1
|
Boshta NM, Lewash M, Köse M, Namasivayam V, Sarkar S, Voss JH, Liedtke AJ, Junker A, Tian M, Stößel A, Rashed M, Mahal A, Merten N, Pegurier C, Hockemeyer J, Kostenis E, Müller CE. Discovery of Anthranilic Acid Derivatives as Antagonists of the Pro-Inflammatory Orphan G Protein-Coupled Receptor GPR17. J Med Chem 2024. [PMID: 39484825 DOI: 10.1021/acs.jmedchem.4c01755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The G protein-coupled receptor 17 (GPR17) is an orphan receptor involved in inflammatory diseases. GPR17 antagonists have been proposed for the treatment of multiple sclerosis due to their potential to induce remyelination. Potent, selective antagonists are required to enable target validation. In the present study, we describe the discovery of a novel class of GPR17 antagonists based on an anthranilic acid scaffold. The compounds' potencies were evaluated in calcium mobilization and radioligand binding assays, and structure-activity relationships were analyzed. Selected antagonists were additionally studied in cAMP and G protein activation assays. The most potent antagonists were 5-methoxy-2-(5-(3'-methoxy-[1,1'-biphenyl]-2-yl)furan-2-carboxamido)benzoic acid (52, PSB-22269, Ki 8.91 nM) and its 3'-trifluoromethyl analog (54, PSB-24040, Ki 83.2 nM). Receptor-ligand docking studies revealed that the compounds' binding site is characterized by positively charged arginine residues and a lipophilic pocket. These findings yield valuable insights into this poorly characterized receptor providing a basis for future drug development.
Collapse
Affiliation(s)
- Nader M Boshta
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Michael Lewash
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Meryem Köse
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Soumya Sarkar
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Jan H Voss
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Andy J Liedtke
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Anna Junker
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Maoqun Tian
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Anne Stößel
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Mahmoud Rashed
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Ahmed Mahal
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Nicole Merten
- Pharmaceutical Biology, University of Bonn, Nußallee 6, Bonn D-53115, Germany
| | | | - Jörg Hockemeyer
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Evi Kostenis
- Pharmaceutical Biology, University of Bonn, Nußallee 6, Bonn D-53115, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| |
Collapse
|
2
|
Raffaele S, Nguyen N, Milanese M, Mannella FC, Boccazzi M, Frumento G, Bonanno G, Abbracchio MP, Bonifacino T, Fumagalli M. Montelukast improves disease outcome in SOD1 G93A female mice by counteracting oligodendrocyte dysfunction and aberrant glial reactivity. Br J Pharmacol 2024; 181:3303-3326. [PMID: 38751168 DOI: 10.1111/bph.16408] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/19/2024] [Accepted: 03/08/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND AND PURPOSE Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive motor neuron (MN) loss and consequent muscle atrophy, for which no effective therapies are available. Recent findings reveal that disease progression is fuelled by early aberrant neuroinflammation and the loss of oligodendrocytes with neuroprotective and remyelinating properties. On this basis, pharmacological interventions capable of restoring a pro-regenerative local milieu and re-establish proper oligodendrocyte functions may be beneficial. EXPERIMENTAL APPROACH Here, we evaluated the in vivo therapeutic effects of montelukast (MTK), an antagonist of the oligodendroglial G protein-coupled receptor 17 (GPR17) and of cysteinyl-leukotriene receptor 1 (CysLT1R) receptors on microglia and astrocytes, in the SOD1G93A ALS mouse model. We chronically treated SOD1G93A mice with MTK, starting from the early symptomatic disease stage. Disease progression was assessed by behavioural and immunohistochemical approaches. KEY RESULTS Oral MTK treatment significantly extended survival probability, delayed body weight loss and ameliorated motor functionalityonly in female SOD1G93A mice. Noteworthy, MTK significantly restored oligodendrocyte maturation and induced significant changes in the reactive phenotype and morphological features of microglia/macrophages and astrocytes in the spinal cord of female SOD1G93A mice, suggesting enhanced pro-regenerative functions. Importantly, concomitant MN preservation has been detected after MTK administration. No beneficial effects were observed in male mice, highlighting a sex-based difference in the protective activity of MTK. CONCLUSIONS AND IMPLICATIONS Our results provide the first preclinical evidence indicating that repurposing of MTK, a safe and marketed anti-asthmatic drug, may be a promising sex-specific strategy for personalized ALS treatment.
Collapse
Affiliation(s)
- Stefano Raffaele
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Nhung Nguyen
- Department of Pharmacy, Unit of Pharmacology and Toxicology, Università degli Studi di Genova, Genoa, Italy
| | - Marco Milanese
- Department of Pharmacy, Unit of Pharmacology and Toxicology, Università degli Studi di Genova, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesca C Mannella
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Marta Boccazzi
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Giulia Frumento
- Department of Pharmacy, Unit of Pharmacology and Toxicology, Università degli Studi di Genova, Genoa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, Unit of Pharmacology and Toxicology, Università degli Studi di Genova, Genoa, Italy
| | - Maria P Abbracchio
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy, Unit of Pharmacology and Toxicology, Università degli Studi di Genova, Genoa, Italy
- Inter-University Center for the Promotion of the 3R Principles in Teaching and Research (Centro 3R), Pisa, Italy
| | - Marta Fumagalli
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
3
|
Marangon D, Castro e Silva JH, Cerrato V, Boda E, Lecca D. Oligodendrocyte Progenitors in Glial Scar: A Bet on Remyelination. Cells 2024; 13:1024. [PMID: 38920654 PMCID: PMC11202012 DOI: 10.3390/cells13121024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) represent a subtype of glia, giving rise to oligodendrocytes, the myelin-forming cells in the central nervous system (CNS). While OPCs are highly proliferative during development, they become relatively quiescent during adulthood, when their fate is strictly influenced by the extracellular context. In traumatic injuries and chronic neurodegenerative conditions, including those of autoimmune origin, oligodendrocytes undergo apoptosis, and demyelination starts. Adult OPCs become immediately activated; they migrate at the lesion site and proliferate to replenish the damaged area, but their efficiency is hampered by the presence of a glial scar-a barrier mainly formed by reactive astrocytes, microglia and the deposition of inhibitory extracellular matrix components. If, on the one hand, a glial scar limits the lesion spreading, it also blocks tissue regeneration. Therapeutic strategies aimed at reducing astrocyte or microglia activation and shifting them toward a neuroprotective phenotype have been proposed, whereas the role of OPCs has been largely overlooked. In this review, we have considered the glial scar from the perspective of OPCs, analysing their behaviour when lesions originate and exploring the potential therapies aimed at sustaining OPCs to efficiently differentiate and promote remyelination.
Collapse
Affiliation(s)
- Davide Marangon
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (D.M.); (J.H.C.e.S.)
| | - Juliana Helena Castro e Silva
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (D.M.); (J.H.C.e.S.)
| | - Valentina Cerrato
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126 Turin, Italy; (V.C.); (E.B.)
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Enrica Boda
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126 Turin, Italy; (V.C.); (E.B.)
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Davide Lecca
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (D.M.); (J.H.C.e.S.)
| |
Collapse
|
4
|
Fang M, Chen L, Tang T, Qiu M, Xu X. The committed oligodendrocyte precursor cell, a newly-defined intermediate progenitor cell type in oligodendroglial lineage. Glia 2023; 71:2499-2510. [PMID: 37278537 DOI: 10.1002/glia.24426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023]
Abstract
In the central nervous system, oligodendrocytes (OLs) produce myelin sheaths that provide trophic support to neuronal axons and increase the propagation speed of action potential. OLs are constantly generated from OL precursor cells (OPCs) throughout life span. The production of myelinating OLs consists of three canonical stages: OPCs, newly-formed OLs (NFOs), and mature myelinating OLs. Recently, single-cell RNA transcriptomic analyses identified a new population of oligodendroglial cells, namely differentiation committed OPCs (COPs). COPs represent a critical intermediate population between OPCs and NFOs, as revealed by specific expression of G-protein coupled receptor 17 (GPR17). The dysregulation of COPs leads to the remyelination failure in demyelinating diseases and impairs the replacement of lost myelin sheaths due to aging. Hence, understanding the development of COPs and their underlying regulatory network will be helpful in establishing new strategies for promoting myelin repair in demyelinating diseases. This review summarizes the current knowledge on the development and functions of COPs under both physiological and pathological conditions. Overall, COPs function as "checkpoints" to prevent inappropriate precocious OL differentiation and myelination through expressing distinct regulatory factors. Deepening our understanding of COPs may not only advance our knowledge of how OL lineage progresses during development, but also open the door to new treatments for demyelinating diseases.
Collapse
Affiliation(s)
- Minxi Fang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lixia Chen
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Tao Tang
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mengsheng Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
- School of Basic Medical Science, Hangzhou Normal University, Hangzhou, China
| | - Xiaofeng Xu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
5
|
Wong TS, Li G, Li S, Gao W, Chen G, Gan S, Zhang M, Li H, Wu S, Du Y. G protein-coupled receptors in neurodegenerative diseases and psychiatric disorders. Signal Transduct Target Ther 2023; 8:177. [PMID: 37137892 PMCID: PMC10154768 DOI: 10.1038/s41392-023-01427-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Neuropsychiatric disorders are multifactorial disorders with diverse aetiological factors. Identifying treatment targets is challenging because the diseases are resulting from heterogeneous biological, genetic, and environmental factors. Nevertheless, the increasing understanding of G protein-coupled receptor (GPCR) opens a new possibility in drug discovery. Harnessing our knowledge of molecular mechanisms and structural information of GPCRs will be advantageous for developing effective drugs. This review provides an overview of the role of GPCRs in various neurodegenerative and psychiatric diseases. Besides, we highlight the emerging opportunities of novel GPCR targets and address recent progress in GPCR drug development.
