1
|
Mani R, Basem J, Yang L, Fiore S, Djuric P, Egnor M. Review of theories into the pathogenesis of normal pressure hydrocephalus. BMJ Neurol Open 2024; 6:e000804. [PMID: 39430787 PMCID: PMC11487818 DOI: 10.1136/bmjno-2024-000804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/01/2024] [Indexed: 10/22/2024] Open
Abstract
Normal pressure hydrocephalus (NPH) represents a unique form of hydrocephalus characterised by the paradox of ventriculomegaly without significant elevations in intracranial pressure, with the clinical triad of gait instability, cognitive impairment, and urinary incontinence. A myriad of neurobiological correlates have been implicated in its pathophysiology. We review the literature to provide an up-to-date, narrative review of the proposed mechanisms underlying the pathophysiology of NPH, proposing a holistic framework through which to understand the condition. We conducted a narrative review of the literature on NPH, assessing the various mechanisms underlying its pathophysiology and clinical presentation. NPH represents a unique form of hydrocephalus manifesting as a disorder of the cerebral vasculature, characterised by arteriosclerosis and reduced intracranial elastance. There are multiple mechanisms underlying its pathophysiology, which include windkessel impairment causing redistribution of intracranial pulsatility from the subarachnoid space to the ventricles, reductions in cerebral blood flow, impaired glymphatic clearance, reduced blood-brain barrier integrity and alterations in venous haemodynamics. Moreover, NPH shares similar clinical features and pathological mechanisms as other neurodegenerative conditions such as Alzheimer's disease and vascular dementia. The severity of each respective mechanism of pathophysiology can lead a patient to develop one condition versus another. Analysing NPH as a disorder of the cerebral vasculature, glymphatics, and most of all, the distribution of intracranial pulsatility, provides a novel framework through which to understand and manage this condition, one which requires further investigation.
Collapse
Affiliation(s)
- Racheed Mani
- Neurological Surgery, Stony Brook University Hospital, Stony Brook, New York, USA
- Neurology, Stony Brook University Hospital, Stony Brook, New York, USA
| | - Jade Basem
- Neurological Surgery, Stony Brook University Hospital, Stony Brook, New York, USA
| | - Liu Yang
- Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Susan Fiore
- Neurological Surgery, Stony Brook University Hospital, Stony Brook, New York, USA
| | - Petar Djuric
- Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Michael Egnor
- Neurological Surgery, Stony Brook University Hospital, Stony Brook, New York, USA
| |
Collapse
|
2
|
Sun M, Zhang M, Di F, Bai W, Sun J, Zhang M, Sun J, Li M, Liang X. Polystyrene nanoplastics induced learning and memory impairments in mice by damaging the glymphatic system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116874. [PMID: 39153278 DOI: 10.1016/j.ecoenv.2024.116874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
The excessive usage of nanoplastics (NPs) has posed a serious threat to the ecological environment and human health, which can enter the brain and then result in neurotoxicity. However, research on the neurotoxic effects of NPs based on different exposure routes and modifications of functional groups is lacking. In this study, the neurotoxicity induced by NPs was studied using polystyrene nanoplastics (PS-NPs) of different modifications (PS, PS-COOH, and PS-NH2). It was found that PS-NH2 through intranasal administration (INA) exposure route exhibited the greatest accumulation in the mice brain after exposure for 7 days. After the mice were exposed to PS-NH2 by INA means for 28 days, the exploratory ability and spatial learning ability were obviously damaged in a dose-dependent manner. Further analysis indicated that these damages induced by PS-NH2 were closely related to the decreased ability of glymphatic system to clear β-amyloid (Aβ) and phosphorylated Tau (P-Tau) proteins, which was ascribed to the loss of aquaporin-4 (AQP4) polarization in the astrocytic endfeet. Moreover, the loss of AQP4 polarization might be regulated by the NF-κB pathway. Our current study establishes the connection between the neurotoxicity induced by PS-NPs and the glymphatic system dysfunction for the first time, which will contribute to future research on the neurotoxicity of NPs.
Collapse
Affiliation(s)
- Meng Sun
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China; School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Min Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Fanglin Di
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Weijie Bai
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Jikui Sun
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Mingkun Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Jinlong Sun
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Meng Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China.
| | - Xue Liang
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
3
|
Wang Z, Zuo M, Li W, Chen S, Yuan Y, He Y, Yang Y, Mao Q, Liu Y. The impact of telomere length on the risk of idiopathic normal pressure hydrocephalus: a bidirectional Mendelian randomization study. Sci Rep 2024; 14:14713. [PMID: 38926610 PMCID: PMC11208170 DOI: 10.1038/s41598-024-65725-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 06/24/2024] [Indexed: 06/28/2024] Open
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) affects mainly aged populations. The gradual shortening of telomere length (TL) is one of the hallmarks of aging. Whereas the genetic contribution of TL to the iNPH is incompletely understood. We aimed to investigate the causal relationship between TL and iNPH through the Mendelian randomization (MR) analysis. We respectively obtained 186 qualified single nucleotide polymorphisms (SNPs) of TL and 20 eligible SNPs of iNPH for MR analysis. The result of MR analysis showed that genetically predicted longer TL was significantly associated with a reduced odd of iNPH (odds ratio [OR] = 0.634 95% Confidence interval [CI] 0.447-0.899, p = 0.011). The causal association remained consistent in multivariable MR (OR = 0.530 95% CI 0.327-0.860, p = 0.010). However, there was no evidence that the iNPH was causally associated with the TL (OR = 1.000 95% CI 0.996-1.004, p = 0.955). Our study reveals a potential genetic contribution of TL to the etiology of iNPH, that is a genetically predicted increased TL might be associated with a reduced risk of iNPH.
Collapse
Affiliation(s)
- Zhihao Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, No 37 Guoxue Avenue, Chengdu, 610041, Sichuan, China
| | - Mingrong Zuo
- Department of Pediatric Neurosurgery, West China Women's and Children's Hospital: Sichuan University West China Second University Hospital, Chengdu, 610041, China
| | - Wenhao Li
- Department of Neurosurgery, West China Hospital, Sichuan University, No 37 Guoxue Avenue, Chengdu, 610041, Sichuan, China
| | - Siliang Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, No 37 Guoxue Avenue, Chengdu, 610041, Sichuan, China
| | - Yunbo Yuan
- Department of Neurosurgery, West China Hospital, Sichuan University, No 37 Guoxue Avenue, Chengdu, 610041, Sichuan, China
| | - Yuze He
- Department of Neurosurgery, West China Hospital, Sichuan University, No 37 Guoxue Avenue, Chengdu, 610041, Sichuan, China
| | - Yuan Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, No 37 Guoxue Avenue, Chengdu, 610041, Sichuan, China
| | - Qing Mao
- Department of Neurosurgery, West China Hospital, Sichuan University, No 37 Guoxue Avenue, Chengdu, 610041, Sichuan, China
| | - Yanhui Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, No 37 Guoxue Avenue, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
Eide PK. Neurosurgery and the glymphatic system. Acta Neurochir (Wien) 2024; 166:274. [PMID: 38904802 PMCID: PMC11192689 DOI: 10.1007/s00701-024-06161-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024]
Abstract
The discovery of the glymphatic system has fundamentally altered our comprehension of cerebrospinal fluid transport and the removal of waste from brain metabolism. In the past decade, since its initial characterization, research on the glymphatic system has surged exponentially. Its potential implications for central nervous system disorders have sparked significant interest in the field of neurosurgery. Nonetheless, ongoing discussions and debates persist regarding the concept of the glymphatic system, and our current understanding largely relies on findings from experimental animal studies. This review aims to address several key inquiries: What methodologies exist for evaluating glymphatic function in humans today? What is the current evidence supporting the existence of a human glymphatic system? Can the glymphatic system be considered distinct from the meningeal-lymphatic system? What is the human evidence for glymphatic-meningeal lymphatic system failure in neurosurgical diseases? Existing literature indicates a paucity of techniques available for assessing glymphatic function in humans. Thus far, intrathecal contrast-enhanced magnetic resonance imaging (MRI) has shown the most promising results and have provided evidence for the presence of a glymphatic system in humans, albeit with limitations. It is, however, essential to recognize the interconnection between the glymphatic and meningeal lymphatic systems, as they operate in tandem. There are some human studies demonstrating deteriorations in glymphatic function associated with neurosurgical disorders, enriching our understanding of their pathophysiology. However, the translation of this knowledge into clinical practice is hindered by the constraints of current glymphatic imaging modalities.
Collapse
Affiliation(s)
- Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital - Rikshospitalet, Nydalen, Pb 4950 N-0424, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
- KG Jebsen Centre for Brain Fluid Research, University of Oslo, Oslo, Norway.
| |
Collapse
|
5
|
Bojarskaite L, Nafari S, Ravnanger AK, Frey MM, Skauli N, Åbjørsbråten KS, Roth LC, Amiry-Moghaddam M, Nagelhus EA, Ottersen OP, Bogen IL, Thoren AE, Enger R. Role of aquaporin-4 polarization in extracellular solute clearance. Fluids Barriers CNS 2024; 21:28. [PMID: 38532513 DOI: 10.1186/s12987-024-00527-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/02/2024] [Indexed: 03/28/2024] Open
Abstract
Waste from the brain has been shown to be cleared via the perivascular spaces through the so-called glymphatic system. According to this model the cerebrospinal fluid (CSF) enters the brain in perivascular spaces of arteries, crosses the astrocyte endfoot layer, flows through the parenchyma collecting waste that is subsequently drained along veins. Glymphatic clearance is dependent on astrocytic aquaporin-4 (AQP4) water channels that are highly enriched in the endfeet. Even though the polarized expression of AQP4 in endfeet is thought to be of crucial importance for glymphatic CSF influx, its role in extracellular solute clearance has only been evaluated using non-quantitative fluorescence measurements. Here we have quantitatively evaluated clearance of intrastriatally infused small and large radioactively labeled solutes in mice lacking AQP4 (Aqp4-/-) or lacking the endfoot pool of AQP4 (Snta1-/-). We confirm that Aqp4-/- mice show reduced clearance of both small and large extracellular solutes. Moreover, we find that the Snta1-/- mice have reduced clearance only for the 500 kDa [3H]dextran, but not 0.18 kDa [3H]mannitol suggesting that polarization of AQP4 to the endfeet is primarily important for clearance of large, but not small molecules. Lastly, we observed that clearance of 500 kDa [3H]dextran increased with age in adult mice. Based on our quantitative measurements, we confirm that presence of AQP4 is important for clearance of extracellular solutes, while the perivascular AQP4 localization seems to have a greater impact on clearance of large versus small molecules.
Collapse
Affiliation(s)
- Laura Bojarskaite
- GliaLab and Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O.B. 1103, Oslo, 0317, Norway
- Department of Neurology, Oslo University Hospital, Oslo, 0027, Norway
| | - Sahar Nafari
- GliaLab and Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O.B. 1103, Oslo, 0317, Norway
| | - Anne Katrine Ravnanger
- GliaLab and Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O.B. 1103, Oslo, 0317, Norway
| | - Mina Martine Frey
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0317, Norway
| | - Nadia Skauli
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0317, Norway
| | - Knut Sindre Åbjørsbråten
- GliaLab and Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O.B. 1103, Oslo, 0317, Norway
| | - Lena Catherine Roth
- GliaLab and Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O.B. 1103, Oslo, 0317, Norway
| | - Mahmood Amiry-Moghaddam
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0317, Norway
| | - Erlend A Nagelhus
- GliaLab and Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O.B. 1103, Oslo, 0317, Norway
| | - Ole Petter Ottersen
- GliaLab and Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O.B. 1103, Oslo, 0317, Norway
| | - Inger Lise Bogen
- GliaLab and Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O.B. 1103, Oslo, 0317, Norway
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, P.O. Box N-4950, Nydalen, Oslo, 0424, Norway
| | - Anna E Thoren
- GliaLab and Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O.B. 1103, Oslo, 0317, Norway
| | - Rune Enger
- GliaLab and Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O.B. 1103, Oslo, 0317, Norway.
| |
Collapse
|
6
|
Cai Y, Zhang Y, Leng S, Ma Y, Jiang Q, Wen Q, Ju S, Hu J. The relationship between inflammation, impaired glymphatic system, and neurodegenerative disorders: A vicious cycle. Neurobiol Dis 2024; 192:106426. [PMID: 38331353 DOI: 10.1016/j.nbd.2024.106426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/16/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024] Open
Abstract
The term "glymphatic" emerged roughly a decade ago, marking a pivotal point in neuroscience research. The glymphatic system, a glial-dependent perivascular network distributed throughout the brain, has since become a focal point of investigation. There is increasing evidence suggesting that impairment of the glymphatic system appears to be a common feature of neurodegenerative disorders, and this impairment exacerbates as disease progression. Nevertheless, the common factors contributing to glymphatic system dysfunction across most neurodegenerative disorders remain unclear. Inflammation, however, is suspected to play a pivotal role. Dysfunction of the glymphatic system can lead to a significant accumulation of protein and waste products, which can trigger inflammation. The interaction between the glymphatic system and inflammation appears to be cyclical and potentially synergistic. Yet, current research is limited, and there is a lack of comprehensive models explaining this association. In this perspective review, we propose a novel model suggesting that inflammation, impaired glymphatic function, and neurodegenerative disorders interconnected in a vicious cycle. By presenting experimental evidence from the existing literature, we aim to demonstrate that: (1) inflammation aggravates glymphatic system dysfunction, (2) the impaired glymphatic system exacerbated neurodegenerative disorders progression, (3) neurodegenerative disorders progression promotes inflammation. Finally, the implication of proposed model is discussed.
