1
|
Kühl F, Brand K, Lichtinghagen R, Huber R. GSK3-Driven Modulation of Inflammation and Tissue Integrity in the Animal Model. Int J Mol Sci 2024; 25:8263. [PMID: 39125833 PMCID: PMC11312333 DOI: 10.3390/ijms25158263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Nowadays, GSK3 is accepted as an enzyme strongly involved in the regulation of inflammation by balancing the pro- and anti-inflammatory responses of cells and organisms, thus influencing the initiation, progression, and resolution of inflammatory processes at multiple levels. Disturbances within its broad functional scope, either intrinsically or extrinsically induced, harbor the risk of profound disruptions to the regular course of the immune response, including the formation of severe inflammation-related diseases. Therefore, this review aims at summarizing and contextualizing the current knowledge derived from animal models to further shape our understanding of GSK3α and β and their roles in the inflammatory process and the occurrence of tissue/organ damage. Following a short recapitulation of structure, function, and regulation of GSK3, we will focus on the lessons learned from GSK3α/β knock-out and knock-in/overexpression models, both conventional and conditional, as well as a variety of (predominantly rodent) disease models reflecting defined pathologic conditions with a significant proportion of inflammation and inflammation-related tissue injury. In summary, the literature suggests that GSK3 acts as a crucial switch driving pro-inflammatory and destructive processes and thus contributes significantly to the pathogenesis of inflammation-associated diseases.
Collapse
Affiliation(s)
| | | | | | - René Huber
- Institute of Clinical Chemistry and Laboratory Medicine, Hannover Medical School, 30625 Hannover, Germany; (F.K.); (K.B.); (R.L.)
| |
Collapse
|
2
|
Chapman TW, Kamen Y, Piedra ET, Hill RA. Oligodendrocyte Maturation Alters the Cell Death Mechanisms That Cause Demyelination. J Neurosci 2024; 44:e1794232024. [PMID: 38395617 PMCID: PMC10977033 DOI: 10.1523/jneurosci.1794-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Myelinating oligodendrocytes die in human disease and early in aging. Despite this, the mechanisms that underly oligodendrocyte death are not resolved and it is also not clear whether these mechanisms change as oligodendrocyte lineage cells are undergoing differentiation and maturation. Here, we used a combination of intravital imaging, single-cell ablation, and cuprizone-mediated demyelination, in both female and male mice, to discover that oligodendrocyte maturation dictates the dynamics and mechanisms of cell death. After single-cell phototoxic damage, oligodendrocyte precursor cells underwent programmed cell death within hours, differentiating oligodendrocytes died over several days, while mature oligodendrocytes took weeks to die. Importantly cells at each maturation stage all eventually died but did so with drastically different temporal dynamics and morphological features. Consistent with this, cuprizone treatment initiated a caspase-3-dependent form of rapid cell death in differentiating oligodendrocytes, while mature oligodendrocytes never activated this executioner caspase. Instead, mature oligodendrocytes exhibited delayed cell death which was marked by DNA damage and disruption in poly-ADP-ribose subcellular localization. Thus, oligodendrocyte maturation plays a key role in determining the mechanism of death a cell undergoes in response to the same insult. This means that oligodendrocyte maturation is important to consider when designing strategies for preventing cell death and preserving myelin while also enhancing the survival of new oligodendrocytes in demyelinating conditions.
Collapse
Affiliation(s)
- Timothy W Chapman
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Yasmine Kamen
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Enrique T Piedra
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Robert A Hill
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
3
|
Klimas A, Gallagher BR, Wijesekara P, Fekir S, DiBernardo EF, Cheng Z, Stolz DB, Cambi F, Watkins SC, Brody SL, Horani A, Barth AL, Moore CI, Ren X, Zhao Y. Magnify is a universal molecular anchoring strategy for expansion microscopy. Nat Biotechnol 2023; 41:858-869. [PMID: 36593399 PMCID: PMC10264239 DOI: 10.1038/s41587-022-01546-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/05/2022] [Indexed: 01/03/2023]
Abstract
Expansion microscopy enables nanoimaging with conventional microscopes by physically and isotropically magnifying preserved biological specimens embedded in a crosslinked water-swellable hydrogel. Current expansion microscopy protocols require prior treatment with reactive anchoring chemicals to link specific labels and biomolecule classes to the gel. We describe a strategy called Magnify, which uses a mechanically sturdy gel that retains nucleic acids, proteins and lipids without the need for a separate anchoring step. Magnify expands biological specimens up to 11 times and facilitates imaging of cells and tissues with effectively around 25-nm resolution using a diffraction-limited objective lens of about 280 nm on conventional optical microscopes or with around 15 nm effective resolution if combined with super-resolution optical fluctuation imaging. We demonstrate Magnify on a broad range of biological specimens, providing insight into nanoscopic subcellular structures, including synaptic proteins from mouse brain, podocyte foot processes in formalin-fixed paraffin-embedded human kidney and defects in cilia and basal bodies in drug-treated human lung organoids.