Collapse
Affiliation(s)
- Thian-Sze Wong
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Wei Gao
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Shiyi Gan
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Manzhan Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China.
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China.
| | - Song Wu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China.
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, 518116, Shenzhen, Guangdong, China.
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China.
| |
Collapse
|
6
|
Miralles AJ, Unger N, Kannaiyan N, Rossner MJ, Dimou L. Analysis of the GPR17 receptor in NG2-glia under physiological conditions unravels a new subset of oligodendrocyte progenitor cells with distinct functions. Glia 2023; 71:1536-1552. [PMID: 36815579 DOI: 10.1002/glia.24356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023]
Abstract
NG2-glia comprise a heterogeneous population of cycling cells that give rise to mature, myelinating oligodendrocytes. The mechanisms that regulate the process of differentiation from NG2-glia into oligodendrocytes are still not fully understood but over the last years the G Protein-coupled Receptor 17 (GPR17) has been on the spotlight as a possible key regulator. Interestingly, GPR17-expressing NG2-glia show under physiological conditions a slower and lower level of differentiation compared to NG2-glia without GPR17. In contrast, after a CNS insult these react with proliferation and differentiation in a high rate, pointing towards a role in repair processes. However, the role of GPR17+ NG2-glia under healthy conditions in adulthood has not been addressed yet. Therefore, we aimed here to characterize the GPR17-expressing NG2-glia. Using transgenic mouse models, we showed restricted GPR17 expression in only some NG2-glia. Furthermore, we found that these cells constitute a distinct subset within the NG2-glia population, which shows a different gene expression profile and behavior when compared to the total NG2-glia population. Genetic depletion of GPR17+ cells showed that these are not contributing to the dynamic and continuous generation of new oligodendrocytes in the adult brain. Taken together, GPR17+ NG2-glia seem to play a distinct role under physiological conditions that goes beyond their classic differentiation control, that needs to be further elucidated. These results open new avenues for using the GPR17 receptor as a target to change oligodendrogenesis under physiological and pathological conditions, highlighting the importance of further characterization of this protein for future pharmacological studies.
Collapse
Affiliation(s)
- Antonio J Miralles
- Molecular and Translational Neuroscience, Department of Neurology, Ulm University, Ulm, Germany
| | - Nicole Unger
- Molecular and Translational Neuroscience, Department of Neurology, Ulm University, Ulm, Germany
| | - Nirmal Kannaiyan
- Molecular and Behavioral Neurobiology, Department of Psychiatry and Psychotherapy, LMU Klinikum, Munich, Germany
| | - Moritz J Rossner
- Molecular and Behavioral Neurobiology, Department of Psychiatry and Psychotherapy, LMU Klinikum, Munich, Germany
| | - Leda Dimou
- Molecular and Translational Neuroscience, Department of Neurology, Ulm University, Ulm, Germany
| |
Collapse
|
7
|
Lecca D, Baron W, Butt AM. Editorial: Cellular and molecular factors that drive the behavior of oligodendrocyte progenitor cells in physiological conditions and disease. Front Cell Neurosci 2023; 17:1145627. [PMID: 36814864 PMCID: PMC9939830 DOI: 10.3389/fncel.2023.1145627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 02/09/2023] Open
Affiliation(s)
- Davide Lecca
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy,*Correspondence: Davide Lecca ✉
| | - Wia Baron
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Arthur M. Butt
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
8
|
Wang JQ, Gao MY, Gao R, Zhao KH, Zhang Y, Li X. Oligodendrocyte lineage cells: Advances in development, disease, and heterogeneity. J Neurochem 2023; 164:468-480. [PMID: 36415921 DOI: 10.1111/jnc.15728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/03/2022] [Accepted: 11/13/2022] [Indexed: 11/24/2022]
Abstract
Oligodendrocyte progenitor cells (OPCs) originate in the ventricular zone (VZ) of the brain and spinal cord, and their primary function is to differentiate into oligodendrocytes (OLs). Studies have shown that OPCs and OLs are pathologically and physiologically heterogeneous. Previous transcriptome analyses used Bulk RNA-seq, which compares average gene expression in cells and does not allow for heterogeneity. In recent years, the development of single-cell sequencing (scRNA-seq) and single-cell nuclear sequencing (snRNA-seq) has allowed us to study an individual cell. In this review, sc/snRNA-seq was used to study the different subpopulations of OL lineage cells, their developmental trajectories, and their applications in related diseases. These techniques can distinguish different subpopulations of cells, and identify differentially expressed genes in particular cell types under certain conditions, such as treatment or disease. It is of great significance to the study of the occurrence, prevention, and treatment of various diseases.
Collapse
Affiliation(s)
- Jia-Qi Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Meng-Yuan Gao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Rui Gao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Ke-Han Zhao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xing Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
9
|
Role of Demyelination in the Persistence of Neurological and Mental Impairments after COVID-19. Int J Mol Sci 2022; 23:ijms231911291. [PMID: 36232592 PMCID: PMC9569975 DOI: 10.3390/ijms231911291] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Long-term neurological and mental complications of COVID-19, the so-called post-COVID syndrome or long COVID, affect the quality of life. The most persistent manifestations of long COVID include fatigue, anosmia/hyposmia, insomnia, depression/anxiety, and memory/attention deficits. The physiological basis of neurological and psychiatric disorders is still poorly understood. This review summarizes the current knowledge of neurological sequelae in post-COVID patients and discusses brain demyelination as a possible mechanism of these complications with a focus on neuroimaging findings. Numerous reviews, experimental and theoretical studies consider brain demyelination as one of the mechanisms of the central neural system impairment. Several factors might cause demyelination, such as inflammation, direct effect of the virus on oligodendrocytes, and cerebrovascular disorders, inducing myelin damage. There is a contradiction between the solid fundamental basis underlying demyelination as the mechanism of the neurological injuries and relatively little published clinical evidence related to demyelination in COVID-19 patients. The reason for this probably lies in the fact that most clinical studies used conventional MRI techniques, which can detect only large, clearly visible demyelinating lesions. A very limited number of studies use specific methods for myelin quantification detected changes in the white matter tracts 3 and 10 months after the acute phase of COVID-19. Future research applying quantitative MRI assessment of myelin in combination with neurological and psychological studies will help in understanding the mechanisms of post-COVID complications associated with demyelination.
Collapse
|
10
|
Marangon D, Audano M, Pedretti S, Fumagalli M, Mitro N, Lecca D, Caruso D, Abbracchio MP. Rewiring of Glucose and Lipid Metabolism Induced by G Protein-Coupled Receptor 17 Silencing Enables the Transition of Oligodendrocyte Progenitors to Myelinating Cells. Cells 2022; 11:cells11152369. [PMID: 35954217 PMCID: PMC9368002 DOI: 10.3390/cells11152369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
In the mature central nervous system (CNS), oligodendrocytes (OLs) provide support and insulation to axons thanks to the production of a myelin sheath. During their maturation to myelinating cells, OLs require energy and building blocks for lipids, which implies a great investment of energy fuels and molecular sources of carbon. The oligodendroglial G protein-coupled receptor 17 (GPR17) has emerged as a key player in OL maturation; it reaches maximal expression in pre-OLs, but then it has to be internalized to allow terminal maturation. In this study, we aim at elucidating the role of physiological GPR17 downregulation in OL metabolism by applying transcriptomics, metabolomics and lipidomics on differentiating OLs. After GPR17 silencing, we found a significant increase in mature OL markers and alteration of several genes involved in glucose metabolism and lipid biosynthesis. We also observed an increased release of lactate, which is partially responsible for the maturation boost induced by GPR17 downregulation. Concomitantly, GPR17 depletion also changed the kinetics of specific myelin lipid classes. Globally, this study unveils a functional link between GPR17 expression, lactate release and myelin composition, and suggests that innovative interventions targeting GPR17 may help to foster endogenous myelination in demyelinating diseases.
Collapse
Affiliation(s)
- Davide Marangon
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (D.M.); (D.L.)
| | - Matteo Audano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.A.); (S.P.); (M.F.); (N.M.); (D.C.)
| | - Silvia Pedretti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.A.); (S.P.); (M.F.); (N.M.); (D.C.)
| | - Marta Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.A.); (S.P.); (M.F.); (N.M.); (D.C.)
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.A.); (S.P.); (M.F.); (N.M.); (D.C.)
| | - Davide Lecca
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (D.M.); (D.L.)
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.A.); (S.P.); (M.F.); (N.M.); (D.C.)
| | - Maria P. Abbracchio
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (D.M.); (D.L.)
- Correspondence: ; Tel.: +39-02-5031-8304
| |
Collapse
|
11
|
Wang S, Wang Y, Zou S. A Glance at the Molecules That Regulate Oligodendrocyte Myelination. Curr Issues Mol Biol 2022; 44:2194-2216. [PMID: 35678678 PMCID: PMC9164040 DOI: 10.3390/cimb44050149] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
Oligodendrocyte (OL) myelination is a critical process for the neuronal axon function in the central nervous system. After demyelination occurs because of pathophysiology, remyelination makes repairs similar to myelination. Proliferation and differentiation are the two main stages in OL myelination, and most factors commonly play converse roles in these two stages, except for a few factors and signaling pathways, such as OLIG2 (Oligodendrocyte transcription factor 2). Moreover, some OL maturation gene mutations induce hypomyelination or hypermyelination without an obvious function in proliferation and differentiation. Herein, three types of factors regulating myelination are reviewed in sequence.