Collapse
Affiliation(s)
- Yu Cai
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Yangqiqi Zhang
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Shuo Leng
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Yuanyuan Ma
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, 2799 W Grand Blvd, Detroit, MI 48202, USA
| | - Qiuting Wen
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W.16th Street, Indianapolis, IN 46202-5188, USA
| | - Shenghong Ju
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China.
| | - Jiani Hu
- Department of Radiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
7
|
Boyd ED, Zhang L, Ding G, Li L, Lu M, Li Q, Huang R, Kaur J, Hu J, Chopp M, Zhang Z, Jiang Q. The Glymphatic Response to the Development of Type 2 Diabetes. Biomedicines 2024; 12:401. [PMID: 38398003 PMCID: PMC10886551 DOI: 10.3390/biomedicines12020401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/21/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The glymphatic system has recently been shown to be important in neurological diseases, including diabetes. However, little is known about how the progressive onset of diabetes affects the glymphatic system. The aim of this study is to investigate the glymphatic system response to the progressive onset of diabetes in a rat model of type 2 diabetic mellitus. Male Wistar rats (n = 45) with and without diabetes were evaluated using MRI glymphatic tracer kinetics, functional tests, and brain tissue immunohistochemistry. Our data demonstrated that the contrast agent clearance impairment gradually progressed with the diabetic duration. The MRI data showed that an impairment in contrast clearance occurred prior to the cognitive deficits detected using functional tests and permitted the detection of an early DM stage compared to the immuno-histopathology and cognitive tests. Additionally, the quantitative MRI markers of brain waste clearance demonstrated region-dependent sensitivity in glymphatic impairment. The improved sensitivity of MRI markers in the olfactory bulb and the whole brain at an early DM stage may be attributed to the important role of the olfactory bulb in the parenchymal efflux pathway. MRI can provide sensitive quantitative markers of glymphatic impairment during the progression of DM and can be used as a valuable tool for the early diagnosis of DM with a potential for clinical application.
Collapse
Affiliation(s)
- Edward D. Boyd
- Department of Neurology, Henry Ford Health System, E&R B126, 2799 West Grand Boulevard, Detroit, MI 48202, USA; (L.Z.); (G.D.); (L.L.); (Q.L.); (J.K.); (M.C.); (Z.Z.); (Q.J.)
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| | - Li Zhang
- Department of Neurology, Henry Ford Health System, E&R B126, 2799 West Grand Boulevard, Detroit, MI 48202, USA; (L.Z.); (G.D.); (L.L.); (Q.L.); (J.K.); (M.C.); (Z.Z.); (Q.J.)
| | - Guangliang Ding
- Department of Neurology, Henry Ford Health System, E&R B126, 2799 West Grand Boulevard, Detroit, MI 48202, USA; (L.Z.); (G.D.); (L.L.); (Q.L.); (J.K.); (M.C.); (Z.Z.); (Q.J.)
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| | - Lian Li
- Department of Neurology, Henry Ford Health System, E&R B126, 2799 West Grand Boulevard, Detroit, MI 48202, USA; (L.Z.); (G.D.); (L.L.); (Q.L.); (J.K.); (M.C.); (Z.Z.); (Q.J.)
| | - Mei Lu
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI 48202, USA;
| | - Qingjiang Li
- Department of Neurology, Henry Ford Health System, E&R B126, 2799 West Grand Boulevard, Detroit, MI 48202, USA; (L.Z.); (G.D.); (L.L.); (Q.L.); (J.K.); (M.C.); (Z.Z.); (Q.J.)
| | - Rui Huang
- Department of Neurology, Henry Ford Health System, E&R B126, 2799 West Grand Boulevard, Detroit, MI 48202, USA; (L.Z.); (G.D.); (L.L.); (Q.L.); (J.K.); (M.C.); (Z.Z.); (Q.J.)
| | - Jasleen Kaur
- Department of Neurology, Henry Ford Health System, E&R B126, 2799 West Grand Boulevard, Detroit, MI 48202, USA; (L.Z.); (G.D.); (L.L.); (Q.L.); (J.K.); (M.C.); (Z.Z.); (Q.J.)
- Department of Physics, Oakland University, Rochester, MI 48309, USA
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, MI 48202, USA;
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, E&R B126, 2799 West Grand Boulevard, Detroit, MI 48202, USA; (L.Z.); (G.D.); (L.L.); (Q.L.); (J.K.); (M.C.); (Z.Z.); (Q.J.)
- Department of Physics, Oakland University, Rochester, MI 48309, USA
- Department of Neurology, Wayne State University, Detroit, MI 28202, USA
| | - Zhenggang Zhang
- Department of Neurology, Henry Ford Health System, E&R B126, 2799 West Grand Boulevard, Detroit, MI 48202, USA; (L.Z.); (G.D.); (L.L.); (Q.L.); (J.K.); (M.C.); (Z.Z.); (Q.J.)
- Department of Neurology, Wayne State University, Detroit, MI 28202, USA
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, E&R B126, 2799 West Grand Boulevard, Detroit, MI 48202, USA; (L.Z.); (G.D.); (L.L.); (Q.L.); (J.K.); (M.C.); (Z.Z.); (Q.J.)
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
- Department of Physics, Oakland University, Rochester, MI 48309, USA
- Department of Neurology, Wayne State University, Detroit, MI 28202, USA
| |
Collapse
|
8
|
Al Masri M, Corell A, Michaëlsson I, Jakola AS, Skoglund T. The glymphatic system for neurosurgeons: a scoping review. Neurosurg Rev 2024; 47:61. [PMID: 38253938 PMCID: PMC10803566 DOI: 10.1007/s10143-024-02291-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/05/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024]
Abstract
The discovery of the glymphatic system has revolutionized our understanding of cerebrospinal fluid (CSF) circulation and interstitial waste clearance in the brain. This scoping review aims to synthesize the current literature on the glymphatic system's role in neurosurgical conditions and its potential as a therapeutic target. We conducted a comprehensive search in PubMed and Scopus databases for studies published between January 1, 2012, and October 31, 2023. Studies were selected based on their relevance to neurosurgical conditions and glymphatic function, with both animal and human studies included. Data extraction focused on the methods for quantifying glymphatic function and the main results. A total of 67 articles were included, covering conditions such as idiopathic normal pressure hydrocephalus (iNPH), idiopathic intracranial hypertension (IIH), subarachnoid hemorrhage (SAH), stroke, intracranial tumors, and traumatic brain injury (TBI). Significant glymphatic dysregulation was noted in iNPH and IIH, with evidence of impaired CSF dynamics and delayed clearance. SAH studies indicated glymphatic dysfunction with the potential therapeutic effects of nimodipine and tissue plasminogen activator. In stroke, alterations in glymphatic activity correlated with the extent of edema and neurological recovery. TBI studies highlighted the role of the glymphatic system in post-injury cognitive outcomes. Results indicate that the regulation of aquaporin-4 (AQP4) channels is a critical target for therapeutic intervention. The glymphatic system plays a critical role in the pathophysiology of various neurosurgical conditions, influencing brain edema and CSF dynamics. Targeting the regulation of AQP4 channels presents as a significant therapeutic strategy. Although promising, the translation of these findings into clinical practice requires further human studies. Future research should focus on establishing non-invasive biomarkers for glymphatic function and exploring the long-term effects of glymphatic dysfunction.
Collapse
Affiliation(s)
- Mohammad Al Masri
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alba Corell
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Blå Stråket 5, 3 tr, SE-41345, Gothenburg, Sweden
| | - Isak Michaëlsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Blå Stråket 5, 3 tr, SE-41345, Gothenburg, Sweden
| | - Asgeir S Jakola
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Blå Stråket 5, 3 tr, SE-41345, Gothenburg, Sweden
| | - Thomas Skoglund
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Department of Neurosurgery, Sahlgrenska University Hospital, Blå Stråket 5, 3 tr, SE-41345, Gothenburg, Sweden.
| |
Collapse
|
9
|
Sandhya P, Danda D. Exploring the connection between Parkinson's disease and Sjögren's syndrome: The aquaporin link. Parkinsonism Relat Disord 2023; 117:105863. [PMID: 37770322 DOI: 10.1016/j.parkreldis.2023.105863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023]
Affiliation(s)
- Pulukool Sandhya
- Clinical Immunology & Rheumatology, Mazumdar Shaw Medical Center, Narayana Health City, Bengaluru, Karnataka, 560099, India.
| | - Debasish Danda
- Clinical Immunology & Rheumatology, Christian Medical College & Hospital, Vellore, India
| |
Collapse
|
10
|
Jazaeri SZ, Taghizadeh G, Babaei JF, Goudarzi S, Saadatmand P, Joghataei MT, Khanahmadi Z. Aquaporin 4 beyond a water channel; participation in motor, sensory, cognitive and psychological performances, a comprehensive review. Physiol Behav 2023; 271:114353. [PMID: 37714320 DOI: 10.1016/j.physbeh.2023.114353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/15/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023]
Abstract
Aquaporin 4 (AQP4) is a protein highly expressed in the central nervous system (CNS) and peripheral nervous system (PNS) as well as various other organs, whose different sites of action indicate its importance in various functions. AQP4 has a variety of essential roles beyond water homeostasis. In this article, we have for the first time summarized different roles of AQP4 in motor and sensory functions, besides cognitive and psychological performances, and most importantly, possible physiological mechanisms by which AQP4 can exert its effects. Furthermore, we demonstrated that AQP4 participates in pathology of different neurological disorders, various effects depending on the disease type. Since neurological diseases involve a spectrum of dysfunctions and due to the difficulty of obtaining a treatment that can simultaneously affect these deficits, it is therefore suggested that future studies consider the role of this protein in different functional impairments related to neurological disorders simultaneously or separately by targeting AQP4 expression and/or polarity modulation.
Collapse
Affiliation(s)
- Seyede Zohreh Jazaeri
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ghorban Taghizadeh
- Department of Occupational Therapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Javad Fahanik Babaei
- Electrophysiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Goudarzi
- Experimental Medicine Research Center, Tehran University of medical Sciences, Tehran, Iran
| | - Pegah Saadatmand
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Innovation in Medical Education, Faculty of Medicine, Ottawa University, Ottawa, Canada.
| | - Zohreh Khanahmadi
- Department of Occupational Therapy, School of Rehabilitation Services, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
11
|
Wang Z, Nie X, Gao F, Tang Y, Ma Y, Zhang Y, Gao Y, Yang C, Ding J, Wang X. Increasing brain N-acetylneuraminic acid alleviates hydrocephalus-induced neurological deficits. CNS Neurosci Ther 2023; 29:3183-3198. [PMID: 37222223 PMCID: PMC10580356 DOI: 10.1111/cns.14253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 03/27/2023] [Accepted: 04/01/2023] [Indexed: 05/25/2023] Open
Abstract
AIMS This metabolomic study aimed to evaluate the role of N-acetylneuraminic acid (Neu5Ac) in the neurological deficits of normal pressure hydrocephalus (NPH) and its potential therapeutic effect. METHODS We analyzed the metabolic profiles of NPH using cerebrospinal fluid with multivariate and univariate statistical analyses in a set of 42 NPH patients and 38 controls. We further correlated the levels of differential metabolites with severity-related clinical parameters, including the normal pressure hydrocephalus grading scale (NPHGS). We then established kaolin-induced hydrocephalus in mice and treated them using N-acetylmannosamine (ManNAc), a precursor of Neu5Ac. We examined brain Neu5Ac, astrocyte polarization, demyelination, and neurobehavioral outcomes to explore its therapeutic effect. RESULTS Three metabolites were significantly altered in NPH patients. Only decreased Neu5Ac levels were correlated with NPHGS scores. Decreased brain Neu5Ac levels have been observed in hydrocephalic mice. Increasing brain Neu5Ac by ManNAc suppressed the activation of astrocytes and promoted their transition from A1 to A2 polarization. ManNAc also attenuated the periventricular white matter demyelination and improved neurobehavioral outcomes in hydrocephalic mice. CONCLUSION Increasing brain Neu5Ac improved the neurological outcomes associated with the regulation of astrocyte polarization and the suppression of demyelination in hydrocephalic mice, which may be a potential therapeutic strategy for NPH.
