1
|
Kraner SD, Sompol P, Prateeptrang S, Promkan M, Hongthong S, Thongsopha N, Nelson PT, Norris CM. Development of a monoclonal antibody specific for a calpain-generated ∆48 kDa calcineurin fragment, a marker of distressed astrocytes. J Neurosci Methods 2024; 402:110012. [PMID: 37984591 PMCID: PMC10841921 DOI: 10.1016/j.jneumeth.2023.110012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/23/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Calcineurin (CN) is a Ca2+/calmodulin-dependent protein phosphatase. In healthy tissue, CN exists mainly as a full-length (∼60 kDa) highly-regulated protein phosphatase involved in essential cellular functions. However, in diseased or injured tissue, CN is proteolytically converted to a constitutively active fragment that has been causatively-linked to numerous pathophysiologic processes. These calpain-cleaved CN fragments (∆CN) appear at high levels in human brain at early stages of cognitive decline associated with Alzheimer's disease (AD). NEW METHOD We developed a monoclonal antibody to ∆CN, using an immunizing peptide corresponding to the C-terminal end of the ∆CN fragment. RESULTS We obtained a mouse monoclonal antibody, designated 26A6, that selectively detects ∆CN in Western analysis of calpain-cleaved recombinant human CN. Using this antibody, we screened both pathological and normal human brain sections provided by the University of Kentucky's Alzheimer's Disease Research Center. 26A6 showed low reactivity towards normal brain tissue, but detected astrocytes both surrounding AD amyloid plaques and throughout AD brain tissue. In brain tissue with infarcts, there was considerable concentration of 26A6-positive astrocytes within/around infarcts, suggesting a link with anoxic/ischemia pathways. COMPARISON WITH EXISTING METHOD The results obtained with the new monoclonal are similar to those obtained with a polyclonal we had previously developed. However, the monoclonal is an abundant tool available to the dementia research community. CONCLUSIONS The new monoclonal 26A6 antibody is highly selective for the ∆CN proteolytic fragment and labels a subset of astrocytes, and could be a useful tool for marking insidious brain pathology and identifying novel astrocyte phenotypes.
Collapse
Affiliation(s)
| | - Pradoldej Sompol
- Sanders Brown Center on Aging, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Siriyagon Prateeptrang
- Sanders Brown Center on Aging, USA; School of Allied Health Science, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Moltira Promkan
- Sanders Brown Center on Aging, USA; Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Suthida Hongthong
- Sanders Brown Center on Aging, USA; School of Allied Health Science, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Napasorn Thongsopha
- Sanders Brown Center on Aging, USA; School of Allied Health Science, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Peter T Nelson
- Sanders Brown Center on Aging, USA; Department of Pathology, University of Kentucky, Lexington, KY 40536, USA
| | - Christopher M Norris
- Sanders Brown Center on Aging, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
2
|
Sompol P, Gollihue JL, Kraner SD, Artiushin IA, Cloyd RA, Chishti EA, Koren SA, Nation GK, Abisambra JF, Huzian O, Nagy LI, Santha M, Hackler L, Puskas LG, Norris CM. Q134R: Small chemical compound with NFAT inhibitory properties improves behavioral performance and synapse function in mouse models of amyloid pathology. Aging Cell 2021; 20:e13416. [PMID: 34117818 PMCID: PMC8282246 DOI: 10.1111/acel.13416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/30/2021] [Accepted: 05/19/2021] [Indexed: 12/27/2022] Open
Abstract
Inhibition of the protein phosphatase calcineurin (CN) ameliorates pathophysiologic and cognitive changes in aging rodents and mice with aging-related Alzheimer's disease (AD)-like pathology. However, concerns over adverse effects have slowed the transition of common CN-inhibiting drugs to the clinic for the treatment of AD and AD-related disorders. Targeting substrates of CN, like the nuclear factor of activated T cells (NFATs), has been suggested as an alternative, safer approach to CN inhibitors. However, small chemical inhibitors of NFATs have only rarely been described. Here, we investigate a newly developed neuroprotective hydroxyquinoline derivative (Q134R) that suppresses NFAT signaling, without inhibiting CN activity. Q134R partially inhibited NFAT activity in primary rat astrocytes, but did not prevent CN-mediated dephosphorylation of a non-NFAT target, either in vivo, or in vitro. Acute (≤1 week) oral delivery of Q134R to APP/PS1 (12 months old) or wild-type mice (3-4 months old) infused with oligomeric Aβ peptides led to improved Y maze performance. Chronic (≥3 months) oral delivery of Q134R appeared to be safe, and, in fact, promoted survival in wild-type (WT) mice when given for many months beyond middle age. Finally, chronic delivery of Q134R to APP/PS1 mice during the early stages of amyloid pathology (i.e., between 6 and 9 months) tended to reduce signs of glial reactivity, prevented the upregulation of astrocytic NFAT4, and ameliorated deficits in synaptic strength and plasticity, without noticeably altering parenchymal Aβ plaque pathology. The results suggest that Q134R is a promising drug for treating AD and aging-related disorders.
