1
|
Sluyter R, Adriouch S, Fuller SJ, Nicke A, Sophocleous RA, Watson D. Animal Models for the Investigation of P2X7 Receptors. Int J Mol Sci 2023; 24:ijms24098225. [PMID: 37175933 PMCID: PMC10179175 DOI: 10.3390/ijms24098225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The P2X7 receptor is a trimeric ligand-gated cation channel activated by extracellular adenosine 5'-triphosphate. The study of animals has greatly advanced the investigation of P2X7 and helped to establish the numerous physiological and pathophysiological roles of this receptor in human health and disease. Following a short overview of the P2X7 distribution, roles and functional properties, this article discusses how animal models have contributed to the generation of P2X7-specific antibodies and nanobodies (including biologics), recombinant receptors and radioligands to study P2X7 as well as to the pharmacokinetic testing of P2X7 antagonists. This article then outlines how mouse and rat models have been used to study P2X7. These sections include discussions on preclinical disease models, polymorphic P2X7 variants, P2X7 knockout mice (including bone marrow chimeras and conditional knockouts), P2X7 reporter mice, humanized P2X7 mice and P2X7 knockout rats. Finally, this article reviews the limited number of studies involving guinea pigs, rabbits, monkeys (rhesus macaques), dogs, cats, zebrafish, and other fish species (seabream, ayu sweetfish, rainbow trout and Japanese flounder) to study P2X7.
Collapse
Affiliation(s)
- Ronald Sluyter
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Sahil Adriouch
- UniRouen, INSERM, U1234, Pathophysiology, Autoimmunity, and Immunotherapy, (PANTHER), Univ Rouen Normandie, University of Rouen, F-76000 Rouen, France
| | - Stephen J Fuller
- Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Nepean Hospital, Kingswood, NSW 2750, Australia
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, 80336 Munich, Germany
| | - Reece A Sophocleous
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Debbie Watson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|
2
|
The Ketogenic Diet and Neuroinflammation: The Action of Beta-Hydroxybutyrate in a Microglial Cell Line. Int J Mol Sci 2023; 24:ijms24043102. [PMID: 36834515 PMCID: PMC9967444 DOI: 10.3390/ijms24043102] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
The ketogenic diet (KD), a diet high in fat and protein but low in carbohydrates, is gaining much interest due to its positive effects, especially in neurodegenerative diseases. Beta-hydroxybutyrate (BHB), the major ketone body produced during the carbohydrate deprivation that occurs in KD, is assumed to have neuroprotective effects, although the molecular mechanisms responsible for these effects are still unclear. Microglial cell activation plays a key role in the development of neurodegenerative diseases, resulting in the production of several proinflammatory secondary metabolites. The following study aimed to investigate the mechanisms by which BHB determines the activation processes of BV2 microglial cells, such as polarization, cell migration and expression of pro- and anti-inflammatory cytokines, in the absence or in the presence of lipopolysaccharide (LPS) as a proinflammatory stimulus. The results showed that BHB has a neuroprotective effect in BV2 cells, inducing both microglial polarization towards an M2 anti-inflammatory phenotype and reducing migratory capacity following LPS stimulation. Furthermore, BHB significantly reduced expression levels of the proinflammatory cytokine IL-17 and increased levels of the anti-inflammatory cytokine IL-10. From this study, it can be concluded that BHB, and consequently the KD, has a fundamental role in neuroprotection and prevention in neurodegenerative diseases, presenting new therapeutic targets.
Collapse
|
3
|
Alberto AVP, Ferreira NCDS, Bonavita AGC, Nihei OK, de Farias FP, Bisaggio RDC, de Albuquerque C, Savino W, Coutinho‐Silva R, Persechini PM, Alves LA. Physiologic roles of P2 receptors in leukocytes. J Leukoc Biol 2022; 112:983-1012. [PMID: 35837975 PMCID: PMC9796137 DOI: 10.1002/jlb.2ru0421-226rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/13/2022] [Indexed: 01/01/2023] Open
Abstract
Since their discovery in the 1970s, purinergic receptors have been shown to play key roles in a wide variety of biologic systems and cell types. In the immune system, purinergic receptors participate in innate immunity and in the modulation of the adaptive immune response. In particular, P2 receptors, which respond to extracellular nucleotides, are widely expressed on leukocytes, causing the release of cytokines and chemokines and the formation of inflammatory mediators, and inducing phagocytosis, degranulation, and cell death. The activity of these receptors is regulated by ectonucleotidases-expressed in these same cell types-which regulate the availability of nucleotides in the extracellular environment. In this article, we review the characteristics of the main purinergic receptor subtypes present in the immune system, focusing on the P2 family. In addition, we describe the physiologic roles of the P2 receptors already identified in leukocytes and how they can positively or negatively modulate the development of infectious diseases, inflammation, and pain.