Collapse
Affiliation(s)
- Zhangyang Wang
- Department of Neurology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Xiaoqun Nie
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of Sciences (CAS)ShanghaiChina
| | - Fang Gao
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of Sciences (CAS)ShanghaiChina
| | - Yanmin Tang
- Department of Neurology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Yuanyuan Ma
- Department of Neurology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Yiying Zhang
- Department of Neurology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Yanqin Gao
- Department of the State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Chen Yang
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of Sciences (CAS)ShanghaiChina
| | - Jing Ding
- Department of Neurology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Xin Wang
- Department of Neurology, Zhongshan HospitalFudan UniversityShanghaiChina
- Department of the State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
12
|
Toader C, Tataru CP, Florian IA, Covache-Busuioc RA, Dumitrascu DI, Glavan LA, Costin HP, Bratu BG, Ciurea AV. From Homeostasis to Pathology: Decoding the Multifaceted Impact of Aquaporins in the Central Nervous System. Int J Mol Sci 2023; 24:14340. [PMID: 37762642 PMCID: PMC10531540 DOI: 10.3390/ijms241814340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Aquaporins (AQPs), integral membrane proteins facilitating selective water and solute transport across cell membranes, have been the focus of extensive research over the past few decades. Particularly noteworthy is their role in maintaining cellular homeostasis and fluid balance in neural compartments, as dysregulated AQP expression is implicated in various degenerative and acute brain pathologies. This article provides an exhaustive review on the evolutionary history, molecular classification, and physiological relevance of aquaporins, emphasizing their significance in the central nervous system (CNS). The paper journeys through the early studies of water transport to the groundbreaking discovery of Aquaporin 1, charting the molecular intricacies that make AQPs unique. It delves into AQP distribution in mammalian systems, detailing their selective permeability through permeability assays. The article provides an in-depth exploration of AQP4 and AQP1 in the brain, examining their contribution to fluid homeostasis. Furthermore, it elucidates the interplay between AQPs and the glymphatic system, a critical framework for waste clearance and fluid balance in the brain. The dysregulation of AQP-mediated processes in this system hints at a strong association with neurodegenerative disorders such as Parkinson's Disease, idiopathic normal pressure hydrocephalus, and Alzheimer's Disease. This relationship is further explored in the context of acute cerebral events such as stroke and autoimmune conditions such as neuromyelitis optica (NMO). Moreover, the article scrutinizes AQPs at the intersection of oncology and neurology, exploring their role in tumorigenesis, cell migration, invasiveness, and angiogenesis. Lastly, the article outlines emerging aquaporin-targeted therapies, offering a glimpse into future directions in combatting CNS malignancies and neurodegenerative diseases.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Calin Petru Tataru
- Department of Opthamology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Central Military Emergency Hospital “Dr. Carol Davila”, 010825 Bucharest, Romania
| | - Ioan-Alexandru Florian
- Department of Neurosciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Luca Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
13
|
Xu J, Su Y, Fu J, Shen Y, Dong Q, Cheng X. Glymphatic pathway in sporadic cerebral small vessel diseases: From bench to bedside. Ageing Res Rev 2023; 86:101885. [PMID: 36801378 DOI: 10.1016/j.arr.2023.101885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Cerebral small vessel diseases (CSVD) consist of a group of diseases with high heterogeneity induced by pathologies of intracranial small blood vessels. Endothelium dysfunction, bloodbrain barrier leakage and the inflammatory response are traditionally considered to participate in the pathogenesis of CSVD. However, these features cannot fully explain the complex syndrome and related neuroimaging characteristics. In recent years, the glymphatic pathway has been discovered to play a pivotal role in clearing perivascular fluid and metabolic solutes, which has provided novel insights into neurological disorders. Researchers have also explored the potential role of perivascular clearance dysfunction in CSVD. In this review, we presented a brief overview of CSVD and the glymphatic pathway. In addition, we elucidated CSVD pathogenesis from the perspective of glymphatic failure, including basic animal models and clinical neuroimaging markers. Finally, we proposed forthcoming clinical applications targeting the glymphatic pathway, hoping to provide novel ideas on promising therapies and preventions of CSVD.
Collapse
Affiliation(s)
- Jiajie Xu
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ya Su
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiayu Fu
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yong Shen
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC and Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiang Dong
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Xin Cheng
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Peng S, Liu J, Liang C, Yang L, Wang G. Aquaporin-4 in glymphatic system, and its implication for central nervous system disorders. Neurobiol Dis 2023; 179:106035. [PMID: 36796590 DOI: 10.1016/j.nbd.2023.106035] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
The clearance function is essential for maintaining brain tissue homeostasis, and the glymphatic system is the main pathway for removing brain interstitial solutes. Aquaporin-4 (AQP4) is the most abundantly expressed aquaporin in the central nervous system (CNS) and is an integral component of the glymphatic system. In recent years, many studies have shown that AQP4 affects the morbidity and recovery process of CNS disorders through the glymphatic system, and AQP4 shows notable variability in CNS disorders and is part of the pathogenesis of these diseases. Therefore, there has been considerable interest in AQP4 as a potential and promising target for regulating and improving neurological impairment. This review aims to summarize the pathophysiological role that AQP4 plays in several CNS disorders by affecting the clearance function of the glymphatic system. The findings can contribute to a better understanding of the self-regulatory functions in CNS disorders that AQP4 were involved in and provide new therapeutic alternatives for incurable debilitating neurodegenerative disorders of CNS in the future.
Collapse
Affiliation(s)
- Shasha Peng
- 56 Xinjian southern St, Department of Pharmacology, School of Basical Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jiachen Liu
- 172 Tongzipo Rd, Xiangya Medical College of Central South University, Changsha, Hunan 410013, China
| | - Chuntian Liang
- 56 Xinjian southern St, Department of Neurology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Lijun Yang
- 56 Xinjian southern St, Department of Pharmacology, School of Basical Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Gaiqing Wang
- 56 Xinjian southern St, Department of Neurology, Shanxi Medical University, Taiyuan, Shanxi 030001, China; 146 JieFang forth Rd, Department of Neurology, SanYa Central Hospital (Hainan Third People's Hospital), Hainan Medical University, SanYa, Hainan 572000, China.
| |
Collapse
|
15
|
Dystrophin Short Product, Dp71, Interacts with AQP4 and Kir4.1 Channels in the Mouse Cerebellar Glial Cells in Contrast to Dp427 at Inhibitory Postsynapses in the Purkinje Neurons. Mol Neurobiol 2023; 60:3664-3677. [PMID: 36918517 DOI: 10.1007/s12035-023-03296-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/01/2023] [Indexed: 03/16/2023]
Abstract
Dystrophin is the causative gene for Duchenne and Becker muscular dystrophy (DMD/BMD), and it produces full-length and short dystrophin, Dp427 and Dp71, respectively, in the brain. The existence of the different dystrophin molecular complexes has been known for a quarter century, so it is necessary to derive precise expression profiles of the molecular complexes in the brain to elucidate the mechanism of cognitive symptoms in DMD/BMD patients. In order to investigate the Dp71 expression profile in cerebellum, we employed Dp71-specific tag-insertion mice, which allowed for the specific detection of endogenous Dp71 in the immunohistochemical analysis and found its expressions in the glial cells, Bergmann glial (BG) cells, and astrocytes, whereas Dp427 was exclusively expressed in the inhibitory postsynapses within cerebellar Purkinje cells (PCs). Interestingly, we found different cell-type dependent dystrophin molecular complexes; i.e., glia-associated Dp71 was co-expressed with dystroglycan (DG) and dystrobrevinα, whereas synapse-associated Dp427 was co-expressed with DG and dystrobrevinβ. Furthermore, we investigated the molecular relationship of Dp71 to the AQP4 water channel and the Kir4.1 potassium channel, and found biochemical associations of Dp71 with AQP4 and Kir4.1 in both the cerebellum and cerebrum. Immunohistochemical and cytochemical investigations revealed partial co-localizations of Dp71 with AQP4 and Kir4.1 in the glial cells, indicating Dp71 interactions with the channels in the BG cells and astrocytes. Taken together, different cell-types, glial cells and Purkinje neurons, in the cerebellum express different dystrophin molecular complexes, which may contribute to pathological and physiological processes through the regulation of the water/ion channel and inhibitory postsynapses.
Collapse
|
16
|
Lidén S, Farahmand D, Laurell K. Ventricular volume in relation to lumbar CSF levels of amyloid-β 1–42, tau and phosphorylated tau in iNPH, is there a dilution effect? Fluids Barriers CNS 2022; 19:59. [PMID: 35843939 PMCID: PMC9288679 DOI: 10.1186/s12987-022-00353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/23/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Levels of the biomarkers amyloid-β 1–42 (Aβ42), tau and phosphorylated tau (p-tau) are decreased in the cerebrospinal fluid (CSF) of patients with idiopathic normal pressure hydrocephalus (iNPH). The mechanism behind this is unknown, but one potential explanation is dilution by excessive CSF volumes. The aim of this study was to investigate the presence of a dilution effect, by studying the relationship between ventricular volume (VV) and the levels of the CSF biomarkers.
Methods
In this cross-sectional observational study, preoperative magnetic resonance imaging (MRI) and lumbar CSF was acquired from 136 patients with a median age of 76 years, 89 men and 47 females, selected for surgical treatment for iNPH. The CSF volume of the lateral and third ventricles was segmented on MRI and related to preoperative concentrations of Aβ42, tau and p-tau.
Results
In the total sample VV (Median 140.7 mL) correlated weakly (rs = − 0.17) with Aβ42 (Median 534 pg/mL), but not with tau (Median 216 pg/mL) nor p-tau (Median 31 pg/mL). In a subgroup analysis, the correlation between VV and Aβ42 was only present in the male group (rs = − 0.22, p = 0.038). Further, Aβ42 correlated positively with tau (rs = 0.30, p = 0.004) and p-tau (rs = 0.26, p = 0.012) in males but not in females.
Conclusions
The findings did not support a major dilution effect in iNPH, at least not in females. The only result in favor for dilution was a weak negative correlation between VV and Aβ42 but not with the other lumbar CSF biomarkers. The different results between males and females suggest that future investigations of the CSF pattern in iNPH would gain from sex-based subgroup analysis.
Collapse
|
17
|
Verghese JP, Terry A, de Natale ER, Politis M. Research Evidence of the Role of the Glymphatic System and Its Potential Pharmacological Modulation in Neurodegenerative Diseases. J Clin Med 2022; 11:jcm11236964. [PMID: 36498538 PMCID: PMC9735716 DOI: 10.3390/jcm11236964] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The glymphatic system is a unique pathway that utilises end-feet Aquaporin 4 (AQP4) channels within perivascular astrocytes, which is believed to cause cerebrospinal fluid (CSF) inflow into perivascular space (PVS), providing nutrients and waste disposal of the brain parenchyma. It is theorised that the bulk flow of CSF within the PVS removes waste products, soluble proteins, and products of metabolic activity, such as amyloid-β (Aβ). In the experimental model, the glymphatic system is selectively active during slow-wave sleep, and its activity is affected by both sleep dysfunction and deprivation. Dysfunction of the glymphatic system has been proposed as a potential key driver of neurodegeneration. This hypothesis is indirectly supported by the close relationship between neurodegenerative diseases and sleep alterations, frequently occurring years before the clinical diagnosis. Therefore, a detailed characterisation of the function of the glymphatic system in human physiology and disease would shed light on its early stage pathophysiology. The study of the glymphatic system is also critical to identifying means for its pharmacological modulation, which may have the potential for disease modification. This review will critically outline the primary evidence from literature about the dysfunction of the glymphatic system in neurodegeneration and discuss the rationale and current knowledge about pharmacological modulation of the glymphatic system in the animal model and its potential clinical applications in human clinical trials.
