.1016/j.isci.2022.104132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/29/2022] [Accepted: 03/17/2022] [Indexed: 11/12/2022] Open
Abstract
Cells elaborate transcriptional programs in response to external signals. In the peripheral nerves, Schwann cells (SC) sort axons of given caliber and start the process of wrapping their membrane around them. We identify Actin-like protein 6a (ACTL6a), part of SWI/SNF chromatin remodeling complex, as critical for the integration of axonal caliber recognition with the transcriptional program of myelination. Nuclear levels of ACTL6A in SC are increased by contact with large caliber axons or nanofibers, and result in the eviction of repressive histone marks to facilitate myelination. Without Actl6a the SC are unable to coordinate caliber recognition and myelin production. Peripheral nerves in knockout mice display defective radial sorting, hypo-myelination of large caliber axons, and redundant myelin around small caliber axons, resulting in a clinical motor phenotype. Overall, this suggests that ACTL6A is a key component of the machinery integrating external signals for proper myelination of the peripheral nerve.
Collapse
Affiliation(s)
- Hye-Jin Park
- Advanced Science Research Center (ASRC) at The Graduate Center of the City University of New York (CUNY), New York, NY 10031, USA
| | - Eric Tsai
- Advanced Science Research Center (ASRC) at The Graduate Center of the City University of New York (CUNY), New York, NY 10031, USA
- Graduate Program in Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dennis Huang
- Advanced Science Research Center (ASRC) at The Graduate Center of the City University of New York (CUNY), New York, NY 10031, USA
- Graduate Program in Biology, Graduate Center of CUNY, New York, NY 10016, USA
| | - Michael Weaver
- Hunter James Kelly Research Institute, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Luciana Frick
- Hunter James Kelly Research Institute, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Ace Alcantara
- Graduate Program in Biology, Graduate Center of CUNY, New York, NY 10016, USA
- Hunter College, Department of Biological Sciences, New York, NY 10065, USA
| | - John J. Moran
- Waisman Center and Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53705, USA
| | - Julia Patzig
- Advanced Science Research Center (ASRC) at The Graduate Center of the City University of New York (CUNY), New York, NY 10031, USA
| | - Carmen V. Melendez-Vasquez
- Graduate Program in Biology, Graduate Center of CUNY, New York, NY 10016, USA
- Hunter College, Department of Biological Sciences, New York, NY 10065, USA
| | - Gerald R. Crabtree
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - M.L. Feltri
- Hunter James Kelly Research Institute, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - John Svaren
- Waisman Center and Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53705, USA
| | - Patrizia Casaccia
- Advanced Science Research Center (ASRC) at The Graduate Center of the City University of New York (CUNY), New York, NY 10031, USA
- Graduate Program in Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate Program in Biology, Graduate Center of CUNY, New York, NY 10016, USA
| |
Collapse
|
5
|
Sardella-Silva G, Mietto BS, Ribeiro-Resende VT. Four Seasons for Schwann Cell Biology, Revisiting Key Periods: Development, Homeostasis, Repair, and Aging. Biomolecules 2021; 11:1887. [PMID: 34944531 PMCID: PMC8699407 DOI: 10.3390/biom11121887] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 01/28/2023] Open
Abstract
Like the seasons of the year, all natural things happen in stages, going through adaptations when challenged, and Schwann cells are a great example of that. During maturation, these cells regulate several steps in peripheral nervous system development. The Spring of the cell means the rise and bloom through organized stages defined by time-dependent regulation of factors and microenvironmental influences. Once matured, the Summer of the cell begins: a high energy stage focused on maintaining adult homeostasis. The Schwann cell provides many neuron-glia communications resulting in the maintenance of synapses. In the peripheral nervous system, Schwann cells are pivotal after injuries, balancing degeneration and regeneration, similarly to when Autumn comes. Their ability to acquire a repair phenotype brings the potential to reconnect axons to targets and regain function. Finally, Schwann cells age, not only by growing old, but also by imposed environmental cues, like loss of function induced by pathologies. The Winter of the cell presents as reduced activity, especially regarding their role in repair; this reflects on the regenerative potential of older/less healthy individuals. This review gathers essential information about Schwann cells in different stages, summarizing important participation of this intriguing cell in many functions throughout its lifetime.