Collapse
Affiliation(s)
- Anael Viana Pinto Alberto
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil
| | | | | | - Oscar Kenji Nihei
- Center of Education and LetterState University of the West of ParanáFoz do IguaçuPRBrazil
| | | | - Rodrigo da Cunha Bisaggio
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil,Federal Institute of Education, Science, and Technology of Rio de JaneiroRio de JaneiroRJBrazil
| | | | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil,Brazilian National Institute of Science and Technology on NeuroimmunomodulationRio de Janeiro Research Network on NeuroinflammationRio de JaneiroRJBrazil
| | - Robson Coutinho‐Silva
- Laboratory of Immunophysiology, Carlos Chagas Filho Biophysics InstituteFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Pedro Muanis Persechini
- Laboratory of Immunobiophysics, Carlos Chagas Filho Biophysics InstituteFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Luiz Anastacio Alves
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil
| |
Collapse
|
4
|
Timmerman R, Zuiderwijk-Sick EA, Bajramovic JJ. P2Y6 receptor-mediated signaling amplifies TLR-induced pro-inflammatory responses in microglia. Front Immunol 2022; 13:967951. [PMID: 36203578 PMCID: PMC9531012 DOI: 10.3389/fimmu.2022.967951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/25/2022] [Indexed: 11/22/2022] Open
Abstract
TLR-induced signaling initiates inflammatory responses in cells of the innate immune system. These responses are amongst others characterized by the secretion of high levels of pro-inflammatory cytokines, which are tightly regulated and adapted to the microenvironment. Purinergic receptors are powerful modulators of TLR-induced responses, and we here characterized the effects of P2Y6 receptor (P2RY6)-mediated signaling on TLR responses of rhesus macaque primary bone marrow-derived macrophages (BMDM) and microglia, using the selective P2RY6 antagonist MRS2578. We demonstrate that P2RY6-mediated signaling enhances the levels of TLR-induced pro-inflammatory cytokines in microglia in particular. TLR1, 2, 4, 5 and 8-induced responses were all enhanced in microglia, whereas such effects were much less pronounced in BMDM from the same donors. Transcriptome analysis revealed that the overall contribution of P2RY6-mediated signaling to TLR-induced responses in microglia leads to an amplification of pro-inflammatory responses. Detailed target gene analysis predicts that P2RY6-mediated signaling regulates the expression of these genes via modulation of the activity of transcription factors NFAT, IRF and NF-κB. Interestingly, we found that the expression levels of heat shock proteins were strongly induced by inhibition of P2RY6-mediated signaling, both under homeostatic conditions as well as after TLR engagement. Together, our results shed new lights on the specific pro-inflammatory contribution of P2RY6-mediated signaling in neuroinflammation, which might open novel avenues to control brain inflammatory responses.
Collapse
|
5
|
Sarkar S. Microglial ion channels: Key players in non-cell autonomous neurodegeneration. Neurobiol Dis 2022; 174:105861. [PMID: 36115552 PMCID: PMC9617777 DOI: 10.1016/j.nbd.2022.105861] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/26/2022] [Accepted: 09/12/2022] [Indexed: 12/03/2022] Open
Abstract
Neuroinflammation is a critical pathophysiological hallmark of neurodegenerative disorders, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and traumatic brain injury (TBI). Microglia, the first responders of the brain, are the drivers of this neuroinflammation. Microglial activation, leading to induction of pro-inflammatory factors, like Interleukin 1-β (IL-1β), Tumor necrosis factor-α (TNFα), nitrites, and others, have been shown to induce neurodegeneration. Non-steroidal anti-inflammatory drugs (NSAIDs) have been shown to reduce the risk of developing PD, but the mechanism underlying the microglial activation is still under active research. Recently, microglial ion channels have come to the forefront as potential drug targets in multiple neurodegenerative disorders, including AD and PD. Microglia expresses a variety of ion channels, including potassium channels, calcium channels, chloride channels, sodium channels, and proton channels. The diversity of channels present on microglia is responsible for the dynamic nature of these immune cells of the brain. These ion channels regulate microglial proliferation, chemotaxis, phagocytosis, antigen recognition and presentation, apoptosis, and cell signaling leading to inflammation, among other critical functions. Understanding the role of these ion channels and the signaling mechanism these channels regulate under pathological conditions is an active area of research. This review will be focusing on the roles of different microglial ion channels, and their potential role in regulating microglial functions in neurodegenerative disorders.
Collapse
Affiliation(s)
- Souvarish Sarkar
- Dept. of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Blocking connexin 43 and its promotion of ATP release from renal tubular epithelial cells ameliorates renal fibrosis. Cell Death Dis 2022; 13:511. [PMID: 35641484 PMCID: PMC9156700 DOI: 10.1038/s41419-022-04910-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 02/08/2023]
Abstract
Whether metabolites derived from injured renal tubular epithelial cells (TECs) participate in renal fibrosis is poorly explored. After TEC injury, various metabolites are released and among the most potent is adenosine triphosphate (ATP), which is released via ATP-permeable channels. In these hemichannels, connexin 43 (Cx43) is the most common member. However, its role in renal interstitial fibrosis (RIF) has not been fully examined. We analyzed renal samples from patients with obstructive nephropathy and mice with unilateral ureteral obstruction (UUO). Cx43-KSP mice were generated to deplete Cx43 in TECs. Through transcriptomics, metabolomics, and single-cell sequencing multi-omics analysis, the relationship among tubular Cx43, ATP, and macrophages in renal fibrosis was explored. The expression of Cx43 in TECs was upregulated in both patients and mice with obstructive nephropathy. Knockdown of Cx43 in TECs or using Cx43-specific inhibitors reduced UUO-induced inflammation and fibrosis in mice. Single-cell RNA sequencing showed that ATP specific receptors, including P2rx4 and P2rx7, were distributed mainly on macrophages. We found that P2rx4- or P2rx7-positive macrophages underwent pyroptosis after UUO, and in vitro ATP directly induced pyroptosis by macrophages. The administration of P2 receptor or P2X7 receptor blockers to UUO mice inhibited macrophage pyroptosis and demonstrated a similar degree of renoprotection as Cx43 genetic depletion. Further, we found that GAP 26 (a Cx43 hemichannel inhibitor) and A-839977 (an inhibitor of the pyroptosis receptor) alleviated UUO-induced fibrosis, while BzATP (the agonist of pyroptosis receptor) exacerbated fibrosis. Single-cell sequencing demonstrated that the pyroptotic macrophages upregulated the release of CXCL10, which activated intrarenal fibroblasts. Cx43 mediates the release of ATP from TECs during renal injury, inducing peritubular macrophage pyroptosis, which subsequently leads to the release of CXCL10 and activation of intrarenal fibroblasts and acceleration of renal fibrosis.
