1
|
Huang T, Fakurazi S, Cheah PS, Ling KH. Dysregulation of REST and its target genes impacts the fate of neural progenitor cells in down syndrome. Sci Rep 2025; 15:2818. [PMID: 39843579 PMCID: PMC11754635 DOI: 10.1038/s41598-025-87314-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025] Open
Abstract
Increasing shreds of evidence suggest that neurogenic-to-gliogenic shift may be critical to the abnormal neurodevelopment observed in individuals with Down syndrome (DS). REST, the Repressor Element-1 Silencing Transcription factor, regulates the differentiation and development of neural cells. Downregulation of REST may lead to defects in post-differentiation neuronal morphology in the brain of the DS fetal. This study aims to elucidate the role of REST in DS-derived NPCs using bioinformatics analyses and laboratory validations. We identified and validated vital REST-targeted DEGs: CD44, TGFB1, FN1, ITGB1, and COL1A1. Interestingly, these genes are involved in neurogenesis and gliogenesis in DS-derived NPCs. Furthermore, we identified nuclear REST loss and the neuroblast marker, DCX, was downregulated in DS human trisomic induced pluripotent stem cells (hiPSCs)-derived NPCs, whereas the glioblast marker, NFIA, was upregulated. Our findings indicate that the loss of REST is critical in the neurogenic-to-gliogenic shift observed in DS-derived NPCs. REST and its target genes may collectively regulate the NPC phenotype.
Collapse
Affiliation(s)
- Tan Huang
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
- Brain and Mental Health Research Advancement and Innovation Networks (PUTRA® BRAIN), Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
- Malaysian Research Institute on Ageing (MyAgeing®), Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
- Brain and Mental Health Research Advancement and Innovation Networks (PUTRA® BRAIN), Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
- Malaysian Research Institute on Ageing (MyAgeing®), Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| |
Collapse
|
2
|
Namihira M, Inoue N, Watanabe Y, Hayashi T, Murotomi K, Hirayama K, Sato N. Combination of 3 probiotics restores attenuated adult neurogenesis in germ-free mice. Stem Cells 2024:sxae077. [PMID: 39676242 DOI: 10.1093/stmcls/sxae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 11/04/2024] [Indexed: 12/17/2024]
Abstract
Gut microbiota plays an important role in regulating brain function and adult neurogenesis. Although probiotics have recently been reported as effective against certain psychiatric disorders, the underlying mechanisms remain unclear. In particular, the combination of 3 probiotic strains, Bacillus subtilis TO-A, Enterococcus faecium T-110, and Clostridium butyricum TO-A, hereafter referred to as ProB3, has been reported to potentially alleviate psychiatric symptoms in patients with schizophrenia. Herein, we show that ProB3 promotes adult neurogenesis in mice and restores its dysregulation in germ-free (GF) mice. ProB3 colonization in GF mice enhanced the proliferation of adult neural stem cells compared to specific-pathogen-free and GF mice. Furthermore, ProB3 colonization was sufficient to ameliorate the arrest of newborn neuron maturation and the diminution of quiescent neural stem cells in GF mice. ProB3 colonization in mice increased the levels of several metabolites in the blood, including theanine and 3-hydroxybutyrate, and imidazole peptides, including anserine, which promoted proliferation, neurogenesis, and maturation of newborn neurons in cultured human fetus neural stem cells, as well as mouse adult hippocampal neural stem cells. Collectively, these results indicate that the essential role of the gut microbiota in adult hippocampal neurogenesis can be effectively complemented by the intake of a specific 3-strain probiotic, ProB3, providing novel insights into the brain-gut axis.
Collapse
Affiliation(s)
- Masakazu Namihira
- Molecular Neurophysiology Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8566, Japan
| | - Nana Inoue
- TOA Biopharma Co. Ltd., Tokyo 151-0073, Japan
| | | | | | - Kazutoshi Murotomi
- Molecular Neurophysiology Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8566, Japan
| | - Kazuhiro Hirayama
- Laboratory of Veterinary Public Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Naoki Sato
- TOA Biopharma Co. Ltd., Tokyo 151-0073, Japan
| |
Collapse
|
3
|
Chiani F, Mastrorilli V, Marchetti N, Macioce A, Nappi C, Strimpakos G, Pasquini M, Gambadoro A, Battistini JI, Cutuli D, Petrosini L, Marinelli S, Scardigli R, Farioli Vecchioli S. Essential role of p21 Waf1/Cip1 in the modulation of post-traumatic hippocampal Neural Stem Cells response. Stem Cell Res Ther 2024; 15:197. [PMID: 38971774 PMCID: PMC11227726 DOI: 10.1186/s13287-024-03787-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 06/07/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Traumatic Brain Injury (TBI) represents one of the main causes of brain damage in young people and the elderly population with a very high rate of psycho-physical disability and death. TBI is characterized by extensive cell death, tissue damage and neuro-inflammation with a symptomatology that varies depending on the severity of the trauma from memory loss to a state of irreversible coma and death. Recently, preclinical studies on mouse models have demonstrated that the post-traumatic adult Neural Stem/Progenitor cells response could represent an excellent model to shed light on the neuro-reparative role of adult neurogenesis following damage. The cyclin-dependent kinase inhibitor p21Waf1/Cip1 plays a pivotal role in modulating the quiescence/activation balance of adult Neural Stem Cells (aNSCs) and in restraining the proliferation progression of progenitor cells. Based on these considerations, the aim of this work is to evaluate how the conditional ablation of p21Waf1/Cip1 in the aNSCS can alter the adult hippocampal neurogenesis in physiological and post-traumatic conditions. METHODS We designed a novel conditional p21Waf1/Cip1 knock-out mouse model, in which the deletion of p21Waf1/Cip1 (referred as p21) is temporally controlled and occurs in Nestin-positive aNSCs, following administration of Tamoxifen. This mouse model (referred as p21 cKO mice) was subjected to Controlled Cortical Impact to analyze how the deletion of p21 could influence the post-traumatic neurogenic response within the hippocampal niche. RESULTS The data demonstrates that the conditional deletion of p21 in the aNSCs induces a strong increase in activation of aNSCs as well as proliferation and differentiation of neural progenitors in the adult dentate gyrus of the hippocampus, resulting in an enhancement of neurogenesis and the hippocampal-dependent working memory. However, following traumatic brain injury, the increased neurogenic response of aNSCs in p21 cKO mice leads to a fast depletion of the aNSCs pool, followed by declined neurogenesis and impaired hippocampal functionality. CONCLUSIONS These data demonstrate for the first time a fundamental role of p21 in modulating the post-traumatic hippocampal neurogenic response, by the regulation of the proliferative and differentiative steps of aNSCs/progenitor populations after brain damage.