Collapse
|
18
|
Role of the glymphatic system in idiopathic intracranial hypertension. Clin Neurol Neurosurg 2022; 222:107446. [DOI: 10.1016/j.clineuro.2022.107446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022]
|
19
|
Ventriculoperitoneal Shunt Treatment Increases 7 Alpha Hy-Droxy-3-Oxo-4-Cholestenoic Acid and 24-Hydroxycholesterol Concentrations in Idiopathic Normal Pressure Hydrocephalus. Brain Sci 2022; 12:brainsci12111450. [DOI: 10.3390/brainsci12111450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is the most common form of hydrocephalus in the adult population, and is often treated with cerebrospinal fluid (CSF) drainage using a ventriculoperitoneal (VP) shunt. Symptoms of iNPH include gait impairment, cognitive decline, and urinary incontinence. The pathophysiology behind the symptoms of iNPH is still unknown, and no reliable biomarkers have been established to date. The aim of this study was to investigate the possible use of the oxysterols as biomarkers in this disease. CSF levels of the oxysterols 24S- and 27-hydroxycholesterol, as well as the major metabolite of 27-hydroxycholesterol, 7 alpha hydroxy-3-oxo-4-cholestenoic acid (7HOCA), were measured in iNPH-patients before and after treatment with a VP-shunt. Corresponding measurements were also performed in healthy controls. VP-shunt treatment significantly increased the levels of 7HOCA and 24S-hydroxycholesterol in CSF (p = 0.014 and p = 0.037, respectively). The results are discussed in relation to the beneficial effects of VP-shunt treatment. Furthermore, the possibility that CSF drainage may reduce an inhibitory effect of transiently increased pressure on the metabolic capacity of neuronal cells in the brain is discussed. This capacity includes the elimination of cholesterol by the 24S-hydroxylase mechanisms.
Collapse
|
20
|
Xu JQ, Liu QQ, Huang SY, Duan CY, Lu HB, Cao Y, Hu JZ. The lymphatic system: a therapeutic target for central nervous system disorders. Neural Regen Res 2022; 18:1249-1256. [PMID: 36453401 PMCID: PMC9838139 DOI: 10.4103/1673-5374.355741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The lymphatic vasculature forms an organized network that covers the whole body and is involved in fluid homeostasis, metabolite clearance, and immune surveillance. The recent identification of functional lymphatic vessels in the meninges of the brain and the spinal cord has provided novel insights into neurophysiology. They emerge as major pathways for fluid exchange. The abundance of immune cells in lymphatic vessels and meninges also suggests that lymphatic vessels are actively involved in neuroimmunity. The lymphatic system, through its role in the clearance of neurotoxic proteins, autoimmune cell infiltration, and the transmission of pro-inflammatory signals, participates in the pathogenesis of a variety of neurological disorders, including neurodegenerative and neuroinflammatory diseases and traumatic injury. Vascular endothelial growth factor C is the master regulator of lymphangiogenesis, a process that is critical for the maintenance of central nervous system homeostasis. In this review, we summarize current knowledge and recent advances relating to the anatomical features and immunological functions of the lymphatic system of the central nervous system and highlight its potential as a therapeutic target for neurological disorders and central nervous system repair.
Collapse
Affiliation(s)
- Jia-Qi Xu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan Province, China,Mobile Health Ministry of Education - China Mobile Joint Laboratory, Changsha, Hunan Province, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Qian-Qi Liu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan Province, China,Mobile Health Ministry of Education - China Mobile Joint Laboratory, Changsha, Hunan Province, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Sheng-Yuan Huang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Chun-Yue Duan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan Province, China,Mobile Health Ministry of Education - China Mobile Joint Laboratory, Changsha, Hunan Province, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Hong-Bin Lu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan Province, China,Mobile Health Ministry of Education - China Mobile Joint Laboratory, Changsha, Hunan Province, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, China,Correspondence to: Yong Cao, or ; Hong-Bin Lu, ; Jian-Zhong Hu, .
| | - Yong Cao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan Province, China,Mobile Health Ministry of Education - China Mobile Joint Laboratory, Changsha, Hunan Province, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China,Correspondence to: Yong Cao, or ; Hong-Bin Lu, ; Jian-Zhong Hu, .
| | - Jian-Zhong Hu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan Province, China,Mobile Health Ministry of Education - China Mobile Joint Laboratory, Changsha, Hunan Province, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China,Correspondence to: Yong Cao, or ; Hong-Bin Lu, ; Jian-Zhong Hu, .
| |
Collapse
|
21
|
Yang Y, Wang C, Chen R, Wang Y, Tan C, Liu J, Zhang Q, Xiao G. Novel therapeutic modulators of astrocytes for hydrocephalus. Front Mol Neurosci 2022; 15:932955. [PMID: 36226316 PMCID: PMC9549203 DOI: 10.3389/fnmol.2022.932955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
Hydrocephalus is mainly characterized by excessive production or impaired absorption of cerebrospinal fluid that causes ventricular dilation and intracranial hypertension. Astrocytes are the key response cells to inflammation in the central nervous system. In hydrocephalus, astrocytes are activated and show dual characteristics depending on the period of development of the disease. They can suppress the disease in the early stage and may aggravate it in the late stage. More evidence suggests that therapeutics targeting astrocytes may be promising for hydrocephalus. In this review, based on previous studies, we summarize different forms of hydrocephalus-induced astrocyte reactivity and the corresponding function of these responses in hydrocephalus. We also discuss the therapeutic effects of astrocyte regulation on hydrocephalus in experimental studies.
Collapse
Affiliation(s)
- Yijian Yang
- Department of Neurosurgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chuansen Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Rui Chen
- Department of Neurosurgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yuchang Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Changwu Tan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jingping Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qinghua Zhang
- Department of Neurosurgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- *Correspondence: Qinghua Zhang,
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Gelei Xiao,
| |
Collapse
|
22
|
Zhao Z, He J, Chen Y, Wang Y, Wang C, Tan C, Liao J, Xiao G. The pathogenesis of idiopathic normal pressure hydrocephalus based on the understanding of AQP1 and AQP4. Front Mol Neurosci 2022; 15:952036. [PMID: 36204139 PMCID: PMC9530743 DOI: 10.3389/fnmol.2022.952036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is a neurological disorder without a recognized cause. Aquaporins (AQPs) are transmembrane channels that carry water through cell membranes and are critical for cerebrospinal fluid circulation and cerebral water balance. The function of AQPs in developing and maintaining hydrocephalus should be studied in greater detail as a possible diagnostic and therapeutic tool. Recent research indicates that patients with iNPH exhibited high levels of aquaporin 1 and low levels of aquaporin 4 expression, suggesting that these AQPs are essential in iNPH pathogenesis. To determine the source of iNPH and diagnose and treat it, it is necessary to examine and appreciate their function in the genesis and maintenance of hydrocephalus. The expression, function, and regulation of AQPs in iNPH are reviewed in this article, in order to provide fresh targets and suggestions for future research.
Collapse
Affiliation(s)
- Zitong Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jian He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yibing Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuchang Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chuansen Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Changwu Tan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Junbo Liao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Gelei Xiao
| |
Collapse
|
23
|
Eide PK. Cellular changes at the glia-neuro-vascular interface in definite idiopathic normal pressure hydrocephalus. Front Cell Neurosci 2022; 16:981399. [PMID: 36119130 PMCID: PMC9478415 DOI: 10.3389/fncel.2022.981399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is a subtype of dementia with overlap toward Alzheimer's disease. Both diseases show deposition of the toxic metabolites amyloid-β and tau in brain. A unique feature with iNPH is that a subset of patients may improve clinically following cerebrospinal fluid (CSF) diversion (shunt) surgery. The patients responding clinically to shunting are denoted Definite iNPH, otherwise iNPH is diagnosed as Possible iNPH or Probable iNPH, high-lightening that the clinical phenotype and underlying pathophysiology remain debated. Given the role of CSF disturbance in iNPH, the water channel aquaporin-4 (AQP4) has been suggested a crucial role in iNPH. Altered expression of AQP4 at the astrocytic endfeet facing the capillaries could affect glymphatic function, i.e., the perivascular transport of fluids and solutes, including soluble amyloid-β and tau. This present study asked how altered perivascular expression of AQP4 in subjects with definite iNPH is accompanied with cellular changes at the glia-neuro-vascular interface. For this purpose, information was retrieved from a database established by the author, including prospectively collected management data, physiological data and information from brain biopsy specimens examined with light and electron microscopy. Individuals with definite iNPH were included together with control subjects who matched the definite iNPH cohort closest in gender and age. Patients with definite iNPH presented with abnormally elevated pulsatile intracranial pressure measured overnight. Cortical brain biopsies showed reduced expression of AQP4 at astrocytic endfeet both perivascular and toward neuropil. This was accompanied with reduced expression of the anchor molecule dystrophin (Dp71) at astrocytic perivascular endfeet, evidence of altered cellular metabolic activity in astrocytic endfoot processes (reduced number of normal and increased number of pathological mitochondria), and evidence of reactive changes in astrocytes (astrogliosis). Moreover, the definite iNPH subjects demonstrated in cerebral cortex changes in capillaries (reduced thickness of the basement membrane between astrocytic endfeet and endothelial cells and pericytes, and evidence of impaired blood-brain-barrier integrity). Abnormal changes in neurons were indicated by reduced post-synaptic density length, and reduced number of normal mitochondria in pre-synaptic terminals. In summary, definite iNPH is characterized by profound cellular changes at the glia-neurovascular interface, which probably reflect the underlying pathophysiology.
Collapse
Affiliation(s)
- Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital—Rikshospitalet, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- *Correspondence: Per Kristian Eide
| |
Collapse
|
24
|
Li G, Cao Y, Tang X, Huang J, Cai L, Zhou L. The meningeal lymphatic vessels and the glymphatic system: Potential therapeutic targets in neurological disorders. J Cereb Blood Flow Metab 2022; 42:1364-1382. [PMID: 35484910 PMCID: PMC9274866 DOI: 10.1177/0271678x221098145] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 04/03/2022] [Accepted: 04/14/2022] [Indexed: 02/05/2023]
Abstract
The recent discovery of the meningeal lymphatic vessels (mLVs) and glymphatic pathways has challenged the long-lasting dogma that the central nervous system (CNS) lacks a lymphatic system and therefore does not interact with peripheral immunity. This discovery has reshaped our understanding of mechanisms underlying CNS drainage. Under normal conditions, a close connection between mLVs and the glymphatic system enables metabolic waste removal, immune cell trafficking, and CNS immune surveillance. Dysfunction of the glymphatic-mLV system can lead to toxic protein accumulation in the brain, and it contributes to the development of a series of neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. The identification of precise cerebral transport routes is based mainly on indirect, invasive imaging of animals, and the results cannot always be applied to humans. Here we review the functions of the glymphatic-mLV system and evidence for its involvement in some CNS diseases. We focus on emerging noninvasive imaging techniques to evaluate the human glymphatic-mLV system and their potential for preclinical diagnosis and prevention of neurodegenerative diseases. Potential strategies that target the glymphatic-mLV system in order to treat and prevent neurological disorders are also discussed.
Collapse
Affiliation(s)
- Gaowei Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Cao
- Department of Neurosurgery, Chengdu Second People's hospital, Chengdu, China
| | - Xin Tang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jianhan Huang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Linjun Cai
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Eide PK, Hansson HA. A New Perspective on the Pathophysiology of Idiopathic Intracranial Hypertension: Role of the Glia-Neuro-Vascular Interface. Front Mol Neurosci 2022; 15:900057. [PMID: 35903170 PMCID: PMC9315230 DOI: 10.3389/fnmol.2022.900057] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Idiopathic intracranial hypertension (IIH) is a neurological disease characterized by symptoms and signs of increased intracranial pressure (ICP) of unknown cause. Most attention has been given to the role of cerebrospinal fluid (CSF) disturbance and intracranial venous hypertension caused by sinus vein stenosis. We previously proposed that key pathophysiological processes take place within the brain at the glia-neuro-vascular interface. However, the relative importance of the proposed mechanisms in IIH disease remains unknown. Modern treatment regimens aim to reduce intracranial CSF and venous pressures, but a substantial proportion of patients experience lasting complaints. In 2010, the first author established a database for the prospective collection of information from individuals being assessed for IIH. The database incorporates clinical, imaging, physiological, and biological data, and information about treatment/outcome. This study retrieved information from the database, asking the following research questions: In IIH subjects responding to shunt surgery, what is the occurrence of signs of CSF disturbance, sinus vein stenosis, intracranial hypertension, and microscopic evidence of structural abnormalities at the glia-neuro-vascular interface? Secondarily, do semi-quantitative measures of abnormal ultrastructure at the glia-neurovascular differ between subjects with definite IIH and non-IIH (reference) subjects? The study included 13 patients with IIH who fulfilled the diagnostic criteria and who improved following shunt surgery, i.e., patients with definite IIH. Comparisons were done regarding magnetic resonance imaging (MRI) findings, pulsatile and static ICP scores, and immune-histochemistry microscopy. Among these 13 IIH subjects, 6/13 (46%) of patients presented with magnetic resonance imaging (MRI) signs of CSF disturbance (empty sella and/or distended perioptic subarachnoid spaces), 0/13 (0%) of patients with IIH had MRI signs of sinus vein stenosis, 13/13 (100%) of patients with IIH presented with abnormal preoperative pulsatile ICP [overnight mean ICP wave amplitude (MWA) above thresholds], 3/13 (23%) patients showed abnormal static ICP (overnight mean ICP above threshold), and 12/13 (92%) of patients with IIH showed abnormal structural changes at the glia-neuro-vascular interface. Comparisons of semi-quantitative structural variables between IIH and aged- and gender-matched reference (REF) subjects showed IIH abnormalities in glial cells, neurons, and capillaries. The present data suggest a key role of disease processes affecting the glia-neuro-vascular interface.