Collapse
Affiliation(s)
- Shunqi Wang
- Institute of Life Science & School of Life Sciences, Nanchang University, Nanchang 330031, China; (S.W.); (Y.W.)
- School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China
| | - Yingxing Wang
- Institute of Life Science & School of Life Sciences, Nanchang University, Nanchang 330031, China; (S.W.); (Y.W.)
| | - Suqi Zou
- Institute of Life Science & School of Life Sciences, Nanchang University, Nanchang 330031, China; (S.W.); (Y.W.)
- School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China
- Correspondence:
| |
Collapse
|
12
|
Eugenin von Bernhardi J, Dimou L. Oligodendrogenesis is a key process for cognitive performance improvement induced by voluntary physical activity. Glia 2022; 70:1052-1067. [PMID: 35104015 DOI: 10.1002/glia.24155] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/13/2021] [Accepted: 01/21/2022] [Indexed: 12/13/2022]
Abstract
Physical activity (PA) promotes the proliferation of neural stem cells and enhances neurogenesis in the dentate gyrus resulting in hippocampal circuit remodeling and cognitive enhancement. Nonetheless, knowledge of other neural progenitors affected by PA and the mechanisms through which they could contribute to circuit plasticity and cognitive enhancement are still poorly understood. In this work we demonstrated that NG2-glia, also known as oligodendrocyte progenitor cells, show enhanced proliferation and differentiation in response to voluntary PA in a brain region-dependent manner in adult mice. Surprisingly, preventing NG2-glia differentiation during enhanced PA abolishes the exercise-associated cognitive improvement without affecting neurogenesis or baseline learning capacity. Thus, here we provided new evidence highlighting the requirement of oligodendrogenesis for exercise induced-cognition enhancement.
Collapse
Affiliation(s)
- Jaime Eugenin von Bernhardi
- Molecular and Translational Neuroscience, Department of Neurology, Ulm University, Ulm, Germany.,Graduate School for Systemic Neuroscience, Ludwig-Maximilians University, Planegg-Martinsried, Munich, Germany
| | - Leda Dimou
- Molecular and Translational Neuroscience, Department of Neurology, Ulm University, Ulm, Germany.,Graduate School for Systemic Neuroscience, Ludwig-Maximilians University, Planegg-Martinsried, Munich, Germany
| |
Collapse
|
13
|
Jiang S, Wang H, Zhou Q, Li Q, Liu N, Li Z, Chen C, Deng Y. Melatonin Ameliorates Axonal Hypomyelination of Periventricular White Matter by Transforming A1 to A2 Astrocyte via JAK2/STAT3 Pathway in Septic Neonatal Rats. J Inflamm Res 2021; 14:5919-5937. [PMID: 34803390 PMCID: PMC8595063 DOI: 10.2147/jir.s337499] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background Astrocyte A1/A2 phenotypes may play differential role in the pathogenesis of periventricular white matter (PWM) damage in septic postnatal rats. This study aimed to determine whether melatonin (MEL) would improve the axonal hypomyelination through shifting A1 astrocytes towards A2. Methods One-day-old Sprague-Dawley rats were divided into control, LPS, and LPS+MEL groups. Immunofluorescence was performed to detect C1q, IL-1α, TNF-α, IBA1, GFAP, MAG, C3 and S100A10 immunoreactivity in the PWM of neonatal rats. Electron microscopy was conducted to observe alterations of axonal myelin sheath in the PWM; moreover, myelin protein expression was assessed using in situ hybridization. The effects of MEL on neurological function were evaluated by behavioral tests. In vitro, A1 astrocytes were induced by IL-1α, C1q and TNF-α, and following which the effect of MEL on C3 and S100A10 expression was determined by Western blot and immunofluorescence. Results At 1 and 3 days after LPS injection, IBA1+ microglia in the PWM were significantly increased in cell numbers which generated excess amounts of IL-1α, TNF-α, and C1q. The number of A1 astrocytes was significantly increased at 7-28d after LPS injection. In rats given MEL treatment, the number of A1 astrocytes was significantly decreased, but that of A2 astrocytes, PLP+, MBP+ and MAG+ cells was increased. By electron microscopy, ultrastructural features of axonal hypomyelination were attenuated by MEL. Furthermore, MEL improved neurological dysfunction as evaluated by different neurological tests. In vitro, MEL decreased the C3 significantly, and upregulated expression of S100A10 in primary astrocytes subjected to IL-1α, TNF-α and C1q treatment. Importantly, JAK2/STAT3 signaling pathway was found to be involved in modulation of A1/A2 phenotype transformation. Conclusion MEL effectively alleviates PWMD of septic neonatal rats, which is most likely through modulating astrocyte phenotypic transformation from A1 to A2 via the MT1/JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Shuqi Jiang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Huifang Wang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Qiuping Zhou
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China.,Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, 510641, People's Republic of China
| | - Qian Li
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Nan Liu
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China.,Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, 510641, People's Republic of China
| | - Zhenggong Li
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Chunbo Chen
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Yiyu Deng
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| |
Collapse
|
14
|
Niedzwiedz-Massey VM, Douglas JC, Rafferty T, Kane CJ, Drew PD. Ethanol effects on cerebellar myelination in a postnatal mouse model of fetal alcohol spectrum disorders. Alcohol 2021; 96:43-53. [PMID: 34358666 DOI: 10.1016/j.alcohol.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/12/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
Fetal alcohol spectrum disorders (FASD) are alarmingly common, result in significant personal and societal loss, and there are no effective treatments for these disorders. Cerebellar neuropathology is common in FASD and can cause impaired cognitive and motor function. The current study evaluates the effects of ethanol on oligodendrocyte-lineage cells, as well as molecules that modulate oligodendrocyte differentiation and function in the cerebellum in a postnatal mouse model of FASD. Neonatal mice were treated with ethanol from P4-P9 (postnatal day), the cerebellum was isolated at P10, and mRNAs encoding oligodendrocyte-associated molecules were quantitated by qRT-PCR. Our studies demonstrated that ethanol significantly reduced the expression of markers for multiple stages of oligodendrocyte maturation, including oligodendrocyte precursor cells, pre-myelinating oligodendrocytes, and mature myelinating oligodendrocytes. Additionally, we determined that ethanol significantly decreased the expression of molecules that play critical roles in oligodendrocyte differentiation. Interestingly, we also observed that ethanol significantly reduced the expression of myelin-associated inhibitors, which may act as a compensatory mechanism to ethanol toxicity. Furthermore, we demonstrate that ethanol alters the expression of a variety of molecules important in oligodendrocyte function and myelination. Collectively, our studies increase our understanding of specific mechanisms by which ethanol modulates myelination in the developing cerebellum, and potentially identify novel targets for FASD therapy.
Collapse
|
15
|
Braune M, Scherf N, Heine C, Sygnecka K, Pillaiyar T, Parravicini C, Heimrich B, Abbracchio MP, Müller CE, Franke H. Involvement of GPR17 in Neuronal Fibre Outgrowth. Int J Mol Sci 2021; 22:ijms222111683. [PMID: 34769111 PMCID: PMC8584086 DOI: 10.3390/ijms222111683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/24/2021] [Accepted: 10/24/2021] [Indexed: 11/16/2022] Open
Abstract
Characterization of new pharmacological targets is a promising approach in research of neurorepair mechanisms. The G protein-coupled receptor 17 (GPR17) has recently been proposed as an interesting pharmacological target, e.g., in neuroregenerative processes. Using the well-established ex vivo model of organotypic slice co-cultures of the mesocortical dopaminergic system (prefrontal cortex (PFC) and substantia nigra/ventral tegmental area (SN/VTA) complex), the influence of GPR17 ligands on neurite outgrowth from SN/VTA to the PFC was investigated. The growth-promoting effects of Montelukast (MTK; GPR17- and cysteinyl-leukotriene receptor antagonist), the glial cell line-derived neurotrophic factor (GDNF) and of two potent, selective GPR17 agonists (PSB-16484 and PSB-16282) were characterized. Treatment with MTK resulted in a significant increase in mean neurite density, comparable with the effects of GDNF. The combination of MTK and GPR17 agonist PSB-16484 significantly inhibited neuronal growth. qPCR studies revealed an MTK-induced elevated mRNA-expression of genes relevant for neuronal growth. Immunofluorescence labelling showed a marked expression of GPR17 on NG2-positive glia. Western blot and RT-qPCR analysis of untreated cultures suggest a time-dependent, injury-induced stimulation of GPR17. In conclusion, MTK was identified as a stimulator of neurite fibre outgrowth, mediating its effects through GPR17, highlighting GPR17 as an interesting therapeutic target in neuronal regeneration.
Collapse
Affiliation(s)
- Max Braune
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany; (M.B.); (C.H.); (K.S.)
| | - Nico Scherf
- Methods and Development Group Neural Data Analysis and Statistical Computing, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A, 04103 Leipzig, Germany;
| | - Claudia Heine
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany; (M.B.); (C.H.); (K.S.)
| | - Katja Sygnecka
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany; (M.B.); (C.H.); (K.S.)
| | - Thanigaimalai Pillaiyar
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (T.P.); (C.E.M.)
| | - Chiara Parravicini
- Department of Pharmaceutical Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (C.P.); (M.P.A.)
| | - Bernd Heimrich
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Albertstr. 23, 79104 Freiburg, Germany;
| | - Maria P. Abbracchio
- Department of Pharmaceutical Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (C.P.); (M.P.A.)
| | - Christa E. Müller
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (T.P.); (C.E.M.)
| | - Heike Franke
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany; (M.B.); (C.H.); (K.S.)
