1
|
Identification and clinical characterization of Charcot-Marie-Tooth disease type 1C patients with LITAF p.G112S mutation. Genes Genomics 2022; 44:1007-1016. [PMID: 35608774 DOI: 10.1007/s13258-022-01253-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/30/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Charcot-Marie-Tooth disease type 1C (CMT1C) is a rare subtype associated with LITAF gene mutations. Until now, only a few studies have reported the clinical features of CMT1C. OBJECTIVE This study was performed to find CMT1C patients with mutation of LITAF in a Korean CMT cohort and to characterize their clinical features. METHODS In total, 1,143 unrelated Korean families with CMT were enrolled in a cohort. We performed whole exome sequencing to identify LITAF mutations, and examined clinical phenotypes including electrophysiological and MRI features for the identified CMT1C patients. RESULTS We identified 10 CMT1C patients from three unrelated families with p.G112S mutation in LITAF. The frequency of CMT1C among CMT1 patients was 0.59%, which is similar to reports from Western populations. CMT1C patients showed milder symptoms than CMT1A patients. The mean CMT neuropathy score version 2 was 7.7, and the mean functional disability scale was 1.0. Electrophysiological findings showed a conduction block in 22% of affected individuals. Lower extremity MRIs showed that the superficial posterior and anterolateral compartments of the calf were predominantly affected. CONCLUSIONS We found a conduction block in Korean CMT1C patients with p.G112S mutation and first described the characteristic MRI findings of the lower extremities in patients with LITAF mutation. These findings will be helpful for genotype-phenotype correlation and will widen understanding about the clinical spectrum of CMT1C.
Collapse
|
2
|
Song J, Liu Y, Wan J, Zhao GN, Wang JC, Dai Z, Hu S, Yang L, Liu Z, Fu Y, Dong E, Tang YD. SIMPLE Is an Endosomal Regulator That Protects Against NAFLD by Targeting the Lysosomal Degradation of EGFR. Hepatology 2021; 74:3091-3109. [PMID: 34320238 DOI: 10.1002/hep.32075] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS NAFLD has become a tremendous burden for public health; however, there is no drug for NAFLD therapy at present. Impaired endo-lysosome-mediated protein degradation is observed in a variety of metabolic disorders, such as atherosclerosis, type 2 diabetes mellitus, and NAFLD. Small integral membrane protein of lysosome/late endosome (SIMPLE) is a regulator of endosome-to-lysosome trafficking and cell signaling, but the role that SIMPLE plays in NAFLD progression remains unknown. Here we investigated SIMPLE function in NAFLD development and sophisticated mechanism therein. APPROACH AND RESULTS This study found that in vitro knockdown of SIMPLE significantly aggravated lipid accumulation and inflammation in hepatocytes treated with metabolic stimulation. Consistently, in vivo experiments showed that liver-specific Simple-knockout (Simple-HKO) mice exhibited more severe high-fat diet (HFD)-induced, high-fat-high-cholesterol diet (HFHC)-induced, and methionine-choline-deficient diet (MCD)-induced steatosis, glucose intolerance, inflammation, and fibrosis than those fed with normal chow (NC) diet. Meanwhile, RNA-sequencing demonstrated the up-regulated signaling pathways and signature genes involved in lipid metabolism, inflammation, and fibrosis in Simple-HKO mice compared with control mice under metabolic stress. Mechanically, we found SIMPLE directly interact with epidermal growth factor receptor (EGFR). SIMPLE deficiency results in dysregulated degradation of EGFR, subsequently hyperactivated EGFR phosphorylation, thus exaggerating NAFLD development. Moreover, we demonstrated that using EGFR inhibitor or silencing EGFR expression could ameliorate lipid accumulation induced by the knockdown of SIMPLE. CONCLUSIONS SIMPLE ameliorated NASH by prompting EGFR degradation and can be a potential therapeutic candidate for NASH.