Collapse
Affiliation(s)
- Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital—Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- *Correspondence: Per Kristian Eide
| | - Hans-Arne Hansson
- Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
26
|
Zhang Z, Tan Q, Guo P, Huang S, Jia Z, Liu X, Feng H, Chen Y. NLRP3 inflammasome-mediated choroid plexus hypersecretion contributes to hydrocephalus after intraventricular hemorrhage via phosphorylated NKCC1 channels. J Neuroinflammation 2022; 19:163. [PMID: 35729645 PMCID: PMC9210649 DOI: 10.1186/s12974-022-02530-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 06/14/2022] [Indexed: 12/26/2022] Open
Abstract
Background Hydrocephalus is a severe complication of intracerebral hemorrhage with ventricular extension (ICH-IVH) and causes cerebrospinal fluid (CSF) accumulation. The choroid plexus epithelium plays an important role in CSF secretion and constitutes the blood–CSF barrier within the brain–immune system interface. Although the NLRP3 inflammasome, as a key component of the innate immune system, promotes neuroinflammation, its role in the pathogenesis of hydrocephalus after hemorrhage has not been investigated. Therefore, this study aimed to investigate the potential mechanism of NLRP3 in hydrocephalus to discover a potential marker for targeted therapy. Methods A rat model of hydrocephalus after ICH-IVH was developed through autologous blood infusion in wild-type and Nlrp3−/− rats. By studying the features and processes of the model, we investigated the relationship between the NLRP3 inflammasome and CSF hypersecretion in the choroid plexus. Results The ICH-IVH model rats showed ventricular dilation accompanied by CSF hypersecretion for 3 days. Based on the choroid plexus RNA-seq and proteomics results, we found that an inflammatory response was activated. The NLRP3 inflammasome was investigated, and the expression levels of NLRP3 inflammasome components reached a peak at 3 days after ICH-IVH. Inhibition of NLRP3 by an MCC950 inflammasome inhibitor or Nlrp3 knockout decreased CSF secretion and ventricular dilation and attenuated neurological deficits after ICH-IVH. The mechanism underlying the neuroprotective effects of NLRP3 inhibition involved decreased phosphorylation of NKCC1, which is a major protein that regulates CSF secretion by altering Na+- and K+-coupled water transport, via MCC950 or Nlrp3 knockout. In combination with the in vitro experiments, this experiment confirmed the involvement of the NLRP3/p-NKCC1 pathway and Na+ and K+ flux. Conclusions This study demonstrates that NKCC1 phosphorylation in the choroid plexus epithelium promotes NLRP3 inflammasome-mediated CSF hypersecretion and that NLRP3 plays an important role in the pathogenesis of hydrocephalus after hemorrhage. These findings provide a new therapeutic strategy for treating hydrocephalus. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02530-x.
Collapse
Affiliation(s)
- Zhaoqi Zhang
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qiang Tan
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Peiwen Guo
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Suna Huang
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhengcai Jia
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xin Liu
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hua Feng
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China. .,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. .,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Yujie Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China. .,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. .,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. .,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
27
|
Xuan X, Zhou G, Chen C, Shao A, Zhou Y, Li X, Zhou J. Glymphatic System: Emerging Therapeutic Target for Neurological Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6189170. [PMID: 35726332 PMCID: PMC9206554 DOI: 10.1155/2022/6189170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022]
Abstract
The newly discovered glymphatic system acts as pseudolymphatic vessels subserving brain waste clearance and is functionally dependent on astrocytic aquaporin-4 channels. The glymphatic system primarily functions during sleep as an interchange between cerebrospinal fluid and interstitial fluid, with cerebrospinal fluid flowing into the parenchyma via the perivascular spaces and then exchanging with interstitial fluid. The discovery of meningeal lymphatics helps refine the conceptual framework of glymphatic pathway, as certain waste products collected alongside perivascular spaces ultimately drain into the cervical lymph nodes via meningeal lymphatics, whose function regulates the functioning of the glymphatic system. The glymphatic and meningeal lymphatic systems are critical for the homeostasis of central nervous system, and their malfunctions complicate cerebral dysfunction and diseases. The present review will shed light on the structure, regulation, functions, and interrelationships of the glymphatic system and meningeal lymphatics. We will also expound on their impairments and corresponding targeted intervention in neurodegenerative diseases, traumatic brain injury, stroke, and infectious/autoimmune diseases, offering valuable references for future research.
Collapse
Affiliation(s)
- Xianjun Xuan
- Department of Neurology, Hangzhou Ninth People's Hospital, Hangzhou, China
| | - Guoyi Zhou
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Caihong Chen
- Department of Neurology, Hangzhou Ninth People's Hospital, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaobo Li
- Department of Neurology, Hangzhou Ninth People's Hospital, Hangzhou, China
| | - Jiaqi Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, China
| |
Collapse
|
28
|
Cacciaguerra L, Carotenuto A, Pagani E, Mistri D, Radaelli M, Martinelli V, Filippi M, Rocca MA. MRI EVALUATION OF PERIVASCULAR SPACE ABNORMALITIES IN NEUROMYELITIS OPTICA. Ann Neurol 2022; 92:173-183. [PMID: 35596582 PMCID: PMC9544484 DOI: 10.1002/ana.26419] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/08/2022]
Abstract
Objective Astrocytes outline the perivascular space (PVS) and regulate fluid exchange through the aquaporin‐4 water channel. As neuromyelitis optica is an autoimmune astrocytopathy targeting aquaporin‐4, we hypothesized that it could be associatied with PVS abnormalities. Methods A total of 34 patients, and 46 age‐ and sex‐matched healthy controls from two independent cohorts (exploratory and validation dataset) underwent a standardized 3.0‐T magnetic resonance imaging protocol including conventional and diffusion tensor imaging. Susceptibility‐weighted imaging was also acquired in the exploratory dataset. We evaluated macroscopic and microstructural abnormalities of PVS in terms of enlargement and water diffusivity (DTI‐ALPS index). In the exploration dataset, a susceptibility‐weighted sequence was used to draw the regions of interest for the DTI‐ALPS index calculation in areas having veins perpendicular to lateral ventricles. Between‐group comparisons, correlations, and regression models were run to assess associations between PVS abnormalities, and clinical and magnetic resonance imaging variables. Results Patients had a higher frequency of severe PVS enlargement in the centrum semiovale (29.4% vs 8.7%), which correlated with brain atrophy, deep grey matter atrophy, and poorer cognitive performance (r‐values range: −0.44, −0.36; p values: 0.01–0.046). In both datasets, patients had reduced DTI‐ALPS index compared with controls (p values 0.004–0.038). Lower DTI‐ALPS index, deep gray matter volume, and cortical volume could discriminate between patients and controls (R2 = 0.62), whereas lower DTI‐ALPS index, higher number of myelitis, and higher T2‐lesion volume were associated with worse disability (R2 = 0.55). Interpretation Patients with neuromyelitis optica spectrum disorder are characterized by abnormal enlargement and impaired water diffusion along the PVS, whose clinical implications suggest a direct correlation with disease pathogenesis and severity. ANN NEUROL 2022;92:173–183
Collapse
Affiliation(s)
- Laura Cacciaguerra
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Carotenuto
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Damiano Mistri
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marta Radaelli
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
29
|
Bonney PA, Briggs RG, Wu K, Choi W, Khahera A, Ojogho B, Shao X, Zhao Z, Borzage M, Wang DJJ, Liu C, Lee DJ. Pathophysiological Mechanisms Underlying Idiopathic Normal Pressure Hydrocephalus: A Review of Recent Insights. Front Aging Neurosci 2022; 14:866313. [PMID: 35572128 PMCID: PMC9096647 DOI: 10.3389/fnagi.2022.866313] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/28/2022] [Indexed: 01/18/2023] Open
Abstract
The pathophysiologic mechanisms underpinning idiopathic normal pressure hydrocephalus (iNPH), a clinically diagnosed dementia-causing disorder, continue to be explored. An increasing body of evidence implicates multiple systems in the pathogenesis of this condition, though a unifying causative etiology remains elusive. Increased knowledge of the aberrations involved has shed light on the iNPH phenotype and has helped to guide prognostication for treatment with cerebrospinal fluid diversion. In this review, we highlight the central role of the cerebrovasculature in pathogenesis, from hydrocephalus formation to cerebral blood flow derangements, blood-brain barrier breakdown, and glymphatic pathway dysfunction. We offer potential avenues for increasing our understanding of how this disease occurs.
Collapse
Affiliation(s)
- Phillip A. Bonney
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Phillip A. Bonney
| | - Robert G. Briggs
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kevin Wu
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Wooseong Choi
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Anadjeet Khahera
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Brandon Ojogho
- Laboratory of Functional MRI Technology, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- USC Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Xingfeng Shao
- Laboratory of Functional MRI Technology, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Zhen Zhao
- Department of Physiology & Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Matthew Borzage
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Division of Neonatology, Department of Pediatrics, Fetal and Neonatal Institute, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Danny J. J. Wang
- Laboratory of Functional MRI Technology, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Charles Liu
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- USC Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Darrin J. Lee
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- USC Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
30
|
Eide PK, Lashkarivand A, Hagen-Kersten ÅA, Gjertsen Ø, Nedregaard B, Sletteberg R, Løvland G, Vatnehol SAS, Pripp AH, Valnes LM, Ringstad G. Intrathecal Contrast-Enhanced Magnetic Resonance Imaging of Cerebrospinal Fluid Dynamics and Glymphatic Enhancement in Idiopathic Normal Pressure Hydrocephalus. Front Neurol 2022; 13:857328. [PMID: 35463139 PMCID: PMC9019061 DOI: 10.3389/fneur.2022.857328] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/10/2022] [Indexed: 01/09/2023] Open
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is a neurodegenerative disease, characterized by cerebrospinal fluid (CSF) flow disturbance. Today, the only available treatment is CSF diversion surgery (shunt surgery). While traditional imaging biomarkers typically assess CSF space anatomy, recently introduced imaging biomarkers of CSF dynamics and glymphatic enhancement, provide imaging of CSF dynamics and thereby more specifically reveal elements of the underlying pathophysiology. The biomarkers address CSF ventricular reflux grade as well as glymphatic enhancement and derive from intrathecal contrast-enhanced MRI. However, the contrast agent serving as CSF tracer is administered off-label. In medicine, the introduction of new diagnostic or therapeutic methods must consider the balance between risk and benefit. To this end, we performed a prospective observational study of 95 patients with iNPH, comparing different intrathecal doses of the MRI contrast agent gadobutrol (0.10, 0.25, and 0.50 mmol, respectively), aiming at the lowest reasonable dose needed to retrieve diagnostic information about the novel MRI biomarkers. The present observations disclosed a dose-dependent enrichment of subarachnoid CSF spaces (cisterna magna, vertex, and velum interpositum) with dose-dependent ventricular reflux of tracer in iNPH, as well as dose-dependent glymphatic tracer enrichment. The association between tracer enrichment in CSF and parenchymal compartments were as well dose-related. Intrathecal gadobutrol in a dose of 0.25 mmol, but not 0.10 mmol, was at 1.5T MRI considered sufficient for imaging altered CSF dynamics and glymphatic enhancement in iNPH, even though 3T MRI provided better sensitivity. Tracer enrichment in CSF at the vertex and within the cerebral cortex and subcortical white matter was deemed too low for maintaining diagnostic information from a dose of 0.10 mmol. We conclude that reducing the intrathecal dose of gadobutrol from 0.50 to 0.25 mmol gadobutrol improves the safety margin while maintaining the necessary diagnostic information about disturbed CSF homeostasis and glymphatic failure in iNPH.