Collapse
Affiliation(s)
- Pradoldej Sompol
- Sanders‐Brown Center on Aging University of Kentucky College of Medicine Lexington KY USA
| | - Jenna L. Gollihue
- Sanders‐Brown Center on Aging University of Kentucky College of Medicine Lexington KY USA
| | - Susan D. Kraner
- Sanders‐Brown Center on Aging University of Kentucky College of Medicine Lexington KY USA
| | - Irina A. Artiushin
- Sanders‐Brown Center on Aging University of Kentucky College of Medicine Lexington KY USA
| | - Ryan A. Cloyd
- Sanders‐Brown Center on Aging University of Kentucky College of Medicine Lexington KY USA
| | - Emad A. Chishti
- Sanders‐Brown Center on Aging University of Kentucky College of Medicine Lexington KY USA
| | - Shon A. Koren
- Sanders‐Brown Center on Aging University of Kentucky College of Medicine Lexington KY USA
| | - Grant K. Nation
- Sanders‐Brown Center on Aging University of Kentucky College of Medicine Lexington KY USA
| | - Jose F. Abisambra
- Center for Translational Research in Neurodegenerative Disease University of Florida Gainesville FL USA
| | | | | | | | | | | | - Christopher M. Norris
- Sanders‐Brown Center on Aging University of Kentucky College of Medicine Lexington KY USA
| |
Collapse
|
3
|
dos Santos JPA, Vizuete AF, Gonçalves CA. Calcineurin-Mediated Hippocampal Inflammatory Alterations in Streptozotocin-Induced Model of Dementia. Mol Neurobiol 2019; 57:502-512. [DOI: 10.1007/s12035-019-01718-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/23/2019] [Indexed: 01/26/2023]
|
4
|
Perera TH, Howell SM, Smith Callahan LA. Manipulation of Extracellular Matrix Remodeling and Neurite Extension by Mouse Embryonic Stem Cells Using IKVAV and LRE Peptide Tethering in Hyaluronic Acid Matrices. Biomacromolecules 2019; 20:3009-3020. [PMID: 31306008 DOI: 10.1021/acs.biomac.9b00578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cellular remodeling of the matrix has recently emerged as a key factor in promoting neural differentiation. Most strategies to manipulate matrix remodeling focus on proteolytically cleavable cross-linkers, leading to changes in tethered biochemical signaling and matrix properties. Using peptides that are not the direct target of enzymatic degradation will likely reduce changes in the matrix and improve control of biological behavior. In this study, laminin-derived peptides, IKVAV and LRE, tethered to independent sites in hyaluronic acid matrices using Michael addition and strain-promoted azide-alkyne cycloaddition are sufficient to manipulate hyaluronic acid degradation, gelatinase expression, and protease expression, while promoting neurite extension through matrix metalloprotease-dependent mechanisms in mouse embryonic stem cells encapsulated in hyaluronic acid matrices using an oxidation-reduction reaction initiated gelation. This study provides the foundation for a new strategy to stimulate matrix remodeling that is not dependent on enzymatic cleavage targets.
Collapse
Affiliation(s)
- T Hiran Perera
- Vivian L. Smith Department of Neurosurgery , McGovern Medical School at the University of Texas Health Science Center at Houston McGovern Medical School , Houston , Texas 77030 , United States.,Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine , McGovern Medical School at the University of Texas Health Science Center at Houston , Houston , Texas 77030 , United States
| | - Skyler M Howell
- Vivian L. Smith Department of Neurosurgery , McGovern Medical School at the University of Texas Health Science Center at Houston McGovern Medical School , Houston , Texas 77030 , United States.,Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine , McGovern Medical School at the University of Texas Health Science Center at Houston , Houston , Texas 77030 , United States
| | - Laura A Smith Callahan
- Vivian L. Smith Department of Neurosurgery , McGovern Medical School at the University of Texas Health Science Center at Houston McGovern Medical School , Houston , Texas 77030 , United States.,Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine , McGovern Medical School at the University of Texas Health Science Center at Houston , Houston , Texas 77030 , United States.,Graduate School of Biomedical Sciences , MD Anderson Cancer Center UTHealth , Houston , Texas 77030 , United States
| |
Collapse
|
5
|
Hadi T, Boytard L, Silvestro M, Alebrahim D, Jacob S, Feinstein J, Barone K, Spiro W, Hutchison S, Simon R, Rateri D, Pinet F, Fenyo D, Adelman M, Moore KJ, Eltzschig HK, Daugherty A, Ramkhelawon B. Macrophage-derived netrin-1 promotes abdominal aortic aneurysm formation by activating MMP3 in vascular smooth muscle cells. Nat Commun 2018; 9:5022. [PMID: 30479344 PMCID: PMC6258757 DOI: 10.1038/s41467-018-07495-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 11/06/2018] [Indexed: 12/22/2022] Open
Abstract
Abdominal aortic aneurysms (AAA) are characterized by extensive extracellular matrix (ECM) fragmentation and inflammation. However, the mechanisms by which these events are coupled thereby fueling focal vascular damage are undefined. Here we report through single-cell RNA-sequencing of diseased aorta that the neuronal guidance cue netrin-1 can act at the interface of macrophage-driven injury and ECM degradation. Netrin-1 expression peaks in human and murine aneurysmal macrophages. Targeted deletion of netrin-1 in macrophages protects mice from developing AAA. Through its receptor neogenin-1, netrin-1 induces a robust intracellular calcium flux necessary for the transcriptional regulation and persistent catalytic activation of matrix metalloproteinase-3 (MMP3) by vascular smooth muscle cells. Deficiency in MMP3 reduces ECM damage and the susceptibility of mice to develop AAA. Here, we establish netrin-1 as a major signal that mediates the dynamic crosstalk between inflammation and chronic erosion of the ECM in AAA. Abdominal aortic aneurysms (AAA) are characterized by extensive extracellular matrix degradation. Here Hadi et al. identify a netrin-1/neogenin-based crosstalk between macrophages and vascular smooth muscle cells (VSMCs), leading to the secretion of the matrix metalloproteinase MMP-3 by VSMCs and subsequent matrix degradation in AAA lesions.
Collapse
Affiliation(s)
- Tarik Hadi
- Division of Vascular Surgery, Department of Surgery, New York University Medical Center, New York, NY, 10016, USA
| | - Ludovic Boytard
- Division of Vascular Surgery, Department of Surgery, New York University Medical Center, New York, NY, 10016, USA
| | - Michele Silvestro
- Division of Vascular Surgery, Department of Surgery, New York University Medical Center, New York, NY, 10016, USA
| | - Dornazsadat Alebrahim
- Division of Vascular Surgery, Department of Surgery, New York University Medical Center, New York, NY, 10016, USA
| | - Samson Jacob
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Jordyn Feinstein
- Division of Vascular Surgery, Department of Surgery, New York University Medical Center, New York, NY, 10016, USA
| | - Krista Barone
- Division of Vascular Surgery, Department of Surgery, New York University Medical Center, New York, NY, 10016, USA
| | - Wes Spiro
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, 10016, USA
| | - Susan Hutchison
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, 10016, USA
| | - Russell Simon
- Division of Vascular Surgery, Department of Surgery, New York University Medical Center, New York, NY, 10016, USA
| | - Debra Rateri
- Department of Physiology and Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - Florence Pinet
- University of Lille, Inserm U1167, Institut Pasteur de Lille, 59019, Lille, France
| | - David Fenyo
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Mark Adelman
- Division of Vascular Surgery, Department of Surgery, New York University Medical Center, New York, NY, 10016, USA
| | - Kathryn J Moore
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, 10016, USA
| | - Holger K Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Alan Daugherty
- Department of Physiology and Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - Bhama Ramkhelawon
- Division of Vascular Surgery, Department of Surgery, New York University Medical Center, New York, NY, 10016, USA. .,Department of Cell Biology, New York University Medical Center, New York, NY, 10016, USA.