Collapse
Affiliation(s)
- Jingjing Song
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yupeng Liu
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Juan Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guang-Nian Zhao
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jian-Cheng Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Sha Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ling Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Erdan Dong
- The Institute of Cardiovascular Sciences, Peking University, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China.,Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yi-Da Tang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| |
Collapse
|
3
|
Edgar JR, Ho AK, Laurá M, Horvath R, Reilly MM, Luzio JP, Roberts RC. A dysfunctional endolysosomal pathway common to two sub-types of demyelinating Charcot-Marie-Tooth disease. Acta Neuropathol Commun 2020; 8:165. [PMID: 33059769 PMCID: PMC7559459 DOI: 10.1186/s40478-020-01043-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022] Open
Abstract
Autosomal dominant mutations in LITAF are responsible for the rare demyelinating peripheral neuropathy, Charcot-Marie-Tooth disease type 1C (CMT1C). The LITAF protein is expressed in many human cell types and we have investigated the consequences of two different LITAF mutations in primary fibroblasts from CMT1C patients using confocal and electron microscopy. We observed the appearance of vacuolation/enlargement of late endocytic compartments (late endosomes and lysosomes). This vacuolation was also observed after knocking out LITAF from either control human fibroblasts or from the CMT1C patient-derived cells, consistent with it being the result of loss-of-function mutations in the CMT1C fibroblasts. The vacuolation was similar to that previously observed in fibroblasts from CMT4J patients, which have autosomal recessive mutations in FIG4. The FIG4 protein is a component of a phosphoinositide kinase complex that synthesises phosphatidylinositol 3,5-bisphosphate on the limiting membrane of late endosomes. Phosphatidylinositol 3,5-bisphosphate activates the release of lysosomal Ca2+ through the cation channel TRPML1, which is required to maintain the homeostasis of endosomes and lysosomes in mammalian cells. We observed that a small molecule activator of TRPML1, ML-SA1, was able to rescue the vacuolation phenotype of LITAF knockout, FIG4 knockout and CMT1C patient fibroblasts. Our data describe the first cellular phenotype common to two different subtypes of demyelinating CMT and are consistent with LITAF and FIG4 functioning on a common endolysosomal pathway that is required to maintain the homeostasis of late endosomes and lysosomes. Although our experiments were on human fibroblasts, they have implications for our understanding of the molecular pathogenesis and approaches to therapy in two subtypes of demyelinating Charcot-Marie-Tooth disease.
Collapse
Affiliation(s)
- James R Edgar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK.
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.
| | - Anita K Ho
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Matilde Laurá
- Centre for Neuromuscular Diseases, UCL, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Mary M Reilly
- Centre for Neuromuscular Diseases, UCL, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - J Paul Luzio
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Rhys C Roberts
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, UK.
| |
Collapse
|
4
|
Genome-wide meta-analyses identifies novel taxane-induced peripheral neuropathy-associated loci. Pharmacogenet Genomics 2018; 28:49-55. [PMID: 29278617 DOI: 10.1097/fpc.0000000000000318] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Taxane containing chemotherapy extends survival for breast cancer patients. However, taxane-induced peripheral neuropathy (TIPN) cannot be predicted, prevented or effectively treated. Using genome-wide analyses, we sought to identify common risk variants for TIPN. PATIENTS AND METHODS Women with high-risk breast cancer enrolled in SWOG 0221 were genotyped using the Illumina 1M chip. Genome-wide analyses were performed in relation to ≥grade 3 Common Terminology Criteria for Adverse Events (CTCAE) neuropathy in European and African Americans. Data were meta-analyzed with GW associations of CTCAE ≥grade 3 versus <grade 3 in CALGB 40101 assuming a fixed effects model. RESULTS The percentage of ≥grade 3 TIPN in 1269 European Americans and 139 African Americans in S0221, was 11.6 and 22.3%, respectively. CALGB 40101 ≥grade 3 TOPN was 7.2%. The most significant association with ≥grade 3 TIPN was the G allele of rs1858826 in GNGT1 (Pmeta=1.1×10), which showed a decrease in risk of ≥grade 3 TIPN (odds ratio=0.29, 95% confidence interval: 0.18-0.46). CONCLUSION The genetic variants associated with ≥grade 3 TIPN are hypothesized to have biochemical functions and reside in and near genes involved in diabetes and diabetic neuropathy. This finding is consistent with results from CALGB 40101 pathway analyses. Larger homogeneous trials with similar dosing and criteria for defining neuropathy are needed to properly assess the relationship of genomics with the neuropathy spectrum.