Collapse
Affiliation(s)
- Francesco Chiani
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Monterotondo, Rome, Italy
| | | | - Nicole Marchetti
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Monterotondo, Rome, Italy
- PhD Course in Sciences of Nutrition, Aging, Metabolism and Gender Pathologies, Catholic University of Roma, 00100, Rome, Italy
| | - Andrea Macioce
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Monterotondo, Rome, Italy
| | - Chiara Nappi
- Instituto de Neurosciencias, Universidad Miguel-Hernandez, Alicante, Spain
| | - Georgios Strimpakos
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Monterotondo, Rome, Italy
| | - Miriam Pasquini
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Monterotondo, Rome, Italy
| | - Alessia Gambadoro
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Monterotondo, Rome, Italy
| | | | - Debora Cutuli
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185, Rome, Italy
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179, Rome, Italy
| | - Laura Petrosini
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179, Rome, Italy
| | - Sara Marinelli
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Monterotondo, Rome, Italy
| | - Raffaella Scardigli
- European Brain Research Institute (EBRI), Viale Regine Elena, 00161, Rome, Italy
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | | |
Collapse
|
4
|
Jiang C, Campbell-Rance D, Wu S, Wang Y, Sun H, Xu Y, Wen X. Expansion and differentiation of human neural stem cells on synthesized integrin binding peptide surfaces. Biomed Mater 2024; 19:045033. [PMID: 38772389 DOI: 10.1088/1748-605x/ad4e85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/21/2024] [Indexed: 05/23/2024]
Abstract
The extracellular matrix plays a crucial role in the growth of human neural stem cells (hNSCs) by forming a stem cell niche, bothin vitroandin vivo. The demand for defined synthetic substrates has been increasing recently in stem cell research, reflecting the requirements for precise functions and safety concerns in potential clinical approaches. In this study, we tested the adhesion and expansion of one of the most representative hNSC lines, the ReNcell VM Human Neural Progenitor Cell Line, in a pure-synthesized short peptide-basedin vitroniche using a previously established integrin-binding peptide array. Spontaneous cell differentiation was then induced using two differentin vitroapproaches to further confirm the multipotent features of cells treated with the peptides. Twelve different integrin-binding peptides were capable of supporting hNSC adhesion and expansion at varied proliferation rates. In the ReNcell medium-based differentiation approach, cells detached in almost all peptide-based groups, except integrinα5β1 binding peptide. In an altered differentiation process induced by retinoic acid containing neural differentiation medium, cell adhesion was retained in all 12 peptide groups. These peptides also appeared to have varied effects on the differentiation potential of hNSCs towards neurons and astrocytes. Our findings provide abundant options for the development ofin vitroneural stem cell niches and will help develop promising tools for disease modeling and future stem cell therapies for neurological diseases.
Collapse
Affiliation(s)
- Chenyang Jiang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23220, United States of America
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, People's Republic of China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Debbie Campbell-Rance
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23220, United States of America
| | - Shujun Wu
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23220, United States of America
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Yanlin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, People's Republic of China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Huifang Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, People's Republic of China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, People's Republic of China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Xuejun Wen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23220, United States of America
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, 200065 Shanghai, People's Republic of China
| |
Collapse
|
5
|
Chen J, Tsai YH, Linden AK, Kessler JA, Peng CY. YAP and TAZ differentially regulate postnatal cortical progenitor proliferation and astrocyte differentiation. J Cell Sci 2024; 137:jcs261516. [PMID: 38639242 DOI: 10.1242/jcs.261516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 04/09/2024] [Indexed: 04/20/2024] Open
Abstract
WW domain-containing transcription regulator 1 (WWTR1, referred to here as TAZ) and Yes-associated protein (YAP, also known as YAP1) are transcriptional co-activators traditionally studied together as a part of the Hippo pathway, and are best known for their roles in stem cell proliferation and differentiation. Despite their similarities, TAZ and YAP can exert divergent cellular effects by differentially interacting with other signaling pathways that regulate stem cell maintenance or differentiation. In this study, we show in mouse neural stem and progenitor cells (NPCs) that TAZ regulates astrocytic differentiation and maturation, and that TAZ mediates some, but not all, of the effects of bone morphogenetic protein (BMP) signaling on astrocytic development. By contrast, both TAZ and YAP mediate the effects on NPC fate of β1-integrin (ITGB1) and integrin-linked kinase signaling, and these effects are dependent on extracellular matrix cues. These findings demonstrate that TAZ and YAP perform divergent functions in the regulation of astrocyte differentiation, where YAP regulates cell cycle states of astrocytic progenitors and TAZ regulates differentiation and maturation from astrocytic progenitors into astrocytes.
Collapse
Affiliation(s)
- Jessie Chen
- Department of Neurology, Northwestern University's Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yung-Hsu Tsai
- Department of Neurology, Northwestern University's Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Anne K Linden
- Department of Neurology, Northwestern University's Feinberg School of Medicine, Chicago, IL 60611, USA
| | - John A Kessler
- Department of Neurology, Northwestern University's Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Chian-Yu Peng
- Department of Neurology, Northwestern University's Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
6
|
Chen L, Xu J, Zhu L, Xu P, Chang L, Han Y, Wu Q. Disrupted in Schizophrenia 1 Reverse Ectopic Migration of Neural Precursors in Mouse Hilus After Pilocarpine-Induced Status Epilepticus. Mol Neurobiol 2023; 60:6689-6703. [PMID: 37479851 DOI: 10.1007/s12035-023-03507-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Neural precursors in the subgranular zone (SGZ) can be stimulated by status epilepticus (SE) and ectopically migrate to the hilus. These mislocated cells serve as "potential pacemakers" of spontaneous recurrent seizures, and targeting them could potentially reverse the seizure process. Disrupted-in-Schizophrenia 1 (DISC1) regulates hippocampal neurogenesis after seizures both in vitro and in vivo. Our previous study found that DISC1 was colocalized with neural precursors in the hilus after SE. However, its molecular mechanism and pathways contribute to the ectopic migration of neural precursors to the hilus induced by SE awaits exploration. Here, we showed that both Reelin-ApoER2/EphB2 and Reelin-Integrin β1/Integrin α5 axes may participate in the modulation of neurogenesis after SE. Especially, DISC1, as a protective role, might partly reversed the ectopic progenitor migration via EphB2 pathway. Our findings demonstrated that DISC1 played a protective role in the ectopic migration of neural precursors induced by SE insults and DISC1 could be an attractive new target for the treatment of epilepsy.
Collapse
Affiliation(s)
- Lu Chen
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan, 650032, People's Republic of China
| | - Jing Xu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan, 650032, People's Republic of China
| | - Lin Zhu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan, 650032, People's Republic of China
| | - Puying Xu
- Department of Neurology, Northeast Yunnan Hospital, Mengquan Avenue, Zhaoyang District, Zhaotong, Yunnan, 657000, People's Republic of China
| | - Lvhua Chang
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan, 650032, People's Republic of China
| | - Yanbing Han
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan, 650032, People's Republic of China.
| | - Qian Wu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan, 650032, People's Republic of China.
| |
Collapse
|
7
|
Yazdani N, Willits RK. Mimicking the neural stem cell niche: An engineer’s view of cell: material interactions. FRONTIERS IN CHEMICAL ENGINEERING 2023. [DOI: 10.3389/fceng.2022.1086099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Neural stem cells have attracted attention in recent years to treat neurodegeneration. There are two neurogenic regions in the brain where neural stem cells reside, one of which is called the subventricular zone (SVZ). The SVZ niche is a complicated microenvironment providing cues to regulate self-renewal and differentiation while maintaining the neural stem cell’s pool. Many scientists have spent years understanding the cellular and structural characteristics of the SVZ niche, both in homeostasis and pathological conditions. On the other hand, engineers focus primarily on designing platforms using the knowledge they acquire to understand the effect of individual factors on neural stem cell fate decisions. This review provides a general overview of what we know about the components of the SVZ niche, including the residing cells, extracellular matrix (ECM), growth factors, their interactions, and SVZ niche changes during aging and neurodegenerative diseases. Furthermore, an overview will be given on the biomaterials used to mimic neurogenic niche microenvironments and the design considerations applied to add bioactivity while meeting the structural requirements. Finally, it will discuss the potential gaps in mimicking the microenvironment.