Collapse
Affiliation(s)
- Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Aslan Lashkarivand
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Øivind Gjertsen
- Department of Radiology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Bård Nedregaard
- Department of Radiology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Ruth Sletteberg
- Department of Radiology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Grethe Løvland
- The Intervention Centre, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Svein Are Sirirud Vatnehol
- The Intervention Centre, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Institute of Optometry Radiography and Lighting Design, Faculty of Health and Social Sciences, University of South Eastern Norway, Drammen, Norway
| | - Are Hugo Pripp
- Oslo Centre of Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway.,Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Lars Magnus Valnes
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Geir Ringstad
- Department of Radiology, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Department of Geriatrics and Internal Medicine, Sorlandet Hospital, Arendal, Norway
| |
Collapse
|
31
|
Zhang D, Li X, Li B. Glymphatic System Dysfunction in Central Nervous System Diseases and Mood Disorders. Front Aging Neurosci 2022; 14:873697. [PMID: 35547631 PMCID: PMC9082304 DOI: 10.3389/fnagi.2022.873697] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/31/2022] [Indexed: 12/13/2022] Open
Abstract
The glymphatic system, a recently discovered macroscopic waste removal system in the brain, has many unknown aspects, especially its driving forces and relationship with sleep, and thus further explorations of the relationship between the glymphatic system and a variety of possible related diseases are urgently needed. Here, we focus on the progress in current research on the role of the glymphatic system in several common central nervous system diseases and mood disorders, discuss the structural and functional abnormalities of the glymphatic system which may occur before or during the pathophysiological progress and the possible underlying mechanisms. We emphasize the relationship between sleep and the glymphatic system under pathological conditions and summarize the common imaging techniques for the glymphatic system currently available. The perfection of the glymphatic system hypothesis and the exploration of the effects of aging and endocrine factors on the central and peripheral regulatory pathways through the glymphatic system still require exploration in the future.
Collapse
Affiliation(s)
- Dianjun Zhang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, School of Forensic Medicine, China Medical University, Shenyang, China
- China Medical University Center of Forensic Investigation, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Xinyu Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, School of Forensic Medicine, China Medical University, Shenyang, China
- China Medical University Center of Forensic Investigation, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, School of Forensic Medicine, China Medical University, Shenyang, China
- China Medical University Center of Forensic Investigation, School of Forensic Medicine, China Medical University, Shenyang, China
| |
Collapse
|
32
|
Wang Y, Huang C, Guo Q, Chu H. Aquaporin-4 and Cognitive Disorders. Aging Dis 2022; 13:61-72. [PMID: 35111362 PMCID: PMC8782559 DOI: 10.14336/ad.2021.0731] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/31/2021] [Indexed: 12/13/2022] Open
Abstract
Aquaporin-4 (AQP4) is the most abundantly expressed aquaporin in the central nervous system (CNS) and is an integral part of the glymphatic system that cannot be ignored. The CNS has the glymphatic system instead of the conventional lymphatic system. The glymphatic system plays an essential role in the pathophysiological processes of many cognitive disorders. AQP4 shows noteworthy changes in various cognitive disorders and is part of the pathogenesis of these diseases. For this reason, AQP4 has attracted attention as a potential and promising target for regulating and even reversing cognitive dysfunction. This review will summarize the role of AQP4 in the pathophysiological processes of several cognitive disorders as reported in recent studies.
Collapse
Affiliation(s)
- Yifan Wang
- 1Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chuyi Huang
- 2Health Management Center, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai China
| | - Qihao Guo
- 1Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Heling Chu
- 1Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
33
|
Carlstrom LP, Eltanahy A, Perry A, Rabinstein AA, Elder BD, Morris JM, Meyer FB, Graffeo CS, Lundgaard I, Burns TC. A clinical primer for the glymphatic system. Brain 2021; 145:843-857. [PMID: 34888633 DOI: 10.1093/brain/awab428] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 11/14/2022] Open
Abstract
The complex and dynamic system of fluid flow through the perivascular and interstitial spaces of the central nervous system has new-found implications for neurological diseases. Cerebrospinal fluid movement throughout the CNS parenchyma is more dynamic than could be explained via passive diffusion mechanisms alone. Indeed, a semi-structured glial-lymphatic (glymphatic) system of astrocyte-supported extracellular perivascular channels serves to directionally channel extracellular fluid, clearing metabolites and peptides to optimize neurologic function. Clinical studies of the glymphatic network has to date proven challenging, with most data gleaned from rodent models and post-mortem investigations. However, increasing evidence suggests that disordered glymphatic function contributes to the pathophysiology of CNS aging, neurodegenerative disease, and CNS injuries, as well as normal pressure hydrocephalus. Unlocking such pathophysiology could provide important avenues toward novel therapeutics. We here provide a multidisciplinary overview of glymphatics and critically review accumulating evidence regarding its structure, function, and hypothesized relevance to neurological disease. We highlight emerging technologies of relevance to the longitudinal evaluation of glymphatic function in health and disease. Finally, we discuss the translational opportunities and challenges of studying glymphatic science.
Collapse
Affiliation(s)
- Lucas P Carlstrom
- Departments of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| | - Ahmed Eltanahy
- Departments of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| | - Avital Perry
- Departments of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| | | | - Benjamin D Elder
- Departments of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| | | | - Fredric B Meyer
- Departments of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| | | | - Iben Lundgaard
- Departments of Experimental Medical Science, Lund University, Lund 228 11 Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund 228 11 Sweden
| | - Terry C Burns
- Departments of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
34
|
Iida S, Seino H, Nagahata F, Tatsuo S, Maruyama S, Kon S, Takada H, Matsuzaka M, Sugimoto K, Kakeda S. Cerebral ventriculomegaly in myotonic dystrophy type 1: normal pressure hydrocephalus-like appearances on magnetic resonance imaging. BMC Neurosci 2021; 22:62. [PMID: 34663226 PMCID: PMC8522090 DOI: 10.1186/s12868-021-00667-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 10/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cerebral ventriculomegaly is an abnormal feature characteristic of myotonic dystrophy type 1 (DM1). This retrospective study investigated the morphologic changes accompanied by ventriculomegaly in DM1 on brain MRI. METHODS One hundred and twelve adult patients with DM1 and 50 sex- and age-matched controls were assessed. The imaging characteristics for evaluations included the z-Evans Index (ventriculomegaly), callosal angle (CA), enlarged perivascular spaces in the centrum semiovale (CS-EPVS), temporo-polar white matter lesion (WML) on 3D fluid-attenuated inversion recovery (FLAIR), disproportionately enlarged subarachnoid-space hydrocephalus (DESH), and pathological brain atrophy. The "z-Evans Index" was defined as the maximum z-axial length of the frontal horns to the maximum cranial z-axial length. To determine the imaging characteristics and genetic information (CTG repeat numbers) that were associated with the z-Evans Index, we used binominal logistic regression analyses. RESULTS The z-Evans Index was significantly larger in the patients than in the controls (0.30 ± 0.05 vs. 0.24 ± 0.02; p < 0.01). The z-Evans Index was independently associated with the callosal angle (p < 0.01) and pathological brain atrophy (p < 0.01) but not with age, gender, CTG repeat numbers, or CS-EPVS. Of the 34 patients older than 49 years, 7 (20.6%) were considered to have DESH. CONCLUSIONS Our MRI study revealed a normal pressure hydrocephalus (NPH)-like appearance as a morphologic finding accompanied by ventriculomegaly in DM1 that tends to occur in elderly patients.
Collapse
Affiliation(s)
- Saya Iida
- Department of Radiology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Hiroko Seino
- Department of Radiology, National Hospital Organization, Aomori Hospital, Aomori, Aomori, Japan
| | - Fumiko Nagahata
- Department of Radiology, National Hospital Organization, Aomori Hospital, Aomori, Aomori, Japan
| | - Soichiro Tatsuo
- Department of Radiology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Sho Maruyama
- Department of Radiology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Seiko Kon
- Department of Neurology, National Hospital Organization, Aomori Hospital, Aomori, Aomori, Japan
| | - Hiroto Takada
- Department of Neurology, National Hospital Organization, Aomori Hospital, Aomori, Aomori, Japan
| | - Masashi Matsuzaka
- Clinical Research Support Center, Hirosaki University Hospital, Hirosaki, Aomori, Japan.,Department of Medical Informatics, Hirosaki University Hospital, Hirosaki, Aomori, Japan
| | - Koichiro Sugimoto
- Department of Radiology, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan
| | - Shingo Kakeda
- Department of Radiology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan.
| |
Collapse
|
35
|
Hiraldo-González L, Trillo-Contreras JL, García-Miranda P, Pineda-Sánchez R, Ramírez-Lorca R, Rodrigo-Herrero S, Blanco MO, Oliver M, Bernal M, Franco-Macías E, Villadiego J, Echevarría M. Evaluation of aquaporins in the cerebrospinal fluid in patients with idiopathic normal pressure hydrocephalus. PLoS One 2021; 16:e0258165. [PMID: 34597351 PMCID: PMC8486078 DOI: 10.1371/journal.pone.0258165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/21/2021] [Indexed: 11/18/2022] Open
Abstract
Brain aquaporin 1 (AQP1) and AQP4 are involved in cerebrospinal fluid (CSF) homeostasis and might participate in the origin of hydrocephalus. Studies have shown alterations of perivascular AQP4 expression in idiopathic normal pressure hydrocephalus (iNPH) and Alzheimer's disease (AD). Due to the overlapping of clinical signs between iNPH and certain neurological conditions, mainly AD, specific biomarkers might improve the diagnostic accuracy for iNPH. The goal of the present study was to analyze and quantify the presence of AQP1 and AQP4 in the CSF of patients with iNPH and AD to determine whether these proteins can be used as biomarkers of iNPH. We examined AQP1 and AQP4 protein levels in the CSF of 179 participants (88 women) classified into 5 groups: possible iNPH (81 participants), hydrocephalus associated with other neurological disorders (13 participants), AD (41 participants), non-AD dementia (32 participants) and healthy controls (12 participants). We recorded each participant's demographic and clinical variables and indicated, when available in the clinical history, the record of cardiovascular and respiratory complications. An ELISA showed virtually no AQP content in the CSF. Information on the vascular risk factors (available for 61 patients) confirmed some type of vascular risk factor in 86% of the patients with possible iNPH and 58% of the patients with AD. In conclusion, the ELISA analysis showed insufficient sensitivity to detect the presence of AQP1 and AQP4 in CSF, ruling out the possible use of these proteins as biomarkers for diagnosing iNPH.
Collapse
Affiliation(s)
- Laura Hiraldo-González
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, (HUVR)/Spanish National Research Council (CSIC)/University of Seville, Seville, Spain
| | - José Luis Trillo-Contreras
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, (HUVR)/Spanish National Research Council (CSIC)/University of Seville, Seville, Spain
| | - Pablo García-Miranda
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, (HUVR)/Spanish National Research Council (CSIC)/University of Seville, Seville, Spain
| | - Rocío Pineda-Sánchez
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, (HUVR)/Spanish National Research Council (CSIC)/University of Seville, Seville, Spain
| | - Reposo Ramírez-Lorca
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, (HUVR)/Spanish National Research Council (CSIC)/University of Seville, Seville, Spain
- Department of Physiology and Biophysics, University of Seville, Seville, Spain
| | - Silvia Rodrigo-Herrero
- Clinical Neuroscience Management Unit, Neurology Service, University Hospital Virgen del Rocío, Seville, Spain
| | - Magdalena Olivares Blanco
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, (HUVR)/Spanish National Research Council (CSIC)/University of Seville, Seville, Spain
- Clinical Neuroscience Management Unit, Neurosurgery Service, University Hospital Virgen del Rocío, Seville, Spain
| | - María Oliver
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, (HUVR)/Spanish National Research Council (CSIC)/University of Seville, Seville, Spain
- Clinical Neuroscience Management Unit, Neurosurgery Service, University Hospital Virgen del Rocío, Seville, Spain
| | - Maria Bernal
- Clinical Neuroscience Management Unit, Neurology Service, University Hospital Virgen del Rocío, Seville, Spain
| | - Emilio Franco-Macías
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, (HUVR)/Spanish National Research Council (CSIC)/University of Seville, Seville, Spain
- Clinical Neuroscience Management Unit, Neurology Service, University Hospital Virgen del Rocío, Seville, Spain
| | - Javier Villadiego
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, (HUVR)/Spanish National Research Council (CSIC)/University of Seville, Seville, Spain
- Department of Physiology and Biophysics, University of Seville, Seville, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Seville, Spain
| | - Miriam Echevarría
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, (HUVR)/Spanish National Research Council (CSIC)/University of Seville, Seville, Spain
- Department of Physiology and Biophysics, University of Seville, Seville, Spain
- * E-mail:
| |
Collapse
|
36
|
Trillo-Contreras JL, Toledo-Aral JJ, Villadiego J, Echevarría M. Aquaporin-4 Mediates Permanent Brain Alterations in a Mouse Model of Hypoxia-Aged Hydrocephalus. Int J Mol Sci 2021; 22:ijms22189745. [PMID: 34575909 PMCID: PMC8471142 DOI: 10.3390/ijms22189745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/29/2022] Open
Abstract
Aquaporin-4 (AQP4) is the principal water channel in the brain being expressed in astrocytes and ependymal cells. AQP4 plays an important role in cerebrospinal fluid (CSF) homeostasis, and alterations in its expression have been associated with hydrocephalus. AQP4 contributes to the development of hydrocephalus by hypoxia in aged mice, reproducing such principal characteristics of the disease. Here, we explore whether these alterations associated with the hydrocephalic state are permanent or can be reverted by reexposure to normoxia. Alterations such as ventriculomegaly, elevated intracranial pressure, and cognitive deficits were reversed, whereas deficits in CSF outflow and ventricular distensibility were not recovered, remaining impaired even one month after reestablishment of normoxia. Interestingly, in AQP4−/− mice, the impairment in CSF drainage and ventricular distensibility was completely reverted by re-normoxia, indicating that AQP4 has a structural role in the chronification of those alterations. Finally, we show that aged mice subjected to two hypoxic episodes experience permanent ventriculomegaly. These data reveal that repetitive hypoxic events in aged cerebral tissue promote the permanent alterations involved in hydrocephalic pathophysiology, which are dependent on AQP4 expression.