| |
Collapse
|
6
|
Kraner SD, Norris CM. Astrocyte Activation and the Calcineurin/NFAT Pathway in Cerebrovascular Disease. Front Aging Neurosci 2018; 10:287. [PMID: 30297999 PMCID: PMC6160594 DOI: 10.3389/fnagi.2018.00287] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/03/2018] [Indexed: 12/27/2022] Open
Abstract
Calcineurin (CN) is a Ca2+/calmodulin-dependent protein phosphatase with high abundance in nervous tissue. Though enriched in neurons, CN can become strongly induced in subsets of activated astrocytes under different pathological conditions where it interacts extensively with the nuclear factor of activated T cells (NFATs). Recent work has shown that regions of small vessel damage are associated with the upregulation of a proteolized, highly active form of CN in nearby astrocytes, suggesting a link between the CN/NFAT pathway and chronic cerebrovascular disease. In this Mini Review article, we discuss CN/NFAT signaling properties in the context of vascular disease and use previous cell type-specific intervention studies in Alzheimer's disease and traumatic brain injury models as a framework to understand how astrocytic CN/NFATs may couple vascular pathology to neurodegeneration and cognitive loss.
Collapse
Affiliation(s)
- Susan D. Kraner
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Christopher M. Norris
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, United States
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| |
Collapse
|
7
|
Sompol P, Norris CM. Ca 2+, Astrocyte Activation and Calcineurin/NFAT Signaling in Age-Related Neurodegenerative Diseases. Front Aging Neurosci 2018; 10:199. [PMID: 30038565 PMCID: PMC6046440 DOI: 10.3389/fnagi.2018.00199] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022] Open
Abstract
Mounting evidence supports a fundamental role for Ca2+ dysregulation in astrocyte activation. Though the activated astrocyte phenotype is complex, cell-type targeting approaches have revealed a number of detrimental roles of activated astrocytes involving neuroinflammation, release of synaptotoxic factors and loss of glutamate regulation. Work from our lab and others has suggested that the Ca2+/calmodulin dependent protein phosphatase, calcineurin (CN), provides a critical link between Ca2+ dysregulation and the activated astrocyte phenotype. A proteolyzed, hyperactivated form of CN appears at high levels in activated astrocytes in both human tissue and rodent tissue around regions of amyloid and vascular pathology. Similar upregulation of the CN-dependent transcription factor nuclear factor of activated T cells (NFAT4) also appears in activated astrocytes in mouse models of Alzheimer's disease (ADs) and traumatic brain injury (TBI). Major consequences of hyperactivated CN/NFAT4 signaling in astrocytes are neuroinflammation, synapse dysfunction and glutamate dysregulation/excitotoxicity, which will be covered in this review article.
Collapse
Affiliation(s)
- Pradoldej Sompol
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Christopher M Norris
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, United States.,Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| |
Collapse
|
8
|
Hoseth EZ, Krull F, Dieset I, Mørch RH, Hope S, Gardsjord ES, Steen NE, Melle I, Brattbakk HR, Steen VM, Aukrust P, Djurovic S, Andreassen OA, Ueland T. Exploring the Wnt signaling pathway in schizophrenia and bipolar disorder. Transl Psychiatry 2018; 8:55. [PMID: 29507296 PMCID: PMC5838215 DOI: 10.1038/s41398-018-0102-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/28/2017] [Accepted: 12/05/2017] [Indexed: 01/05/2023] Open
Abstract
The Wnt signaling pathway plays a crucial role in neurodevelopment and in regulating the function and structure of the adult nervous system. Schizophrenia (SCZ) and bipolar disorder (BD) are severe mental disorders with evidence of subtle neurodevelopmental, structural and functional neuronal abnormalities. We aimed to elucidate the role of aberrant regulation of the Wnt system in these disorders by evaluating plasma levels of secreted Wnt modulators in patients (SCZ = 551 and BD = 246) and healthy controls (HCs = 639) using enzyme immune-assay. We also investigated the expression of 141 Wnt-related genes in whole blood in a subsample (SCZ = 338, BD = 241, and HCs = 263) using microarray analysis. Both SCZ and BD had dysregulated mRNA expression of Wnt-related genes favoring attenuated canonical (beta-catenin-dependent) signaling, and there were also indices of enhanced non-canonical Wnt signaling. In particular, FZD7, which may activate all Wnt pathways, but favors non-canonical signaling, and NFATc3, a downstream transcription factor and readout of the non-canonical Wnt/Ca2+ pathway, were significantly increased in SCZ and BD (p < 3 × 10-4). Furthermore, patients had lower plasma levels of soluble dickkopf 1 and sclerostin (p < 0.01) compared with HC. Our findings suggest that SCZ and BD are characterized by abnormal Wnt gene expression and plasma protein levels, and we propose that drugs targeting the Wnt pathway may have a role in the treatment of severe mental disorders.