Collapse
|
8
|
Wilson KL, Pérez SCL, Naffaa MM, Kelly SH, Segura T. Stoichiometric Post-Modification of Hydrogel Microparticles Dictates Neural Stem Cell Fate in Microporous Annealed Particle Scaffolds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201921. [PMID: 35731241 PMCID: PMC9645378 DOI: 10.1002/adma.202201921] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/07/2022] [Indexed: 05/16/2023]
Abstract
Microporous annealed particle (MAP) scaffolds are generated from assembled hydrogel microparticles (microgels). It has been previously demonstrated that MAP scaffold are porous, biocompatible, and recruit neural progenitor cells (NPCs) to the stroke cavity after injection into the stroke core. Here, the goal is to study NPC fate inside MAP scaffolds in vitro. To create plain microgels that can later be converted to contain different types of bioactivities, the inverse electron-demand Diels-Alder reaction between tetrazine and norbornene is utilized, which allows the post-modification of plain microgels stoichiometrically. As a result of adhesive peptide attachment, NPC spreading leads to contractile force generation which can be recorded by tracking microgel displacement. Alternatively, non-adhesive peptide integration results in neurosphere formation that grows within the void space of MAP scaffolds. Although the formed neurospheres do not impose a contractile force on the scaffolds, they are seen to continuously transverse the scaffolds. It is concluded that MAP scaffolds can be engineered to either promote neurogenesis or enhance stemness depending on the chosen post-modifications of the microgels, which can be key in modulating their phenotypes in various applications in vivo.
Collapse
Affiliation(s)
- Katrina L Wilson
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708-0281, USA
| | - Sasha Cai Lesher Pérez
- Department of Chemical Engineering, University of Michigan, North Campus Research Complex, Building 28, 2800 Plymouth Rd, Ann Arbor, MI, 48109-2800, USA
| | - Moawiah M Naffaa
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Psychology and Neuroscience, Duke University, Durham, NC, 27708, USA
| | - Sean H Kelly
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708-0281, USA
| | - Tatiana Segura
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708-0281, USA
- Department of Neurology, Duke University, Durham, NC, 27708-0281, USA
- Department of Dermatology, Duke University, Durham, NC, 27708-0281, USA
| |
Collapse
|
9
|
Baklaushev VP, Yusubalieva GM, Samoilova EM, Belopasov VV. Resident Neural Stem Cell Niches and Regeneration: The Splendors and Miseries of Adult Neurogenesis. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422030080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Divergence between Neuronal and Oligodendroglial Cell Fate, in Postnatal Brain Neural Stem Cells, Leads to Divergent Properties in Polymorphic In Vitro Assays. Cells 2022; 11:cells11111743. [PMID: 35681436 PMCID: PMC9179558 DOI: 10.3390/cells11111743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Two main stem cell pools exist in the postnatal mammalian brain that, although they share some “stemness” properties, also exhibit significant differences. Multipotent neural stem cells survive within specialized microenvironments, called niches, and they are vulnerable to ageing. Oligodendroglial lineage-restricted progenitor cells are widely distributed in the brain parenchyma and are more resistant to the effects of ageing. Here, we create polymorphic neural stem cell cultures and allow cells to progress towards the neuronal and the oligodendroglial lineage. We show that the divergence of cell fate is accompanied by a divergence in the properties of progenitors, which reflects their adaptation to life in the niche or the parenchyma. Neurogenesis shows significant spatial restrictions and a dependence on laminin, a major niche component, while oligodendrogenesis shows none of these constraints. Furthermore, the blocking of integrin-β1 leads to opposing effects, reducing neurogenesis and enhancing oligodendrogenesis. Therefore, polymorphic neural stem cell assays can be used to investigate the divergence of postnatal brain stem cells and also to predict the in vivo effects of potential therapeutic molecules targeting stem and progenitor cells, as we do for the microneurotrophin BNN-20.
Collapse
|
11
|
Fan Z, Zhang W, Cao Q, Zou L, Fan X, Qi C, Yan Y, Song B, Wu B. JAK2/STAT3 pathway regulates microglia polarization involved in hippocampal inflammatory damage due to acute paraquat exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113372. [PMID: 35248926 DOI: 10.1016/j.ecoenv.2022.113372] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To explore the effects of acute paraquat (PQ) exposure on the phenotypic polarization of hippocampal microglia and its mechanism. METHODS An acute PQ exposure rat model was established. Male SD rats were exposed to 0, 5, 25, and 50 mg/kg PQ, and brain hippocampal tissue was collected after 1, 3, and 7 days of exposure, respectively. Hippocampal pathological changes were examined by H&E staining, and immunohistochemistry (IHC) was used to detect changes in the number of Iba-1-positive cells, the average number of endpoints, and the average process length. The protein expression of Iba-1 was detected by western blotting. BV-2 microglia were treated with 0, 0.01, 0.025, 0.05, or 0.1 μmol/L PQ for 24 h. ELISA and western blotting assays were performed to detect the expression of TNF-α and IL-1β in vivo and in vitro. The M1 microglia marker iNOS, the M2 microglia marker Arg-1, and the p-JAK2 and p-STAT3 protein were detected by western blotting. JAK2/STAT3 pathway activation role in regulating microglia phenotypic polarization was further validated in vivo and in vitro by JAK2-specific inhibitor AG490 administration. RESULTS After acute PQ exposure, hippocampal neurons showed pathological changes such as loose arrangement and nuclear pyknosis, the number of Iba-1 positive cells and the expression of Iba-1 protein increased, and the average number of endpoints and average process length of microglia decreased. Histological examination revealed that compared with the control group, in the 50 mg/kg PQ group on the 3rd and 7th day, the expression of TNF-α, IL-1β, and iNOS significantly increased, while that of Arg-1 significantly decreased. p-JAK2 and p-STAT3 expression significantly increased in the 50 mg/kg PQ group on the 1st, 3rd, and 7th day. In vitro, compared with the control group, the expression of TNF-α, IL-1β, iNOS, p-JAK2, and p-STAT3 significantly increased, while Arg-1 expression was significantly reduced in the 0.025, 0.05, and 0.1 μmol/L PQ groups. After AG490 administration, the expression levels of p-JAK2, p-STAT3, iNOS, TNF-α, and IL-1β in the AG490 +PQ group were significantly inhibited in vivo and in vitro compared with the PQ-only group. On the contrary, Arg-1 expression was significantly increased. CONCLUSION Our results suggest that acute PQ exposure may induce M1-type polarization of hippocampal microglia by activating the JAK2/STAT3 pathway, which in turn releases pro-inflammatory factors such as TNF-α and IL-1β, leading to hippocampal inflammatory damage.