Collapse
Affiliation(s)
- Gabriela Sardella-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
- Núcleo Multidisciplinar de Pesquisa em Biologia (Numpex-Bio), Campus de Duque de Caxias Geraldo Guerra Cidade, Universidade Federal do Rio de Janeiro, Duque de Caxias 25255-030, RJ, Brazil
| | - Bruno Siqueira Mietto
- Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil;
| | - Victor Túlio Ribeiro-Resende
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
- Núcleo Multidisciplinar de Pesquisa em Biologia (Numpex-Bio), Campus de Duque de Caxias Geraldo Guerra Cidade, Universidade Federal do Rio de Janeiro, Duque de Caxias 25255-030, RJ, Brazil
| |
Collapse
|
6
|
Teka T, Wang L, Gao J, Mou J, Pan G, Yu H, Gao X, Han L. Polygonum multiflorum: Recent updates on newly isolated compounds, potential hepatotoxic compounds and their mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113864. [PMID: 33485980 DOI: 10.1016/j.jep.2021.113864] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/04/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonum multiflorum Thunb.(PM), (known as Heshouwu () in China) is one of the most important and well mentioned Chinese medicinal herbs in the literature for its use in blackening hair, nourishing liver and kidney, anti-aging, anti-hyperlipidemia, antioxidant, anti-inflammatory, anticancer, hepatoprotection, cardio-protection and improving age-related cognitive dysfunction. The purpose of this review is to give a comprehensive and recent update on PM: new compounds or isolated for the first time, potential hepatotoxic compounds and their mechanisms. Moreover, future perspectives and challenges in the future study of this plant are conversed which will make a new base for further study on PM. MATERIALS AND METHODS A comprehensive review of relevant published literature on PM using the scientific databases SCOPUS, PubMed, and Science Direct was done. RESULTS PM is broadly produced in many provinces of China and well known in other Eastern Asian Countries for its ethno-medical uses. Previous phytochemical investigation of PM had led to the isolation of more than 175 compounds including recently isolated 70 new compounds. Most of the new compounds isolated after 2015 are majorly dianthrone glycosides and stilbene glycosides. Processing has also a significant effect on chemical composition, pharmacological activities, and toxicity of PM. PM-induced liver injury is increasing after the first report in Hong Kong in 1996. Hepatotoxicity of PM was constantly reported in Japan, Korea, China, Australia, Britain, Italy, and other countries although its toxicity is related to idiosyncratic hepatotoxicity. More interestingly, although there is indispensable interest to predict idiosyncratic hepatotoxicity of PM and understand its mechanisms, the responsible hepatotoxic compounds and mechanisms of liver damage induced by PM are still not clear. There is a big controversy on the identification of the most responsible constituent. Anthraquinone and stilbene compounds in PM, mainly emodine and TSG are mentioned in the literature to be the main responsible hepatotoxic compounds. However, comparing the two compounds, which one is the more critical toxic agent for PM-induced hepatotoxicity is not well answered. Affecting different physiological and metabolic pathways such as oxidative phosphorylation and TCA cycle pathway, metabolic pathways, bile acid excretion pathway and genetic polymorphisms are among the mechanisms of hepatotoxicity of PM. CONCLUSION Deeper and effective high throughput experimental studies are still research hotspots to know the most responsible constituent and the mechanism of PM-induced hepatotoxicity.
Collapse
Affiliation(s)
- Tekleab Teka
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China; Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, P. O. Box 1145, Dessie, Ethiopia
| | - Liming Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Jian Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Jiajia Mou
- Department of Medicinal Chemistry, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Guixiang Pan
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 69 Zengchan Road, Hebei District, Tianjin, 300250, PR China
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China.
| |
Collapse
|
7
|
Pantera H, Hu B, Moiseev D, Dunham C, Rashid J, Moran JJ, Krentz K, Rubinstein CD, Won S, Li J, Svaren J. Pmp22 super-enhancer deletion causes tomacula formation and conduction block in peripheral nerves. Hum Mol Genet 2020; 29:1689-1699. [PMID: 32356557 PMCID: PMC7322568 DOI: 10.1093/hmg/ddaa082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/07/2020] [Accepted: 04/24/2020] [Indexed: 11/12/2022] Open
Abstract
Copy number variation of the peripheral nerve myelin gene Peripheral Myelin Protein 22 (PMP22) causes multiple forms of inherited peripheral neuropathy. The duplication of a 1.4 Mb segment surrounding this gene in chromosome 17p12 (c17p12) causes the most common form of Charcot-Marie-Tooth disease type 1A, whereas the reciprocal deletion of this gene causes a separate neuropathy termed hereditary neuropathy with liability to pressure palsies (HNPP). PMP22 is robustly induced in Schwann cells in early postnatal development, and several transcription factors and their cognate regulatory elements have been implicated in coordinating the gene's proper expression. We previously found that a distal super-enhancer domain was important for Pmp22 expression in vitro, with particular impact on a Schwann cell-specific alternative promoter. Here, we investigate the consequences of deleting this super-enhancer in vivo. We find that loss of the super-enhancer in mice reduces Pmp22 expression throughout development and into adulthood, with greater impact on the Schwann cell-specific promoter. Additionally, these mice display tomacula formed by excessive myelin folding, a pathological hallmark of HNPP, as have been previously observed in heterozygous Pmp22 mice as well as sural biopsies from patients with HNPP. Our findings demonstrate a mechanism by which smaller copy number variations, not including the Pmp22 gene, are sufficient to reduce gene expression and phenocopy a peripheral neuropathy caused by the HNPP-associated deletion encompassing PMP22.
Collapse
Affiliation(s)
- Harrison Pantera
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Bo Hu
- Department of Neurology and Translational Neuroscience Initiative, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Daniel Moiseev
- Department of Neurology and Translational Neuroscience Initiative, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Chris Dunham
- Department of Neurology and Translational Neuroscience Initiative, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Jibraan Rashid
- Department of Neurology and Translational Neuroscience Initiative, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - John J Moran
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kathleen Krentz
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - C Dustin Rubinstein
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Seongsik Won
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jun Li
- Department of Neurology and Translational Neuroscience Initiative, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - John Svaren
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
8
|
Candesartan Neuroprotection in Rat Primary Neurons Negatively Correlates with Aging and Senescence: a Transcriptomic Analysis. Mol Neurobiol 2019; 57:1656-1673. [PMID: 31811565 DOI: 10.1007/s12035-019-01800-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/22/2019] [Indexed: 12/11/2022]
Abstract
Preclinical experiments and clinical trials demonstrated that angiotensin II AT1 receptor overactivity associates with aging and cellular senescence and that AT1 receptor blockers (ARBs) protect from age-related brain disorders. In a primary neuronal culture submitted to glutamate excitotoxicity, gene set enrichment analysis (GSEA) revealed expression of several hundred genes altered by glutamate and normalized by candesartan correlated with changes in expression in Alzheimer's patient's hippocampus. To further establish whether our data correlated with gene expression alterations associated with aging and senescence, we compared our global transcriptional data with additional published datasets, including alterations in gene expression in the neocortex and cerebellum of old mice, human frontal cortex after age of 40, gene alterations in the Werner syndrome, rodent caloric restriction, Ras and oncogene-induced senescence in fibroblasts, and to tissues besides the brain such as the muscle and kidney. The most significant and enriched pathways associated with aging and senescence were positively correlated with alterations in gene expression in glutamate-injured neurons and, conversely, negatively correlated when the injured neurons were treated with candesartan. Our results involve multiple genes and pathways, including CAV1, CCND1, CDKN1A, CHEK1, ICAM1, IL-1B, IL-6, MAPK14, PTGS2, SERPINE1, and TP53, encoding proteins associated with aging and senescence hallmarks, such as inflammation, oxidative stress, cell cycle and mitochondrial function alterations, insulin resistance, genomic instability including telomere shortening and DNA damage, and the senescent-associated secretory phenotype. Our results demonstrate that AT1 receptor blockade ameliorates central mechanisms of aging and senescence. Using ARBs for prevention and treatment of age-related disorders has important translational value.