Collapse
|
7
|
Galloway DA, Carew SJ, Blandford SN, Benoit RY, Fudge N, Berry T, Moore GRW, Barron J, Moore CS. Investigating the NLRP3 Inflammasome and its Regulator miR-223-3p in Multiple Sclerosis and Experimental Demyelination. J Neurochem 2022; 163:94-112. [PMID: 35633501 DOI: 10.1111/jnc.15650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
Abstract
Innate immune signalling pathways are essential mediators of inflammation and repair following myelin injury. Inflammasome activation has recently been implicated as a driver of myelin injury in multiple sclerosis (MS) and its animal models, although the regulation and contributions of inflammasome activation in the demyelinated central nervous system (CNS) are not completely understood. Herein, we investigated the NLRP3 (NBD-, LRR- and pyrin domain-containing protein 3) inflammasome and its endogenous regulator microRNA-223-3p within the demyelinated CNS in both MS and an animal model of focal demyelination. We observed that NLRP3 inflammasome components and microRNA-223-3p were upregulated at sites of myelin injury within activated macrophages and microglia. Both microRNA-223-3p and a small-molecule NLRP3 inhibitor, MCC950, supressed inflammasome activation in macrophages and microglia in vitro; compared with microglia, macrophages were more prone to inflammasome activation in vitro. Finally, systemic delivery of MCC950 to mice following lysolecithin-induced demyelination resulted in a significant reduction in axonal injury within demyelinated lesions. In conclusion, we demonstrate that NLRP3 inflammasome activity by macrophages and microglia is a critical component of the inflammatory microenvironment following demyelination and represents a potential therapeutic target for inflammatory-mediated demyelinating diseases, including MS.
Collapse
Affiliation(s)
- Dylan A Galloway
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Newfoundland and Labrador, 300 Prince Philip Drive, St. John's, A1B 3V6, Canada
| | - Samantha J Carew
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Newfoundland and Labrador, 300 Prince Philip Drive, St. John's, A1B 3V6, Canada
| | - Stephanie N Blandford
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Newfoundland and Labrador, 300 Prince Philip Drive, St. John's, A1B 3V6, Canada
| | - Rochelle Y Benoit
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Newfoundland and Labrador, 300 Prince Philip Drive, St. John's, A1B 3V6, Canada
| | - Neva Fudge
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Newfoundland and Labrador, 300 Prince Philip Drive, St. John's, A1B 3V6, Canada
| | - Tangyne Berry
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Newfoundland and Labrador, 300 Prince Philip Drive, St. John's, A1B 3V6, Canada
| | - G R Wayne Moore
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver British Columbia, Canada
| | - Jane Barron
- Discipline of Laboratory Medicine, Faculty of Medicine, Memorial University of Newfoundland, St. John's Newfoundland and Labrador, Canada
| | - Craig S Moore
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Newfoundland and Labrador, 300 Prince Philip Drive, St. John's, A1B 3V6, Canada.,Discipline of Medicine (Neurology), Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
8
|
Timmerman R, Zuiderwijk-Sick EA, Oosterhof N, 't Jong AEJ, Veth J, Burm SM, van Ham TJ, Bajramovic JJ. Transcriptome analysis reveals the contribution of oligodendrocyte and radial glia-derived cues for maintenance of microglia identity. Glia 2021; 70:728-747. [PMID: 34961968 DOI: 10.1002/glia.24136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/26/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022]
Abstract
Microglia are increasingly being recognized as druggable targets in neurodegenerative disorders, and good in vitro models are crucial to address cell biological questions. Major challenges are to recapitulate the complex microglial morphology and their in vivo transcriptome. We have therefore exposed primary microglia from adult rhesus macaques to a variety of different culture conditions including exposure to soluble factors as M-CSF, IL-34, and TGF-β as well as serum replacement approaches, and compared their morphologies and transcriptomes to those of mature, homeostatic in vivo microglia. This enabled us to develop a new, partially serum-free, monoculture protocol, that yields high numbers of ramified cells. We also demonstrate that exposure of adult microglia to M-CSF or IL-34 induces similar transcriptomes, and that exposure to TGF-β has much less pronounced effects than it does on rodent microglia. However, regardless of culture conditions, the transcriptomes of in vitro and in vivo microglia remained substantially different. Analysis of differentially expressed genes inspired us to perform 3D-spherical coculture experiments of microglia with oligodendrocytes and radial glia. In such spheres, microglia signature genes were strongly induced, even in the absence of neurons and astrocytes. These data reveal a novel role for oligodendrocyte and radial glia-derived cues in the maintenance of microglial identity, providing new anchor points to study microglia in health and disease.
Collapse
Affiliation(s)
- Raissa Timmerman
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | | | - Nynke Oosterhof
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Anke E J 't Jong
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Jennifer Veth
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Saskia M Burm
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Tjakko J van Ham
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jeffrey J Bajramovic
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| |
Collapse
|
9
|
MicroRNA-133b-3p targets purinergic P2X4 receptor to regulate central poststroke pain in rats. Neuroscience 2021; 481:60-72. [PMID: 34688806 DOI: 10.1016/j.neuroscience.2021.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/10/2023]
Abstract
Central poststroke pain (CPSP) is a neuropathic pain syndrome that usually occurs after cerebrovascular accidents. Currently, the pathogenesis of CPSP is not fully understood. Purinergic P2X4 receptor (P2X4R) is implicated in neuropathic pain including CPSP. Herein, we demonstrated that the levels of microRNA-133b-3p (miR-133b-3p), which targets P2X4R transcripts, were significantly downregulated in the ventral posterolateral nucleus of the thalamus (VPL), cerebrospinal fluid (CSF), and plasma of CPSP rats. The expression levels of miR-133b-3p negatively correlated with the severity of allodynia. Genetic knockdown of P2X4R in the VPL protected CPSP rats against allodynia. Similarly, genetic overexpression of miR-133b-3p in the VPL reversed the allodynia established in CPSP rats via downregulation of P2X4R expression. Treatment using gabapentin in CPSP rats significantly restored the decreased miR-133b-3p expression in the VPL, CSF, and plasma and blocked allodynia in CPSP rats. The administration of an miR-133b-3p inhibitor into the VPL abolished the antiallodynic activity of gabapentin. This mechanism was associated with P2X4R expression and involved the endogenous opioid system. Human patients with CPSP showed decreased plasma levels of miR-133b-3p compared with those of control participants. Logistic regression analysis of our patient cohort showed that determining plasma levels of miR-133b-3p may be useful for CPSP diagnosis and treatment.