Collapse
Affiliation(s)
- Zhuo Fan
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050000, China; Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei 050000, China
| | - Wendi Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050000, China; Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei 050000, China
| | - Qi Cao
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050000, China; Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei 050000, China
| | - Lingyun Zou
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050000, China; Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei 050000, China
| | - Xiaobei Fan
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050000, China; Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei 050000, China
| | - Changcun Qi
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050000, China; Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei 050000, China
| | - Yuandong Yan
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050000, China; Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei 050000, China
| | - Bo Song
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050000, China; Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei 050000, China.
| | - Bailin Wu
- Department of Radiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|
12
|
Ikeshima-Kataoka H, Sugimoto C, Tsubokawa T. Integrin Signaling in the Central Nervous System in Animals and Human Brain Diseases. Int J Mol Sci 2022; 23:ijms23031435. [PMID: 35163359 PMCID: PMC8836133 DOI: 10.3390/ijms23031435] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
The integrin family is involved in various biological functions, including cell proliferation, differentiation and migration, and also in the pathogenesis of disease. Integrins are multifunctional receptors that exist as heterodimers composed of α and β subunits and bind to various ligands, including extracellular matrix (ECM) proteins; they are found in many animals, not only vertebrates (e.g., mouse, rat, and teleost fish), but also invertebrates (e.g., planarian flatworm, fruit fly, nematodes, and cephalopods), which are used for research on genetics and social behaviors or as models for human diseases. In the present paper, we describe the results of a phylogenetic tree analysis of the integrin family among these species. We summarize integrin signaling in teleost fish, which serves as an excellent model for the study of regenerative systems and possesses the ability for replacing missing tissues, especially in the central nervous system, which has not been demonstrated in mammals. In addition, functions of astrocytes and reactive astrocytes, which contain neuroprotective subpopulations that act in concert with the ECM proteins tenascin C and osteopontin via integrin are also reviewed. Drug development research using integrin as a therapeutic target could result in breakthroughs for the treatment of neurodegenerative diseases and brain injury in mammals.
Collapse
Affiliation(s)
- Hiroko Ikeshima-Kataoka
- Department of Biology, Keio University, 4-1-1, Hiyoshi, Kohoku-ku, Yokohama-shi 223-8521, Japan; (C.S.); (T.T.)
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Correspondence:
| | - Chikatoshi Sugimoto
- Department of Biology, Keio University, 4-1-1, Hiyoshi, Kohoku-ku, Yokohama-shi 223-8521, Japan; (C.S.); (T.T.)
| | - Tatsuya Tsubokawa
- Department of Biology, Keio University, 4-1-1, Hiyoshi, Kohoku-ku, Yokohama-shi 223-8521, Japan; (C.S.); (T.T.)
| |
Collapse
|
13
|
Chen P, Chen F, Wu Y, Zhou B. New Insights Into the Role of Aberrant Hippocampal Neurogenesis in Epilepsy. Front Neurol 2022; 12:727065. [PMID: 34975709 PMCID: PMC8714646 DOI: 10.3389/fneur.2021.727065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/02/2021] [Indexed: 12/31/2022] Open
Abstract
Data accumulated over the past four decades have confirmed that adult hippocampal neurogenesis (HN) plays a key role in the wide spectrum of hippocampal pathology. Epilepsy is a disorder of the central nervous system characterized by spontaneous recurrent seizures. Although neurogenesis in persistent germinative zones is altered in the adult rodent models of epilepsy, the effects of seizure-induced neurogenesis in the epileptic brain, in terms of either a pathological or reparative role, are only beginning to be explored. In this review, we described the most recent advances in neurogenesis in epilepsy and outlooked future directions for neural stem cells (NSCs) and epilepsy-in-a-dish models. We proposed that it may help in refining the underlying molecular mechanisms of epilepsy and improving the therapies and precision medicine for patients with epilepsy.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, China
| | - Fuchao Chen
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, China
| | - Yue Wu
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Benhong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Gao H, Cheng X, Chen J, Ji C, Guo H, Qu W, Dong X, Chen Y, Ma L, Shu Q, Li X. Fto-modulated lipid niche regulates adult neurogenesis through modulating adenosine metabolism. Hum Mol Genet 2021; 29:2775-2787. [PMID: 32766784 DOI: 10.1093/hmg/ddaa171] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/01/2020] [Accepted: 07/01/2020] [Indexed: 12/16/2022] Open
Abstract
Adult neurogenesis is regulated by diverse factors including the local environment, i.e. the neurogenic niche. However, whether the lipid in the brain regulates adult neurogenesis and related mechanisms remains largely unknown. In the present study, we found that lipid accumulates in the brain during postnatal neuronal development. Conditional knockout of Fto (cKO) in lipid not only reduced the level of lipid in the brain but also impaired the learning and memory of mice. In addition, Fto deficiency in lipid did not affect the proliferation of adult neural stem cells (aNSCs), but it did inhibit adult neurogenesis by inducing cell apoptosis. Mechanistically, specific deleting Fto in lipid altered gene expression and increased adenosine secretion of adipocytes. The treatment of adenosine promoted the apoptosis of newborn neurons. As a whole, these results reveal the important function of the lipid niche and its associated mechanism in regulating adult neurogenesis.
Collapse
Affiliation(s)
- Hui Gao
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China.,The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China.,National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Xuejun Cheng
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China.,National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Junchen Chen
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China.,The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Chai Ji
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China.,National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Hongfeng Guo
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China.,The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Wenzheng Qu
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China.,National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Xiaoxue Dong
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China.,National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Yingyan Chen
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China.,The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Linghan Ma
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China.,The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Qiang Shu
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China.,National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Xuekun Li
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China.,The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China.,National Clinical Research Center for Child Health, Hangzhou 310052, China
| |
Collapse
|
15
|
Hart CG, Karimi-Abdolrezaee S. Recent insights on astrocyte mechanisms in CNS homeostasis, pathology, and repair. J Neurosci Res 2021; 99:2427-2462. [PMID: 34259342 DOI: 10.1002/jnr.24922] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/06/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022]
Abstract
Astrocytes play essential roles in development, homeostasis, injury, and repair of the central nervous system (CNS). Their development is tightly regulated by distinct spatial and temporal cues during embryogenesis and into adulthood throughout the CNS. Astrocytes have several important responsibilities such as regulating blood flow and permeability of the blood-CNS barrier, glucose metabolism and storage, synapse formation and function, and axon myelination. In CNS pathologies, astrocytes also play critical parts in both injury and repair mechanisms. Upon injury, they undergo a robust phenotypic shift known as "reactive astrogliosis," which results in both constructive and deleterious outcomes. Astrocyte activation and migration at the site of injury provides an early defense mechanism to minimize the extent of injury by enveloping the lesion area. However, astrogliosis also contributes to the inhibitory microenvironment of CNS injury and potentiate secondary injury mechanisms, such as inflammation, oxidative stress, and glutamate excitotoxicity, which facilitate neurodegeneration in CNS pathologies. Intriguingly, reactive astrocytes are increasingly a focus in current therapeutic strategies as their activation can be modulated toward a neuroprotective and reparative phenotype. This review will discuss recent advancements in knowledge regarding the development and role of astrocytes in the healthy and pathological CNS. We will also review how astrocytes have been genetically modified to optimize their reparative potential after injury, and how they may be transdifferentiated into neurons and oligodendrocytes to promote repair after CNS injury and neurodegeneration.
Collapse
Affiliation(s)
- Christopher G Hart
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
16
|
Regulation of Adult Mammalian Neural Stem Cells and Neurogenesis by Cell Extrinsic and Intrinsic Factors. Cells 2021; 10:cells10051145. [PMID: 34068607 PMCID: PMC8150395 DOI: 10.3390/cells10051145] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/07/2021] [Indexed: 12/27/2022] Open
Abstract
Tissue-specific stem cells give rise to new functional cells to maintain tissue homeostasis and restore damaged tissue after injury. To ensure proper brain functions in the adult brain, neural stem cells (NSCs) continuously generate newborn neurons that integrate into pre-existing neuronal networks. Proliferation, as well as neurogenesis of NSCs, are exquisitely controlled by extrinsic and intrinsic factors, and their underlying mechanisms have been extensively studied with the goal of enhancing the neurogenic capacity of NSCs for regenerative medicine. However, neurogenesis of endogenous NSCs alone is insufficient to completely repair brains damaged by neurodegenerative diseases and/or injury because neurogenic areas are limited and few neurons are produced in the adult brain. An innovative approach towards replacing damaged neurons is to induce conversion of non-neuronal cells residing in injured sites into neurons by a process referred to as direct reprogramming. This review describes extrinsic and intrinsic factors controlling NSCs and neurogenesis in the adult brain and discusses prospects for their applications. It also describes direct neuronal reprogramming technology holding promise for future clinical applications.