Collapse
Affiliation(s)
- Aleksandra Klimas
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Brendan R Gallagher
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Piyumi Wijesekara
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Sinda Fekir
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Emma F DiBernardo
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Zhangyu Cheng
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Donna B Stolz
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Franca Cambi
- Veterans Administration Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology/PIND, University of Pittsburgh, Pittsburgh, PA, USA
| | - Simon C Watkins
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven L Brody
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alison L Barth
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Christopher I Moore
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Yongxin Zhao
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Gao Y, Xie D, Wang Y, Niu L, Jiang H. Short-Chain Fatty Acids Reduce Oligodendrocyte Precursor Cells Loss by Inhibiting the Activation of Astrocytes via the SGK1/IL-6 Signalling Pathway. Neurochem Res 2022; 47:3476-3489. [PMID: 36098889 PMCID: PMC9546972 DOI: 10.1007/s11064-022-03710-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/09/2022]
Abstract
Short-chain fatty acids (SCFAs) are known to be actively involved in neurological diseases, but their roles in hypoxic-ischaemic brain injury (HIBI) are unclear. In this study, a rat model of HIBI was established, and this study measured the changes in IL-6 and NOD-like receptor thermal protein domain associated protein 3 (NLRP3), in addition to proliferation and apoptosis indicators of oligodendrocyte precursor cells (OPCs). The mechanism of action of SCFA on astrocytes was also investigated. Astrocytes were subjected to hypoxia in vitro, and OPCs were treated with IL-6. The results showed that SCFAs significantly alleviated HIBI-induced activation of astrocytes and loss of OPCs. SCFA pretreatment (1) downregulated the expression of NLRP3, IL-6, CCL2, and IP-10; (2) had no effect on the proliferation of OPCs; (3) ameliorated the abnormal expression of Bax and Bcl-2; and (4) regulated IL-6 expression via the SGK1-related pathway in astrocytes. Our findings revealed that SCFAs alleviated the loss of OPCs by regulating astrocyte activation through the SGK1/IL-6 signalling pathway.
Collapse
Affiliation(s)
- Yanmin Gao
- Department of General Practice, Shanghai East Hospital, School of Medicine, Tongji University, No.150, Jimo Road, Pudong New District, Shanghai, 200120, China.,Department of General Practice, Kongjiang Community Health Service Center, No. 100, Yanji West Road, Yangpu District, Shanghai, 200093, China
| | - Di Xie
- Emergency Department, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Yang Wang
- Department of General Practice, Shanghai East Hospital, School of Medicine, Tongji University, No.150, Jimo Road, Pudong New District, Shanghai, 200120, China.,Emergency Department, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Lei Niu
- Department of General Practice, Shanghai East Hospital, School of Medicine, Tongji University, No.150, Jimo Road, Pudong New District, Shanghai, 200120, China.,Emergency Department, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Hua Jiang
- Department of General Practice, Shanghai East Hospital, School of Medicine, Tongji University, No.150, Jimo Road, Pudong New District, Shanghai, 200120, China. .,Emergency Department, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China.