Collapse
|
10
|
Kanellopoulos JM, Almeida-da-Silva CLC, Rüütel Boudinot S, Ojcius DM. Structural and Functional Features of the P2X4 Receptor: An Immunological Perspective. Front Immunol 2021; 12:645834. [PMID: 33897694 PMCID: PMC8059410 DOI: 10.3389/fimmu.2021.645834] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular nucleotides are important mediators of activation, triggering various responses through plasma membrane P2 and P1 receptors. P2 receptors are further subdivided into ionotropic P2X receptors and G protein-coupled P2Y receptors. P2X4 is an ATP-gated cation channel broadly expressed in most tissues of the body. Within the P2X family, P2X4 has a unique subcellular distribution, being preferentially localized in lysosomes. In these organelles, high ATP concentrations do not trigger P2X4 because of the low pH. However, when the pH increases to 7.4, P2X4 can be stimulated by intra-lysosomal ATP, which is in its active, tetra-anionic form. Elucidation of P2X4, P2X3 and P2X7 structures has shed some light on the functional differences between these purinergic receptors. The potential interaction between P2X4 and P2X7 has been extensively studied. Despite intensive effort, it has not been possible yet to determine whether P2X4 and P2X7 interact as heterotrimers or homotrimers at the plasma membrane. However, several publications have shown that functional interactions between P2X4 and P2X7 do occur. Importantly, these studies indicate that P2X4 potentiates P2X7-dependent activation of inflammasomes, leading to increased release of IL-1β and IL-18. The role of P2X4 in various diseases could be beneficial or deleterious even though the pathophysiological mechanisms involved are still poorly defined. However, in diseases whose physiopathology involves activation of the NLRP3 inflammasome, P2X4 was found to exacerbate severity of disease. The recent production of monoclonal antibodies specific for the human and mouse P2X4, some of which are endowed with agonist or antagonist properties, raises the possibility that they could be used therapeutically. Analysis of single nucleotide polymorphisms of the human P2RX4 gene has uncovered the association of P2RX4 gene variants with susceptibility to several human diseases.
Collapse
Affiliation(s)
- Jean M Kanellopoulos
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - Sirje Rüütel Boudinot
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA, United States
| |
Collapse
|
11
|
Campagno KE, Mitchell CH. The P2X 7 Receptor in Microglial Cells Modulates the Endolysosomal Axis, Autophagy, and Phagocytosis. Front Cell Neurosci 2021; 15:645244. [PMID: 33790743 PMCID: PMC8005553 DOI: 10.3389/fncel.2021.645244] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/22/2021] [Indexed: 01/18/2023] Open
Abstract
Microglial cells regulate neural homeostasis by coordinating both immune responses and clearance of debris, and the P2X7 receptor for extracellular ATP plays a central role in both functions. The P2X7 receptor is primarily known in microglial cells for its immune signaling and NLRP3 inflammasome activation. However, the receptor also affects the clearance of extracellular and intracellular debris through modifications of lysosomal function, phagocytosis, and autophagy. In the absence of an agonist, the P2X7 receptor acts as a scavenger receptor to phagocytose material. Transient receptor stimulation induces autophagy and increases LC3-II levels, likely through calcium-dependent phosphorylation of AMPK, and activates microglia to an M1 or mixed M1/M2 state. We show an increased expression of Nos2 and Tnfa and a decreased expression of Chil3 (YM1) from primary cultures of brain microglia exposed to high levels of ATP. Sustained stimulation can reduce lysosomal function in microglia by increasing lysosomal pH and slowing autophagosome-lysosome fusion. P2X7 receptor stimulation can also cause lysosomal leakage, and the subsequent rise in cytoplasmic cathepsin B activates the NLRP3 inflammasome leading to caspase-1 cleavage and IL-1β maturation and release. Support for P2X7 receptor activation of the inflammasome following lysosomal leakage comes from data on primary microglia showing IL-1β release following receptor stimulation is inhibited by cathepsin B blocker CA-074. This pathway bridges endolysosomal and inflammatory roles and may provide a key mechanism for the increased inflammation found in age-dependent neurodegenerations characterized by excessive lysosomal accumulations. Regardless of whether the inflammasome is activated via this lysosomal leakage or the better-known K+-efflux pathway, the inflammatory impact of P2X7 receptor stimulation is balanced between the autophagic reduction of inflammasome components and their increase following P2X7-mediated priming. In summary, the P2X7 receptor modulates clearance of extracellular debris by microglial cells and mediates lysosomal damage that can activate the NLRP3 inflammasome. A better understanding of how the P2X7 receptor alters phagocytosis, lysosomal health, inflammation, and autophagy can lead to therapies that balance the inflammatory and clearance roles of microglial cells.