Collapse
Affiliation(s)
- Eva Z. Hoseth
- 0000 0004 0389 8485grid.55325.34NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway ,Division of Mental Health and Addiction, Møre and Romsdal Hospital Trust, Kristiansund, Norway
| | - Florian Krull
- 0000 0004 0389 8485grid.55325.34NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingrid Dieset
- 0000 0004 0389 8485grid.55325.34NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ragni H. Mørch
- 0000 0004 0389 8485grid.55325.34NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Sigrun Hope
- 0000 0004 0389 8485grid.55325.34NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway ,0000 0004 0389 8485grid.55325.34Departent of Neurohabilitation, Division of Neurology, Oslo University Hospital, Oslo, Norway
| | - Erlend S. Gardsjord
- 0000 0004 0389 8485grid.55325.34NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Nils Eiel Steen
- 0000 0004 0389 8485grid.55325.34NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingrid Melle
- 0000 0004 0389 8485grid.55325.34NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Hans-Richard Brattbakk
- 0000 0004 1936 7443grid.7914.bNORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Oslo, Norway ,0000 0000 9753 1393grid.412008.fDr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Oslo, Norway
| | - Vidar M. Steen
- 0000 0004 1936 7443grid.7914.bNORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Oslo, Norway ,0000 0000 9753 1393grid.412008.fDr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Oslo, Norway
| | - Pål Aukrust
- 0000 0004 0389 8485grid.55325.34Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway ,0000 0004 0389 8485grid.55325.34Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway ,0000 0004 0389 8485grid.55325.34Instiute of Clinical Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway ,0000 0004 1936 8921grid.5510.1K.G. Jensen Inflammatory Research Center, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- 0000 0004 0389 8485grid.55325.34Department of Medical Genetics, Oslo University Hospital, Oslo, Norway ,0000 0004 1936 7443grid.7914.bNORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ole A. Andreassen
- 0000 0004 0389 8485grid.55325.34NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Thor Ueland
- Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway. .,Instiute of Clinical Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway. .,K.G. Jensen Inflammatory Research Center, University of Oslo, Oslo, Norway. .,K. G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway.
| |
Collapse
|
9
|
Marballi KK, Gallitano AL. Immediate Early Genes Anchor a Biological Pathway of Proteins Required for Memory Formation, Long-Term Depression and Risk for Schizophrenia. Front Behav Neurosci 2018; 12:23. [PMID: 29520222 PMCID: PMC5827560 DOI: 10.3389/fnbeh.2018.00023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/29/2018] [Indexed: 01/02/2023] Open
Abstract
While the causes of myriad medical and infectious illnesses have been identified, the etiologies of neuropsychiatric illnesses remain elusive. This is due to two major obstacles. First, the risk for neuropsychiatric disorders, such as schizophrenia, is determined by both genetic and environmental factors. Second, numerous genes influence susceptibility for these illnesses. Genome-wide association studies have identified at least 108 genomic loci for schizophrenia, and more are expected to be published shortly. In addition, numerous biological processes contribute to the neuropathology underlying schizophrenia. These include immune dysfunction, synaptic and myelination deficits, vascular abnormalities, growth factor disruption, and N-methyl-D-aspartate receptor (NMDAR) hypofunction. However, the field of psychiatric genetics lacks a unifying model to explain how environment may interact with numerous genes to influence these various biological processes and cause schizophrenia. Here we describe a biological cascade of proteins that are activated in response to environmental stimuli such as stress, a schizophrenia risk factor. The central proteins in this pathway are critical mediators of memory formation and a particular form of hippocampal synaptic plasticity, long-term depression (LTD). Each of these proteins is also implicated in schizophrenia risk. In fact, the pathway includes four genes that map to the 108 loci associated with schizophrenia: GRIN2A, nuclear factor of activated T-cells (NFATc3), early growth response 1 (EGR1) and NGFI-A Binding Protein 2 (NAB2); each of which contains the "Index single nucleotide polymorphism (SNP)" (most SNP) at its respective locus. Environmental stimuli activate this biological pathway in neurons, resulting in induction of EGR immediate early genes: EGR1, EGR3 and NAB2. We hypothesize that dysfunction in any of the genes in this pathway disrupts the normal activation of Egrs in response to stress. This may result in insufficient electrophysiologic, immunologic, and neuroprotective, processes that these genes normally mediate. Continued adverse environmental experiences, over time, may thereby result in neuropathology that gives rise to the symptoms of schizophrenia. By combining multiple genes associated with schizophrenia susceptibility, in a functional cascade triggered by neuronal activity, the proposed biological pathway provides an explanation for both the polygenic and environmental influences that determine the complex etiology of this mental illness.
Collapse
Affiliation(s)
- Ketan K. Marballi
- Department of Basic Medical Sciences and Psychiatry, University of Arizona College of Medicine—Phoenix, Phoenix, AZ, United States
| | - Amelia L. Gallitano
- Department of Basic Medical Sciences and Psychiatry, University of Arizona College of Medicine—Phoenix, Phoenix, AZ, United States
| |
Collapse
|
10
|
Price BR, Norris CM, Sompol P, Wilcock DM. An emerging role of astrocytes in vascular contributions to cognitive impairment and dementia. J Neurochem 2018; 144:644-650. [PMID: 29222909 DOI: 10.1111/jnc.14273] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/30/2017] [Accepted: 11/23/2017] [Indexed: 01/15/2023]
Abstract
Vascular contributions to cognitive impairment and dementia (VCID) is understood to be the second most common cause of dementia after Alzheimer's disease, and is also a frequent comorbidity with Alzheimer's disease. While VCID is widely acknowledged as a key contributor to dementia, the mechanistic underpinnings of VCID remain poorly understood. In this review, we address the potential role of astrocytes in the pathophysiology of VCID. The vast majority of the blood vessels in the brain are surrounded by astrocytic end-feet. Given that astrocytes make up a significant proportion of the cells in the brain, and that astrocytes are usually passively connected to one another through gap junctions, we hypothesize that astrocytes are key mediators of cognitive impairment because of cerebrovascular disease. In this review, we discuss the existing body of literature regarding the role of astrocytes at the vasculature in the brain, and the known consequences of their dysfunction, as well as our hypotheses regarding the role astrocytes play in VCID. This article is part of the Special Issue "Vascular Dementia".