| |
Collapse
|
5
|
Ji S, Ye L, Zhang L, Xu D, Dai J. Retinal neurodegeneration in a mouse model of green-light-induced myopia. Exp Eye Res 2022; 223:109208. [DOI: 10.1016/j.exer.2022.109208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/23/2022] [Accepted: 07/31/2022] [Indexed: 11/15/2022]
|
6
|
Arciniegas Ruiz SM, Eldar-Finkelman H. Glycogen Synthase Kinase-3 Inhibitors: Preclinical and Clinical Focus on CNS-A Decade Onward. Front Mol Neurosci 2022; 14:792364. [PMID: 35126052 PMCID: PMC8813766 DOI: 10.3389/fnmol.2021.792364] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022] Open
Abstract
The protein kinase, GSK-3, participates in diverse biological processes and is now recognized a promising drug discovery target in treating multiple pathological conditions. Over the last decade, a range of newly developed GSK-3 inhibitors of diverse chemotypes and inhibition modes has been developed. Even more conspicuous is the dramatic increase in the indications that were tested from mood and behavior disorders, autism and cognitive disabilities, to neurodegeneration, brain injury and pain. Indeed, clinical and pre-clinical studies were largely expanded uncovering new mechanisms and novel insights into the contribution of GSK-3 to neurodegeneration and central nerve system (CNS)-related disorders. In this review we summarize new developments in the field and describe the use of GSK-3 inhibitors in the variety of CNS disorders. This remarkable volume of information being generated undoubtedly reflects the great interest, as well as the intense hope, in developing potent and safe GSK-3 inhibitors in clinical practice.
Collapse
|
7
|
Wellman SM, Guzman K, Stieger KC, Brink LE, Sridhar S, Dubaniewicz MT, Li L, Cambi F, Kozai TDY. Cuprizone-induced oligodendrocyte loss and demyelination impairs recording performance of chronically implanted neural interfaces. Biomaterials 2020; 239:119842. [PMID: 32065972 PMCID: PMC7540937 DOI: 10.1016/j.biomaterials.2020.119842] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 12/16/2022]
Abstract
Biological inflammation induced during penetrating cortical injury can disrupt functional neuronal and glial activity within the cortex, resulting in potential recording failure of chronically implanted neural interfaces. Oligodendrocytes provide critical support for neuronal health and function through direct contact with neuronal soma and axons within the cortex. Given their fundamental role to regulate neuronal activity via myelin, coupled with their heightened vulnerability to metabolic brain injury due to high energetic demands, oligodendrocytes are hypothesized as a possible source of biological failure in declining recording performances of intracortical microelectrode devices. To determine the extent of their contribution to neuronal activity and function, a cuprizone-inducible model of oligodendrocyte depletion and demyelination in mice was performed prior to microelectrode implantation. At 5 weeks of cuprizone exposure, mice demonstrated significantly reduced cortical oligodendrocyte density and myelin expression. Mice were then implanted with functional recording microelectrodes in the visual cortex and neuronal activity was evaluated up to 7 weeks alongside continued cuprizone administration. Cuprizone-induced oligodendrocyte loss and demyelination was associated with significantly reduced recording performances at the onset of implantation, which remained relatively stable over time. In contast, recording performances for mice on a normal diet were intially elevated before decreasing over time to the recording level of tcuprizone-treated mice. Further electrophysiological analysis revealed deficits in multi-unit firing rates, frequency-dependent disruptions in neuronal oscillations, and altered laminar communication within the cortex of cuprizone-treated mice. Post-mortem immunohistochemistry revealed robust depletion of oligodendrocytes around implanted microelectrode arrays alongside comparable neuronal densities to control mice, suggesting that oligodendrocyte loss was a possible contributor to chronically impaired device performances. This study highlights potentially significant contributions from the oligodendrocyte lineage population concerning the biological integration and long-term functional performance of neural interfacing technology.
Collapse
Affiliation(s)
- Steven M Wellman
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Kelly Guzman
- Veterans Administration Pittsburgh, Pittsburgh, PA, USA
| | - Kevin C Stieger
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | | | - Sadhana Sridhar
- Veterans Administration Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Lehong Li
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Franca Cambi
- Veterans Administration Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
GSK3: A Kinase Balancing Promotion and Resolution of Inflammation. Cells 2020; 9:cells9040820. [PMID: 32231133 PMCID: PMC7226814 DOI: 10.3390/cells9040820] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
GSK3 has been implicated for years in the regulation of inflammation and addressed in a plethora of scientific reports using a variety of experimental (disease) models and approaches. However, the specific role of GSK3 in the inflammatory process is still not fully understood and controversially discussed. Following a detailed overview of structure, function, and various regulatory levels, this review focusses on the immunoregulatory functions of GSK3, including the current knowledge obtained from animal models. Its impact on pro-inflammatory cytokine/chemokine profiles, bacterial/viral infections, and the modulation of associated pro-inflammatory transcriptional and signaling pathways is discussed. Moreover, GSK3 contributes to the resolution of inflammation on multiple levels, e.g., via the regulation of pro-resolving mediators, the clearance of apoptotic immune cells, and tissue repair processes. The influence of GSK3 on the development of different forms of stimulation tolerance is also addressed. Collectively, the role of GSK3 as a kinase balancing the initiation/perpetuation and the amelioration/resolution of inflammation is highlighted.