Collapse
Affiliation(s)
- Keith E Campagno
- Department of Basic and Translational Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Claire H Mitchell
- Department of Basic and Translational Science, University of Pennsylvania, Philadelphia, PA, United States.,Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, United States.,Department of Physiology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
12
|
Timmerman R, Burm SM, Bajramovic JJ. Tissue-specific features of microglial innate immune responses. Neurochem Int 2020; 142:104924. [PMID: 33248205 DOI: 10.1016/j.neuint.2020.104924] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/21/2020] [Accepted: 11/22/2020] [Indexed: 02/07/2023]
Abstract
As tissue-resident macrophages of the brain, microglia are increasingly considered as cellular targets for therapeutical intervention. Innate immune responses in particular have been implicated in central nervous system (CNS) infections, neuro-oncology, neuroinflammatory and neurodegenerative diseases. We here review the impact of 'nature and nurture' on microglial innate immune responses and summarize documented tissue-specific adaptations. Overall, such adaptations are associated with regulatory processes rather than with overt differences in the expressed repertoire of activating receptors of different tissue-resident macrophages. Microglial responses are characterized by slower kinetics, by a more persistent nature and by a differential usage of downstream enzymes and accessory receptors. We further consider factors like aging, previous exposure to inflammatory stimuli, and differences in the microenvironment that can modulate innate immune responses. The long-life span of microglia in the metabolically active CNS renders them susceptible to the phenomenon of 'inflammaging', and major challenges lie in the unraveling of the factors that underlie age-related alterations in microglial behavior.
Collapse
Affiliation(s)
- R Timmerman
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, the Netherlands
| | - S M Burm
- Genmab, Utrecht, the Netherlands
| | - J J Bajramovic
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, the Netherlands.
| |
Collapse
|
13
|
Zhang WJ, Zhu ZM, Liu ZX. The role of P2X4 receptor in neuropathic pain and its pharmacological properties. Pharmacol Res 2020; 158:104875. [PMID: 32407956 DOI: 10.1016/j.phrs.2020.104875] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/02/2020] [Accepted: 04/24/2020] [Indexed: 12/21/2022]
Abstract
Neuropathic pain (NPP) is a common symptom of most diseases in clinic, which seriously affects the mental health of patients and brings certain pain to patients. Due to its pathological mechanism is very complicated, and thus, its treatment has been one of the challenges in the field of medicine. Therefore, exploring the pathogenesis and treatment approach of NPP has aroused the interest of many researchers. ATP is an important energy information substance, which participates in the signal transmission in the body. The P2 × 4 receptor (P2 × 4R) is dependent on ATP ligand-gated cationic channel receptor, which can be activated by ATP and plays an important role in the transmission of information in the nervous system and the formation of pain. In this paper, we provide a comprehensive review of the structure and function of the P2 × 4R gene. We also discuss the pathogenesis of NPP and the intrinsic relationship between P2 × 4R and NPP. Moreover, we explore the pharmacological properties of P2 × 4R antagonists or inhibitors used as targeted therapies for NPP.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| | - Zheng-Ming Zhu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| | - Zeng-Xu Liu
- Basic Medicine, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| |
Collapse
|
14
|
Abstract
The mammalian CNS is an intricate and fragile structure, which on one hand is open to change in order to store information, but on the other hand is vulnerable to damage from injury, pathogen invasion or neurodegeneration. During senescence and neurodegeneration, activation of the innate immune system can occur. Inflammasomes are signalling complexes that regulate cells of the immune system, which in the brain mainly includes microglial cells. In microglia, the NLRP3 (NOD-, LRR- and pyrin domain-containing 3) inflammasome becomes activated when these cells sense proteins such as misfolded or aggregated amyloid-β, α-synuclein and prion protein or superoxide dismutase, ATP and members of the complement pathway. Several other inflammasomes have been described in microglia and the other cells of the brain, including astrocytes and neurons, where their activation and subsequent caspase 1 cleavage contribute to disease development and progression.
Collapse
|
15
|
Martin E, Amar M, Dalle C, Youssef I, Boucher C, Le Duigou C, Brückner M, Prigent A, Sazdovitch V, Halle A, Kanellopoulos JM, Fontaine B, Delatour B, Delarasse C. New role of P2X7 receptor in an Alzheimer's disease mouse model. Mol Psychiatry 2019; 24:108-125. [PMID: 29934546 PMCID: PMC6756107 DOI: 10.1038/s41380-018-0108-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 05/14/2018] [Accepted: 06/05/2018] [Indexed: 01/05/2023]
Abstract
Extracellular aggregates of amyloid β (Aβ) peptides, which are characteristic of Alzheimer's disease (AD), act as an essential trigger for glial cell activation and the release of ATP, leading to the stimulation of purinergic receptors, especially the P2X7 receptor (P2X7R). However, the involvement of P2X7R in the development of AD is still ill-defined regarding the dual properties of this receptor. Particularly, P2X7R activates the NLRP3 inflammasome leading to the release of the pro-inflammatory cytokine, IL-1β; however, P2X7R also induces cleavage of the amyloid precursor protein generating Aβ peptides or the neuroprotective fragment sAPPα. We thus explored in detail the functions of P2X7R in AD transgenic mice. Here, we show that P2X7R deficiency reduced Aβ lesions, rescued cognitive deficits and improved synaptic plasticity in AD mice. However, the lack of P2X7R did not significantly affect the release of IL-1β or the levels of non-amyloidogenic fragment, sAPPα, in AD mice. Instead, our results show that P2X7R plays a critical role in Aβ peptide-mediated release of chemokines, particularly CCL3, which is associated with pathogenic CD8+ T cell recruitment. In conclusion, our study highlights a novel detrimental function of P2X7R in chemokine release and supports the notion that P2X7R may be a promising therapeutic target for AD.