Collapse
|
9
|
Yang J, He Y, Zou J, Xu L, Fan F, Ge Z. Effect of Polygonum Multiflorum Thunb on liver fatty acid content in aging mice induced by D-galactose. Lipids Health Dis 2019; 18:128. [PMID: 31153380 PMCID: PMC6545222 DOI: 10.1186/s12944-019-1055-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/17/2019] [Indexed: 12/14/2022] Open
Abstract
Background Polygonum Multiflorum Thunb(PMT) has multiple biological effects, such as anti-inflammatory, lipid-lowering, anti-aging and so on. Therefore, D-galactose-induced aging mice were used to study the effect of PMT on fatty acid metabolism and its underlying mechanism. Methods C57BL/6 male mice were randomly divided into normal group, aging model group, PMT intragastrical administration group (high, Medium, low); model group and PMT intragastrical administration group Daily intraperitoneal injection D-galactose 800 mg·ml− 1·Kg− 1 to establish subacute aging model; PMT intragastrical administration group at the same time to intragastrical PMT extract (1 g·ml− 1·Kg− 1, 0.6 g·ml− 1·Kg− 1, 0.3 g·ml− 1·Kg− 1), normal group injection and intragastrical equivalent saline for 60 consecutive days. By detecting the oxidation index of liver to judge the efficacy of PMT, gas chromatography-mass spectrometry (GC-MS) analysis was used to quantitatively analyze the fatty acid content in liver. Results Finally, we found that PMT improved the enzyme activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in aging mice, and reduce the enzyme activity of malondialdehyde (MDA), aspartate aminotransferase (AST) and alanine aminotransferase (ALT). The content of fatty acids such as C18:1, C18:2, C18:3 N3, C20:2 and C20:3 N3 decreased significantly in senescent mice (P < 0.05) as evidenced by GC-MS analysis, whereas, these fatty acids increased significantly after treatment of PMT (P < 0.05). Conclusion PMT improves the content of liver fatty acids in aging mice induced by D-galactose through, enhancing the activity of anti-oxidant enzymes.
Collapse
Affiliation(s)
- Jiangquan Yang
- Department of Biochemistry and Molecular Biology, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Yuqi He
- Department of Pharmaceutical Analysis, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Jiayi Zou
- Department of Biochemistry and Molecular Biology, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Lin Xu
- Department of Biochemistry and Molecular Biology, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Fang Fan
- Department of Biochemistry and Molecular Biology, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Zhenglong Ge
- Department of Biochemistry and Molecular Biology, Zunyi Medical University, Zunyi, Guizhou Province, China.
| |
Collapse
|
10
|
Svaren J, Moran JJ, Wu X, Zuccarino R, Bacon C, Bai Y, Ramesh R, Gutmann L, Anderson DM, Pavelec D, Shy ME. Schwann cell transcript biomarkers for hereditary neuropathy skin biopsies. Ann Neurol 2019; 85:887-898. [PMID: 30945774 DOI: 10.1002/ana.25480] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Charcot-Marie-Tooth (CMT) disease is most commonly caused by duplication of a chromosomal segment surrounding Peripheral Myelin Protein 22, or PMP22 gene, which is classified as CMT1A. Several candidate therapies reduce Pmp22 mRNA levels in CMT1A rodent models, but development of biomarkers for clinical trials in CMT1A is a challenge given its slow progression and difficulty in obtaining nerve samples. Quantitative PCR measurements of PMP22 mRNA in dermal nerves were performed using skin biopsies in human clinical trials for CMT1A, but this approach did not show increased PMP22 mRNA in CMT1A patients compared to controls. One complicating factor is the variable amounts of Schwann cells (SCs) in skin. The objective of the study was to develop a novel method for precise evaluation of PMP22 levels in skin biopsies that can discriminate CMT1A patients from controls. METHODS We have developed methods to normalize PMP22 transcript levels to SC-specific genes that are not altered by CMT1A status. Several CMT1A-associated genes were assembled into a custom Nanostring panel to enable precise transcript measurements that can be normalized to variable SC content. RESULTS The digital expression data from Nanostring analysis showed reproducible elevation of PMP22 levels in CMT1A versus control skin biopsies, particularly after normalization to SC-specific genes. INTERPRETATION This platform should be useful in clinical trials for CMT1A as a biomarker of target engagement that can be used to optimize dosing, and the same normalization framework is applicable to other types of CMT. ANN NEUROL 2019;85:887-898.