Collapse
Affiliation(s)
- José Luis Trillo-Contreras
- Institute of Biomedicine of Seville-IBiS, University Hospital Virgen del Rocío, CSIC, University of Seville, 41013 Seville, Spain; (J.L.T.-C.); (J.J.T.-A.)
- Department of Medical Physiology and Biophysics, University of Seville, 41009 Seville, Spain
| | - Juan José Toledo-Aral
- Institute of Biomedicine of Seville-IBiS, University Hospital Virgen del Rocío, CSIC, University of Seville, 41013 Seville, Spain; (J.L.T.-C.); (J.J.T.-A.)
- Department of Medical Physiology and Biophysics, University of Seville, 41009 Seville, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Javier Villadiego
- Institute of Biomedicine of Seville-IBiS, University Hospital Virgen del Rocío, CSIC, University of Seville, 41013 Seville, Spain; (J.L.T.-C.); (J.J.T.-A.)
- Department of Medical Physiology and Biophysics, University of Seville, 41009 Seville, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Correspondence: (J.V.); (M.E.); Tel.: +34-955-920-034 (J.V.); +34-955-920-036 (M.E.)
| | - Miriam Echevarría
- Institute of Biomedicine of Seville-IBiS, University Hospital Virgen del Rocío, CSIC, University of Seville, 41013 Seville, Spain; (J.L.T.-C.); (J.J.T.-A.)
- Department of Medical Physiology and Biophysics, University of Seville, 41009 Seville, Spain
- Correspondence: (J.V.); (M.E.); Tel.: +34-955-920-034 (J.V.); +34-955-920-036 (M.E.)
| |
Collapse
|
37
|
Wafford KA. Aberrant waste disposal in neurodegeneration: why improved sleep could be the solution. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2021; 2:100025. [PMID: 36324713 PMCID: PMC9616228 DOI: 10.1016/j.cccb.2021.100025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 06/16/2023]
Abstract
Sleep takes up a large percentage of our lives and the full functions of this state are still not understood. However, over the last 10 years a new and important function has emerged as a mediator of brain clearance. Removal of toxic metabolites and proteins from the brain parenchyma generated during waking activity and high levels of synaptic processing is critical to normal brain function and only enabled during deep sleep. Understanding of this process is revealing how impaired sleep contributes an important and likely causative role in the accumulation and aggregation of aberrant proteins such as β-amyloid and phosphorylated tau, as well as inflammation and neuronal damage. We are also beginning to understand how brain slow-wave activity interacts with vascular function allowing the flow of CSF and interstitial fluid to drain into the body's lymphatic system. New methodology is enabling visualization of this process in both animals and humans and is revealing how these processes break down during ageing and disease. With this understanding we can begin to envisage novel therapeutic approaches to the treatment of neurodegeneration, and how reversing sleep impairment in the correct manner may provide a way to slow these processes and improve brain function.
Collapse
Key Words
- AQP4, aquaporin-4
- Alzheimer's disease
- Amyloid
- Aquaporin-4
- Astrocyte
- Aβ, beta amyloid
- BOLD, blood-oxygen level dependent imaging
- CAA, cerebral amyloid angiopathy
- CSF, Cerebrospinal fluid
- Clearance
- EEG, electroencephalography
- EMG, electromyography
- Glymphatic
- ISF, interstitial fluid
- MCI, mild cognitive impairment
- MRI, magnetic resonance imaging
- NOS, nitric oxide synthase
- NREM, non-rapid eye movement
- OSA, obstructive sleep apnea
- PET, positron emission tomography
- REM, rapid-eye movement
- SWA, slow wave activity
- SWS, slow-wave sleep
- Slow-wave sleep
- iNPH, idiopathic normal pressure hydrocephalus
Collapse
|
38
|
Ludwig HC, Bock HC, Gärtner J, Schiller S, Frahm J, Dreha-Kulaczewski S. Hydrocephalus Revisited: New Insights into Dynamics of Neurofluids on Macro- and Microscales. Neuropediatrics 2021; 52:233-241. [PMID: 34192788 DOI: 10.1055/s-0041-1731981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
New experimental and clinical findings question the historic view of hydrocephalus and its 100-year-old classification. In particular, real-time magnetic resonance imaging (MRI) evaluation of cerebrospinal fluid (CSF) flow and detailed insights into brain water regulation on the molecular scale indicate the existence of at least three main mechanisms that determine the dynamics of neurofluids: (1) inspiration is a major driving force; (2) adequate filling of brain ventricles by balanced CSF upsurge is sensed by cilia; and (3) the perivascular glial network connects the ependymal surface to the pericapillary Virchow-Robin spaces. Hitherto, these aspects have not been considered a common physiologic framework, improving knowledge and therapy for severe disorders of normal-pressure and posthemorrhagic hydrocephalus, spontaneous intracranial hypotension, and spaceflight disease.
Collapse
Affiliation(s)
- Hans C Ludwig
- Division of Pediatric Neurosurgery, Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - Hans C Bock
- Division of Pediatric Neurosurgery, Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - Jutta Gärtner
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Stina Schiller
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Jens Frahm
- Biomedical NMR, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Steffi Dreha-Kulaczewski
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
39
|
Park J, Madan M, Chigurupati S, Baek SH, Cho Y, Mughal MR, Yu A, Chan SL, Pattisapu JV, Mattson MP, Jo DG. Neuronal Aquaporin 1 Inhibits Amyloidogenesis by Suppressing the Interaction Between Beta-Secretase and Amyloid Precursor Protein. J Gerontol A Biol Sci Med Sci 2021; 76:23-31. [PMID: 32154567 DOI: 10.1093/gerona/glaa068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Indexed: 12/15/2022] Open
Abstract
The accumulation of amyloid-β (Aβ) is a characteristic event in the pathogenesis of Alzheimer's disease (AD). Aquaporin 1 (AQP1) is a membrane water channel protein belonging to the AQP family. AQP1 levels are elevated in the cerebral cortex during the early stages of AD, but the role of AQP1 in AD pathogenesis is unclear. We first determined the expression and distribution of AQP1 in brain tissue samples of AD patients and two AD mouse models (3xTg-AD and 5xFAD). AQP1 accumulation was observed in vulnerable neurons in the cerebral cortex of AD patients, and in neurons affected by the Aβ or tau pathology in the 3xTg-AD and 5xFAD mice. AQP1 levels increased in neurons as aging progressed in the AD mouse models. Stress stimuli increased AQP1 in primary cortical neurons. In response to cellular stress, AQP1 appeared to translocate to endocytic compartments of β- and γ-secretase activities. Ectopic expression of AQP1 in human neuroblastoma cells overexpressing amyloid precussir protein (APP) with the Swedish mutations reduced β-secretase (BACE1)-mediated cleavage of APP and reduced Aβ production without altering the nonamyloidogenic pathway. Conversely, knockdown of AQP1 enhanced BACE1 activity and Aβ production. Immunoprecipitation experiments showed that AQP1 decreased the association of BACE1 with APP. Analysis of a human database showed that the amount of Aβ decreases as the expression of AQP1 increases. These results suggest that the upregulation of AQP1 is an adaptive response of neurons to stress that reduces Aβ production by inhibiting the binding between BACE1 and APP.
Collapse
Affiliation(s)
- Jinsu Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea.,Department of Health Science and Technology, Sungkyunkwan University, Seoul, Korea
| | - Meenu Madan
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando
| | - Srinivasulu Chigurupati
- Bio-Imaging, Division of Neurotoxicology, National Center for Toxicological Research, Jefferson, Arkansas.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Yoonsuk Cho
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Mohamed R Mughal
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Amin Yu
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando
| | - Sic L Chan
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando
| | - Jogi V Pattisapu
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea.,Department of Health Science and Technology, Sungkyunkwan University, Seoul, Korea.,Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
40
|
Wang C, Wang X, Tan C, Wang Y, Tang Z, Zhang Z, Liu J, Xiao G. Novel therapeutics for hydrocephalus: Insights from animal models. CNS Neurosci Ther 2021; 27:1012-1022. [PMID: 34151523 PMCID: PMC8339528 DOI: 10.1111/cns.13695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/09/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Hydrocephalus is a cerebrospinal fluid physiological disorder that causes ventricular dilation with normal or high intracranial pressure. The current regular treatment for hydrocephalus is cerebrospinal fluid shunting, which is frequently related to failure and complications. Meanwhile, considering that the current nonsurgical treatments of hydrocephalus can only relieve the symptoms but cannot eliminate this complication caused by primary brain injuries, the exploration of more effective therapies has become the focus for many researchers. In this article, the current research status and progress of nonsurgical treatment in animal models of hydrocephalus are reviewed to provide new orientations for animal research and clinical practice.
Collapse
Affiliation(s)
- Chuansen Wang
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center for HydrocephalusXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xiaoqiang Wang
- Department of Pediatric NeurosurgeryXinhua HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Changwu Tan
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center for HydrocephalusXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Yuchang Wang
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center for HydrocephalusXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zhi Tang
- Department of NeurosurgeryHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Zhiping Zhang
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center for HydrocephalusXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Jingping Liu
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center for HydrocephalusXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Gelei Xiao
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center for HydrocephalusXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
41
|
Roblot P, Mollier O, Ollivier M, Gallice T, Planchon C, Gimbert E, Danet M, Renault S, Auzou N, Laurens B, Jecko V. Communicating chronic hydrocephalus: A review. Rev Med Interne 2021; 42:781-788. [PMID: 34144842 DOI: 10.1016/j.revmed.2021.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/30/2021] [Indexed: 11/25/2022]
Abstract
Formerly called normal pressure hydrocephalus, communicating chronic hydrocephalus (CCH) is a condition affecting 0.1 to 0.5% of patients over 60years of age. The pathophysiology of this disease is poorly understood, but a defect in cerebrospinal fluid (CSF) resorption appears to be commonly defined as the cause of the neurological disorders. The last important discovery is the description of the glymphatic system and its implication in CCH and CSF resorption. Comorbidities (Alzheimer's disease, microangiopathy, parkinsonism) are very frequent, and involve a diagnostic challenge. The clinical presentation is based on the Hakim and Adams triad, comprising gait disorders, mainly impairing walking, cognitive disorders, affecting executive functions, episodic memory, visuospatial cognition, and sphincter disorders as urinary incontinence (detrusor hyperactivity). The diagnosis is suspected through a set of arguments, combining the clinical presentation, the radiological data of the magnetic resonance imaging (MRI) showing a ventriculomegaly associated with signs of transependymomous resorption of the CSF and disappearance of the cortical sulci, and the clinical response to the depletion of CSF. In the presence of all these elements, or a strong clinical suspicion, the standard treatment will be of a permanent CSF shunt, using a ventriculoatrial or ventriculoperitoneal shunt. The effectiveness of this treatment defines the diagnosis. The clinical improvement is better when treatment occurs early after the onset of the disorders, reaching 75 to 90% of motor improvement.