- Correspondence: ; Tel.: +49-(0)341-9724602; Fax: +49-(0)341-9724609
| |
Collapse
|
16
|
Wu Q, Miao X, Zhang J, Xiang L, Li X, Bao X, Du S, Wang M, Miao S, Fan Y, Wang W, Xu X, Shen X, Yang D, Wang X, Fang Y, Hu L, Pan X, Dong H, Wang H, Wang Y, Li J, Huang Z. Astrocytic YAP protects the optic nerve and retina in an experimental autoimmune encephalomyelitis model through TGF-β signaling. Theranostics 2021; 11:8480-8499. [PMID: 34373754 PMCID: PMC8344002 DOI: 10.7150/thno.60031] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023] Open
Abstract
Rationale: Optic neuritis is one of main symptoms in multiple sclerosis (MS) that causes visual disability. Astrocytes are pivotal regulators of neuroinflammation in MS, and astrocytic yes-associated protein (YAP) plays a critical role in neuroinflammation. Meanwhile, YAP signaling is involved in visual impairment, including glaucoma, retinal choroidal atrophy and retinal detachment. However, the roles and underlying mechanisms of astrocytic YAP in neuroinflammation and demyelination of MS-related optic neuritis (MS-ON) remains unclear. Methods: To assess the functions of YAP in MS-ON, experimental autoimmune encephalomyelitis (EAE, a common model of MS) was established, and mice that conditional knockout (CKO) of YAP in astrocytes, YAPGFAP-CKO mice, were successfully generated. Behavior tests, immunostaining, Nissl staining, Hematoxylin-Eosin (HE) staining, TUNEL staining, Luxol Fast Blue (LFB) staining, electron microscopy (EM), quantitative real-time PCR (qPCR), gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) by RNA sequencing were used to examine the function and mechanism of YAP signaling based on these YAPGFAP-CKO mice and EAE model mice. To further explore the potential treatment of YAP signaling in EAE, EAE mice were treated with various drugs, including SRI-011381 that is an agonist of transforming growth factor-β (TGF-β) pathway, and XMU-MP-1 which inhibits Hippo kinase MST1/2 to activate YAP. Results: We found that YAP was significantly upregulated and activated in the astrocytes of optic nerve in EAE mice. Conditional knockout of YAP in astrocytes caused more severe inflammatory infiltration and demyelination in optic nerve, and damage of retinal ganglion cells (RGCs) in EAE mice. Moreover, YAP deletion in astrocytes promoted the activation of astrocytes and microglia, but inhibited the proliferation of astrocytes of optic nerve in EAE mice. Mechanically, TGF-β signaling pathway was significantly down-regulated after YAP deletion in astrocytes. Additionally, both qPCR and immunofluorescence assays confirmed the reduction of TGF-β signaling pathway in YAPGFAP-CKO EAE mice. Interestingly, SRI-011381 partially rescued the deficits in optic nerve and retina of YAPGFAP-CKO EAE mice. Finally, activation of YAP signaling by XMU-MP-1 relieved the neuroinflammation and demyelination in optic nerve of EAE mice. Conclusions: These results suggest astrocytic YAP may prevent the neuroinflammatory infiltration and demyelination through upregulation of TGF-β signaling and provide targets for the development of therapeutic strategies tailored for MS-ON.
Collapse
|
17
|
Rivera AD, Chacon-De-La-Rocha I, Pieropan F, Papanikolau M, Azim K, Butt AM. Keeping the ageing brain wired: a role for purine signalling in regulating cellular metabolism in oligodendrocyte progenitors. Pflugers Arch 2021; 473:775-783. [PMID: 33712969 PMCID: PMC8076121 DOI: 10.1007/s00424-021-02544-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/04/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
White matter (WM) is a highly prominent feature in the human cerebrum and is comprised of bundles of myelinated axons that form the connectome of the brain. Myelin is formed by oligodendrocytes and is essential for rapid neuronal electrical communication that underlies the massive computing power of the human brain. Oligodendrocytes are generated throughout life by oligodendrocyte precursor cells (OPCs), which are identified by expression of the chondroitin sulphate proteoglycan NG2 (Cspg4), and are often termed NG2-glia. Adult NG2+ OPCs are slowly proliferating cells that have the stem cell-like property of self-renewal and differentiation into a pool of 'late OPCs' or 'differentiation committed' OPCs(COPs) identified by specific expression of the G-protein-coupled receptor GPR17, which are capable of differentiation into myelinating oligodendrocytes. In the adult brain, these reservoirs of OPCs and COPs ensure rapid myelination of new neuronal connections formed in response to neuronal signalling, which underpins learning and cognitive function. However, there is an age-related decline in myelination that is associated with a loss of neuronal function and cognitive decline. The underlying causes of myelin loss in ageing are manifold, but a key factor is the decay in OPC 'stemness' and a decline in their replenishment of COPs, which results in the ultimate failure of myelin regeneration. These changes in ageing OPCs are underpinned by dysregulation of neuronal signalling and OPC metabolic function. Here, we highlight the role of purine signalling in regulating OPC self-renewal and the potential importance of GPR17 and the P2X7 receptor subtype in age-related changes in OPC metabolism. Moreover, age is the main factor in the failure of myelination in chronic multiple sclerosis and myelin loss in Alzheimer's disease, hence understanding the importance of purine signalling in OPC regeneration and myelination is critical for developing new strategies for promoting repair in age-dependent neuropathology.
Collapse
Affiliation(s)
- Andrea D Rivera
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK
- Department of Neuroscience, Institute of Human Anatomy, University of Padua, Padua, Italy
| | | | - Francesca Pieropan
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK
| | - Maria Papanikolau
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK
| | - Kasum Azim
- Department of Neurology, Neuroregeneration, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Arthur M Butt
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK.
| |
Collapse
|
18
|
The Distribution of GPR17-Expressing Cells Correlates with White Matter Inflammation Status in Brain Tissues of Multiple Sclerosis Patients. Int J Mol Sci 2021; 22:ijms22094574. [PMID: 33925469 PMCID: PMC8123849 DOI: 10.3390/ijms22094574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 01/26/2023] Open
Abstract
In multiple sclerosis (MS), oligodendrocyte precursor cells (OPCs) are recruited to the site of injury to remyelinate damaged axons; however, in patients this process is often ineffective due to defects in OPC maturation. The membrane receptor GPR17 timely regulates the early stages of OPC differentiation; however, after reaching its highest levels in immature oligodendrocytes, it has to be downregulated to allow terminal maturation. Since, in several animal models of disease GPR17 is upregulated, the aim of this work was to characterize GPR17 alterations in MS patients. We developed immunohistochemistry and immunofluorescence procedures for the detection of GPR17 in human tissues and stained post-mortem MS brain lesions from patients with secondary progressive MS and control subjects. The inflammatory activity in each lesion was evaluated by immunohistochemistry for the myelin protein MOG and the HLA antigen to classify them as active, chronic inactive or chronic active. Hence, we assessed the distribution of GPR17-positive cells in these lesions compared to normal appearing white matter (NAWM) and white matter (WM) of control subjects. Our data have shown a marked increase of GPR17-expressing oligodendroglial cells accumulating at NAWM, in which moderate inflammation was also found. Furthermore, we identified two distinct subpopulations of GPR17-expressing oligodendroglial cells, characterized by either ramified or rounded morphology, that differently populate the WM of healthy controls and MS patients. We concluded that the coordinated presence of GPR17 in OPCs at the lesion sites and inflamed NAWM areas suggests that GPR17 could be exploited to support endogenous remyelination through advanced pharmacological approaches.
Collapse
|
19
|
Cayre M, Falque M, Mercier O, Magalon K, Durbec P. Myelin Repair: From Animal Models to Humans. Front Cell Neurosci 2021; 15:604865. [PMID: 33935649 PMCID: PMC8079744 DOI: 10.3389/fncel.2021.604865] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/15/2021] [Indexed: 12/20/2022] Open
Abstract
It is widely thought that brain repair does not occur, but myelin regeneration provides clear evidence to the contrary. Spontaneous remyelination may occur after injury or in multiple sclerosis (MS). However, the efficiency of remyelination varies considerably between MS patients and between the lesions of each patient. Myelin repair is essential for optimal functional recovery, so a profound understanding of the cells and mechanisms involved in this process is required for the development of new therapeutic strategies. In this review, we describe how animal models and modern cell tracing and imaging methods have helped to identify the cell types involved in myelin regeneration. In addition to the oligodendrocyte progenitor cells identified in the 1990s as the principal source of remyelinating cells in the central nervous system (CNS), other cell populations, including subventricular zone-derived neural progenitors, Schwann cells, and even spared mature oligodendrocytes, have more recently emerged as potential contributors to CNS remyelination. We will also highlight the conditions known to limit endogenous repair, such as aging, chronic inflammation, and the production of extracellular matrix proteins, and the role of astrocytes and microglia in these processes. Finally, we will present the discrepancies between observations in humans and in rodents, discussing the relationship of findings in experimental models to myelin repair in humans. These considerations are particularly important from a therapeutic standpoint.