Collapse
Affiliation(s)
- Brittani R Price
- Department of Physiology, Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Christopher M Norris
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Pradoldej Sompol
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Donna M Wilcock
- Department of Physiology, Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
11
|
de Seabra Rodrigues Dias IR, Mok SWF, Gordillo-Martínez F, Khan I, Hsiao WWL, Law BYK, Wong VKW, Liu L. The Calcium-Induced Regulation in the Molecular and Transcriptional Circuitry of Human Inflammatory Response and Autoimmunity. Front Pharmacol 2018; 8:962. [PMID: 29358919 PMCID: PMC5766673 DOI: 10.3389/fphar.2017.00962] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/18/2017] [Indexed: 01/01/2023] Open
Abstract
Rheumatoid arthritis synovial fibroblasts (RASFs) are fundamental effector cells in RA driving the joint inflammation and deformities. Celastrol is a natural compound that exhibits a potent anti-arthritic effect promoting endoplasmic reticulum (ER) stress mediated by intracellular calcium (Ca2+) mobilization. Ca2+ is a second messenger regulating a variety of cellular processes. We hypothesized that the compound, celastrol, affecting cytosolic Ca2+ mobilization could serve as a novel strategy to combat RA. To address this issue, celastrol was used as a molecular tool to assay the inflammatory gene expression profile regulated by Ca2+. We confirmed that celastrol treatment mobilized cytosolic Ca2+ in patient-derived RASFs. It was found that 23 genes out of 370 were manipulated by Ca2+ mobilization using an inflammatory and autoimmunity PCR array following independent quantitative PCR validation. Most of the identified genes were downregulated and categorized into five groups corresponding to their cellular responses participating in RA pathogenesis. Accordingly, a signaling network map demonstrating the possible molecular circuitry connecting the functions of the products of these genes was generated based on literature review. In addition, a bioinformatics analysis revealed that celastrol-induced Ca2+ mobilization gene expression profile showed a novel mode of action compared with three FDA-approved rheumatic drugs (methotrexate, rituximab and tocilizumab). To the best of our knowledge, this is a pioneer work charting the Ca2+ signaling network on the regulation of RA-associated inflammatory gene expression.
Collapse
Affiliation(s)
| | - Simon W F Mok
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Flora Gordillo-Martínez
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Wendy W L Hsiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Betty Y K Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Vincent K W Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
12
|
Van Hove I, Lefevere E, De Groef L, Sergeys J, Salinas-Navarro M, Libert C, Vandenbroucke R, Moons L. MMP-3 Deficiency Alleviates Endotoxin-Induced Acute Inflammation in the Posterior Eye Segment. Int J Mol Sci 2016; 17:ijms17111825. [PMID: 27809288 PMCID: PMC5133826 DOI: 10.3390/ijms17111825] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 01/04/2023] Open
Abstract
Matrix metalloproteinase-3 (MMP-3) is known to mediate neuroinflammatory processes by activating microglia, disrupting blood-central nervous system barriers and supporting neutrophil influx into the brain. In addition, the posterior part of the eye, more specifically the retina, the retinal pigment epithelium (RPE) and the blood-retinal barrier, is affected upon neuroinflammation, but a role for MMP-3 during ocular inflammation remains elusive. We investigated whether MMP-3 contributes to acute inflammation in the eye using the endotoxin-induced uveitis (EIU) model. Systemic administration of lipopolysaccharide induced an increase in MMP-3 mRNA and protein expression level in the posterior part of the eye. MMP-3 deficiency or knockdown suppressed retinal leukocyte adhesion and leukocyte infiltration into the vitreous cavity in mice subjected to EIU. Moreover, retinal and RPE mRNA levels of intercellular adhesion molecule 1 (Icam1), interleukin 6 (Il6), cytokine-inducible nitrogen oxide synthase (Nos2) and tumor necrosis factor α (Tnfα), which are key molecules involved in EIU, were clearly reduced in MMP-3 deficient mice. In addition, loss of MMP-3 repressed the upregulation of the chemokines monocyte chemoattractant protein (MCP)-1 and (C-X-C motif) ligand 1 (CXCL1). These findings suggest a contribution of MMP-3 during EIU, and its potential use as a therapeutic drug target in reducing ocular inflammation.
Collapse
Affiliation(s)
- Inge Van Hove
- Neural Circuit Development and Regeneration Research Group, Department of Biology, Katholieke Universiteit Leuven (KU Leuven), B-3000 Leuven, Belgium.
- Laboratory of Experimental Ophthalmology, Department of Neurosciences, KU Leuven, B-3000 Leuven, Belgium.
| | - Evy Lefevere
- Neural Circuit Development and Regeneration Research Group, Department of Biology, Katholieke Universiteit Leuven (KU Leuven), B-3000 Leuven, Belgium.
- Laboratory of Experimental Ophthalmology, Department of Neurosciences, KU Leuven, B-3000 Leuven, Belgium.
| | - Lies De Groef
- Neural Circuit Development and Regeneration Research Group, Department of Biology, Katholieke Universiteit Leuven (KU Leuven), B-3000 Leuven, Belgium.
- Laboratory of Experimental Ophthalmology, Department of Neurosciences, KU Leuven, B-3000 Leuven, Belgium.
| | - Jurgen Sergeys
- Neural Circuit Development and Regeneration Research Group, Department of Biology, Katholieke Universiteit Leuven (KU Leuven), B-3000 Leuven, Belgium.
- Laboratory of Experimental Ophthalmology, Department of Neurosciences, KU Leuven, B-3000 Leuven, Belgium.
| | - Manuel Salinas-Navarro
- Neural Circuit Development and Regeneration Research Group, Department of Biology, Katholieke Universiteit Leuven (KU Leuven), B-3000 Leuven, Belgium.
| | - Claude Libert
- Inflammation Research Center, VIB, B-9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.
| | - Roosmarijn Vandenbroucke
- Inflammation Research Center, VIB, B-9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Department of Biology, Katholieke Universiteit Leuven (KU Leuven), B-3000 Leuven, Belgium.
| |
Collapse
|
13
|
The Emerging Roles of the Calcineurin-Nuclear Factor of Activated T-Lymphocytes Pathway in Nervous System Functions and Diseases. J Aging Res 2016; 2016:5081021. [PMID: 27597899 PMCID: PMC5002468 DOI: 10.1155/2016/5081021] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/21/2016] [Indexed: 12/27/2022] Open
Abstract
The ongoing epidemics of metabolic diseases and increase in the older population have increased the incidences of neurodegenerative diseases. Evidence from murine and cell line models has implicated calcineurin-nuclear factor of activated T-lymphocytes (NFAT) signaling pathway, a Ca2+/calmodulin-dependent major proinflammatory pathway, in the pathogenesis of these diseases. Neurotoxins such as amyloid-β, tau protein, and α-synuclein trigger abnormal calcineurin/NFAT signaling activities. Additionally increased activities of endogenous regulators of calcineurin like plasma membrane Ca2+-ATPase (PMCA) and regulator of calcineurin 1 (RCAN1) also cause neuronal and glial loss and related functional alterations, in neurodegenerative diseases, psychotic disorders, epilepsy, and traumatic brain and spinal cord injuries. Treatment with calcineurin/NFAT inhibitors induces some degree of neuroprotection and decreased reactive gliosis in the central and peripheral nervous system. In this paper, we summarize and discuss the current understanding of the roles of calcineurin/NFAT signaling in physiology and pathologies of the adult and developing nervous system, with an emphasis on recent reports and cutting-edge findings. Calcineurin/NFAT signaling is known for its critical roles in the developing and adult nervous system. Its role in physiological and pathological processes is still controversial. However, available data suggest that its beneficial and detrimental effects are context-dependent. In view of recent reports calcineurin/NFAT signaling is likely to serve as a potential therapeutic target for neurodegenerative diseases and conditions. This review further highlights the need to characterize better all factors determining the outcome of calcineurin/NFAT signaling in diseases and the downstream targets mediating the beneficial and detrimental effects.