Collapse
Affiliation(s)
- Elodie Martin
- Inserm, CNRS, Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Majid Amar
- Inserm, CNRS, Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Carine Dalle
- Inserm, CNRS, Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Ihsen Youssef
- Inserm, CNRS, Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Céline Boucher
- Inserm, CNRS, Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Caroline Le Duigou
- Inserm, CNRS, Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Matthias Brückner
- 0000 0004 0550 9586grid.438114.bCenter of Advanced European Studies and Research (caesar), Max Planck research group Neuroimmunology, 53175 Bonn, Germany
| | - Annick Prigent
- Inserm, CNRS, Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Véronique Sazdovitch
- Inserm, CNRS, Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France ,0000 0001 2150 9058grid.411439.aAP-HP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France
| | - Annett Halle
- 0000 0004 0550 9586grid.438114.bCenter of Advanced European Studies and Research (caesar), Max Planck research group Neuroimmunology, 53175 Bonn, Germany ,0000 0004 0438 0426grid.424247.3Present Address: German Center for Neurodegenerative Diseases, 53127 Bonn, Germany
| | - Jean M. Kanellopoulos
- 0000 0001 2171 2558grid.5842.bInstitut de Biologie Intégrative, I2BC-CNRS 9198, Department of Biochemistry Biophysics and Structural Biology, Université Paris-Sud, 91405 Orsay, France
| | - Bertrand Fontaine
- Inserm, CNRS, Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France ,0000 0001 2150 9058grid.411439.aAP-HP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France
| | - Benoît Delatour
- Inserm, CNRS, Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Cécile Delarasse
- Inserm, CNRS, Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.
| |
Collapse
|
16
|
Timmerman R, Burm SM, Bajramovic JJ. An Overview of in vitro Methods to Study Microglia. Front Cell Neurosci 2018; 12:242. [PMID: 30127723 PMCID: PMC6087748 DOI: 10.3389/fncel.2018.00242] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/18/2018] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is a common feature in neurodegenerative diseases and strategies to modulate neuroinflammatory processes are increasingly considered as therapeutic options. In such strategies, glia cells rather than neurons represent the cellular targets. Microglia, the resident macrophages of the central nervous system, are principal players in neuroinflammation and detailed cellular biological knowledge of this particular cell type is therefore of pivotal importance. The last decade has shed new light on the origin, characteristics and functions of microglia, underlining the need for specific in vitro methodology to study these cells in detail. In this review we provide a comprehensive overview of existing methodology such as cell lines, stem cell-derived microglia and primary dissociated cell cultures, as well as discuss recent developments. As there is no in vitro method available yet that recapitulates all hallmarks of adult homeostatic microglia, we also discuss the advantages and limitations of existing models across different species.
Collapse
Affiliation(s)
- Raissa Timmerman
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | | | | |
Collapse
|
17
|
Zhu G, Chen Z, Dai B, Zheng C, Jiang H, Xu Y, Sheng X, Guo J, Dan Y, Liang S, Li G. Chronic lead exposure enhances the sympathoexcitatory response associated with P2X4 receptor in rat stellate ganglia. ENVIRONMENTAL TOXICOLOGY 2018; 33:631-639. [PMID: 29457680 DOI: 10.1002/tox.22547] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/25/2018] [Accepted: 02/03/2018] [Indexed: 06/08/2023]
Abstract
Chronic lead exposure causes peripheral sympathetic nerve stimulation, including increased blood pressure and heart rate. Purinergic receptors are involved in the sympathoexcitatory response induced by myocardial ischemia injury. However, whether P2X4 receptor participates in sympathoexcitatory response induced by chronic lead exposure and the possible mechanisms are still unknown. The aim of this study was to explore the change of the sympathoexcitatory response induced by chronic lead exposure via the P2X4 receptor in the stellate ganglion (SG). Rats were given lead acetate through drinking water freely at doses of 0 g/L (control group), 0.5 g/L (low lead group), and 2 g/L (high lead group) for 1 year. Our results demonstrated that lead exposure caused autonomic nervous dysfunction, including blood pressure and heart rate increased and heart rate variability (HRV) decreased. Western blotting results indicated that after lead exposure, the protein expression levels in the SG of P2X4 receptor, IL-1β and Cx43 were up-regulated, the phosphorylation of p38 mitogen-activated protein kinase (MAPK) was activated. Real-time PCR results showed that the mRNA expression of P2X4 receptor in the SG was higher in lead exposure group than that in the control group. Double-labeled immunofluorescence results showed that P2X4 receptor was co-expressed with glutamine synthetase (GS), the marker of satellite glial cells (SGCs). These changes were positively correlated with the dose of lead exposure. The up-regulated expression of P2X4 receptor in SGCs of the SG maybe enhance the sympathoexcitatory response induced by chronic lead exposure.