Collapse
|
9
|
Fan X, Zhao Z, Wang D, Xiao J. Glycogen synthase kinase-3 as a key regulator of cognitive function. Acta Biochim Biophys Sin (Shanghai) 2020; 52:219-230. [PMID: 32147679 DOI: 10.1093/abbs/gmz156] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/16/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is a highly conserved and multifunctional serine/threonine protein kinase widely distributed in eukaryotic cells. GSK-3 is originally thought to be an enzyme that regulates glycogen synthesis. It was subsequently found that GSK-3 influences many critical cellular functions, such as cell structure, neural plasticity, gene expression, and neuronal survival. Recently, GSK-3 has been found to be associated with cognition, and its dysregulation leads to cognitive impairments in many diseases, including Alzheimer's disease, diabetes, depression, Parkinson's disease, and others. In this review, we summarized the current knowledge about the structure of GSK-3, the regulation of GSK-3 activity, and its role in cognitive function and cognitive-related disease.
Collapse
Affiliation(s)
- Xuhong Fan
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Zhenyu Zhao
- Department of Anesthesiology, The First Hospital of Hunan University of Chinese Medicine, Changsha 410000, China
| | - Deming Wang
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Ji Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang 421001, China
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
10
|
Guzman KM, Brink LE, Rodriguez-Bey G, Bodnar RJ, Kuang L, Xing B, Sullivan M, Park HJ, Koppes E, Zhu H, Padiath Q, Cambi F. Conditional depletion of Fus in oligodendrocytes leads to motor hyperactivity and increased myelin deposition associated with Akt and cholesterol activation. Glia 2020; 68:2040-2056. [PMID: 32187401 DOI: 10.1002/glia.23825] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/29/2022]
Abstract
Fused in sarcoma (FUS) is a predominantly nuclear multifunctional RNA/DNA-binding protein that regulates multiple aspects of gene expression. FUS mutations are associated with familial amyotrophic lateral sclerosis (fALS) and frontotemporal lobe degeneration (FTLD) in humans. At the molecular level, the mutated FUS protein is reduced in the nucleus but accumulates in cytoplasmic granules. Oligodendrocytes (OL) carrying clinically relevant FUS mutations contribute to non-cell autonomous motor neuron disease progression, consistent with an extrinsic mechanism of disease mediated by OL. Knocking out FUS globally or in neurons lead to behavioral abnormalities that are similar to those present in FTLD. In this study, we sought to investigate whether an extrinsic mechanism mediated by loss of FUS function in OL contributes to the behavioral phenotype. We have generated a novel conditional knockout (cKO) in which Fus is selectively depleted in OL (FusOL cKO). The FusOL cKO mice show increased novelty-induced motor activity and enhanced exploratory behavior, which are reminiscent of some manifestations of FTLD. The phenotypes are associated with greater myelin thickness, higher number of myelinated small diameter axons without an increase in the number of mature OL. The expression of the rate-limiting enzyme of cholesterol biosynthesis (HMGCR) is increased in white matter tracts of the FusOL cKO and results in higher cholesterol content. In addition, phosphorylation of Akt, an important regulator of myelination is increased in the FusOL cKO. Collectively, this work has uncovered a novel role of oligodendrocytic Fus in regulating myelin deposition through activation of Akt and cholesterol biosynthesis.