Collapse
|
5
|
Shi Y, Kuai Y, Lei L, Weng Y, Berberich-Siebelt F, Zhang X, Wang J, Zhou Y, Jiang X, Ren G, Pan H, Mao Z, Zhou R. The feedback loop of LITAF and BCL6 is involved in regulating apoptosis in B cell non-Hodgkin's-lymphoma. Oncotarget 2018; 7:77444-77456. [PMID: 27764808 PMCID: PMC5363597 DOI: 10.18632/oncotarget.12680] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/02/2016] [Indexed: 11/25/2022] Open
Abstract
Dysregulation of the apoptotic pathway is widely recognized as a key step in lymphomagenesis. Notably, LITAF was initially identified as a p53-inducible gene, subsequently implicated as a tumor suppressor. Our previous study also showed LITAF to be methylated in 89.5% B-NHL samples. Conversely, deregulated expression of BCL6 is a pathogenic event in many lymphomas. Interestingly, our study found an oppositional expression of LITAF and BCL6 in B-NHL. In addition, LITAF was recently identified as a novel target gene of BCL6. Therefore, we sought to explore the feedback loop between LITAF and BCL6 in B-NHL. Here, our data for the first time show that LITAF can repress expression of BCL6 by binding to Region A (-87 to +65) containing a putative LITAF-binding motif (CTCCC) within the BCL6 promoter. Furthermore, the regulation of BCL6 targets ( PRDM1 or c-Myc) by LITAF may be associated with B-cell differentiation. Results also demonstrate that ectopic expression of LITAF induces cell apoptosis, activated by releasing cytochrome c, cleaving PARP and caspase 3 in B-NHL cells whereas knockdown of LITAF robustly protected cells from apoptosis. Interestingly, BCL6, in turn, could reverse cell apoptosis mediated by LITAF. Collectively, our findings provide a novel apoptotic regulatory pathway in which LITAF, as a transcription factor, inhibits the expression of BCL6, which leads to activation of the intrinsic mitochondrial pathway and tumor apoptosis. Our study is expected to provide a possible biomarker as well as a target for clinical therapies to promote tumor cell apoptosis.
Collapse
Affiliation(s)
- Yaoyao Shi
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Kuai
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Lizhen Lei
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanyuan Weng
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | - Jinjie Wang
- Department of Pathology, Hangzhou First People's Hospital, Hangzhou, China
| | - Yuan Zhou
- Postgraduate School in Medical School of Ningbo University, Ningbo, China
| | - Xin Jiang
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoping Ren
- Department of Pathology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Zhengrong Mao
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Ren Zhou
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Ho AK, Wagstaff JL, Manna PT, Wartosch L, Qamar S, Garman EF, Freund SMV, Roberts RC. The topology, structure and PE interaction of LITAF underpin a Charcot-Marie-Tooth disease type 1C. BMC Biol 2016; 14:109. [PMID: 27927196 PMCID: PMC5142333 DOI: 10.1186/s12915-016-0332-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/16/2016] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Mutations in Lipopolysaccharide-induced tumour necrosis factor-α factor (LITAF) cause the autosomal dominant inherited peripheral neuropathy, Charcot-Marie-Tooth disease type 1C (CMT1C). LITAF encodes a 17 kDa protein containing an N-terminal proline-rich region followed by an evolutionarily-conserved C-terminal 'LITAF domain', which contains all reported CMT1C-associated pathogenic mutations. RESULTS Here, we report the first structural characterisation of LITAF using biochemical, cell biological, biophysical and NMR spectroscopic approaches. Our structural model demonstrates that LITAF is a monotopic zinc-binding membrane protein that embeds into intracellular membranes via a predicted hydrophobic, in-plane, helical anchor located within the LITAF domain. We show that specific residues within the LITAF domain interact with phosphoethanolamine (PE) head groups, and that the introduction of the V144M CMT1C-associated pathogenic mutation leads to protein aggregation in the presence of PE. CONCLUSIONS In addition to the structural characterisation of LITAF, these data lead us to propose that an aberrant LITAF-PE interaction on the surface of intracellular membranes contributes to the molecular pathogenesis that underlies this currently incurable disease.