Collapse
Affiliation(s)
- Myriam Cayre
- Aix Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie du Développement de Marseille (IBDM-UMR 7288), Marseille, France
| | | | | | | | | |
Collapse
|
20
|
Rivera AD, Pieropan F, Chacon‐De‐La‐Rocha I, Lecca D, Abbracchio MP, Azim K, Butt AM. Functional genomic analyses highlight a shift in Gpr17-regulated cellular processes in oligodendrocyte progenitor cells and underlying myelin dysregulation in the aged mouse cerebrum. Aging Cell 2021; 20:e13335. [PMID: 33675110 PMCID: PMC8045941 DOI: 10.1111/acel.13335] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/18/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
Brain ageing is characterised by a decline in neuronal function and associated cognitive deficits. There is increasing evidence that myelin disruption is an important factor that contributes to the age-related loss of brain plasticity and repair responses. In the brain, myelin is produced by oligodendrocytes, which are generated throughout life by oligodendrocyte progenitor cells (OPCs). Currently, a leading hypothesis points to ageing as a major reason for the ultimate breakdown of remyelination in Multiple Sclerosis (MS). However, an incomplete understanding of the cellular and molecular processes underlying brain ageing hinders the development of regenerative strategies. Here, our combined systems biology and neurobiological approach demonstrate that oligodendroglial and myelin genes are amongst the most altered in the ageing mouse cerebrum. This was underscored by the identification of causal links between signalling pathways and their downstream transcriptional networks that define oligodendroglial disruption in ageing. The results highlighted that the G-protein coupled receptor Gpr17 is central to the disruption of OPCs in ageing and this was confirmed by genetic fate-mapping and cellular analyses. Finally, we used systems biology strategies to identify therapeutic agents that rejuvenate OPCs and restore myelination in age-related neuropathological contexts.
Collapse
Affiliation(s)
- Andrea D. Rivera
- School of Pharmacy and Biomedical ScienceUniversity of PortsmouthPortsmouthUK
- Department of NeuroscienceInstitute of Human AnatomyUniversity of PaduaPaduaItaly
| | - Francesca Pieropan
- School of Pharmacy and Biomedical ScienceUniversity of PortsmouthPortsmouthUK
| | | | - Davide Lecca
- Department of Pharmaceutical SciencesUniversity of MilanMilanItaly
| | | | - Kasum Azim
- Department of NeurologyNeuroregenerationMedical FacultyHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Arthur M. Butt
- School of Pharmacy and Biomedical ScienceUniversity of PortsmouthPortsmouthUK
| |
Collapse
|
21
|
Raffaele S, Boccazzi M, Fumagalli M. Oligodendrocyte Dysfunction in Amyotrophic Lateral Sclerosis: Mechanisms and Therapeutic Perspectives. Cells 2021; 10:cells10030565. [PMID: 33807572 PMCID: PMC8000560 DOI: 10.3390/cells10030565] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Myelin is the lipid-rich structure formed by oligodendrocytes (OLs) that wraps the axons in multilayered sheaths, assuring protection, efficient saltatory signal conduction and metabolic support to neurons. In the last few years, the impact of OL dysfunction and myelin damage has progressively received more attention and is now considered to be a major contributing factor to neurodegeneration in several neurological diseases, including amyotrophic lateral sclerosis (ALS). Upon OL injury, oligodendrocyte precursor cells (OPCs) of adult nervous tissue sustain the generation of new OLs for myelin reconstitution, but this spontaneous regeneration process fails to successfully counteract myelin damage. Of note, the functions of OPCs exceed the formation and repair of myelin, and also involve the trophic support to axons and the capability to exert an immunomodulatory role, which are particularly relevant in the context of neurodegeneration. In this review, we deeply analyze the impact of dysfunctional OLs in ALS pathogenesis. The possible mechanisms underlying OL degeneration, defective OPC maturation, and impairment in energy supply to motor neurons (MNs) have also been examined to provide insights on future therapeutic interventions. On this basis, we discuss the potential therapeutic utility in ALS of several molecules, based on their remyelinating potential or capability to enhance energy metabolism.
Collapse
|
22
|
Wang X, Su Y, Li T, Yu G, Wang Y, Chen X, Yin C, Tang Z, Yi C, Xiao L, Niu J. Quetiapine promotes oligodendroglial process outgrowth and membrane expansion by orchestrating the effects of Olig1. Glia 2021; 69:1709-1722. [PMID: 33660902 DOI: 10.1002/glia.23986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 01/09/2023]
Abstract
Oligodendroglial lineage cells go through a series of morphological changes before myelination. Prior to myelination, cell processes and membrane structures enlarge by approximately 7,000 times, which is required to support axonal wrapping and myelin segment formation. Failure of these processes leads to maldevelopment and impaired myelination. Quetiapine, an atypical antipsychotic drug, was proved to promote oligodendroglial differentiation and (re)myelination, pending detailed effects and regulatory mechanism. In this study, we showed that quetiapine promotes morphological maturation of oligodendroglial lineage cells and myelin segment formation, and a short-term quetiapine treatment is sufficient to induce these changes. To uncover the underlying mechanism, we examined the effect of quetiapine on the Oligodendrocyte transcription factor 1 (Olig1). We found that quetiapine upregulates Olig1 expression level and promotes nuclear Olig1 translocation to the cytosol, where it functions not as a transcription modulator, but in a way that highly correlates with oligodendrocyte morphological transformation. In addition, quetiapine treatment reverses the negative regulatory effect of the Olig1-regulated G protein-coupled receptor 17 (GPR17) on oligodendroglial morphological maturation. Our results demonstrate that quetiapine enhances oligodendroglial differentiation and myelination by promoting cell morphological transformation. This would shed light on the orchestration of oligodendroglia developmental mechanisms, and provides new targets for further therapeutic research.
Collapse
Affiliation(s)
- Xiaorui Wang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Yixun Su
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Tao Li
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Guangdan Yu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Yuxin Wang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Xiaoying Chen
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Chenrui Yin
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Ziqin Tang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Chenju Yi
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Lan Xiao
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Jianqin Niu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| |
Collapse
|
23
|
Lecca D, Abbracchio MP, Fumagalli M. Purinergic Receptors on Oligodendrocyte Progenitors: Promising Targets for Myelin Repair in Multiple Sclerosis? Front Pharmacol 2021; 11:629618. [PMID: 33584312 PMCID: PMC7872961 DOI: 10.3389/fphar.2020.629618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/17/2020] [Indexed: 12/03/2022] Open
Affiliation(s)
- Davide Lecca
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Maria P Abbracchio
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Marta Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
24
|
Zhang Z, Zhou H, Zhou J. Heterogeneity and Proliferative and Differential Regulators of NG2-glia in Physiological and Pathological States. Curr Med Chem 2021; 27:6384-6406. [PMID: 31333083 DOI: 10.2174/0929867326666190717112944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/12/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022]
Abstract
NG2-glia, also called Oligodendrocyte Precursor Cells (OPCs), account for approximately 5%-10% of the cells in the developing and adult brain and constitute the fifth major cell population in the central nervous system. NG2-glia express receptors and ion channels involved in rapid modulation of neuronal activities and signaling with neuronal synapses, which have functional significance in both physiological and pathological states. NG2-glia participate in quick signaling with peripheral neurons via direct synaptic touches in the developing and mature central nervous system. These distinctive glia perform the unique function of proliferating and differentiating into oligodendrocytes in the early developing brain, which is critical for axon myelin formation. In response to injury, NG2-glia can proliferate, migrate to the lesions, and differentiate into oligodendrocytes to form new myelin sheaths, which wrap around damaged axons and result in functional recovery. The capacity of NG2-glia to regulate their behavior and dynamics in response to neuronal activity and disease indicate their critical role in myelin preservation and remodeling in the physiological state and in repair in the pathological state. In this review, we provide a detailed summary of the characteristics of NG2-glia, including their heterogeneity, the regulators of their proliferation, and the modulators of their differentiation into oligodendrocytes.
Collapse
Affiliation(s)
- Zuo Zhang
- National Drug Clinical Trial Institution, the Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Hongli Zhou
- National Drug Clinical Trial Institution, the Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Jiyin Zhou
- National Drug Clinical Trial Institution, the Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| |
Collapse
|
25
|
Chen Y, Zheng Z, Mei A, Huang H, Lin F. Claudin-1 and Claudin-3 as Molecular Regulators of Myelination in Leukoaraiosis Patients. Clinics (Sao Paulo) 2021; 76:e2167. [PMID: 34008771 PMCID: PMC8101689 DOI: 10.6061/clinics/2021/e2167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Leukoaraiosis is described as white matter lesions that are associated with cognitive dysfunction, neurodegenerative disorders, etc. Myelin depletion is a salient pathological feature of, and the loss of oligodendrocytes is one of the most robust alterations evident in, white matter degeneration. Recent studies have revealed that claudin proteins are aberrantly expressed in leukoaraiosis and regulate oligodendrocyte activity. However, the roles of claudin-1 and claudin-3 in oligodendrocytes and leukoaraiosis are still not well-defined. METHODS Quantitative polymerase chain reaction was used to measure the expression of claudin-1 (CLDN1), claudin-3 (CLDN3), and myelinogenesis-related genes such as myelin basic protein (MBP), proteolipid protein (PLP), oligodendrocyte transcription factor 2 (OLIG2), and SRY-box transcription factor 10 (SOX10) in leukoaraiosis patients (n=122) and healthy controls (n=122). The expression of claudin-1 and claudin-3 was either ectopically silenced or augmented in Oli-neu oligodendrocytes, and colony formation, apoptosis, and migration assays were performed. Finally, the expression of myelin proteins was evaluated by western blotting. RESULTS Our results revealed that in addition to SOX10, the expression levels of claudin-1, claudin-3, and myelinogenesis-related proteins were prominently downregulated in leukoaraiosis patients, compared to those in healthy controls. Furthermore, the growth and migration of Oli-neu cells were downregulated upon silencing claudin-1 or claudin-3. However, the overexpression of claudin-1 or claudin-3 resulted in the reduction of the degree of apoptosis in Oli-neu cells. In addition, claudin-1 and claudin-3 promoted the expression of MBP, OLIG2, PLP, and SOX10 at the translational level. CONCLUSION Our data has demonstrated that the abnormal expression of claudin-1 and claudin-3 regulates the pathological progression of leukoaraiosis by governing the viability and myelination of oligodendrocytes. These findings provide novel insights into the regulatory mechanisms underlying the roles of claudin-1 and claudin-3 in leukoaraiosis.