Collapse
Affiliation(s)
- John Svaren
- Waisman Center, University of Wisconsin-Madison, Madison, WI.,Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI
| | - John J Moran
- Waisman Center, University of Wisconsin-Madison, Madison, WI
| | - Xingyao Wu
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Riccardo Zuccarino
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA.,Neuromuscular Omnicentre (NEMO)-Fondazione Serena Onlus, Arenzano, Italy
| | - Chelsea Bacon
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Yunhong Bai
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Raghu Ramesh
- Waisman Center, University of Wisconsin-Madison, Madison, WI
| | - Laurie Gutmann
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Daniel M Anderson
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Derek Pavelec
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI
| | - Michael E Shy
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA
| |
Collapse
|
11
|
Aging Schwann cells: mechanisms, implications, future directions. Curr Opin Neurobiol 2017; 47:203-208. [DOI: 10.1016/j.conb.2017.10.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/11/2017] [Accepted: 10/24/2017] [Indexed: 12/17/2022]
|
12
|
Rodríguez-Molina JF, Lopez-Anido C, Ma KH, Zhang C, Olson T, Muth KN, Weider M, Svaren J. Dual specificity phosphatase 15 regulates Erk activation in Schwann cells. J Neurochem 2017; 140:368-382. [PMID: 27891578 PMCID: PMC5250571 DOI: 10.1111/jnc.13911] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/15/2016] [Accepted: 11/21/2016] [Indexed: 12/20/2022]
Abstract
Schwann cells and oligodendrocytes are the myelinating cells of the peripheral and central nervous system, respectively. Despite having different myelin components and different transcription factors driving their terminal differentiation there are shared molecular mechanisms between the two. Sox10 is one common transcription factor required for several steps in development of myelinating glia. However, other factors are divergent as Schwann cells need the transcription factor early growth response 2/Krox20 and oligodendrocytes require Myrf. Likewise, some signaling pathways, like the Erk1/2 kinases, are necessary in both cell types for proper myelination. Nonetheless, the molecular mechanisms that control this shared signaling pathway in myelinating cells remain only partially characterized. The hypothesis of this study is that signaling pathways that are similarly regulated in both Schwann cells and oligodendrocytes play central roles in coordinating the differentiation of myelinating glia. To address this hypothesis, we have used genome-wide binding data to identify a relatively small set of genes that are similarly regulated by Sox10 in myelinating glia. We chose one such gene encoding Dual specificity phosphatase 15 (Dusp15) for further analysis in Schwann cell signaling. RNA interference and gene deletion by genome editing in cultured RT4 and primary Schwann cells showed Dusp15 is necessary for full activation of Erk1/2 phosphorylation. In addition, we show that Dusp15 represses expression of several myelin genes, including myelin basic protein. The data shown here support a mechanism by which early growth response 2 activates myelin genes, but also induces a negative feedback loop through Dusp15 to limit over-expression of myelin genes.
Collapse
Affiliation(s)
- José F. Rodríguez-Molina
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Camila Lopez-Anido
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ki H. Ma
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Chongyu Zhang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Tyler Olson
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Katharina N. Muth
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Weider
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - John Svaren
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
13
|
Lim EMF, Musa A, Frederick A, Ousman SS. AlphaB-crystallin expression correlates with aging deficits in the peripheral nervous system. Neurobiol Aging 2017; 53:138-149. [PMID: 28185662 DOI: 10.1016/j.neurobiolaging.2017.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 11/17/2022]
Abstract
In an effort to identify factors that contribute to age-related deficits in the undamaged and injured peripheral nervous system (PNS), we noted that Brady and colleagues found that mice null for a small heat shock protein called alphaB-crystallin (αBC) developed abnormalities early in life that are reminiscent of aging pathologies. Because of our observation that αBC protein levels markedly reduce as wild-type mice age, we investigated whether the crystallin plays a role in modulating age-related deficits in the uninjured and damaged PNS. We show here that the presence of αBC correlates with maintenance of myelin sheath thickness, reducing macrophage presence, sustaining lipid metabolism, and promoting remyelination following peripheral nerve injury in an age-dependent manner. More specifically, animals null for αBC displayed a higher frequency of thinly myelinated axons, enhanced presence of Iba1+ macrophages, and fewer immunoreactive profiles of the cholesterol biosynthesis enzyme, squalene monooxygenase, before and after sciatic nerve crush injury. These findings thus suggest that αBC plays a protective and beneficial role in the aging PNS.
Collapse
Affiliation(s)
- Erin-Mai F Lim
- Department of Neuroscience, University of Calgary and the Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Alim Musa
- Department of Clinical Neurosciences, University of Calgary and the Hotchkiss Brain Institute, Calgary, Alberta, Canada; Department of Cell Biology and Anatomy, University of Calgary and the Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Ariana Frederick
- Department of Clinical Neurosciences, University of Calgary and the Hotchkiss Brain Institute, Calgary, Alberta, Canada; Department of Cell Biology and Anatomy, University of Calgary and the Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Shalina S Ousman
- Department of Clinical Neurosciences, University of Calgary and the Hotchkiss Brain Institute, Calgary, Alberta, Canada; Department of Cell Biology and Anatomy, University of Calgary and the Hotchkiss Brain Institute, Calgary, Alberta, Canada.
| |
Collapse
|
14
|
Identification of Potential Key lncRNAs and Genes Associated with Aging Based on Microarray Data of Adipocytes from Mice. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9181702. [PMID: 28097151 PMCID: PMC5209599 DOI: 10.1155/2016/9181702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/19/2016] [Accepted: 11/01/2016] [Indexed: 11/18/2022]
Abstract
Objective. This study aimed to screen potential crucial lncRNAs and genes involved in aging. Methods. The data of 9 peripheral white adipocytes, respectively, taken from male C57BL/6J mice (6 months, 14 months, and 18 months of age) in GSE25905 were used in this study. Differentially time series expressed lncRNA genes (DE-lncRNAs) and mRNA genes (DEGs) were identified. After cluster analysis of lncRNAs expression pattern, target genes of DE-lncRNAs were predicted from the DEGs, and functional analysis for target genes was conducted. Results. A total of 8301 time series-related DEGs and 43 time series-related DE-lncRNAs were identified. Among them, 41 DE-lncRNAs targeted 1880 DEGs. The DEGs positively regulated by DE-lncRNAs were mainly related to the development of blood vessel and the pathways of cholesterol biosynthesis and elastic fibre formation. Furthermore, the DEGs negatively regulated by DE-lncRNAs were correlated with protein metabolism. Conclusion. These DE-lncRNAs and DEGs are potentially involved in the process of aging.