Collapse
Affiliation(s)
- Kelly M Guzman
- Research Department, Veterans Administration Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lauren E Brink
- Research Department, Veterans Administration Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Guillermo Rodriguez-Bey
- Department of Human Genetics Graduate, School of Public Health University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Richard J Bodnar
- Research Department, Veterans Administration Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lisha Kuang
- Department of Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Bin Xing
- GE Healthcare, Waukesha, Wisconsin, USA
| | - Mara Sullivan
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hyun J Park
- Department of Human Genetics, Biostatistics and Biomedical Informatics, School of Public Health University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Erik Koppes
- Department of Pediatrics, Children's Hospital, UPMC, Pittsburgh, Pennsylvania, USA
| | - Haining Zhu
- Department of Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Quasar Padiath
- Department of Human Genetics Graduate, School of Public Health University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Franca Cambi
- Research Department, Veterans Administration Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Neurology/PIND, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Neurology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
11
|
Li J, Liu L, Zhang J, Cheng L, Ren L, Zhao Y. The expression of miR-129-5p and its target genes in the skin of goats. Anim Biotechnol 2020; 32:573-579. [PMID: 32078403 DOI: 10.1080/10495398.2020.1730392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Coat color is one of the major quality traits of animals, and miR-129-5p acts as an important regulator for melanin biosynthesis in mammals. In this study, real-time PCR and western blotting were used to examine the expression of miR-129-5p and its targets genes in the skin of different coat color goats. The results showed that the expression of miR-129-5p in the skin samples of Inner Mongolia cashmere goats (IMCG) was higher than that of Dazu black goat (DBG). Also, the target genes (tyrosinase (TYR), frizzled 6 (FZD6) and glycogen synthase kinase 3β (GSK3β)) of miR-129-5p was highly expressed in the skin samples of DBG. The expression of miR-129-5p firstly increased and then decreased with age in F1 hybrid generation of DBG and IMCG. In addition, the expression of TYR decreased with age, while the expression of MITF increased with age but then decreased. The expression of FZD6 and GSK3β in the skin samples of F1 of different ages were irregular. Our results indicated that miR-129-5p mainly affects the formation of coat color of goats by decreasing the expression of TYR. This study suggests that miR-129-5p can act as a suppressor in the formation of coat color to lay the foundation for studying the effect of miR-129-5p on melanin synthesis.
Collapse
Affiliation(s)
- Jialu Li
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, P. R. China.,Chongqing Key Laboratory of Forage and Herbivore, Beibei, Chongqing, P. R. China.,Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Beibei, Chongqing, P. R. China
| | - Lingbin Liu
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, P. R. China.,Chongqing Key Laboratory of Forage and Herbivore, Beibei, Chongqing, P. R. China.,Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Beibei, Chongqing, P. R. China
| | - Jipan Zhang
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, P. R. China.,Chongqing Key Laboratory of Forage and Herbivore, Beibei, Chongqing, P. R. China.,Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Beibei, Chongqing, P. R. China
| | - Lei Cheng
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, P. R. China.,Chongqing Key Laboratory of Forage and Herbivore, Beibei, Chongqing, P. R. China.,Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Beibei, Chongqing, P. R. China
| | - Lingtong Ren
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, P. R. China.,Chongqing Key Laboratory of Forage and Herbivore, Beibei, Chongqing, P. R. China.,Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Beibei, Chongqing, P. R. China
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, P. R. China.,Chongqing Key Laboratory of Forage and Herbivore, Beibei, Chongqing, P. R. China.,Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Beibei, Chongqing, P. R. China
| |
Collapse
|
12
|
Animal Weight Is an Important Variable for Reliable Cuprizone-Induced Demyelination. J Mol Neurosci 2019; 68:522-528. [PMID: 30937629 DOI: 10.1007/s12031-019-01312-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022]
Abstract
An elegant model to study mechanisms operant during oligodendrocyte degeneration and subsequent demyelination is the cuprizone model. In that model, mice are intoxicated with the copper chelation agent cuprizone which results in early oligodendrocyte stress, oligodendrocyte apoptosis, and, finally, demyelination. Here, we systematically investigated to what extent the animals' weight at the beginning of the cuprizone intoxication period is critical for the reproducibility of the cuprizone-induced pathology. We can demonstrate that a negative correlation exists between the two variables "extent of cuprizone-induced demyelination" and "starting weight." Demyelination and microglia activation were more severe in low weight compared to heavy weight mice. These findings are highly relevant for the experimental design using the cuprizone model.