Collapse
Affiliation(s)
- Yan Chen
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, P.R. China
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou, 350001, P.R. China
- Fujian Key Laboratory of Geriatrics, Fuzhou, 350001, P.R. China
- Fujian Provincial center for Geriatrics, Fuzhou, 350001, P.R. China
| | - Zheng Zheng
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, P.R. China
- Department of Neurology, Fujian Provincial Hospital, Fuzhou, 350001, P.R. China
- *Corresponding author. E-mail:
| | - Ainong Mei
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, P.R. China
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou, 350001, P.R. China
- Fujian Key Laboratory of Geriatrics, Fuzhou, 350001, P.R. China
- Fujian Provincial center for Geriatrics, Fuzhou, 350001, P.R. China
| | - Huan Huang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, P.R. China
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou, 350001, P.R. China
- Fujian Key Laboratory of Geriatrics, Fuzhou, 350001, P.R. China
- Fujian Provincial center for Geriatrics, Fuzhou, 350001, P.R. China
| | - Fan Lin
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, P.R. China
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou, 350001, P.R. China
- Fujian Key Laboratory of Geriatrics, Fuzhou, 350001, P.R. China
- Fujian Provincial center for Geriatrics, Fuzhou, 350001, P.R. China
| |
Collapse
|
26
|
Raffaele S, Gelosa P, Bonfanti E, Lombardi M, Castiglioni L, Cimino M, Sironi L, Abbracchio MP, Verderio C, Fumagalli M. Microglial vesicles improve post-stroke recovery by preventing immune cell senescence and favoring oligodendrogenesis. Mol Ther 2020; 29:1439-1458. [PMID: 33309882 DOI: 10.1016/j.ymthe.2020.12.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/10/2020] [Accepted: 12/06/2020] [Indexed: 12/11/2022] Open
Abstract
Contrasting myelin damage through the generation of new myelinating oligodendrocytes represents a promising approach to promote functional recovery after stroke. Here, we asked whether activation of microglia and monocyte-derived macrophages affects the regenerative process sustained by G protein-coupled receptor 17 (GPR17)-expressing oligodendrocyte precursor cells (OPCs), a subpopulation of OPCs specifically reacting to ischemic injury. GPR17-iCreERT2:CAG-eGFP reporter mice were employed to trace the fate of GPR17-expressing OPCs, labeled by the green fluorescent protein (GFP), after permanent middle cerebral artery occlusion. By microglia/macrophages pharmacological depletion studies, we show that innate immune cells favor GFP+ OPC reaction and limit myelin damage early after injury, whereas they lose their pro-resolving capacity and acquire a dystrophic "senescent-like" phenotype at later stages. Intracerebral infusion of regenerative microglia-derived extracellular vesicles (EVs) restores protective microglia/macrophages functions, limiting their senescence during the post-stroke phase, and enhances the maturation of GFP+ OPCs at lesion borders, resulting in ameliorated neurological functionality. In vitro experiments show that EV-carried transmembrane tumor necrosis factor (tmTNF) mediates the pro-differentiating effects on OPCs, with future implications for regenerative therapies.
Collapse
Affiliation(s)
- Stefano Raffaele
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Paolo Gelosa
- IRCCS Centro Cardiologico Monzino, 20138 Milan, Italy
| | - Elisabetta Bonfanti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | | | - Laura Castiglioni
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Mauro Cimino
- Department of Biomolecular Sciences, Università degli Studi di Urbino, 61029 Urbino, Italy
| | - Luigi Sironi
- IRCCS Centro Cardiologico Monzino, 20138 Milan, Italy; Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Maria P Abbracchio
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | | | - Marta Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy.
| |
Collapse
|
27
|
Prenatal Stress Impairs Spinal Cord Oligodendrocyte Maturation via BDNF Signaling in the Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis. Cell Mol Neurobiol 2020; 42:1225-1240. [PMID: 33259004 PMCID: PMC8942968 DOI: 10.1007/s10571-020-01014-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022]
Abstract
One of the most substantial and established environmental risk factors for neurological and psychiatric disorders is stress exposure, whose detrimental consequences hinge on several variables including time. In this regard the gestational period is known to present an intrinsic vulnerability to environmental insults and thus stressful events during pregnancy can lead to severe consequences on the offspring's brain development with long-term repercussions throughout adulthood. On this basis, we investigated the long-lasting impact of prenatal stress exposure on the susceptibility to the experimental autoimmune encephalomyelitis (EAE), a well-established murine model of multiple sclerosis. Although stress is considered a triggering factor for this chronic, progressive, autoimmune disease, little is known about the underlying mechanisms. To this end, EAE was induced by immunization with MOG35-55/CFA and pertussis toxin administration in adult female C57BL/6 mice born from control or stressed dams exposed to restraint stress during the last days of gestation. Our results demonstrate that gestational stress induces a marked increase in the severity of EAE symptoms in adulthood. Further, we highlight an altered maturation of oligodendrocytes in the spinal cord of prenatally stressed EAE mice, as indicated by the higher levels of GPR17, a marker of immature oligodendrocyte precursor cells. These behavioral and molecular alterations are paralleled by changes in the expression and signaling of the neurotrophin BDNF, an important mediator of neural plasticity that may contribute to stress-induced impaired remyelination. Since several already marketed drugs are able to modulate BDNF levels, these results pave the way to the possibility of repositioning these drugs in multiple sclerosis.
Collapse
|
28
|
Glial cell activation and altered metabolic profile in the spinal-trigeminal axis in a rat model of multiple sclerosis associated with the development of trigeminal sensitization. Brain Behav Immun 2020; 89:268-280. [PMID: 32659316 DOI: 10.1016/j.bbi.2020.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/19/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023] Open
Abstract
Trigeminal neuralgia is often an early symptom of multiple sclerosis (MS), and it generally does not correlate with the severity of the disease. Thus, whether it is triggered simply by demyelination in specific central nervous system areas is currently questioned. Our aims were to monitor the development of spontaneous trigeminal pain in an animal model of MS, and to analyze: i) glial cells, namely astrocytes and microglia in the central nervous system and satellite glial cells in the trigeminal ganglion, and ii) metabolic changes in the trigeminal system. The subcutaneous injection of recombinant MOG1-125 protein fragment to Dark Agouti male rats led to the development of relapsing-remitting EAE, with a first peak after 13 days, a remission stage from day 16 and a second peak from day 21. Interestingly, orofacial allodynia developed from day 1 post injection, i.e. well before the onset of EAE, and worsened over time, irrespective of the disease phase. Activation of glial cells both in the trigeminal ganglia and in the brainstem, with no signs of demyelination in the latter tissue, was observed along with metabolic alterations in the trigeminal ganglion. Our data show, for the first time, the spontaneous development of trigeminal sensitization before the onset of relapsing-remitting EAE in rats. Additionally, pain is maintained elevated during all stages of the disease, suggesting the existence of parallel mechanisms controlling motor symptoms and orofacial pain, likely involving glial cell activation and metabolic alterations which can contribute to trigger the sensitization of sensory neurons.
Collapse
|
29
|
Werkman IL, Lentferink DH, Baron W. Macroglial diversity: white and grey areas and relevance to remyelination. Cell Mol Life Sci 2020; 78:143-171. [PMID: 32648004 PMCID: PMC7867526 DOI: 10.1007/s00018-020-03586-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023]
Abstract
Macroglia, comprising astrocytes and oligodendroglial lineage cells, have long been regarded as uniform cell types of the central nervous system (CNS). Although regional morphological differences between these cell types were initially described after their identification a century ago, these differences were largely ignored. Recently, accumulating evidence suggests that macroglial cells form distinct populations throughout the CNS, based on both functional and morphological features. Moreover, with the use of refined techniques including single-cell and single-nucleus RNA sequencing, additional evidence is emerging for regional macroglial heterogeneity at the transcriptional level. In parallel, several studies revealed the existence of regional differences in remyelination capacity between CNS grey and white matter areas, both in experimental models for successful remyelination as well as in the chronic demyelinating disease multiple sclerosis (MS). In this review, we provide an overview of the diversity in oligodendroglial lineage cells and astrocytes from the grey and white matter, as well as their interplay in health and upon demyelination and successful remyelination. In addition, we discuss the implications of regional macroglial diversity for remyelination in light of its failure in MS. Since the etiology of MS remains unknown and only disease-modifying treatments altering the immune response are available for MS, the elucidation of macroglial diversity in grey and white matter and its putative contribution to the observed difference in remyelination efficiency between these regions may open therapeutic avenues aimed at enhancing endogenous remyelination in either area.