Collapse
Affiliation(s)
- Gaochun Zhu
- Department of Anatomy, Medical College of Nanchang University, Nanchang, China
| | - Zhenying Chen
- The Fourth Clinical, Medical College of Nanchang University, Nanchang, China
| | - Bo Dai
- The Fourth Clinical, Medical College of Nanchang University, Nanchang, China
| | - Chaoran Zheng
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
| | - Huaide Jiang
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
| | - Yurong Xu
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
| | - Xuan Sheng
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
| | - Jingjing Guo
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
| | - Yu Dan
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
| | - Shangdong Liang
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
| | - Guilin Li
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
| |
Collapse
|
18
|
Callis TB, Reekie TA, O'Brien-Brown J, Wong EC, Werry EL, Elias N, Jorgensen WT, Tsanaktsidis J, Rendina LM, Kassiou M. The role of polycyclic frameworks in modulating P2X7 receptor function. Tetrahedron 2018. [DOI: 10.1016/j.tet.2017.10.075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Takarada-Iemata M, Yoshikawa A, Ta HM, Okitani N, Nishiuchi T, Aida Y, Kamide T, Hattori T, Ishii H, Tamatani T, Le TM, Roboon J, Kitao Y, Matsuyama T, Nakada M, Hori O. N-myc downstream-regulated gene 2 protects blood-brain barrier integrity following cerebral ischemia. Glia 2018; 66:1432-1446. [PMID: 29476556 DOI: 10.1002/glia.23315] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 12/22/2017] [Accepted: 02/09/2018] [Indexed: 11/10/2022]
Abstract
Disruption of the blood-brain barrier (BBB) following cerebral ischemia is closely related to the infiltration of peripheral cells into the brain, progression of lesion formation, and clinical exacerbation. However, the mechanism that regulates BBB integrity, especially after permanent ischemia, remains unclear. Here, we present evidence that astrocytic N-myc downstream-regulated gene 2 (NDRG2), a differentiation- and stress-associated molecule, may function as a modulator of BBB permeability following ischemic stroke, using a mouse model of permanent cerebral ischemia. Immunohistological analysis showed that the expression of NDRG2 increases dominantly in astrocytes following permanent middle cerebral artery occlusion (MCAO). Genetic deletion of Ndrg2 exhibited enhanced levels of infarct volume and accumulation of immune cells into the ipsilateral brain hemisphere following ischemia. Extravasation of serum proteins including fibrinogen and immunoglobulin, after MCAO, was enhanced at the ischemic core and perivascular region of the peri-infarct area in the ipsilateral cortex of Ndrg2-deficient mice. Furthermore, the expression of matrix metalloproteinases (MMPs) after MCAO markedly increased in Ndrg2-/- mice. In culture, expression and secretion of MMP-3 was increased in Ndrg2-/- astrocytes, and this increase was reversed by adenovirus-mediated re-expression of NDRG2. These findings suggest that NDRG2, expressed in astrocytes, may play a critical role in the regulation of BBB permeability and immune cell infiltration through the modulation of MMP expression following cerebral ischemia.
Collapse
Affiliation(s)
- Mika Takarada-Iemata
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Akifumi Yoshikawa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hieu Minh Ta
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Nahoko Okitani
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Takumi Nishiuchi
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yasuhiro Aida
- Department of Neurosurgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Tomoya Kamide
- Department of Neurosurgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Tsuyoshi Hattori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Hiroshi Ishii
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Takashi Tamatani
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Thuong Manh Le
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Jureepon Roboon
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yasuko Kitao
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Tomohiro Matsuyama
- Laboratory of Neurogenesis and CNS Repair, Institute for Advanced Medical Sciences, Hyogo College of Medicine, 1-1 Mukogawa-Machi, Nishinomiya, Hyogo, 663-8501, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Osamu Hori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8640, Japan
| |
Collapse
|
20
|
Huang C, Wang P, Xu X, Zhang Y, Gong Y, Hu W, Gao M, Wu Y, Ling Y, Zhao X, Qin Y, Yang R, Zhang W. The ketone body metabolite β-hydroxybutyrate induces an antidepression-associated ramification of microglia via HDACs inhibition-triggered Akt-small RhoGTPase activation. Glia 2017; 66:256-278. [PMID: 29058362 DOI: 10.1002/glia.23241] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 12/27/2022]
Abstract
Direct induction of macrophage ramification has been shown to promote an alternative (M2) polarization, suggesting that the ramified morphology may determine the function of immune cells. The ketone body metabolite β-hydroxybutyrate (BHB) elevated in conditions including fasting and low-carbohydrate ketogenic diet (KD) can reduce neuroinflammation. However, how exactly BHB impacts microglia remains unclear. We report that BHB as well as its producing stimuli fasting and KD induced obvious ramifications of murine microglia in basal and inflammatory conditions in a reversible manner, and these ramifications were accompanied with microglial profile toward M2 polarization and phagocytosis. The protein kinase B (Akt)-small RhoGTPase axis was found to mediate the effect of BHB on microglial shape change, as (i) BHB activated the microglial small RhoGTPase (Rac1, Cdc42) and Akt; (ii) Akt and Rac1-Cdc42 inhibition abolished the pro-ramification effect of BHB; (iii) Akt inhibition prevented the activation of Rac1-Cdc42 induced by BHB treatment. Incubation of microglia with other classical histone deacetylases (HDACs) inhibitors, but not G protein-coupled receptor 109a (GPR109a) activators, also induced microglial ramification and Akt activation, suggesting that the BHB-induced ramification of microglia may be triggered by HDACs inhibition. Functionally, Akt inhibition was found to abrogate the effects of BHB on microglial polarization and phagocytosis. In neuroinflammatory models induced by lipopolysaccharide (LPS) or chronic unpredictable stress (CUS), BHB prevented the microglial process retraction and depressive-like behaviors, and these effects were abolished by Akt inhibition. Our findings for the first time showed that BHB exerts anti-inflammatory actions via promotion of microglial ramification.