Collapse
|
15
|
Ma KH, Hung HA, Svaren J. Epigenomic Regulation of Schwann Cell Reprogramming in Peripheral Nerve Injury. J Neurosci 2016; 36:9135-47. [PMID: 27581455 PMCID: PMC5005723 DOI: 10.1523/jneurosci.1370-16.2016] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/08/2016] [Accepted: 07/15/2016] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED The rapid and dynamic transcriptional changes of Schwann cells in response to injury are critical to peripheral nerve repair, yet the epigenomic reprograming that leads to the induction of injury-activated genes has not been characterized. Polycomb Repressive Complex 2 (PRC2) catalyzes the trimethylation of lysine 27 of histone H3 (H3K27me3), which produces a transcriptionally repressive chromatin environment. We find that many promoters and/or gene bodies of injury-activated genes of mature rat nerves are occupied with H3K27me3. In contrast, the majority of distal enhancers that gain H3K27 acetylation after injury are not repressed by H3K27 methylation before injury, which is normally observed in developmentally poised enhancers. Injury induces demethylation of H3K27 in many genes, such as Sonic hedgehog (Shh), which is silenced throughout Schwann cell development before injury. In addition, experiments using a Schwann cell-specific mouse knock-out of the Eed subunit of PRC2 indicate that demethylation is a rate-limiting step in the activation of such genes. We also show that some transcription start sites of H3K27me3-repressed injury genes of uninjured nerves are bound with a mark of active promoters H3K4me3, for example, Shh and Gdnf, and the reduction of H3K27me3 results in increased trimethylation of H3K4. Our findings identify reversal of polycomb repression as a key step in gene activation after injury. SIGNIFICANCE STATEMENT Peripheral nerve regeneration after injury is dependent upon implementation of a novel genetic program in Schwann cells that supports axonal survival and regeneration. Identifying means to enhance Schwann cell reprogramming after nerve injury could be used to foster effective remyelination in the treatment of demyelinating disorders and in identifying pathways involved in regenerative process of myelination. Although recent progress has identified transcriptional determinants of successful reprogramming of the Schwann cell transcriptome after nerve injury, our results have highlighted a novel epigenomic pathway in which reversal of the Polycomb pathway of repressive histone methylation is required for activation of a significant number of injury-induced genes.
Collapse
Affiliation(s)
- Ki H Ma
- Waisman Center, Cellular and Molecular Pathology Graduate Program, and
| | - Holly A Hung
- Waisman Center, Cellular and Molecular Pathology Graduate Program, and
| | - John Svaren
- Waisman Center, Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin 53705
| |
Collapse
|
16
|
Pannérec A, Springer M, Migliavacca E, Ireland A, Piasecki M, Karaz S, Jacot G, Métairon S, Danenberg E, Raymond F, Descombes P, McPhee JS, Feige JN. A robust neuromuscular system protects rat and human skeletal muscle from sarcopenia. Aging (Albany NY) 2016; 8:712-29. [PMID: 27019136 PMCID: PMC4925824 DOI: 10.18632/aging.100926] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/02/2016] [Indexed: 12/25/2022]
Abstract
Declining muscle mass and function is one of the main drivers of loss of independence in the elderly. Sarcopenia is associated with numerous cellular and endocrine perturbations, and it remains challenging to identify those changes that play a causal role and could serve as targets for therapeutic intervention. In this study, we uncovered a remarkable differential susceptibility of certain muscles to age-related decline. Aging rats specifically lose muscle mass and function in the hindlimbs, but not in the forelimbs. By performing a comprehensive comparative analysis of these muscles, we demonstrate that regional susceptibility to sarcopenia is dependent on neuromuscular junction fragmentation, loss of motoneuron innervation, and reduced excitability. Remarkably, muscle loss in elderly humans also differs in vastus lateralis and tibialis anterior muscles in direct relation to neuromuscular dysfunction. By comparing gene expression in susceptible and non-susceptible muscles, we identified a specific transcriptomic signature of neuromuscular impairment. Importantly, differential molecular profiling of the associated peripheral nerves revealed fundamental changes in cholesterol biosynthetic pathways. Altogether our results provide compelling evidence that susceptibility to sarcopenia is tightly linked to neuromuscular decline in rats and humans, and identify dysregulation of sterol metabolism in the peripheral nervous system as an early event in this process.