Collapse
Affiliation(s)
- Inge L Werkman
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Dennis H Lentferink
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Wia Baron
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, the Netherlands.
| |
Collapse
|
30
|
Huang P, Zhou Q, Lin Q, Lin L, Wang H, Chen X, Jiang S, Fu H, Deng Y. Complement C3a induces axonal hypomyelination in the periventricular white matter through activation of WNT/β-catenin signal pathway in septic neonatal rats experimentally induced by lipopolysaccharide. Brain Pathol 2020; 30:495-514. [PMID: 31622511 PMCID: PMC8018074 DOI: 10.1111/bpa.12798] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/10/2019] [Indexed: 02/05/2023] Open
Abstract
Neuroinflammation is thought to play a pivotal role in the pathogenesis of periventricular white matter (PWM) damage (PWMD) induced by neonatal sepsis. Because the complement cascade is implicated in inflammatory response, this study was carried out to determine whether C3a is involved in PWMD, and, if so, whether it would induce axonal hypomyelination. Furthermore, we explored if C3a would act through its C3a receptor (C3aR) and thence inhibit maturation of oligodendrocyte precursor cells (OPCs) via the WNT/β-catenin signal pathway. Sprague Dawley (SD) rats aged 1 day were intraperitoneally injected with lipopolysaccharide (LPS) (1 mg/kg). C3a was upregulated in activated microglia and astrocytes in the PWM up to 7 days after LPS injection. Concomitantly, enhanced C3aR expression was observed in NG2+ oligodendrocytes (OLs). Myelin proteins including CNPase, PLP, MBP and MAG were significantly reduced in the PWM of 28-day septic rats. The number of PLP+ and MBP+ cells was markedly decreased. By electron microscopy, myelin sheath thickness was thinner and the average g-ratios were higher. This was coupled with an increase in number of NG2+ cells and decreased number of CC1+ cells. Olig1, Olig2 and SOX10 protein expression was significantly reduced in the PWM after LPS injection. Very strikingly, C3aRa administration for the first 7 days could reverse the above-mentioned pathological alterations in the PWM of septic rats. When incubated with C3a, expression of MBP, CNPase, PLP, MAG, Olig1, Olig2, SOX10 and CC1 in primary cultured OPCs was significantly downregulated as opposed to increased NG2. Moreover, WNT/β-catenin signaling pathway was found to be implicated in inhibition of OPCs maturation and differentiation induced by C3a in vitro. As a corollary, it is speculated that C3a in the PWM of septic rats is closely associated with the disorder of OPCs differentiation and maturation through WNT/β-catenin signaling pathway, which would contribute ultimately to axonal hypomyelination.
Collapse
Affiliation(s)
- Peixian Huang
- Department of Critical Care and EmergencyGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhou510080GuangdongChina
| | - Qiuping Zhou
- Department of Critical Care and EmergencyGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhou510080GuangdongChina
- School of MedicineSouth China University of TechnologyGuangzhou510006GuangdongChina
| | - Qiongyu Lin
- Department of critical care medicineJieyang People's HospitalJieyang522000GuangdongChina
| | - Lanfen Lin
- Department of Critical Care and EmergencyGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhou510080GuangdongChina
- Department of critical care medicineGuangdong Second Provincial General HospitalGuangzhou510317GuangdongChina
| | - Huifang Wang
- Department of Critical Care and EmergencyGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhou510080GuangdongChina
- Affiliated South China HospitalSourthern Medical University (Guangdong Provincial People's Hospital)Guangzhou510515GuangdongChina
| | - Xuan Chen
- Department of Critical Care and EmergencyGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhou510080GuangdongChina
- Shantou University Medical CollegeShantou5105063GuangdongChina
| | - Shuqi Jiang
- Department of Critical Care and EmergencyGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhou510080GuangdongChina
- School of MedicineSouth China University of TechnologyGuangzhou510006GuangdongChina
| | - Hui Fu
- Department of AnatomyWuhan University School of Basic Medical SciencesWuhan430072HubeiChina
| | - Yiyu Deng
- Department of Critical Care and EmergencyGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhou510080GuangdongChina
| |
Collapse
|
31
|
Development of the first in vivo GPR17 ligand through an iterative drug discovery pipeline: A novel disease-modifying strategy for multiple sclerosis. PLoS One 2020; 15:e0231483. [PMID: 32320409 PMCID: PMC7176092 DOI: 10.1371/journal.pone.0231483] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/24/2020] [Indexed: 01/09/2023] Open
Abstract
The GPR17 receptor, expressed on oligodendroglial precursors (OPCs, the myelin producing cells), has emerged as an attractive target for a pro-myelinating strategy in multiple sclerosis (MS). However, the proof-of-concept that selective GPR17 ligands actually exert protective activity in vivo is still missing. Here, we exploited an iterative drug discovery pipeline to prioritize novel and selective GPR17 pro-myelinating agents out of more than 1,000,000 compounds. We first performed an in silico high-throughput screening on GPR17 structural model to identify three chemically-diverse ligand families that were then combinatorially exploded and refined. Top-scoring compounds were sequentially tested on reference pharmacological in vitro assays with increasing complexity, ending with myelinating OPC-neuron co-cultures. Successful ligands were filtered through in silico simulations of metabolism and pharmacokinetics, to select the most promising hits, whose dose and ability to target the central nervous system were then determined in vivo. Finally, we show that, when administered according to a preventive protocol, one of them (named by us as galinex) is able to significantly delay the onset of experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. This outcome validates the predictivity of our pipeline to identify novel MS-modifying agents.
Collapse
|
32
|
Abnormal Upregulation of GPR17 Receptor Contributes to Oligodendrocyte Dysfunction in SOD1 G93A Mice. Int J Mol Sci 2020; 21:ijms21072395. [PMID: 32244295 PMCID: PMC7177925 DOI: 10.3390/ijms21072395] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/19/2020] [Accepted: 03/29/2020] [Indexed: 12/31/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of motor neurons (MN). Importantly, MN degeneration is intimately linked to oligodendrocyte dysfunction and impaired capacity of oligodendrocyte precursor cells (OPCs) to regenerate the myelin sheath enwrapping and protecting neuronal axons. Thus, improving OPC reparative abilities represents an innovative approach to counteract MN loss. A pivotal regulator of OPC maturation is the P2Y-like G protein-coupled receptor 17 (GPR17), whose role in ALS has never been investigated. In other models of neurodegeneration, an abnormal increase of GPR17 has been invariably associated to myelin defects and its pharmacological manipulation succeeded in restoring endogenous remyelination. Here, we analyzed GPR17 alterations in the SOD1G93A ALS mouse model and assessed in vitro whether this receptor could be targeted to correct oligodendrocyte alterations. Western-blot and immunohistochemical analyses showed that GPR17 protein levels are significantly increased in spinal cord of ALS mice at pre-symptomatic stage; this alteration is exacerbated at late symptomatic phases. Concomitantly, mature oligodendrocytes degenerate and are not successfully replaced. Moreover, OPCs isolated from spinal cord of SOD1G93A mice display defective differentiation compared to control cells, which is rescued by treatment with the GPR17 antagonist montelukast. These data open novel therapeutic perspectives for ALS management.
Collapse
|
33
|
Marangon D, Boda E, Parolisi R, Negri C, Giorgi C, Montarolo F, Perga S, Bertolotto A, Buffo A, Abbracchio MP, Lecca D. In vivo silencing of miR-125a-3p promotes myelin repair in models of white matter demyelination. Glia 2020; 68:2001-2014. [PMID: 32163190 DOI: 10.1002/glia.23819] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 02/13/2020] [Accepted: 03/02/2020] [Indexed: 12/18/2022]
Abstract
In the last decade, microRNAs have been increasingly recognized as key modulators of glial development. Recently, we identified miR-125a-3p as a new player in oligodendrocyte physiology, regulating in vitro differentiation of oligodendrocyte precursor cells (OPCs). Here, we show that miR-125a-3p is upregulated in active lesions of multiple sclerosis (MS) patients and in OPCs isolated from the spinal cord of chronic experimental autoimmune encephalomyelitis (EAE) mice, but not in those isolated from the spontaneously remyelinating corpus callosum of lysolecithin-treated mice. To test whether a sustained expression of miR-125a-3p in OPCs contribute to defective remyelination, we modulated miR-125a-3p expression in vivo and ex vivo after lysolecithin-induced demyelination. We found that lentiviral over-expression of miR-125a-3p impaired OPC maturation, whereas its downregulation accelerated remyelination. Transcriptome analysis and luciferase reporter assay revealed that these effects are partly mediated by the direct interaction of miR-125a-3p with Slc8a3, a sodium-calcium membrane transporter, and identified novel candidate targets, such as Gas7, that we demonstrated necessary to correctly address oligodendrocytes to terminal maturation. These findings show that miR-125a-3p upregulation negatively affects OPC maturation in vivo, suggest its role in the pathogenesis of demyelinating diseases and unveil new targets for future promyelinating protective interventions.