Collapse
Affiliation(s)
- Anita K Ho
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Jane L Wagstaff
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Paul T Manna
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Lena Wartosch
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Seema Qamar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Elspeth F Garman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Stefan M V Freund
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Rhys C Roberts
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK.
| |
Collapse
|
7
|
Dysregulated Inflammatory Signaling upon Charcot-Marie-Tooth Type 1C Mutation of SIMPLE Protein. Mol Cell Biol 2015; 35:2464-78. [PMID: 25963657 DOI: 10.1128/mcb.00300-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Endosomal trafficking is a key mechanism to modulate signal propagation and cross talk. Ubiquitin adaptors, along with endosomal sorting complex required for transport (ESCRT) complexes, are also integrated to terminate ligand-receptor activation in late endosomes and multivesicular bodies (MVBs). Within these pathways, we recently demonstrated that the protein SIMPLE is a novel player in MVB regulation. SIMPLE is also clinically important and its mutation accounts for the Charcot-Marie-Tooth type 1C (CMT1C) disease. MVB defects of mutation and deletion of SIMPLE, however, are distinct. Here, we show that MVB defects found in mutation but not deletion of SIMPLE lead to impaired turnover and accumulation of ESCRT-0 protein Hrs punctain late endosomes. We further uncover increased colocalization of ubiquitin ligase TRAF6 and Hrs in late endosomes. Upon stimulation with interkeukin-1 or transforming growth factor , prolonged activation of p38 kinase/JNK is detected, while nuclear accumulation of NF-κB and phosphorylation of SMAD2 is reduced with CMT1C mutation. The aberrant kinetics we observed in inflammatory signaling may contribute to increased tumor susceptibility and changes in the levels of chemokines/cytokines that result from CMT1C mutation. We propose that altered endosomal trafficking due to malformations of MVBs and subsequent atypical signaling kinetic may account for a toxic gain of function in CMT1C pathogenesis.
Collapse
|
8
|
Niemann A, Huber N, Wagner KM, Somandin C, Horn M, Lebrun-Julien F, Angst B, Pereira JA, Halfter H, Welzl H, Feltri ML, Wrabetz L, Young P, Wessig C, Toyka KV, Suter U. The Gdap1 knockout mouse mechanistically links redox control to Charcot-Marie-Tooth disease. ACTA ACUST UNITED AC 2014; 137:668-82. [PMID: 24480485 PMCID: PMC3927703 DOI: 10.1093/brain/awt371] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mutations in the mitochondrial fission factor GDAP1 are associated with severe peripheral neuropathies, but why the CNS remains unaffected is unclear. Using a Gdap1−/− mouse, Niemann et al. demonstrate that a CNS-expressed Gdap1 paralogue changes its subcellular localisation under oxidative stress conditions to also act as a mitochondrial fission factor. The ganglioside-induced differentiation-associated protein 1 (GDAP1) is a mitochondrial fission factor and mutations in GDAP1 cause Charcot–Marie–Tooth disease. We found that Gdap1 knockout mice (Gdap1−/−), mimicking genetic alterations of patients suffering from severe forms of Charcot–Marie–Tooth disease, develop an age-related, hypomyelinating peripheral neuropathy. Ablation of Gdap1 expression in Schwann cells recapitulates this phenotype. Additionally, intra-axonal mitochondria of peripheral neurons are larger in Gdap1−/− mice and mitochondrial