Collapse
Affiliation(s)
- Alice Pannérec
- Nestlé Institute of Health Sciences, EPFL Innovation Park, 1015 Lausanne, Switzerland
| | - Margherita Springer
- Nestlé Institute of Health Sciences, EPFL Innovation Park, 1015 Lausanne, Switzerland
| | - Eugenia Migliavacca
- Nestlé Institute of Health Sciences, EPFL Innovation Park, 1015 Lausanne, Switzerland
| | - Alex Ireland
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - Mathew Piasecki
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - Sonia Karaz
- Nestlé Institute of Health Sciences, EPFL Innovation Park, 1015 Lausanne, Switzerland
| | - Guillaume Jacot
- Nestlé Institute of Health Sciences, EPFL Innovation Park, 1015 Lausanne, Switzerland
| | - Sylviane Métairon
- Nestlé Institute of Health Sciences, EPFL Innovation Park, 1015 Lausanne, Switzerland
| | - Esther Danenberg
- Nestlé Institute of Health Sciences, EPFL Innovation Park, 1015 Lausanne, Switzerland
| | - Frédéric Raymond
- Nestlé Institute of Health Sciences, EPFL Innovation Park, 1015 Lausanne, Switzerland
| | - Patrick Descombes
- Nestlé Institute of Health Sciences, EPFL Innovation Park, 1015 Lausanne, Switzerland
| | - Jamie S. McPhee
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - Jerome N. Feige
- Nestlé Institute of Health Sciences, EPFL Innovation Park, 1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Krishnan VS, White Z, McMahon CD, Hodgetts SI, Fitzgerald M, Shavlakadze T, Harvey AR, Grounds MD. A Neurogenic Perspective of Sarcopenia: Time Course Study of Sciatic Nerves From Aging Mice. J Neuropathol Exp Neurol 2016; 75:464-78. [DOI: 10.1093/jnen/nlw019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
18
|
Bartesaghi L, Arnaud Gouttenoire E, Prunotto A, Médard JJ, Bergmann S, Chrast R. Sox4 participates in the modulation of Schwann cell myelination. Eur J Neurosci 2015; 42:1788-96. [PMID: 25899854 DOI: 10.1111/ejn.12929] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/20/2015] [Accepted: 04/20/2015] [Indexed: 11/26/2022]
Abstract
In order to identify new regulators of Schwann cell myelination potentially playing a role in peripheral nervous system (PNS) pathologies, we analysed gene expression profiling data from three mouse models of demyelinating neuropathies and from the developing PNS. This analysis revealed that Sox4, which encodes a member of the Sry-related high-mobility group box protein family, was consistently upregulated in all three analysed models of neuropathy. Moreover, Sox4 showed a peak in its expression during development that corresponded with the onset of myelination. To gain further insights into the role of Sox4 in PNS development, we generated a transgenic mouse that specifically overexpresses Sox4 in Schwann cells. Sox4 overexpression led to a temporary delay in PNS myelination without affecting axonal sorting. Importantly, we observed that, whereas Sox4 mRNA could be efficiently overexpressed, Sox4 protein expression in Schwann cells was strictly regulated. Finally, our data showed that enforced expression of Sox4 in the mouse model for Charcot-Marie-Tooth 4C aggravated its neuropathic phenotype. Together, these observations reveal that Sox4 contributes to the regulation of Schwann cell myelination, and also indicates its involvement in the pathophysiology of peripheral neuropathies.
Collapse
Affiliation(s)
- Luca Bartesaghi
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland.,Department of Neuroscience and Department of Clinical Neuroscience, Karolinska Institutet, Retzius väg 8, 171 77, Stockholm, Sweden
| | | | - Andrea Prunotto
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Jean-Jacques Médard
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | - Sven Bergmann
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Roman Chrast
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland.,Department of Neuroscience and Department of Clinical Neuroscience, Karolinska Institutet, Retzius väg 8, 171 77, Stockholm, Sweden
| |
Collapse
|
19
|
Transcriptional analysis of glial cell differentiation in the postnatal murine spinal cord. Int J Dev Neurosci 2015; 42:24-36. [PMID: 25702526 DOI: 10.1016/j.ijdevneu.2015.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/28/2015] [Accepted: 02/14/2015] [Indexed: 11/20/2022] Open
Abstract
Postnatal murine spinal cord represents a good model system to study mammalian central nervous system myelination in vivo as a basis for further studies in demyelinating diseases. Transcriptional changes were analyzed in SJL/J mice on postnatal day 0, 14, 49 and 231 (P0, P14, P49, P231) employing Affymetrix GeneChip Mouse Genome 430 2.0 Arrays. Additionally, marker gene signatures for astrocyte and oligodendrocyte lineage-stages were defined to study their gene expression in more detail. In addition, immunohistochemistry was used to quantify the abundance of commonly used glial cell markers. 6092 differentially regulated genes (DEGs) were identified. The up-regulated DEGs at P14, P49 and P231 compared to P0 exhibited significantly enriched associations to gene ontology terms such as myelination and lipid metabolic transport and down-regulated DEGs to neurogenesis and axonogenesis. Expression values of marker gene signatures for neural stem cells, oligodendrocyte precursor cells, and developing astrocytes were constantly decreasing, whereas myelinating oligodendrocyte and mature astrocyte markers showed a steady increase. Molecular findings were substantiated by immunohistochemical observations. The transcriptional changes observed are an important reference for future analysis of degenerative and inflammatory conditions in the spinal cord.
Collapse
|
20
|
Walsh ME, Sloane LB, Fischer KE, Austad SN, Richardson A, Van Remmen H. Use of Nerve Conduction Velocity to Assess Peripheral Nerve Health in Aging Mice. J Gerontol A Biol Sci Med Sci 2014; 70:1312-9. [PMID: 25477428 DOI: 10.1093/gerona/glu208] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/01/2014] [Indexed: 12/13/2022] Open
Abstract
Nerve conduction velocity (NCV), the speed at which electrical signals propagate along peripheral nerves, is used in the clinic to evaluate nerve function in humans. A decline in peripheral nerve function is associated with a number of age-related pathologies. While several studies have shown that NCV declines with age in humans, there is little information on the effect of age on NCV in peripheral nerves in mice. In this study, we evaluated NCV in male and female C57Bl/6 mice ranging from 4 to 32 months of age. We observed a decline in NCV in both male and female mice after 20 months of age. Sex differences were detected in sensory NCV as well as the rate of decline during aging in motor nerves; female mice had slower sensory NCV and a slower age-related decline in motor nerves compared with male mice. We also tested the effect of dietary restriction on NCV in 30-month-old female mice. Dietary restriction prevented the age-related decline in sciatic NCV but not other nerves. Because NCV is clinically relevant to the assessment of nerve function, we recommend that NCV be used to evaluate healthspan in assessing genetic and pharmacological interventions that increase the life span of mice.