Collapse
|
17
|
Heat shock response enhanced by cell culture treatment in mouse embryonic stem cell-derived proliferating neural stem cells. PLoS One 2021; 16:e0249954. [PMID: 33852623 PMCID: PMC8046196 DOI: 10.1371/journal.pone.0249954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/27/2021] [Indexed: 12/16/2022] Open
Abstract
Cells have a regulatory mechanism known as heat shock (HS) response, which induces the expression of HS genes and proteins in response to heat and other cellular stresses. Exposure to moderate HS results in beneficial effects, such as thermotolerance and promotes survival, whereas excessive HS causes cell death. The effect of HS on cells depends on both exogenous factors, including the temperature and duration of heat application, and endogenous factors, such as the degree of cell differentiation. Neural stem cells (NSCs) can self-renew and differentiate into neurons and glial cells, but the changes in the HS response of symmetrically proliferating NSCs in culture are unclear. We evaluated the HS response of homogeneous proliferating NSCs derived from mouse embryonic stem cells during the proliferative phase and its effect on survival and cell death in vitro. The number of adherent cells and the expression ratios of HS protein (Hsp)40 and Hsp70 genes after exposure to HS for 20 min at temperatures above 43°C significantly increased with the extension of the culture period before exposure to HS. In contrast, caspase activity was significantly decreased by extension of the culture period before exposure to HS and suppressed the decrease in cell viability. These results suggest that the culture period before HS remarkably affects the HS response, influencing the expression of HS genes and cell survival of proliferating NSCs in culture.
Collapse
|
18
|
Luo S, Shi Q, Li W, Wu W, Zha Z. ITGB1 promotes the chondrogenic differentiation of human adipose-derived mesenchymal stem cells by activating the ERK signaling. J Mol Histol 2020; 51:729-739. [PMID: 33057850 DOI: 10.1007/s10735-020-09918-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022]
Abstract
Adipose-derived mesenchymal stem cell (ADSC) with a high capacity of chondrogenic differentiation was a promising candidate for cartilage defect treatment. This study's objective is to study the roles of integrin β1 (ITGB1) in regulating ADSC chondrogenic differentiations as well as the underlying mechanisms. The identity of ADSC was confirmed by flow cytometry. ITGB1 gene was overexpressed in human ADSC (hADSC) by transfection with LV003-recombinant plasmids. Gene mRNA and protein levels were examined using quantitative RT-PCR and western blotting, respectively. Differentially expressed mRNAs and proteins were characterized by next-generation RNA sequencing and label-free quantitative proteomics, respectively. ERK signaling and AKT signaling in hADSCs were inhibited by treating with SCH772984 and GSK690693, respectively. ITGB1 gene overexpression substantially increased collagen type II alpha 1 chain (COL2A1), aggrecan (ACAN), and SRY-box transcription factor 9 (SOX9) expression but suppressed collagen type I alpha 1 chain (COL1A1) expression in hADSCs. Next-generation RNA sequencing identified a total of 246 genes differentially expressed in hADSCs by ITGB1 overexpression, such as 183 upregulated and 63 downregulated genes. Label-free proteomics characterized 34 proteins differentially expressed in ITGB1-overexpressing hADSCs. Differentially expressed genes and proteins were enriched by different biological processes such as cell adhesion and differentiation and numerous signaling pathways such as the ERK signaling pathway. ERK inhibitor treatment caused substantially enhanced chondrogenic differentiation in ITGB1-overexpressing hADSCs. ITGB1 promoted the chondrogenic differentiation of human ADSCs via the activation of the ERK signaling pathway.
Collapse
Affiliation(s)
- Simin Luo
- Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Qiping Shi
- Department of Endocrine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Wuji Li
- Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Wenrui Wu
- Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Zhengang Zha
- Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
19
|
Bres EE, Safina D, Müller J, Bedner P, Yang H, Helluy X, Shchyglo O, Jansen S, Mark MD, Esser A, Steinhäuser C, Herlitze S, Pietrzik CU, Sirko S, Manahan-Vaughan D, Faissner A. Lipoprotein receptor loss in forebrain radial glia results in neurological deficits and severe seizures. Glia 2020; 68:2517-2549. [PMID: 32579270 DOI: 10.1002/glia.23869] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023]
Abstract
The Alzheimer disease-associated multifunctional low-density lipoprotein receptor-related protein-1 is expressed in the brain. Recent studies uncovered a role of this receptor for the appropriate functioning of neural stem cells, oligodendrocytes, and neurons. The constitutive knock-out (KO) of the receptor is embryonically lethal. To unravel the receptors' role in the developing brain we generated a mouse mutant by specifically targeting radial glia stem cells of the dorsal telencephalon. The low-density lipoprotein receptor-related protein-1 lineage-restricted KO female and male mice, in contrast to available models, developed a severe neurological phenotype with generalized seizures during early postnatal development. The mechanism leading to a buildup of hyperexcitability and emergence of seizures was traced to a failure in adequate astrocyte development and deteriorated postsynaptic density integrity. The detected impairments in the astrocytic lineage: precocious maturation, reactive gliosis, abolished tissue plasminogen activator uptake, and loss of functionality emphasize the importance of this glial cell type for synaptic signaling in the developing brain. Together, the obtained results highlight the relevance of astrocytic low-density lipoprotein receptor-related protein-1 for glutamatergic signaling in the context of neuron-glia interactions and stage this receptor as a contributing factor for epilepsy.
Collapse
Affiliation(s)
- Ewa E Bres
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Dina Safina
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Julia Müller
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Honghong Yang
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Xavier Helluy
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany.,Department of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Ruhr University Bochum, Bochum, Germany
| | - Olena Shchyglo
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Stephan Jansen
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Melanie D Mark
- Behavioral Neuroscience, Ruhr University Bochum, Bochum, Germany
| | | | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Stefan Herlitze
- Department of General Zoology and Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Claus U Pietrzik
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Swetlana Sirko
- Department of Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians University, Planegg-Martinsried, Germany.,Institute for Stem Cell Research, Helmholtz Zentrum Munich, Neuherberg, Germany
| | | | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
20
|
Quiescence of Adult Mammalian Neural Stem Cells: A Highly Regulated Rest. Neuron 2019; 104:834-848. [DOI: 10.1016/j.neuron.2019.09.026] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022]
|
21
|
Kong X, Gong Z, Zhang L, Sun X, Ou Z, Xu B, Huang J, Long D, He X, Lin X, Li Q, Xu L, Xuan A. JAK2/STAT3 signaling mediates IL-6-inhibited neurogenesis of neural stem cells through DNA demethylation/methylation. Brain Behav Immun 2019; 79:159-173. [PMID: 30763768 DOI: 10.1016/j.bbi.2019.01.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 01/10/2019] [Accepted: 01/30/2019] [Indexed: 10/27/2022] Open
Abstract
Neuroinflammation, considered as a pathological hallmark of Alzheimer's disease (AD), has been demonstrated to affect hippocampal neurogenesis and cognitive function. Interleukin-6 (IL-6) is a proinflammatory cytokine known to modulate neurogenesis. However, the mechanisms are still largely unknown. Here, we reported that IL-6 suppressed neurogenesis via a JAK2/STAT3 signaling in neural stem cells (NSCs). Importantly, we found that NeuroD1 (Neurogenic differentiation 1) gene expression, which drives NSCs neurodifferentiation, was regulated by TET3 and DNMT1 in a JAK2/STAT3-dependent manner. We further found that JAK2/STAT3 inhibition enhanced demethylation of NeuroD1 regulatory elements in IL-6-treated cells, which is related to the significant upregulation of TET3 expression as well as the decreased expression of DNMT1. Furthermore, Inhibiting JAK2/STAT3 significantly rescued the memory deficits and hippocampal neurogenesis dysfunction in APP/PS1 mice. Our data suggest that JAK2/STAT3 signaling plays a vital role in suppressing neurogenesis of NSCs exposed to IL-6 at the epigenetic level, by regulating DNA methylation/demethylation.