Collapse
|
14
|
Blockade of Astrocytic Calcineurin/NFAT Signaling Helps to Normalize Hippocampal Synaptic Function and Plasticity in a Rat Model of Traumatic Brain Injury. J Neurosci 2016; 36:1502-15. [PMID: 26843634 DOI: 10.1523/jneurosci.1930-15.2016] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Increasing evidence suggests that the calcineurin (CN)-dependent transcription factor NFAT (Nuclear Factor of Activated T cells) mediates deleterious effects of astrocytes in progressive neurodegenerative conditions. However, the impact of astrocytic CN/NFAT signaling on neural function/recovery after acute injury has not been investigated extensively. Using a controlled cortical impact (CCI) procedure in rats, we show that traumatic brain injury is associated with an increase in the activities of NFATs 1 and 4 in the hippocampus at 7 d after injury. NFAT4, but not NFAT1, exhibited extensive labeling in astrocytes and was found throughout the axon/dendrite layers of CA1 and the dentate gyrus. Blockade of the astrocytic CN/NFAT pathway in rats using adeno-associated virus (AAV) vectors expressing the astrocyte-specific promoter Gfa2 and the NFAT-inhibitory peptide VIVIT prevented the injury-related loss of basal CA1 synaptic strength and key synaptic proteins and reduced the susceptibility to induction of long-term depression. In conjunction with these seemingly beneficial effects, VIVIT treatment elicited a marked increase in the expression of the prosynaptogenic factor SPARCL1 (hevin), especially in hippocampal tissue ipsilateral to the CCI injury. However, in contrast to previous work on Alzheimer's mouse models, AAV-Gfa2-VIVIT had no effects on the levels of GFAP and Iba1, suggesting that synaptic benefits of VIVIT were not attributable to a reduction in glial activation per se. Together, the results implicate the astrocytic CN/NFAT4 pathway as a key mechanism for disrupting synaptic remodeling and homeostasis in the hippocampus after acute injury. SIGNIFICANCE STATEMENT Similar to microglia, astrocytes become strongly "activated" with neural damage and exhibit numerous morphologic/biochemical changes, including an increase in the expression/activity of the protein phosphatase calcineurin. Using adeno-associated virus (AAV) to inhibit the calcineurin-dependent activation of the transcription factor NFAT (Nuclear Factor of Activated T cells) selectively, we have shown that activated astrocytes contribute to neural dysfunction in animal models characterized by progressive/chronic neuropathology. Here, we show that the suppression of astrocytic calcineurin/NFATs helps to protect synaptic function and plasticity in an animal model in which pathology arises from a single traumatic brain injury. The findings suggest that at least some astrocyte functions impair recovery after trauma and may provide druggable targets for treating victims of acute nervous system injury.
Collapse
|
15
|
Inhibiting Matrix Metalloproteinase 3 Ameliorates Neuronal Loss in the Ganglion Cell Layer of Rats in Retinal Ischemia/Reperfusion. Neurochem Res 2016; 41:1107-18. [PMID: 26830289 DOI: 10.1007/s11064-015-1800-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 01/24/2023]
Abstract
It has been demonstrated that matrix metalloproteinase 3 (MMP3) is integrally involved in the neuronal degeneration of the central nervous system by promoting glial activation, neuronal apoptosis and damage to the brain-blood barrier. However, whether MMP3 also contributes to the neuronal degeneration induced by retinal ischemia/reperfusion is still uncertain. In the present study, we detected the cellular localization of MMP3 in adult rat retinae and explored the relationship of its expression with neuronal loss in the ganglion cell layer (GCL) in retinal ischemia/reperfusion. We found that MMP3 was widely expressed in many cells throughout the layers of the rat retinae, including Vertebrate neuron-specific nuclear protein (NeuN)-, parvalbumin-, calbindin-, protein kinase C-α-, glial fibrillary acidic protein-, glutamine synthetase- and CD11b-positive cells. Furthermore, all rats were treated with high intraocular pressure (HIOP) for 1 h (h) and sacrificed at 6 h, 1 day (d), 3 d, and 7 d after HIOP. Compared to the normal control, the expression of both proenzyme MMP3 and active MMP3 were significantly up-regulated after HIOP treatment without alteration of the laminar distribution pattern. Moreover, inhibiting MMP3 ameliorated the loss of NeuN-positive cells in the GCL following HIOP. In summary, our data demonstrates that MMP3 is expressed in multiple types of neurons and glial cells in normal rat retinae. Simultaneously, the up-regulation of its expression and activity are closely involved in neuronal loss in the GCL in retinal ischemia/reperfusion.
Collapse
|
16
|
Ibi D, Yamada K. Therapeutic Targets for Neurodevelopmental Disorders Emerging from Animal Models with Perinatal Immune Activation. Int J Mol Sci 2015; 16:28218-29. [PMID: 26633355 PMCID: PMC4691039 DOI: 10.3390/ijms161226092] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 11/17/2015] [Accepted: 11/20/2015] [Indexed: 01/02/2023] Open
Abstract
Increasing epidemiological evidence indicates that perinatal infection with various viral pathogens enhances the risk for several psychiatric disorders. The pathophysiological significance of astrocyte interactions with neurons and/or gut microbiomes has been reported in neurodevelopmental disorders triggered by pre- and postnatal immune insults. Recent studies with the maternal immune activation or neonatal polyriboinosinic polyribocytidylic acid models of neurodevelopmental disorders have identified various candidate molecules that could be responsible for brain dysfunction. Here, we review the functions of several candidate molecules in neurodevelopment and brain function and discuss their potential as therapeutic targets for psychiatric disorders.