Collapse
Affiliation(s)
- Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Peng Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Xing Xu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Yaru Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Yu Gong
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Wenfeng Hu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Minhui Gao
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Yue Wu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Yong Ling
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Xi Zhao
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Yibin Qin
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Jiangsu Province, #20 Xisi Road, Nantong, Jiangsu Province, 226001, China
| | - Rongrong Yang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Jiangsu Province, #20 Xisi Road, Nantong, Jiangsu Province, 226001, China
| | - Wei Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| |
Collapse
|
21
|
Asatryan L, Ostrovskaya O, Lieu D, Davies DL. Ethanol differentially modulates P2X4 and P2X7 receptor activity and function in BV2 microglial cells. Neuropharmacology 2017; 128:11-21. [PMID: 28943285 DOI: 10.1016/j.neuropharm.2017.09.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 09/05/2017] [Accepted: 09/21/2017] [Indexed: 01/02/2023]
Abstract
Neuroinflammation is one of the mechanisms leading to neurodegenerative brain damage induced by chronic alcohol (ethanol) exposure. Microglia play a major role in the development of innate immune responses to environmental injuries including ethanol. Adenosine 5″-triphosphate (ATP)-activated purinergic P2X receptor (P2XR) subtypes, P2X4Rs and P2X7Rs, are endogenously expressed in microglia and can modulate their activity. These 2 P2XR subtypes differ pharmacologically and functionally: 1) P2X4Rs are activated at lower (≤0.1 mM) whereas P2X7Rs - at higher (≥1.0 mM) ATP concentrations; 2) P2X4R activation contributes to the release of brain derived neurotrophic factor and its role in tactile allodynia and neuropathic pain is demonstrated; 3) Due to its role in the secretion of pro-inflammatory IL-1β, P2X7Rs have been implicated in the development of neurodegenerative pathologies, pain and morphine tolerance. To date, the roles of individual P2XR subtypes in ethanol effects on microglia and the functional consequences are not completely understood. Based on the existing knowledge on the pharmacological and functional differences between P2X4Rs and P2X7Rs, the present work tested the hypothesis that P2X4Rs and P2X7Rs play differential roles in ethanol action in microglia. Effects of ethanol on P2X4R and P2X7R activity, expression and functional consequences were determined using murine BV2 microglial cells. Ethanol (≥100 mM) inhibited P2X4Rs but was inactive on P2X7 channel activity. Ethanol (25, 100 mM) inhibited P2X4R-mediated microglia migration whereas it potentiated pore formation in P2X7Rs. Furthermore, ethanol (25, 100 mM) potentiated P2X7R-mediated IL-1β secretion from BV2 microglia. Ethanol also induced protein expression for both P2XR subtypes. Overall, the findings identify differential roles for P2X4Rs and P2X7Rs in regards to ethanol effects on microglia which may be linked to different stages of ethanol exposure.
Collapse
Affiliation(s)
- Liana Asatryan
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, United States.
| | - Olga Ostrovskaya
- Center for Learning and Memory, University of Texas at Austin, Austin, TX 78712, United States
| | - Dustin Lieu
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, United States
| | - Daryl L Davies
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, United States
| |
Collapse
|
22
|
Chen Q, Wu H, Tao J, Liu C, Deng Z, Liu Y, Chen G, Liu B, Xu C. Effect of naringin on gp120-induced injury mediated by P2X7 receptors in rat primary cultured microglia. PLoS One 2017; 12:e0183688. [PMID: 28832643 PMCID: PMC5568276 DOI: 10.1371/journal.pone.0183688] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/09/2017] [Indexed: 12/16/2022] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1) envelope glycoprotein 120 has been shown to activate microglia, causing release of inflammatory and toxic factors. The P2X7 receptor, primarily expressed on microglia, is closely associated with inflammation. Naringin, a plant bioflavonoid, has anti-inflammatory and anti-oxidative properties. We hypothesized that P2X7 receptor mediated gp120-induced injury in primary cultured microglia, and that naringin would have a protective effect. We showed that HIV-1 gp120 peptide (V3 loop, fragment 308–331) appeared to induce apoptosis of primary cultured microglia. However, there was a decrease of microglia apoptosis in gp120+naringin group compared with gp120 group. Using qPCR, Western blot, and immunofluorescence, we showed that gp120 stimulated expression of P2X7 mRNA and receptor protein, and this stimulation was inhibited by naringin. Treatment with gp120 increased concentrations of eATP, TNFα and IL-1β, and these effects were inhibited by naringin. Taken together, these results suggested that gp120 contributed to microglial cell injury and neurotoxic activity by up-regulating expression of P2X7, in a naringin-protective manner.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, P.R. China
| | - Hui Wu
- The Second Clinical Medical College of Nanchang University, Nanchang, P.R. China
| | - Jia Tao
- The Second Clinical Medical College of Nanchang University, Nanchang, P.R. China
| | - Chenglong Liu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, P.R. China
| | - Zeyu Deng
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, P.R. China
| | - Yang Liu
- The First Clinical Medical College of Nanchang University, Nanchang, P.R. China
| | - Guoqiao Chen
- The First Clinical Medical College of Nanchang University, Nanchang, P.R. China
| | - Baoyun Liu
- The First Clinical Medical College of Nanchang University, Nanchang, P.R. China
| | - Changshui Xu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, P.R. China
- * E-mail:
| |
Collapse
|
23
|
Wong ECN, Reekie TA, Werry EL, O'Brien-Brown J, Bowyer SL, Kassiou M. Pharmacological evaluation of a novel series of urea, thiourea and guanidine derivatives as P2X 7 receptor antagonists. Bioorg Med Chem Lett 2017; 27:2439-2442. [PMID: 28408229 DOI: 10.1016/j.bmcl.2017.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 12/16/2022]
Abstract
We report on P2X7 receptor antagonists based on a lead adamantly-cyanoguanidine-aryl moiety. We have investigated the importance of the central cyanoguanidine moiety by replacing it with urea, thiourea or guanidine moieties. We have also investigated the linker length between the central moiety and the aryl portion. All compounds were assessed for their inhibitory potency in a pore-formation dye uptake assay at the P2X7 receptor. None of the compounds resulted in an improved potency illustrating the importance of the cyanoguanidine moiety in this chemotype.
Collapse
Affiliation(s)
- Erick C N Wong
- School of Medical Sciences, The University of Sydney, NSW 2006, Australia
| | - Tristan A Reekie
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Eryn L Werry
- Faculty of Health Sciences, The University of Sydney, NSW 2006, Australia
| | | | - Sarah L Bowyer
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|