Collapse
|
13
|
Zou S, Balinang JM, Paris JJ, Hauser KF, Fuss B, Knapp PE. Effects of HIV-1 Tat on oligodendrocyte viability are mediated by CaMKIIβ-GSK3β interactions. J Neurochem 2019; 149:98-110. [PMID: 30674062 DOI: 10.1111/jnc.14668] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/11/2019] [Accepted: 01/21/2019] [Indexed: 12/16/2022]
Abstract
Myelin disruptions are frequently reported in human immunodeficiency virus (HIV)-infected individuals and can occur in the CNS very early in the disease process. Immature oligodendrocytes (OLs) are quite sensitive to toxic increases in [Ca2+ ]i caused by exposure to HIV-1 Tat (transactivator of transcription, a protein essential for HIV replication and gene expression), but sensitivity to Tat-induced [Ca2+ ]i is reduced in mature OLs. Tat exposure also increased the activity of Ca2+ /calmodulin-dependent kinase IIβ (CaMKIIβ), the major isoform of CaMKII expressed by OLs, in both immature and mature OLs. Since CaMKIIβ is reported to interact with glycogen synthase kinase 3β (GSK3β), and GSK3β activity is implicated in OL apoptosis as well as HIV neuropathology, we hypothesized that disparate effects of Tat on OL viability with maturity might be because of an altered balance of CaMKIIβ-GSK3β activities. Tat expression in vivo led to increased CaMKIIβ and GSK3β activity in multiple brain regions in transgenic mice. In vitro, immature murine OLs expressed higher levels of GSK3β, but much lower levels of CaMKIIβ, than did mature OLs. Exogenous Tat up-regulated GSK3β activity in immature, but not mature, OLs. Tat-induced death of immature OLs was rescued by the GSK3β inhibitors valproic acid or SB415286, supporting involvement of GSK3β signaling. Pharmacologically inhibiting CaMKIIβ increased GSK3β activity in Tat-treated OLs, and genetically knocking down CaMKIIβ promoted death in mature OL cultures treated with Tat. Together, these results suggest that the effects of Tat on OL viability are dependent on CaMKIIβ-GSK3β interactions, and that increasing CaMKIIβ activity is a potential approach for limiting OL/myelin injury with HIV infection.
Collapse
Affiliation(s)
- Shiping Zou
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Joyce M Balinang
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Jason J Paris
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Kurt F Hauser
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.,Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.,Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Pamela E Knapp
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.,Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.,Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
14
|
Wellman SM, Cambi F, Kozai TD. The role of oligodendrocytes and their progenitors on neural interface technology: A novel perspective on tissue regeneration and repair. Biomaterials 2018; 183:200-217. [PMID: 30172245 PMCID: PMC6469877 DOI: 10.1016/j.biomaterials.2018.08.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/08/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022]
Abstract
Oligodendrocytes and their precursors are critical glial facilitators of neurophysiology, which is responsible for cognition and behavior. Devices that are used to interface with the brain allow for a more in-depth analysis of how neurons and these glia synergistically modulate brain activity. As projected by the BRAIN Initiative, technologies that acquire a high resolution and robust sampling of neural signals can provide a greater insight in both the healthy and diseased brain and support novel discoveries previously unobtainable with the current state of the art. However, a complex series of inflammatory events triggered during device insertion impede the potential applications of implanted biosensors. Characterizing the biological mechanisms responsible for the degradation of intracortical device performance will guide novel biomaterial and tissue regenerative approaches to rehabilitate the brain following injury. Glial subtypes which assist with neuronal survival and exchange of electrical signals, mainly oligodendrocytes, their precursors, and the insulating myelin membranes they produce, are sensitive to inflammation commonly induced from insults to the brain. This review explores essential physiological roles facilitated by oligodendroglia and their precursors and provides insight into their pathology following neurodegenerative injury and disease. From this knowledge, inferences can be made about the impact of device implantation on these supportive glia in order to engineer effective strategies that can attenuate their responses, enhance the efficacy of neural interfacing technology, and provide a greater understanding of the challenges that impede wound healing and tissue regeneration during pathology.
Collapse
Affiliation(s)
- Steven M Wellman
- Department of Bioengineering, University of Pittsburgh, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Franca Cambi
- Veterans Administration Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, USA
| | - Takashi Dy Kozai
- Department of Bioengineering, University of Pittsburgh, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, USA; NeuroTech Center, University of Pittsburgh Brain Institute, USA.
| |
Collapse
|