Collapse
Affiliation(s)
- Daisuke Ibi
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Meijo University, 150 Yagotoyama, Tenpaku-ku, Nagoya 468-8503, Japan.
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan.
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan.
| |
Collapse
|
17
|
Astrocytic CCAAT/Enhancer-Binding Protein Delta Contributes to Glial Scar Formation and Impairs Functional Recovery After Spinal Cord Injury. Mol Neurobiol 2015; 53:5912-5927. [PMID: 26510742 PMCID: PMC5085997 DOI: 10.1007/s12035-015-9486-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/12/2015] [Indexed: 02/06/2023]
Abstract
After spinal cord injury, inflammatory reaction induces the aggregation of astrocytes to form a glial scar that eventually blocks axonal regeneration. Transcription factor CCAAT/enhancer-binding protein delta (C/EBPδ) is a regulatory protein of genes responsive to inflammatory factors, but its role in glial scar formation after spinal cord injury remains unknown. By using a model of moderate spinal cord contusion injury at the mid-thoracic level, we found that C/EBPδ was expressed mostly in the reactive astrocytes bordering the lesion in wild-type mice from 7 days after the injury. C/EBPδ-deficient mice showed reduced glial scar formation, more residual white matter, and better motor function recovery compared with wild-type mice 28 days after the injury. Upon interleukin (IL)-1β stimulation in vitro, the increased expression of C/EBPδ in reactive astrocytes inhibited RhoA expression and, subsequently, the ability of astrocyte migration. However, these reactive astrocytes also produced an increased amount of matrix metalloproteinase-3, which promoted the migration of non-IL-1β-treated, inactive astrocytes. Although the involvement of other non-astroglial C/EBPδ cannot be entirely excluded, our studies suggest that astrocytic C/EBPδ is integral to the inflammatory cascades leading to glial scar formation after spinal cord injury.
Collapse
|
18
|
Shou J, Jing J, Xie J, You L, Jing Z, Yao J, Han W, Pan H. Nuclear factor of activated T cells in cancer development and treatment. Cancer Lett 2015; 361:174-84. [PMID: 25766658 DOI: 10.1016/j.canlet.2015.03.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 01/03/2023]
Abstract
Since nuclear factor of activated T cells (NFAT) was first identified as a transcription factor in T cells, various NFAT isoforms have been discovered and investigated. Accumulating studies have suggested that NFATs are involved in many aspects of cancer, including carcinogenesis, cancer cell proliferation, metastasis, drug resistance and tumor microenvironment. Different NFAT isoforms have distinct functions in different cancers. The exact function of NFAT in cancer or the tumor microenvironment is context dependent. In this review, we summarize our current knowledge of NFAT regulation and function in cancer development and treatment. NFATs have emerged as a potential target for cancer prevention and therapy.
Collapse
Affiliation(s)
- Jiawei Shou
- Department of Medical Oncology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jing Jing
- Department of Medical Oncology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jiansheng Xie
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liangkun You
- Department of Medical Oncology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhao Jing
- Department of Medical Oncology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junlin Yao
- Department of Medical Oncology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weidong Han
- Department of Medical Oncology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Hongming Pan
- Department of Medical Oncology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
Serrano-Pérez MC, Fernández M, Neria F, Berjón-Otero M, Doncel-Pérez E, Cano E, Tranque P. NFAT transcription factors regulate survival, proliferation, migration, and differentiation of neural precursor cells. Glia 2015; 63:987-1004. [DOI: 10.1002/glia.22797] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 01/16/2023]
Affiliation(s)
- María C. Serrano-Pérez
- Laboratorio de Neuroglía, Instituto de Investigación en Discapacidades Neurológicas (IDINE); Universidad de Castilla-La Mancha (UCLM); Albacete Spain
| | - Miriam Fernández
- Laboratorio de Neuroglía, Instituto de Investigación en Discapacidades Neurológicas (IDINE); Universidad de Castilla-La Mancha (UCLM); Albacete Spain
| | - Fernando Neria
- Unidad de Neuroinflamación, Unidad Funcional de Investigaciones en Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII); Madrid Spain
| | - Mónica Berjón-Otero
- Laboratorio de Neuroglía, Instituto de Investigación en Discapacidades Neurológicas (IDINE); Universidad de Castilla-La Mancha (UCLM); Albacete Spain
| | - Ernesto Doncel-Pérez
- Grupo de Química Neuro-regenerativa, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha (SESCAM); Toledo Spain
| | - Eva Cano
- Unidad de Neuroinflamación, Unidad Funcional de Investigaciones en Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII); Madrid Spain
| | - Pedro Tranque
- Laboratorio de Neuroglía, Instituto de Investigación en Discapacidades Neurológicas (IDINE); Universidad de Castilla-La Mancha (UCLM); Albacete Spain
| |
Collapse
|
20
|
Furman JL, Norris CM. Calcineurin and glial signaling: neuroinflammation and beyond. J Neuroinflammation 2014; 11:158. [PMID: 25199950 PMCID: PMC4172899 DOI: 10.1186/s12974-014-0158-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 08/22/2014] [Indexed: 12/11/2022] Open
Abstract
Similar to peripheral immune/inflammatory cells, neuroglial cells appear to rely on calcineurin (CN) signaling pathways to regulate cytokine production and cellular activation. Several studies suggest that harmful immune/inflammatory responses may be the most impactful consequence of aberrant CN activity in glial cells. However, newly identified roles for CN in glutamate uptake, gap junction regulation, Ca2+ dyshomeostasis, and amyloid production suggest that CN's influence in glia may extend well beyond neuroinflammation. The following review will discuss the various actions of CN in glial cells, with particular emphasis on astrocytes, and consider the implications for neurologic dysfunction arising with aging, injury, and/or neurodegenerative disease.