transport is impaired in cultured sensory neurons of Gdap1−/− mice compared with controls. These changes in mitochondrial morphology and dynamics also influence mitochondrial biogenesis. We demonstrate that mitochondrial DNA biogenesis and content is increased in the peripheral nervous system but not in the central nervous system of Gdap1−/− mice compared with control littermates. In search for a molecular mechanism we turned to the paralogue of GDAP1, GDAP1L1, which is mainly expressed in the unaffected central nervous system. GDAP1L1 responds to elevated levels of oxidized glutathione by translocating from the cytosol to mitochondria, where it inserts into the mitochondrial outer membrane. This translocation is necessary to substitute for loss of GDAP1 expression. Accordingly, more GDAP1L1 was associated with mitochondria in the spinal cord of aged Gdap1−/− mice compared with controls. Our findings demonstrate that Charcot–Marie–Tooth disease caused by mutations in GDAP1 leads to mild, persistent oxidative stress in the peripheral nervous system, which can be compensated by GDAP1L1 in the unaffected central nervous system. We conclude that members of the GDAP1 family are responsive and protective against stress associated with increased levels of oxidized glutathione.
Collapse
Affiliation(s)
- Axel Niemann
- 1 Institute of Molecular Health Sciences, Cell Biology, Department of Biology, ETH Zurich, Swiss Federal Institute of Technology, Switzerland, ETH-Hönggerberg, 8093 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bertolo C, Roa S, Sagardoy A, Mena-Varas M, Robles EF, Martinez-Ferrandis JI, Sagaert X, Tousseyn T, Orta A, Lossos IS, Amar S, Natkunam Y, Briones J, Melnick A, Malumbres R, Martinez-Climent JA. LITAF, a BCL6 target gene, regulates autophagy in mature B-cell lymphomas. Br J Haematol 2013; 162:621-30. [PMID: 23795761 DOI: 10.1111/bjh.12440] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/17/2013] [Indexed: 02/03/2023]
Abstract
We have previously reported that LITAF is silenced by promoter hypermethylation in germinal centre-derived B-cell lymphomas, but beyond these data the regulation and function of lipopolysaccharide-induced tumour necrosis factor (TNF) factor (LITAF) in B cells are unknown. Gene expression and immunohistochemical studies revealed that LITAF and BCL6 show opposite expression in tonsil B-cell subpopulations and B-cell lymphomas, suggesting that BCL6 may regulate LITAF expression. Accordingly, BCL6 silencing increased LITAF expression, and chromatin immunoprecipitation and luciferase reporter assays demonstrated a direct transcriptional repression of LITAF by BCL6. Gain- and loss-of-function experiments in different B-cell lymphoma cell lines revealed that, in contrast to its function in monocytes, LITAF does not induce lipopolysaccharide-mediated TNF secretion in B cells. However, gene expression microarrays defined a LITAF-related transcriptional signature containing genes regulating autophagy, including MAP1LC3B (LC3B). In addition, immunofluorescence analysis co-localized LITAF with autophagosomes, further suggesting a possible role in autophagy modulation. Accordingly, ectopic LITAF expression in B-cell lymphoma cells enhanced autophagy responses to starvation, which were impaired upon LITAF silencing. Our results indicate that the BCL6-mediated transcriptional repression of LITAF may inhibit autophagy in B cells during the germinal centre reaction, and suggest that the constitutive repression of autophagy responses in BCL6-driven lymphomas may contribute to lymphomagenesis.