Collapse
Affiliation(s)
- Xuejian Kong
- Institute of Neuroscience of the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; Department of Neurology of the Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511518, China
| | - Zhuo Gong
- Institute of Neuroscience of the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Le Zhang
- Institute of Neuroscience of the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Xiangdong Sun
- Institute of Neuroscience of the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Zhenri Ou
- Institute of Neuroscience of the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Biao Xu
- Institute of Neuroscience of the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Jingyi Huang
- Institute of Neuroscience of the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Dahong Long
- Institute of Neuroscience of the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Xiaosong He
- Institute of Neuroscience of the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Xiaohong Lin
- Institute of Neuroscience of the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Qingqing Li
- Institute of Neuroscience of the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Liping Xu
- Institute of Neuroscience of the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Aiguo Xuan
- Institute of Neuroscience of the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China.
| |
Collapse
|
22
|
Jiang C, Zeng X, Xue B, Campbell D, Wang Y, Sun H, Xu Y, Wen X. Screening of pure synthetic coating substrates for induced pluripotent stem cells and iPSC-derived neuroepithelial progenitors with short peptide based integrin array. Exp Cell Res 2019; 380:90-99. [PMID: 30981669 DOI: 10.1016/j.yexcr.2019.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 01/27/2023]
Abstract
Simple and pure synthetic coating substrates are needed to overcome the disadvantages of traditional coating products like animal derived Matrigel in stem cell research. Since integrins are of great importance in cell adhesion and cell-ECM communication, in this study, a commercially available integrin array established by synthetic integrin binding peptides is used to screen coating substrates for iPSCs and NEPs. The results showed that binding peptides of integrin α5β1, αVβ1, αMβ2 and αIIbβ3 supported cell adhesion of iPSCs, while α5β1, αVβ1 and αIIbβ3 binding peptides supported NEPs adhesion. Additionally, integrin α5β1 binding peptide was revealed to support rapid expansion of iPSCs and iPSC-derived NEPs, as well as the process of NEPs generation, with equal efficiency as Matrigel. In this work, we demonstrated that by supporting stem cell growth in an integrin dependent manner, the integrin array and coating system has the potential to develop more precise and efficient systems in neurological disease modeling.
Collapse
Affiliation(s)
- Chenyang Jiang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450052, China; Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23220, USA
| | - Xiaomei Zeng
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23220, USA
| | - Bo Xue
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23220, USA
| | - Debbie Campbell
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23220, USA
| | - Yanlin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Huifang Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Xuejun Wen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450052, China; Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23220, USA; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China; Shanghai East Hospital, Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
23
|
Bres EE, Faissner A. Low Density Receptor-Related Protein 1 Interactions With the Extracellular Matrix: More Than Meets the Eye. Front Cell Dev Biol 2019; 7:31. [PMID: 30931303 PMCID: PMC6428713 DOI: 10.3389/fcell.2019.00031] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) is a biological substrate composed of collagens, proteoglycans and glycoproteins that ensures proper cell migration and adhesion and keeps the cell architecture intact. The regulation of the ECM composition is a vital process strictly controlled by, among others, proteases, growth factors and adhesion receptors. As it appears, ECM remodeling is also essential for proper neuronal and glial development and the establishment of adequate synaptic signaling. Hence, disturbances in ECM functioning are often present in neurodegenerative diseases like Alzheimer’s disease. Moreover, mutations in ECM molecules are found in some forms of epilepsy and malfunctioning of ECM-related genes and pathways can be seen in, for example, cancer or ischemic injury. Low density lipoprotein receptor-related protein 1 (Lrp1) is a member of the low density lipoprotein receptor family. Lrp1 is involved not only in ligand uptake, receptor mediated endocytosis and lipoprotein transport—functions shared by low density lipoprotein receptor family members—but also regulates cell surface protease activity, controls cellular entry and binding of toxins and viruses, protects against atherosclerosis and acts on many cell signaling pathways. Given the plethora of functions, it is not surprising that Lrp1 also impacts the ECM and is involved in its remodeling. This review focuses on the role of Lrp1 and some of its major ligands on ECM function. Specifically, interactions with two Lrp1 ligands, integrins and tissue plasminogen activator are described in more detail.
Collapse
Affiliation(s)
- Ewa E Bres
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
24
|
Deng W, Shao F, He Q, Wang Q, Shi W, Yu Q, Cao X, Feng C, Bi S, Chen J, Ma P, Li Y, Gong A, Tong S, Yu J, Spector M, Xu X, Zhang Z. EMSCs Build an All-in-One Niche via Cell-Cell Lipid Raft Assembly for Promoted Neuronal but Suppressed Astroglial Differentiation of Neural Stem Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806861. [PMID: 30633831 DOI: 10.1002/adma.201806861] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/29/2018] [Indexed: 05/11/2023]
Abstract
The therapeutic efficiency of allogenic/intrinsic neural stem cells (NSCs) after spinal cord injury is severely compromised because the hostile niche at the lesion site incurs massive astroglial but not neuronal differentiation of NSCs. Although many attempts are made to reconstruct a permissive niche for nerve regeneration, solely using a living cell material to build an all-in-one, multifunctional, permissive niche for promoting neuronal while inhibiting astroglial differentiation of NSCs is not reported. Here, ectomesenchymal stem cells (EMSCs) are reported to serve as a living, smart material that creates a permissive, all-in-one niche which provides neurotrophic factors, extracellular matrix molecules, cell-cell contact, and favorable substrate stiffness for directing NSC differentiation. Interestingly, in this all-in-one niche, a corresponding all-in-one signal-sensing platform is assembled through recruiting various niche signaling molecules into lipid rafts for promoting neuronal differentiation of NSCs, and meanwhile, inhibiting astrocyte overproliferation through the connexin43/YAP/14-3-3θ pathway. In vivo studies confirm that EMSCs can promote intrinsic NSC neuronal differentiation and domesticating astrocyte behaviors for nerve regeneration. Collectively, this study represents an all-in-one niche created by a single-cell material-EMSCs for directing NSC differentiation.