Collapse
|
21
|
Nguyen AQ, Cherry BH, Scott GF, Ryou MG, Mallet RT. Erythropoietin: powerful protection of ischemic and post-ischemic brain. Exp Biol Med (Maywood) 2014; 239:1461-75. [PMID: 24595981 DOI: 10.1177/1535370214523703] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ischemic brain injury inflicted by stroke and cardiac arrest ranks among the leading causes of death and long-term disability in the United States. The brain consumes large amounts of metabolic substrates and oxygen to sustain its energy requirements. Consequently, the brain is exquisitely sensitive to interruptions in its blood supply, and suffers irreversible damage after 10-15 min of severe ischemia. Effective treatments to protect the brain from stroke and cardiac arrest have proven elusive, due to the complexities of the injury cascades ignited by ischemia and reperfusion. Although recombinant tissue plasminogen activator and therapeutic hypothermia have proven efficacious for stroke and cardiac arrest, respectively, these treatments are constrained by narrow therapeutic windows, potentially detrimental side-effects and the limited availability of hypothermia equipment. Mounting evidence demonstrates the cytokine hormone erythropoietin (EPO) to be a powerful neuroprotective agent and a potential adjuvant to established therapies. Classically, EPO originating primarily in the kidneys promotes erythrocyte production by suppressing apoptosis of proerythroid progenitors in bone marrow. However, the brain is capable of producing EPO, and EPO's membrane receptors and signaling components also are expressed in neurons and astrocytes. EPO activates signaling cascades that increase the brain's resistance to ischemia-reperfusion stress by stabilizing mitochondrial membranes, limiting formation of reactive oxygen and nitrogen intermediates, and suppressing pro-inflammatory cytokine production and neutrophil infiltration. Collectively, these mechanisms preserve functional brain tissue and, thus, improve neurocognitive recovery from brain ischemia. This article reviews the mechanisms mediating EPO-induced brain protection, critiques the clinical utility of exogenous EPO to preserve brain threatened by ischemic stroke and cardiac arrest, and discusses the prospects for induction of EPO production within the brain by the intermediary metabolite, pyruvate.
Collapse
Affiliation(s)
- Anh Q Nguyen
- Department of Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107-2699
| | - Brandon H Cherry
- Department of Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107-2699
| | - Gary F Scott
- Department of Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107-2699
| | - Myoung-Gwi Ryou
- Department of Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107-2699
| | - Robert T Mallet
- Department of Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107-2699
| |
Collapse
|
22
|
Yan HQ, Shin SS, Ma X, Li Y, Dixon CE. Differential effect of traumatic brain injury on the nuclear factor of activated T Cells C3 and C4 isoforms in the rat hippocampus. Brain Res 2013; 1548:63-72. [PMID: 24389074 DOI: 10.1016/j.brainres.2013.12.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 12/20/2013] [Accepted: 12/23/2013] [Indexed: 10/25/2022]
Abstract
The interaction between the phosphatase calcineurin and transcription factor nuclear factor of activated T cells (NFAT) plays an important role numerous signaling and the regulatory events. Although NFAT is mostly known for its transcription function in the immune system, NFAT also has essential functions even in the central nervous system (CNS). The effects of traumatic brain injury (TBI) on NFAT are currently unknown. To determine if there is an alteration in NFAT after TBI, we examined NFATc3 and c4 levels at 6 h, 1 day, 1 week, 2 weeks and 4 weeks post injury. Rats were anesthetized and surgically prepared for controlled cortical impact (CCI) injury or sham surgery. Semi-quantitative measurements of NFATc3 and c4 in the hippocampal homogenates from injured and sham rats sacrificed at the appropriate time after injury were assessed using Western blot analysis. After TBI insult, in the hippocampus ipsilateral to the injury, NFATc3 expression levels were decreased both in the cytoplasmic and nuclear fractions. However, NFATc4 expression levels were increased in the cytoplasmic fraction but decreased in the nuclear fraction. Double labeling (with NeuN and GFAP) immunohistochemistry revealed that NFATc3 was expressed in subset of astrocytes and NFATc4 was expressed primarily in neurons. These differential responses in NFATc3 and c4 expression after TBI insult may indicate long-term changes in hippocampal excitability and may contribute to behavioral deficits. Further study is warranted to illustrate the role of NFATc3 and c4 in the setting of TBI.
Collapse
Affiliation(s)
- Hong Q Yan
- Department of Neurological Surgery, Brain Trauma Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Samuel S Shin
- Department of Neurological Surgery, Brain Trauma Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Xiecheng Ma
- Department of Neurological Surgery, Brain Trauma Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Youming Li
- Department of Neurological Surgery, Brain Trauma Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - C Edward Dixon
- Department of Neurological Surgery, Brain Trauma Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260.,Veterans Affairs Pittsburgh Healthcare System Pittsburgh, PA 15240
| |
Collapse
|
23
|
Wang L, Cossette SM, Rarick KR, Gershan J, Dwinell MB, Harder DR, Ramchandran R. Astrocytes directly influence tumor cell invasion and metastasis in vivo. PLoS One 2013; 8:e80933. [PMID: 24324647 PMCID: PMC3851470 DOI: 10.1371/journal.pone.0080933] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/07/2013] [Indexed: 01/16/2023] Open
Abstract
Brain metastasis is a defining component of tumor pathophysiology, and the underlying mechanisms responsible for this phenomenon are not well understood. Current dogma is that tumor cells stimulate and activate astrocytes, and this mutual relationship is critical for tumor cell sustenance in the brain. Here, we provide evidence that primary rat neonatal and adult astrocytes secrete factors that proactively induced human lung and breast tumor cell invasion and metastasis capabilities. Among which, tumor invasion factors namely matrix metalloprotease-2 (MMP-2) and MMP-9 were partly responsible for the astrocyte media-induced tumor cell invasion. Inhibiting MMPs reduced the ability of tumor cell to migrate and invade in vitro. Further, injection of astrocyte media-conditioned breast cancer cells in mice showed increased invasive activity to the brain and other distant sites. More importantly, blocking the preconditioned tumor cells with broad spectrum MMP inhibitor decreased the invasion and metastasis of the tumor cells, in particular to the brain in vivo. Collectively, our data implicate astrocyte-derived MMP-2 and MMP-9 as critical players that facilitate tumor cell migration and invasion leading to brain metastasis.
Collapse
Affiliation(s)
- Ling Wang
- Department of Pediatrics, Children’s Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Stephanie M. Cossette
- Department of Pediatrics, Children’s Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Kevin R. Rarick
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Jill Gershan
- Translational and Biomedical Research Center, Division of Hematology-Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Michael B. Dwinell
- Department of Microbiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - David R. Harder
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Ramani Ramchandran
- Department of Pediatrics, Children’s Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|