Collapse
Affiliation(s)
- Cristina Bertolo
- Division of Oncology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhu H, Guariglia S, Yu RYL, Li W, Brancho D, Peinado H, Lyden D, Salzer J, Bennett C, Chow CW. Mutation of SIMPLE in Charcot-Marie-Tooth 1C alters production of exosomes. Mol Biol Cell 2013; 24:1619-37, S1-3. [PMID: 23576546 PMCID: PMC3667717 DOI: 10.1091/mbc.e12-07-0544] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mutations in the protein SIMPLE account for the rare autosomal-dominant demyelination in type 1C CMT patients (CMT1C). SIMPLE plays a role in the production of exosomes. Dysregulated endosomal trafficking and changes in exosome-mediated intercellular communications might account for CMT1C molecular pathogenesis. Charcot–Marie–Tooth (CMT) disease is an inherited neurological disorder. Mutations in the small integral membrane protein of the lysosome/late endosome (SIMPLE) account for the rare autosomal-dominant demyelination in CMT1C patients. Understanding the molecular basis of CMT1C pathogenesis is impeded, in part, by perplexity about the role of SIMPLE, which is expressed in multiple cell types. Here we show that SIMPLE resides within the intraluminal vesicles of multivesicular bodies (MVBs) and inside exosomes, which are nanovesicles secreted extracellularly. Targeting of SIMPLE to exosomes is modulated by positive and negative regulatory motifs. We also find that expression of SIMPLE increases the number of exosomes and secretion of exosome proteins. We engineer a point mutation on the SIMPLE allele and generate a physiological mouse model that expresses CMT1C-mutated SIMPLE at the endogenous level. We find that CMT1C mouse primary embryonic fibroblasts show decreased number of exosomes and reduced secretion of exosome proteins, in part due to improper formation of MVBs. CMT1C patient B cells and CMT1C mouse primary Schwann cells show similar defects. Together the data indicate that SIMPLE regulates the production of exosomes by modulating the formation of MVBs. Dysregulated endosomal trafficking and changes in the landscape of exosome-mediated intercellular communications may place an overwhelming burden on the nervous system and account for CMT1C molecular pathogenesis.
Collapse
Affiliation(s)
- Hong Zhu
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chin LS, Lee SM, Li L. SIMPLE: A new regulator of endosomal trafficking and signaling in health and disease. Commun Integr Biol 2013; 6:e24214. [PMID: 23713142 PMCID: PMC3656027 DOI: 10.4161/cib.24214] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 03/06/2013] [Indexed: 12/29/2022] Open
Abstract
SIMPLE, also known as LITAF, EET1 and PIG7, was originally identified based on its transcriptional upregulation by estrogen, p53, lipopolysaccharide or a microbial cell-wall component. Missense mutations in SIMPLE cause Charcot-Marie-Tooth disease (CMT), and altered SIMPLE expression is associated with cancer, obesity and inflammatory bowel diseases. Despite increasing evidence linking SIMPLE to human diseases, the biological function of SIMPLE is unknown and the pathogenic mechanism of SIMPLE mutations remains elusive. Our recent study reveals that SIMPLE is a functional partner of the endosomal sorting complex required for transport (ESCRT) machinery in the regulation of endosome-to-lysosome trafficking and intracellular signaling. Our results indicate that CMT-linked SIMPLE mutants are loss-of-function mutants which act dominantly to impair endosomal trafficking and signaling attenuation. We propose that endosomal trafficking and signaling dysregulation is a key pathogenic mechanism in CMT and other diseases that involve SIMPLE dysfunction.