Collapse
Affiliation(s)
- Wenwen Deng
- School of Pharmacy, Jiangsu University, Laboratory of Drug Delivery and Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 212001, P. R. China
| | - Fengxia Shao
- School of Pharmacy, Jiangsu University, Laboratory of Drug Delivery and Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 212001, P. R. China
| | - Qinghua He
- School of Pharmacy, Jiangsu University, Laboratory of Drug Delivery and Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 212001, P. R. China
| | - Qiang Wang
- School of Pharmacy, Jiangsu University, Laboratory of Drug Delivery and Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 212001, P. R. China
| | - Wentao Shi
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, 212001, P. R. China
| | - Qingtong Yu
- School of Pharmacy, Jiangsu University, Laboratory of Drug Delivery and Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 212001, P. R. China
| | - Xia Cao
- School of Pharmacy, Jiangsu University, Laboratory of Drug Delivery and Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 212001, P. R. China
| | - Chunlai Feng
- School of Pharmacy, Jiangsu University, Laboratory of Drug Delivery and Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 212001, P. R. China
| | - Shiqi Bi
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, 212001, P. R. China
| | - Jiaxin Chen
- School of Pharmacy, Jiangsu University, Laboratory of Drug Delivery and Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 212001, P. R. China
| | - Ping Ma
- School of Pharmacy, Jiangsu University, Laboratory of Drug Delivery and Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 212001, P. R. China
| | - Yang Li
- School of Pharmacy, Jiangsu University, Laboratory of Drug Delivery and Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 212001, P. R. China
| | - Aihua Gong
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, 212001, P. R. China
| | - Shanshan Tong
- School of Pharmacy, Jiangsu University, Laboratory of Drug Delivery and Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 212001, P. R. China
| | - Jiangnan Yu
- School of Pharmacy, Jiangsu University, Laboratory of Drug Delivery and Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 212001, P. R. China
| | - Myron Spector
- Department of Orthopedic Surgery, Harvard Medical School, Brigham and Women's Hospital, 75 Francis St, Boston, MA, 02115, USA
| | - Ximing Xu
- School of Pharmacy, Jiangsu University, Laboratory of Drug Delivery and Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 212001, P. R. China
| | - Zhijian Zhang
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, 212001, P. R. China
| |
Collapse
|
25
|
The role of adult hippocampal neurogenesis in brain health and disease. Mol Psychiatry 2019; 24:67-87. [PMID: 29679070 PMCID: PMC6195869 DOI: 10.1038/s41380-018-0036-2] [Citation(s) in RCA: 428] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/15/2018] [Accepted: 01/31/2018] [Indexed: 12/18/2022]
Abstract
Adult neurogenesis in the dentate gyrus of the hippocampus is highly regulated by a number of environmental and cell-intrinsic factors to adapt to environmental changes. Accumulating evidence suggests that adult-born neurons may play distinct physiological roles in hippocampus-dependent functions, such as memory encoding and mood regulation. In addition, several brain diseases, such as neurological diseases and mood disorders, have deleterious effects on adult hippocampal neurogenesis, and some symptoms of those diseases can be partially explained by the dysregulation of adult hippocampal neurogenesis. Here we review a possible link between the physiological functions of adult-born neurons and their roles in pathological conditions.
Collapse
|
26
|
Mukherjee P, Nathamgari SSP, Kessler JA, Espinosa HD. Combined Numerical and Experimental Investigation of Localized Electroporation-Based Cell Transfection and Sampling. ACS NANO 2018; 12:12118-12128. [PMID: 30452236 PMCID: PMC6535396 DOI: 10.1021/acsnano.8b05473] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Localized electroporation has evolved as an effective technology for the delivery of foreign molecules into cells while preserving their viability. Consequently, this technique has potential applications in sampling the contents of live cells and the temporal assessment of cellular states at the single-cell level. Although there have been numerous experimental reports on localized electroporation-based delivery, a lack of a mechanistic understanding of the process hinders its implementation in sampling. In this work, we develop a multiphysics model that predicts the transport of molecules into and out of the cell during localized electroporation. Based on the model predictions, we optimize experimental parameters such as buffer conditions, electric field strength, cell confluency, and density of nanochannels in the substrate for successful delivery and sampling via localized electroporation. We also identify that cell membrane tension plays a crucial role in enhancing both the amount and the uniformity of molecular transport, particularly for macromolecules. We qualitatively validate the model predictions on a localized electroporation platform by delivering large molecules (bovine serum albumin and mCherry-encoding plasmid) and by sampling an exogeneous protein (tdTomato) in an engineered cell line.
Collapse
Affiliation(s)
- Prithvijit Mukherjee
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, Illinois 60208, United States
| | - S. Shiva P. Nathamgari
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, Illinois 60208, United States
| | - John A. Kessler
- Department of Neurology, Northwestern University, Chicago, Illinois 60611, United States
| | - Horacio D. Espinosa
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
27
|
Autocrine Mfge8 Signaling Prevents Developmental Exhaustion of the Adult Neural Stem Cell Pool. Cell Stem Cell 2018; 23:444-452.e4. [PMID: 30174295 DOI: 10.1016/j.stem.2018.08.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 06/01/2018] [Accepted: 08/06/2018] [Indexed: 12/21/2022]
Abstract
Adult neurogenesis, arising from quiescent radial-glia-like neural stem cells (RGLs), occurs throughout life in the dentate gyrus. How neural stem cells are maintained throughout development to sustain adult mammalian neurogenesis is not well understood. Here, we show that milk fat globule-epidermal growth factor (EGF) 8 (Mfge8), a known phagocytosis factor, is highly enriched in quiescent RGLs in the dentate gyrus. Mfge8-null mice exhibit decreased adult dentate neurogenesis, and furthermore, adult RGL-specific deletion of Mfge8 leads to RGL overactivation and depletion. Similarly, loss of Mfge8 promotes RGL activation in the early postnatal dentate gyrus, resulting in a decreased number of label-retaining RGLs in adulthood. Mechanistically, loss of Mfge8 elevates mTOR1 signaling in RGLs, inhibition of which by rapamycin returns RGLs to quiescence. Together, our study identifies a neural-stem-cell-enriched niche factor that maintains quiescence and prevents developmental exhaustion of neural stem cells to sustain continuous neurogenesis in the adult mammalian brain.
Collapse
|
28
|
Kitada M, Wakao S, Dezawa M. Intracellular signaling similarity reveals neural stem cell-like properties of ependymal cells in the adult rat spinal cord. Dev Growth Differ 2018; 60:326-340. [DOI: 10.1111/dgd.12546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 01/19/2023]
Affiliation(s)
- Masaaki Kitada
- Department of Stem Cell Biology and Histology; Tohoku University Graduate School of Medicine; Sendai Japan
| | - Shohei Wakao
- Department of Stem Cell Biology and Histology; Tohoku University Graduate School of Medicine; Sendai Japan
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology; Tohoku University Graduate School of Medicine; Sendai Japan
| |
Collapse
|
29
|
Andreopoulou E, Arampatzis A, Patsoni M, Kazanis I. Being a Neural Stem Cell: A Matter of Character But Defined by the Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1041:81-118. [PMID: 29204830 DOI: 10.1007/978-3-319-69194-7_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cells that build the nervous system, either this is a small network of ganglia or a complicated primate brain, are called neural stem and progenitor cells. Even though the very primitive and the very recent neural stem cells (NSCs) share common basic characteristics that are hard-wired within their character, such as the expression of transcription factors of the SoxB family, their capacity to give rise to extremely different neural tissues depends significantly on instructions from the microenvironment. In this chapter we explore the nature of the NSC microenvironment, looking through evolution, embryonic development, maturity and even disease. Experimental work undertaken over the last 20 years has revealed exciting insight into the NSC microcosmos. NSCs are very capable in producing their own extracellular matrix and in regulating their behaviour in an autocrine and paracrine manner. Nevertheless, accumulating evidence indicates an important role for the vasculature, especially within the NSC niches of the postnatal brain; while novel results reveal direct links between the metabolic state of the organism and the function of NSCs.