Collapse
Affiliation(s)
- Michael E Walsh
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Lauren B Sloane
- Department of Biology, State University of New York at Delhi, Delhi, New York
| | - Kathleen E Fischer
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Steven N Austad
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Arlan Richardson
- Oklahoma City VA Medical Center, Oklahoma City, Oklahoma. University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Holly Van Remmen
- Oklahoma City VA Medical Center, Oklahoma City, Oklahoma. Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma.
| |
Collapse
|
21
|
Zenker J, Stettner M, Ruskamo S, Domènech-Estévez E, Baloui H, Médard JJ, Verheijen MHG, Brouwers JF, Kursula P, Kieseier BC, Chrast R. A role of peripheral myelin protein 2 in lipid homeostasis of myelinating Schwann cells. Glia 2014; 62:1502-12. [PMID: 24849898 DOI: 10.1002/glia.22696] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/06/2014] [Accepted: 05/07/2014] [Indexed: 01/28/2023]
Abstract
Peripheral myelin protein 2 (Pmp2, P2 or Fabp8), a member of the fatty acid binding protein family, was originally described together with myelin basic protein (Mbp or P1) and myelin protein zero (Mpz or P0) as one of the most abundant myelin proteins in the peripheral nervous system (PNS). Although Pmp2 is predominantly expressed in myelinated Schwann cells, its role in glia is currently unknown. To study its function in PNS biology, we have generated a complete Pmp2 knockout mouse (Pmp2(-/-) ). Comprehensive characterization of Pmp2(-/-) mice revealed a temporary reduction in their motor nerve conduction velocity (MNCV). While this change was not accompanied by any defects in general myelin structure, we detected transitory alterations in the myelin lipid profile of Pmp2(-/-) mice. It was previously proposed that Pmp2 and Mbp have comparable functions in the PNS suggesting that the presence of Mbp can partially mask the Pmp2(-/-) phenotype. Indeed, we found that Mbp lacking Shi(-/-) mice, similar to Pmp2(-/-) animals, have preserved myelin structure and reduced MNCV, but this phenotype was not aggravated in Pmp2(-/-) /Shi(-/-) mutants indicating that Pmp2 and Mbp do not substitute each other's functions in the PNS. These data, together with our observation that Pmp2 binds and transports fatty acids to membranes, uncover a role for Pmp2 in lipid homeostasis of myelinating Schwann cells.
Collapse
Affiliation(s)
- Jennifer Zenker
- Department of Medical Genetics, University of Lausanne, Switzerland; Graduate Program in Neurosciences, University of Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Xie F, Fu H, Zhang JC, Chen XF, Wang XL, Chen J. Gene profiling in the dynamic regulation of the lifespan of the myelin sheath structure in the optic nerve of rats. Mol Med Rep 2014; 10:217-22. [PMID: 24818667 DOI: 10.3892/mmr.2014.2227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 04/01/2014] [Indexed: 11/06/2022] Open
Abstract
Aging of the nervous system leads to impairments in cognition and motor skills, and is a major risk factor for several neurological disorders. Recently, numerous nerve function deficits that appear with aging have been found to be a consequence of myelin abnormalities; however, the genetic mechanism of the age‑related alterations in the myelin sheath has not yet been fully elucidated. In the present study, the morphology of the myelin sheath in the optic nerve of rats was analyzed at 10 time‑points throughout life. Marked alterations in the myelin sheath were observed in aging and aged optic nerves, and these became progressively more severe with time. To determine the biological processes affected by aging in the myelin sheath, the age‑related profiling of the myelin sheath in rat optic nerves was established using microarray hybridization at 10 time‑points throughout life, between birth and senescence. From the results, 3,826 transcripts associated with the age‑related alterations in the myelin sheath of the optic nerve were identified. It was found that the biological processes most significantly altered by aging were lipid metabolism, the immune response and transmitter transport. This suggests that the downregulation of lipid synthesis genes and the upregulation of immune and neurotransmitter transport genes in aging may be the genetic basis for the age‑related alterations observed in the myelin sheath.
Collapse
Affiliation(s)
- Fang Xie
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Han Fu
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jiu-Cong Zhang
- Department of Gastroenterology, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, Gansu 730050, P.R. China
| | - Xue-Feng Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xiao-Liang Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
23
|
Samara C, Poirot O, Domènech-Estévez E, Chrast R. Neuronal activity in the hub of extrasynaptic Schwann cell-axon interactions. Front Cell Neurosci 2013; 7:228. [PMID: 24324401 PMCID: PMC3839048 DOI: 10.3389/fncel.2013.00228] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/05/2013] [Indexed: 12/21/2022] Open
Abstract
The integrity and function of neurons depend on their continuous interactions with glial cells. In the peripheral nervous system glial functions are exerted by Schwann cells (SCs). SCs sense synaptic and extrasynaptic manifestations of action potential propagation and adapt their physiology to support neuronal activity. We review here existing literature data on extrasynaptic bidirectional axon-SC communication, focusing particularly on neuronal activity implications. To shed light on underlying mechanisms, we conduct a thorough analysis of microarray data from SC-rich mouse sciatic nerve at different developmental stages and in neuropathic models. We identify molecules that are potentially involved in SC detection of neuronal activity signals inducing subsequent glial responses. We further suggest that alterations in the activity-dependent axon-SC crosstalk impact on peripheral neuropathies. Together with previously reported data, these observations open new perspectives for deciphering glial mechanisms of neuronal function support.