Collapse
Affiliation(s)
- Lih-Shen Chin
- Department of Pharmacology; Emory University School of Medicine; Atlanta, GA USA
| | | | | |
Collapse
|
12
|
Lee SM, Sha D, Mohammed AA, Asress S, Glass JD, Chin LS, Li L. Motor and sensory neuropathy due to myelin infolding and paranodal damage in a transgenic mouse model of Charcot-Marie-Tooth disease type 1C. Hum Mol Genet 2013; 22:1755-70. [PMID: 23359569 DOI: 10.1093/hmg/ddt022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Charcot-Marie-Tooth disease type 1C (CMT1C) is a dominantly inherited motor and sensory neuropathy. Despite human genetic evidence linking missense mutations in SIMPLE to CMT1C, the in vivo role of CMT1C-linked SIMPLE mutations remains undetermined. To investigate the molecular mechanism underlying CMT1C pathogenesis, we generated transgenic mice expressing either wild-type or CMT1C-linked W116G human SIMPLE. Mice expressing mutant, but not wild type, SIMPLE develop a late-onset motor and sensory neuropathy that recapitulates key clinical features of CMT1C disease. SIMPLE mutant mice exhibit motor and sensory behavioral impairments accompanied by decreased motor and sensory nerve conduction velocity and reduced compound muscle action potential amplitude. This neuropathy phenotype is associated with focally infolded myelin loops that protrude into the axons at paranodal regions and near Schmidt-Lanterman incisures of peripheral nerves. We find that myelin infolding is often linked to constricted axons with signs of impaired axonal transport and to paranodal defects and abnormal organization of the node of Ranvier. Our findings support that SIMPLE mutation disrupts myelin homeostasis and causes peripheral neuropathy via a combination of toxic gain-of-function and dominant-negative mechanisms. The results from this study suggest that myelin infolding and paranodal damage may represent pathogenic precursors preceding demyelination and axonal degeneration in CMT1C patients.
Collapse
Affiliation(s)
- Samuel M Lee
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Horn M, Baumann R, Pereira JA, Sidiropoulos PNM, Somandin C, Welzl H, Stendel C, Lühmann T, Wessig C, Toyka KV, Relvas JB, Senderek J, Suter U. Myelin is dependent on the Charcot-Marie-Tooth Type 4H disease culprit protein FRABIN/FGD4 in Schwann cells. Brain 2012; 135:3567-83. [PMID: 23171661 PMCID: PMC3525053 DOI: 10.1093/brain/aws275] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/24/2012] [Accepted: 08/15/2012] [Indexed: 12/21/2022] Open
Abstract
Studying the function and malfunction of genes and proteins associated with inherited forms of peripheral neuropathies has provided multiple clues to our understanding of myelinated nerves in health and disease. Here, we have generated a mouse model for the peripheral neuropathy Charcot-Marie-Tooth disease type 4H by constitutively disrupting the mouse orthologue of the suspected culprit gene FGD4 that encodes the small RhoGTPase Cdc42-guanine nucleotide exchange factor Frabin. Lack of Frabin/Fgd4 causes dysmyelination in mice in early peripheral nerve development, followed by profound myelin abnormalities and demyelination at later stages. At the age of 60 weeks, this was accompanied by electrophysiological deficits. By crossing mice carrying alleles of Frabin/Fgd4 flanked by loxP sequences with animals expressing Cre recombinase in a cell type-specific manner, we show that Schwann cell-autonomous Frabin/Fgd4 function is essential for proper myelination without detectable primary contributions from neurons. Deletion of Frabin/Fgd4 in Schwann cells of fully myelinated nerve fibres revealed that this protein is not only required for correct nerve development but also for accurate myelin maintenance. Moreover, we established that correct activation of Cdc42 is dependent on Frabin/Fgd4 function in healthy peripheral nerves. Genetic disruption of Cdc42 in Schwann cells of adult myelinated nerves resulted in myelin alterations similar to those observed in Frabin/Fgd4-deficient mice, indicating that Cdc42 and the Frabin/Fgd4-Cdc42 axis are critical for myelin homeostasis. In line with known regulatory roles of Cdc42, we found that Frabin/Fgd4 regulates Schwann cell endocytosis, a process that is increasingly recognized as a relevant mechanism in peripheral nerve pathophysiology. Taken together, our results indicate that regulation of Cdc42 by Frabin/Fgd4 in Schwann cells is critical for the structure and function of the peripheral nervous system. In particular, this regulatory link is continuously required in adult fully myelinated nerve fibres. Thus, mechanisms regulated by Frabin/Fgd4-Cdc42 are promising targets that can help to identify additional regulators of myelin development and homeostasis, which may crucially contribute also to malfunctions in different types of peripheral neuropathies.