Collapse
Affiliation(s)
- Evangelia Andreopoulou
- Lab of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Asterios Arampatzis
- Wellcome Trust- MRC Cambridge Stem Cell Biology Institute, University of Cambridge, Cambridge, UK
- School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Melina Patsoni
- Lab of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Ilias Kazanis
- Lab of Developmental Biology, Department of Biology, University of Patras, Patras, Greece.
- Wellcome Trust- MRC Cambridge Stem Cell Biology Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
30
|
Mosher KI, Schaffer DV. Influence of hippocampal niche signals on neural stem cell functions during aging. Cell Tissue Res 2017; 371:115-124. [PMID: 29124394 DOI: 10.1007/s00441-017-2709-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/09/2017] [Indexed: 12/18/2022]
Abstract
The genesis of new neurons from neural stem cells in the adult brain offers the hope that this mechanism of plasticity can be harnessed for the treatment of brain injuries and diseases. However, neurogenesis becomes impaired during the normal course of aging; this is also the primary risk factor for most neurodegenerative diseases. The local microenvironment that regulates the function of resident neural stem cells (the "neurogenic niche") is a particularly complex network of various signaling mechanisms, rendering it especially challenging for the dissection of the control of these cells but offering the potential for the advancement of our understanding of the regulation/misregulation of neurogenesis. In this review, we examine the factors that control neurogenesis in an age-dependent manner, and we define these signals by the extrinsic mechanism through which they are presented to the neural stem cells. Secreted signals, cell-contact-dependent signals, and extracellular matrix cues all contribute to the regulation of the aging neurogenic niche and offer points of therapeutic intervention.
Collapse
Affiliation(s)
- Kira Irving Mosher
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA 94720, USA.
| | - David V Schaffer
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA 94720, USA.,Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, CA 94720, USA.,Department of Bioengineering, University of California at Berkeley, Berkeley, CA 94720, USA.,Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
31
|
Jurewicz E, Wyroba E, Filipek A. Tubulin-dependent secretion of S100A6 and cellular signaling pathways activated by S100A6-integrin β1 interaction. Cell Signal 2017; 42:21-29. [PMID: 29020611 DOI: 10.1016/j.cellsig.2017.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/28/2017] [Accepted: 10/07/2017] [Indexed: 12/29/2022]
Abstract
S100A6 is a calcium binding protein expressed mainly in fibroblasts and epithelial cells. Interestingly, S100A6 is also present in extracellular fluids. Recently we have shown that S100A6 is secreted by WJMS cells and binds to integrin β1 (Jurewicz et al., 2014). In this work we describe for the first time the mechanism of S100A6 secretion and signaling pathways activated by the S100A6-integrin β1 complex. We show that colchicine suppressed the release of S100A6 into the cell medium, which indicates that the protein might be secreted via a tubulin-dependent pathway. By applying double immunogold labeling and immunofluorescence staining we have shown that S100A6 associates with microtubules in WJMS cells. Furthermore, results obtained from immunoprecipitation and proximity ligation assay (PLA), and from in vitro assays, reveal that S100A6 is able to form complexes with α and β tubulin in these cells, and that the S100A6-tubulin interaction is direct. We have also found that the S100A6 protein, due to binding to integrin β1, activates integrin-linked kinase (ILK), focal adhesion kinase (FAK) and p21-activated kinase (PAK). Our results suggest that binding of S100A6 to integrin β1 affects cell adhesion/proliferation due to activation of ILK and FAK signaling pathways.
Collapse
Affiliation(s)
- Ewelina Jurewicz
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland
| | - Elżbieta Wyroba
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland
| | - Anna Filipek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland.
| |
Collapse
|
32
|
Farrukh A, Ortega F, Fan W, Marichal N, Paez JI, Berninger B, Campo AD, Salierno MJ. Bifunctional Hydrogels Containing the Laminin Motif IKVAV Promote Neurogenesis. Stem Cell Reports 2017; 9:1432-1440. [PMID: 28988991 PMCID: PMC5829305 DOI: 10.1016/j.stemcr.2017.09.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 09/01/2017] [Accepted: 09/01/2017] [Indexed: 10/29/2022] Open
Abstract
Engineering of biomaterials with specific biological properties has gained momentum as a means to control stem cell behavior. Here, we address the effect of bifunctionalized hydrogels comprising polylysine (PL) and a 19-mer peptide containing the laminin motif IKVAV (IKVAV) on embryonic and adult neuronal progenitor cells under different stiffness regimes. Neuronal differentiation of embryonic and adult neural progenitors was accelerated by adjusting the gel stiffness to 2 kPa and 20 kPa, respectively. While gels containing IKVAV or PL alone failed to support long-term cell adhesion, in bifunctional gels, IKVAV synergized with PL to promote differentiation and formation of focal adhesions containing β1-integrin in embryonic cortical neurons. Furthermore, in adult neural stem cell culture, bifunctionalized gels promoted neurogenesis via the expansion of neurogenic clones. These data highlight the potential of synthetic matrices to steer stem and progenitor cell behavior via defined mechano-adhesive properties.
Collapse
Affiliation(s)
- Aleeza Farrukh
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Felipe Ortega
- Biochemistry and Molecular Biology Department IV, Faculty of Veterinary Medicine, Complutense University, Madrid, Spain; Institute of Neurochemistry (IUIN), 28040 Madrid, Spain; Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Wenqiang Fan
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 19, 55128 Mainz, Germany; Focus Program Translational Neuroscience, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Nicolás Marichal
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 19, 55128 Mainz, Germany; Focus Program Translational Neuroscience, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Julieta I Paez
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Benedikt Berninger
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 19, 55128 Mainz, Germany; Focus Program Translational Neuroscience, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Aránzazu Del Campo
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany; Saarland University, Campus Saarbrücken D2 2, 66123 Saarbrücken, Germany
| | - Marcelo J Salierno
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 19, 55128 Mainz, Germany; Focus Program Translational Neuroscience, Johannes Gutenberg University Mainz, 55131 Mainz, Germany.
| |
Collapse
|
33
|
Home sweet home: the neural stem cell niche throughout development and after injury. Cell Tissue Res 2017; 371:125-141. [PMID: 28776186 DOI: 10.1007/s00441-017-2658-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 05/29/2017] [Indexed: 12/26/2022]
Abstract
Neural stem cells and their progeny reside in two distinct neurogenic niches within the mammalian brain: the subventricular zone and the dentate gyrus. The interplay between the neural stem cells and the niche in which they reside can have significant effects on cell kinetics and neurogenesis. A comprehensive understanding of the changes to the niche that occur through postnatal development and aging, as well as following injury, is relevant for developing therapeutics and interventions to promote neural repair. We discuss changes that occur within the neural stem and progenitor cell populations, the vasculature, extracellular matrix, microglia, and secreted proteins through aging which impact cell behavior within the neurogenic niches. We examine neural precursor cell and niche responses to injury in neonatal hypoxia-ischemia, juvenile cranial irradiation, and adult stroke. This review examines the interplay between the niche and stem cell behavior through aging and following injury as a means to understand intrinsic and extrinsic factors that regulate neurogenesis in vivo.
Collapse
|