Collapse
Affiliation(s)
- Chrysanthi Samara
- Department of Medical Genetics, University of Lausanne Lausanne, Switzerland
| | | | | | | |
Collapse
|
24
|
Azzedine H, Zavadakova P, Planté-Bordeneuve V, Vaz Pato M, Pinto N, Bartesaghi L, Zenker J, Poirot O, Bernard-Marissal N, Arnaud Gouttenoire E, Cartoni R, Title A, Venturini G, Médard JJ, Makowski E, Schöls L, Claeys KG, Stendel C, Roos A, Weis J, Dubourg O, Leal Loureiro J, Stevanin G, Said G, Amato A, Baraban J, LeGuern E, Senderek J, Rivolta C, Chrast R. PLEKHG5 deficiency leads to an intermediate form of autosomal-recessive Charcot-Marie-Tooth disease. Hum Mol Genet 2013; 22:4224-32. [PMID: 23777631 DOI: 10.1093/hmg/ddt274] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT) comprises a clinically and genetically heterogeneous group of peripheral neuropathies characterized by progressive distal muscle weakness and atrophy, foot deformities and distal sensory loss. Following the analysis of two consanguineous families affected by a medium to late-onset recessive form of intermediate CMT, we identified overlapping regions of homozygosity on chromosome 1p36 with a combined maximum LOD score of 5.4. Molecular investigation of the genes from this region allowed identification of two homozygous mutations in PLEKHG5 that produce premature stop codons and are predicted to result in functional null alleles. Analysis of Plekhg5 in the mouse revealed that this gene is expressed in neurons and glial cells of the peripheral nervous system, and that knockout mice display reduced nerve conduction velocities that are comparable with those of affected individuals from both families. Interestingly, a homozygous PLEKHG5 missense mutation was previously reported in a recessive form of severe childhood onset lower motor neuron disease (LMND) leading to loss of the ability to walk and need for respiratory assistance. Together, these observations indicate that different mutations in PLEKHG5 lead to clinically diverse outcomes (intermediate CMT or LMND) affecting the function of neurons and glial cells.
Collapse
|
25
|
Dietary restriction supports peripheral nerve health by enhancing endogenous protein quality control mechanisms. Exp Gerontol 2012; 48:1085-90. [PMID: 23267845 DOI: 10.1016/j.exger.2012.12.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 12/07/2012] [Accepted: 12/17/2012] [Indexed: 01/07/2023]
Abstract
The peripheral nervous system (PNS) comprises of an extensive network of connections that convey information between the central nervous system (CNS) and peripheral organs. Long myelinated nerve fibers are particularly susceptible to age-related changes, as maintenance of the insulating glial membrane requires extensive synthesis and processing of many proteins. In rodent models, peripheral demyelination caused by genetic risk factors or by normal aging are attenuated by intermittent fasting (IF) or calorie restriction (CR) supporting a role for dietary intervention in preserving neural function. This review will summarize recent studies examining mechanisms by which life-long CR or extended IF supports peripheral nerve health.
Collapse
|
26
|
Azzedine H, Senderek J, Rivolta C, Chrast R. Molecular genetics of charcot-marie-tooth disease: from genes to genomes. Mol Syndromol 2012; 3:204-14. [PMID: 23293578 DOI: 10.1159/000343487] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of disorders of the peripheral nervous system, mainly characterized by distal muscle weakness and atrophy leading to motor handicap. With an estimated prevalence of 1 in 2,500, this condition is one of the most commonly inherited neurological disorders. Mutations in more than 30 genes affecting glial and/or neuronal functions have been associated with different forms of CMT leading to a substantial improvement in diagnostics of the disease and in the understanding of implicated pathophysiological mechanisms. However, recent data from systematic genetic screening performed in large cohorts of CMT patients indicated that molecular diagnosis could be established only in ∼50-70% of them, suggesting that additional genes are involved in this disease. In addition to providing an overview of genetic and functional data concerning various CMT forms, this review focuses on recent data generated through the use of highly parallel genetic technologies (SNP chips, sequence capture and next-generation DNA sequencing) in CMT families, and the current and future impact of these technologies on gene discovery and diagnostics of CMTs.
Collapse
Affiliation(s)
- H Azzedine
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | | | | | | |
Collapse
|
27
|
Azzedine H, Senderek J, Rivolta C, Chrast R. Molecular genetics of charcot-marie-tooth disease: from genes to genomes. Mol Syndromol 2012. [PMID: 23293578 DOI: 10.1159/000343487/msy-0003-0204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of disorders of the peripheral nervous system, mainly characterized by distal muscle weakness and atrophy leading to motor handicap. With an estimated prevalence of 1 in 2,500, this condition is one of the most commonly inherited neurological disorders. Mutations in more than 30 genes affecting glial and/or neuronal functions have been associated with different forms of CMT leading to a substantial improvement in diagnostics of the disease and in the understanding of implicated pathophysiological mechanisms. However, recent data from systematic genetic screening performed in large cohorts of CMT patients indicated that molecular diagnosis could be established only in ∼50-70% of them, suggesting that additional genes are involved in this disease. In addition to providing an overview of genetic and functional data concerning various CMT forms, this review focuses on recent data generated through the use of highly parallel genetic technologies (SNP chips, sequence capture and next-generation DNA sequencing) in CMT families, and the current and future impact of these technologies on gene discovery and diagnostics of CMTs.
Collapse
Affiliation(s)
- H Azzedine
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | | | | | | |
Collapse
|