Collapse
Affiliation(s)
- Michael Horn
- 1 Department of Biology, Institute of Molecular Health Sciences, Cell Biology, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Reto Baumann
- 1 Department of Biology, Institute of Molecular Health Sciences, Cell Biology, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Jorge A. Pereira
- 1 Department of Biology, Institute of Molecular Health Sciences, Cell Biology, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Páris N. M. Sidiropoulos
- 1 Department of Biology, Institute of Molecular Health Sciences, Cell Biology, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Christian Somandin
- 1 Department of Biology, Institute of Molecular Health Sciences, Cell Biology, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Hans Welzl
- 2 Division of Neuroanatomy and Behaviour, Institute of Anatomy, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Claudia Stendel
- 1 Department of Biology, Institute of Molecular Health Sciences, Cell Biology, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Tessa Lühmann
- 3 Laboratory for Biologically Oriented Materials, Department of Materials, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Carsten Wessig
- 4 Department of Neurology, University of Würzburg, 97080 Würzburg, Germany
| | - Klaus V. Toyka
- 4 Department of Neurology, University of Würzburg, 97080 Würzburg, Germany
| | - João B. Relvas
- 1 Department of Biology, Institute of Molecular Health Sciences, Cell Biology, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
- 5 Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal
| | - Jan Senderek
- 1 Department of Biology, Institute of Molecular Health Sciences, Cell Biology, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ueli Suter
- 1 Department of Biology, Institute of Molecular Health Sciences, Cell Biology, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
14
|
Azzedine H, Senderek J, Rivolta C, Chrast R. Molecular genetics of charcot-marie-tooth disease: from genes to genomes. Mol Syndromol 2012; 3:204-14. [PMID: 23293578 DOI: 10.1159/000343487] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of disorders of the peripheral nervous system, mainly characterized by distal muscle weakness and atrophy leading to motor handicap. With an estimated prevalence of 1 in 2,500, this condition is one of the most commonly inherited neurological disorders. Mutations in more than 30 genes affecting glial and/or neuronal functions have been associated with different forms of CMT leading to a substantial improvement in diagnostics of the disease and in the understanding of implicated pathophysiological mechanisms. However, recent data from systematic genetic screening performed in large cohorts of CMT patients indicated that molecular diagnosis could be established only in ∼50-70% of them, suggesting that additional genes are involved in this disease. In addition to providing an overview of genetic and functional data concerning various CMT forms, this review focuses on recent data generated through the use of highly parallel genetic technologies (SNP chips, sequence capture and next-generation DNA sequencing) in CMT families, and the current and future impact of these technologies on gene discovery and diagnostics of CMTs.
Collapse
Affiliation(s)
- H Azzedine
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | | | | | | |
Collapse
|
15
|
Azzedine H, Senderek J, Rivolta C, Chrast R. Molecular genetics of charcot-marie-tooth disease: from genes to genomes. Mol Syndromol 2012. [PMID: 23293578 DOI: 10.1159/000343487/msy-0003-0204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of disorders of the peripheral nervous system, mainly characterized by distal muscle weakness and atrophy leading to motor handicap. With an estimated prevalence of 1 in 2,500, this condition is one of the most commonly inherited neurological disorders. Mutations in more than 30 genes affecting glial and/or neuronal functions have been associated with different forms of CMT leading to a substantial improvement in diagnostics of the disease and in the understanding of implicated pathophysiological mechanisms. However, recent data from systematic genetic screening performed in large cohorts of CMT patients indicated that molecular diagnosis could be established only in ∼50-70% of them, suggesting that additional genes are involved in this disease. In addition to providing an overview of genetic and functional data concerning various CMT forms, this review focuses on recent data generated through the use of highly parallel genetic technologies (SNP chips, sequence capture and next-generation DNA sequencing) in CMT families, and the current and future impact of these technologies on gene discovery and diagnostics of CMTs.
Collapse
Affiliation(s)
- H Azzedine
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | | | | | | |
Collapse
|