Collapse
Affiliation(s)
- Davide Marangon
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Enrica Boda
- Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Roberta Parolisi
- Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Camilla Negri
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Corinna Giorgi
- European Brain Research Institute Rita Levi-Montalcini, Rome, Italy
| | - Francesca Montarolo
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.,Neurobiology Unit, Neurology-CReSM (Regional Referring Center of Multiple Sclerosis), AOU San Luigi Gonzaga, Orbassano, Italy
| | - Simona Perga
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.,Neurobiology Unit, Neurology-CReSM (Regional Referring Center of Multiple Sclerosis), AOU San Luigi Gonzaga, Orbassano, Italy
| | - Antonio Bertolotto
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.,Neurobiology Unit, Neurology-CReSM (Regional Referring Center of Multiple Sclerosis), AOU San Luigi Gonzaga, Orbassano, Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Maria P Abbracchio
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Davide Lecca
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
34
|
Lecca D, Raffaele S, Abbracchio MP, Fumagalli M. Regulation and signaling of the GPR17 receptor in oligodendroglial cells. Glia 2020; 68:1957-1967. [PMID: 32086854 DOI: 10.1002/glia.23807] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
Abstract
Remyelination, namely, the formation of new myelin sheaths around denuded axons, counteracts axonal degeneration and restores neuronal function. Considerable advances have been made in understanding this regenerative process that often fails in diseases like multiple sclerosis, leaving axons demyelinated and vulnerable to damage, thus contributing to disease progression. The identification of the membrane receptor GPR17 on a subset of oligodendrocyte precursor cells (OPCs), which mediate remyelination in the adult central nervous system (CNS), has led to a huge amount of evidence that validated this receptor as a new attractive target for remyelinating therapies. Here, we summarize the role of GPR17 in OPC function, myelination and remyelination, describing its atypical pharmacology, its downstream signaling, and the genetic and epigenetic factors modulating its activity. We also highlight crucial insights into GPR17 pathophysiology coming from the demonstration that oligodendrocyte injury, associated with inflammation in chronic neurodegenerative conditions, is invariably characterized by abnormal and persistent GPR17 upregulation, which, in turn, is accompanied by a block of OPCs at immature premyelinating stages. Finally, we discuss the current literature in light of the potential exploitment of GPR17 as a therapeutic target to promote remyelination.
Collapse
Affiliation(s)
- Davide Lecca
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Stefano Raffaele
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Maria P Abbracchio
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Marta Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
35
|
Foerster S, Hill MFE, Franklin RJM. Diversity in the oligodendrocyte lineage: Plasticity or heterogeneity? Glia 2019; 67:1797-1805. [PMID: 30968471 DOI: 10.1002/glia.23607] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/16/2019] [Accepted: 02/19/2019] [Indexed: 12/17/2022]
Abstract
Heterogeneity is a widely recognized phenomenon within the majority of cell types in the body including cells of the central nervous system (CNS). The heterogeneity of neurons based on their distinct transmission modes and firing patterns has been recognized for decades, and is necessary to coordinate the immense variety of functions of the CNS. More recently, heterogeneity in glial cells has been identified, including heterogeneity in oligodendrocyte progenitor cells (OPCs) and oligodendrocytes. OPC subpopulations have been described based on their developmental origin, anatomical location in the grey or white matter, and expression of surface receptors. Oligodendrocytes are categorised according to differences in gene expression, myelinogenic potential, and axon specificity. Much of what is described as heterogeneity in oligodendrocyte lineage cells (OLCs) is based on phenotypic differences. However, without evidence for functional differences between putative subgroups of OLCs, distinguishing heterogeneity from plasticity and lineage state is difficult. Identifying functional differences between phenotypically distinct groups are therefore necessary for a deeper understanding of the role of OLCs in health and disease.
Collapse
Affiliation(s)
- Sarah Foerster
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Clifford Allbutt Building, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Myfanwy F E Hill
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Clifford Allbutt Building, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Robin J M Franklin
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Clifford Allbutt Building, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| |
Collapse
|
36
|
Alavi MS, Karimi G, Roohbakhsh A. The role of orphan G protein-coupled receptors in the pathophysiology of multiple sclerosis: A review. Life Sci 2019; 224:33-40. [PMID: 30904492 DOI: 10.1016/j.lfs.2019.03.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 01/19/2023]
Abstract
G protein-coupled receptors (GPCRs) are a large family of transmembrane proteins that are expressed in many organs and serve as important drug targets. A new subgroup, namely orphan GPCRs, comprising many of these receptors has been discovered. These receptors exhibit diverse physiological functions and have been considered in many neurological disorders including Alzheimer's disease, Parkinson's disease, and multiple sclerosis (MS). GPR17, GPR30, GPR37, GPR40, GPR50, GPR54, GPR56, GPR65, GPR68, GPR75, GPR84, GPR97, GPR109, GPR124, and GPR126 are orphan GPCRs that have been reported with considerable effects in the prevention and/or treatment of MS in preclinical studies. In the present article, we reviewed the most recent findings regarding the role of orphan GPCRs in the treatment of MS.
Collapse
Affiliation(s)
- Mohaddeseh Sadat Alavi
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
37
|
Gou X, Tang Y, Qu Y, Xiao D, Ying J, Mu D. Could the inhibitor of DNA binding 2 and 4 play a role in white matter injury? Rev Neurosci 2019; 30:625-638. [PMID: 30738015 DOI: 10.1515/revneuro-2018-0090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/02/2018] [Indexed: 01/12/2023]
Abstract
Abstract
White matter injury (WMI) prevents the normal development of myelination, leading to central nervous system myelination disorders and the production of chronic sequelae associated with WMI, such as chronic dyskinesia, cognitive impairment and cerebral palsy. This results in a large emotional and socioeconomic burden. Decreased myelination in preterm infant WMI is associated with the delayed development or destruction of oligodendrocyte (OL) lineage cells, particularly oligodendrocyte precursor cells (OPCs). The development of cells from the OL lineage involves the migration, proliferation and different stages of OL differentiation, finally leading to myelination. A series of complex intrinsic, extrinsic and epigenetic factors regulate the OPC cell cycle withdrawal, OL lineage progression and myelination. We focus on the inhibitor of DNA binding 2 (ID2), because it is widely involved in the different stages of OL differentiation and genesis. ID2 is a key transcription factor for the normal development of OL lineage cells, and the pathogenesis of WMI is closely linked with OL developmental disorders. ID4, another family member of the IDs protein, also plays a similar role in OL differentiation and genesis. ID2 and ID4 belong to the helix-loop-helix family; they lack the DNA-binding sequences and inhibit oligodendrogenesis and OPC differentiation. In this review, we mainly discuss the roles of ID2 in OL development, especially during OPC differentiation, and summarize the ID2-mediated intracellular and extracellular signaling pathways that regulate these processes. We also discuss ID4 in relation to bone morphogenetic protein signaling and oligodendrogenesis. It is likely that these developmental mechanisms are also involved in the myelin repair or remyelination in human neurological diseases.
Collapse
Affiliation(s)
- Xiaoyun Gou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Ying Tang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Dongqiong Xiao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Junjie Ying
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China
| |
Collapse
|
38
|
Coppolino GT, Marangon D, Negri C, Menichetti G, Fumagalli M, Gelosa P, Dimou L, Furlan R, Lecca D, Abbracchio MP. Differential local tissue permissiveness influences the final fate of GPR17-expressing oligodendrocyte precursors in two distinct models of demyelination. Glia 2018; 66:1118-1130. [PMID: 29424466 PMCID: PMC5900886 DOI: 10.1002/glia.23305] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/13/2018] [Accepted: 01/29/2018] [Indexed: 01/08/2023]
Abstract
Promoting remyelination is recognized as a novel strategy to foster repair in neurodegenerative demyelinating diseases, such as multiple sclerosis. In this respect, the receptor GPR17, recently emerged as a new target for remyelination, is expressed by early oligodendrocyte precursors (OPCs) and after a certain differentiation stage it has to be downregulated to allow progression to mature myelinating oligodendrocytes. Here, we took advantage of the first inducible GPR17 reporter mouse line (GPR17‐iCreERT2xCAG‐eGFP mice) allowing to follow the final fate of GPR17+ cells by tamoxifen‐induced GFP‐labeling to unveil the destiny of these cells in two demyelination models: experimental autoimmune encephalomyelitis (EAE), characterized by marked immune cell activation and inflammation, and cuprizone induced demyelination, where myelin dysfunction is achieved by a toxic insult. In both models, demyelination induced a strong increase of fluorescent GFP+ cells at damaged areas. However, only in the cuprizone model reacting GFP+ cells terminally differentiated to mature oligodendrocytes, thus contributing to remyelination. In EAE, GFP+ cells were blocked at immature stages and never became myelinating oligodendrocytes. We suggest these strikingly distinct fates be due to different permissiveness of the local CNS environment. Based on previously reported GPR17 activation by emergency signals (e.g., Stromal Derived Factor‐1), we propose that a marked inflammatory milieu, such as that reproduced in EAE, induces GPR17 overactivation resulting in impaired downregulation, untimely and prolonged permanence in OPCs, leading, in turn, to differentiation blockade. Combined treatments with remyelinating agents and anti‐inflammatory drugs may represent new potential adequate strategies to halt neurodegeneration and foster recovery.
Collapse
Affiliation(s)
- Giusy T Coppolino
- Laboratory of Molecular and Cellular Pharmacology of the Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, Milan, 20133, Italy
| | - Davide Marangon
- Laboratory of Molecular and Cellular Pharmacology of the Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, Milan, 20133, Italy
| | - Camilla Negri
- Laboratory of Molecular and Cellular Pharmacology of the Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, Milan, 20133, Italy
| | - Gianluca Menichetti
- Laboratory of Molecular and Cellular Pharmacology of the Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, Milan, 20133, Italy
| | - Marta Fumagalli
- Laboratory of Molecular and Cellular Pharmacology of the Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, Milan, 20133, Italy
| | - Paolo Gelosa
- Centro Cardiologico Monzino, Via Parea, 4, Milano, 20138, Italy
| | - Leda Dimou
- Molecular and Translational Neuroscience, University of Ulm, Albert-Einstein-Allee 11, Ulm, D - 89081, Germany
| | - Roberto Furlan
- Institute of Experimental Neurology, S. Raffaele Scientific Institute, Via Olgettina, 58, Milano, 20132, Italy
| | - Davide Lecca
- Laboratory of Molecular and Cellular Pharmacology of the Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, Milan, 20133, Italy
| | - Maria P Abbracchio
- Laboratory of Molecular and Cellular Pharmacology of the Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, Milan, 20133, Italy
| |
Collapse
|