Collapse
Affiliation(s)
- P Roblot
- Neurosurgery department A, university hospital of Bordeaux, place Amélie-Raba-Léon, Bordeaux, France; Laboratory of anatomy, university of Bordeaux, Bordeaux, France.
| | - O Mollier
- Neurosurgery department B, university hospital of Bordeaux, place Amélie-Raba-Léon, Bordeaux, France
| | - M Ollivier
- Department of diagnostic and therapeutic neuroimaging, Pellegrin hospital, place Amélie-Raba-Léon, 33000 Bordeaux, France
| | - T Gallice
- Neurosurgery department B, university hospital of Bordeaux, place Amélie-Raba-Léon, Bordeaux, France; Department of critical care, Bordeaux university hospital, 33076 Bordeaux, France
| | - C Planchon
- Neurosurgery department A, university hospital of Bordeaux, place Amélie-Raba-Léon, Bordeaux, France; Neurosurgery department B, university hospital of Bordeaux, place Amélie-Raba-Léon, Bordeaux, France
| | - E Gimbert
- Neurosurgery department A, university hospital of Bordeaux, place Amélie-Raba-Léon, Bordeaux, France
| | - M Danet
- Department of geriatric medicine, university hospital of Bordeaux, place Amélie-Raba-Léon, Bordeaux, France
| | - S Renault
- Department of neurology, university hospital of Bordeaux, place Amélie-Raba-Léon, Bordeaux, France
| | - N Auzou
- Institute for neurodegenerative diseases, CNRS UMR 5293, university Bordeaux, Bordeaux, France
| | - B Laurens
- Department of neurology, university hospital of Bordeaux, place Amélie-Raba-Léon, Bordeaux, France; Institute for neurodegenerative diseases, CNRS UMR 5293, university Bordeaux, Bordeaux, France
| | - V Jecko
- Neurosurgery department A, university hospital of Bordeaux, place Amélie-Raba-Léon, Bordeaux, France; Université de Bordeaux, CNRS UMR 5287, INCIA, Zone nord, Bat 2, 2e étage, 146, rue Léo-Saignat, 33076 Bordeaux cedex, France
| |
Collapse
|
42
|
Naseri Kouzehgarani G, Feldsien T, Engelhard HH, Mirakhur KK, Phipps C, Nimmrich V, Clausznitzer D, Lefebvre DR. Harnessing cerebrospinal fluid circulation for drug delivery to brain tissues. Adv Drug Deliv Rev 2021; 173:20-59. [PMID: 33705875 DOI: 10.1016/j.addr.2021.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 12/31/2022]
Abstract
Initially thought to be useful only to reach tissues in the immediate vicinity of the CSF circulatory system, CSF circulation is now increasingly viewed as a viable pathway to deliver certain therapeutics deeper into brain tissues. There is emerging evidence that this goal is achievable in the case of large therapeutic proteins, provided conditions are met that are described herein. We show how fluid dynamic modeling helps predict infusion rate and duration to overcome high CSF turnover. We posit that despite model limitations and controversies, fluid dynamic models, pharmacokinetic models, preclinical testing, and a qualitative understanding of the glymphatic system circulation can be used to estimate drug penetration in brain tissues. Lastly, in addition to highlighting landmark scientific and medical literature, we provide practical advice on formulation development, device selection, and pharmacokinetic modeling. Our review of clinical studies suggests a growing interest for intra-CSF delivery, particularly for targeted proteins.
Collapse
|
43
|
Minta K, Jeppsson A, Brinkmalm G, Portelius E, Zetterberg H, Blennow K, Tullberg M, Andreasson U. Lumbar and ventricular CSF concentrations of extracellular matrix proteins before and after shunt surgery in idiopathic normal pressure hydrocephalus. Fluids Barriers CNS 2021; 18:23. [PMID: 33985551 PMCID: PMC8120927 DOI: 10.1186/s12987-021-00256-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022] Open
Abstract
Background Idiopathic normal pressure hydrocephalus (iNPH) is a reversible CNS disease characterized by disturbed cerebrospinal fluid (CSF) dynamics. Changes in the extracellular matrix (ECM) composition might be involved in the pathophysiology of iNPH. The aim of this study was to explore possible differences between lumbar and ventricular CSF concentrations of the ECM markers brevican and neurocan, matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinase-1 (TIMP-1) and their relation to clinical symptoms in iNPH patients before and after shunt surgery. Methods Paired lumbar and ventricular CSF was collected from 31 iNPH patients, before and four months after shunt surgery. CSF was analysed for concentrations of tryptic peptides originating from brevican and neurocan using a mass spectrometry-based panel, and for MMP-1, -2, -9, -10 and TIMP-1 using fluorescent or electrochemiluminescent immunoassays. Results Brevican and neurocan peptide levels were not influenced by CSF origin, but MMP-1, -2, -10 and TIMP-1 were increased (p ≤ 0.0005), and MMP-9 decreased (p ≤ 0.0003) in lumbar CSF compared with ventricular CSF. There was a general trend of ECM proteins to increase following shunt surgery. Ventricular TIMP-1 was inversely correlated with overall symptoms (rho = − 0.62, p < 0.0001). CSF concentrations of the majority of brevican and neurocan peptides were increased in iNPH patients with a history of cardiovascular disease (p ≤ 0.001, AUC = 0.84–0.94) compared with those without. Conclusion Levels of the CNS-specific proteins brevican and neurocan did not differ between the lumbar and ventricular CSF, whereas the increase of several CNS-unspecific MMPs and TIMP-1 in lumbar CSF suggests contribution from peripheral tissues. The increase of ECM proteins in CSF following shunt surgery could indicate disturbed ECM dynamics in iNPH that are restored by restitution of CSF dynamics. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-021-00256-1.
Collapse
Affiliation(s)
- Karolina Minta
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy At the University of Gothenburg, Sahlgrenska University Hospital/Mölndal, 431 80, Mölndal, Sweden.
| | - Anna Jeppsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, the Sahlgrenska Academy At the University of Gothenburg, Mölndal, Sweden
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy At the University of Gothenburg, Sahlgrenska University Hospital/Mölndal, 431 80, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Erik Portelius
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy At the University of Gothenburg, Sahlgrenska University Hospital/Mölndal, 431 80, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy At the University of Gothenburg, Sahlgrenska University Hospital/Mölndal, 431 80, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute At UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy At the University of Gothenburg, Sahlgrenska University Hospital/Mölndal, 431 80, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Mats Tullberg
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, the Sahlgrenska Academy At the University of Gothenburg, Mölndal, Sweden
| | - Ulf Andreasson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy At the University of Gothenburg, Sahlgrenska University Hospital/Mölndal, 431 80, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
44
|
Ko PW, Lee HW, Lee M, Youn YC, Kim S, Kim JH, Kang K, Suk K. Increased plasma levels of chitinase 3-like 1 (CHI3L1) protein in patients with idiopathic normal-pressure hydrocephalus. J Neurol Sci 2021; 423:117353. [PMID: 33652290 DOI: 10.1016/j.jns.2021.117353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/22/2021] [Accepted: 02/15/2021] [Indexed: 10/22/2022]
Abstract
Idiopathic normal-pressure hydrocephalus (iNPH) is an uncommon neurological disorder with no known pathological hallmarks. INPH may share common degenerative pathways with other neurological diseases, such as Alzheimer's disease (AD). However, the reversible properties of iNPH may share differing pathophysiological mechanisms with other diseases. This study aimed at assessing the diagnostic value of plasma chitinase 3-like 1 (CHI3L1) protein levels as a disease-specific biomarker for iNPH. We selected both iNPH and AD patients as well as normal and disease control subjects from an enrolled dementia registry. A total of 121 AD, 80 iNPH, 13 idiopathic Parkinson's disease, and 23 mild cognitive impairment patients with 83 healthy controls were included in the final analysis. The Aβ42, total tau, and phosphorylated tau levels within the cerebrospinal fluid, as well as plasma levels of CHI3L1, were measured using commercially available enzyme-linked immunosorbent assay kits. CHI3L1 levels for iNPH patients were higher than those of the other groups. Analysis of covariance adjusting for age showed significantly increased plasma CHI3L1 levels in iNPH patients than in the controls (p < 0.001). CHI3L1 plasma levels may be useful in differentiating iNPH patients from healthy individuals.
Collapse
Affiliation(s)
- Pan-Woo Ko
- Department of Neurology, Daegu Health College Hospital, Daegu, Republic of Korea
| | - Ho-Won Lee
- Department of Neurology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Myunghoon Lee
- Research Center, D&P Biotech Inc, Seoul, Republic of Korea
| | - Young Chul Youn
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Republic of Korea
| | - Jong-Heon Kim
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Kyunghun Kang
- Department of Neurology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
45
|
Tan C, Wang X, Wang Y, Wang C, Tang Z, Zhang Z, Liu J, Xiao G. The Pathogenesis Based on the Glymphatic System, Diagnosis, and Treatment of Idiopathic Normal Pressure Hydrocephalus. Clin Interv Aging 2021; 16:139-153. [PMID: 33488070 PMCID: PMC7815082 DOI: 10.2147/cia.s290709] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/01/2021] [Indexed: 12/16/2022] Open
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is a rare neurological disorder with no clear prevalence factors and is a significant danger to the elderly. The intracranial glymphatic system is the internal environment that maintains brain survival and metabolism, and thus fluid exchange changes in the glymphatic system under various pathological conditions can provide important insights into the pathogenesis and differential diagnosis of many neurodegenerative diseases such as iNPH. iNPH can be diagnosed using a combination of clinical symptoms, imaging findings and history, and cerebrospinal fluid biomarkers due to the glymphatic system disorder. However, only few researchers have linked the two. Shunt surgery can improve the glymphatic system disorders in iNPH patients, and the surgical approach is determined using a combination of clinical diagnosis and trials. Therefore, we have composed this review to provide a future opportunity for elucidating the pathogenesis of iNPH based on the glymphatic system, and link the glymphatic system to the diagnosis and treatment of iNPH. The review will provide new insights into the medical research of iNPH.
Collapse
Affiliation(s)
- Changwu Tan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Xiaoqiang Wang
- Pediatric Neurological Disease Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China
| | - Yuchang Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Chuansen Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Zhi Tang
- Department of Neurosurgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Zhiping Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Jingping Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| |
Collapse
|
46
|
Kidins220 deficiency causes ventriculomegaly via SNX27-retromer-dependent AQP4 degradation. Mol Psychiatry 2021; 26:6411-6426. [PMID: 34002021 PMCID: PMC8760065 DOI: 10.1038/s41380-021-01127-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 03/29/2021] [Accepted: 04/14/2021] [Indexed: 02/04/2023]
Abstract
Several psychiatric, neurologic and neurodegenerative disorders present increased brain ventricles volume, being hydrocephalus the disease with the major manifestation of ventriculomegaly caused by the accumulation of high amounts of cerebrospinal fluid (CSF). The molecules and pathomechanisms underlying cerebral ventricular enlargement are widely unknown. Kinase D interacting substrate of 220 kDa (KIDINS220) gene has been recently associated with schizophrenia and with a novel syndrome characterized by spastic paraplegia, intellectual disability, nystagmus and obesity (SINO syndrome), diseases frequently occurring with ventriculomegaly. Here we show that Kidins220, a transmembrane protein effector of various key neuronal signalling pathways, is a critical regulator of CSF homeostasis. We observe that both KIDINS220 and the water channel aquaporin-4 (AQP4) are markedly downregulated at the ventricular ependymal lining of idiopathic normal pressure hydrocephalus (iNPH) patients. We also find that Kidins220 deficient mice develop ventriculomegaly accompanied by water dyshomeostasis and loss of AQP4 in the brain ventricular ependymal layer and astrocytes. Kidins220 is a known cargo of the SNX27-retromer, a complex that redirects endocytosed plasma membrane proteins (cargos) back to the cell surface, thus avoiding their targeting to lysosomes for degradation. Mechanistically, we show that AQP4 is a novel cargo of the SNX27-retromer and that Kidins220 deficiency promotes a striking and unexpected downregulation of the SNX27-retromer that results in AQP4 lysosomal degradation. Accordingly, SNX27 silencing decreases AQP4 levels in wild-type astrocytes whereas SNX27 overexpression restores AQP4 content in Kidins220 deficient astrocytes. Together our data suggest that the KIDINS220-SNX27-retromer-AQP4 pathway is involved in human ventriculomegaly and open novel therapeutic perspectives.
Collapse
|
47
|
Does Impaired Glymphatic Drainage Cause Glymphedema? A Review Tailored to Neurocritical Care and Neurosurgery. Neurocrit Care 2021; 35:545-558. [PMID: 34110612 PMCID: PMC8578073 DOI: 10.1007/s12028-021-01224-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/26/2021] [Indexed: 02/05/2023]
Abstract
Research into the glymphatic system reached an inflection point with steep trajectory in 2012 when it was formally recognized and named, but the historical roots for it are solid and deep, dating back to pioneers such as Cushing, Weed, and Dandy. We provide an overview of key discoveries of the glymphatic system, which promotes bulk flow of fluid and solutes throughout the brain parenchyma. We also discuss the lymphatic drainage of the central nervous system. Evidence is building that failure of the glymphatic system causes glymphedema in patients commonly managed by neurocritical care and neurosurgery specialists. We review research supporting this for decompressive craniectomy, subarachnoid hemorrhage, and normal-pressure hydrocephalus. We argue that it is time for a paradigm shift from the traditional model of cerebrospinal fluid circulation to a revised model that incorporates the glymphatic pathway and lymphatic clearance. These recent breakthroughs will inspire new therapeutic approaches to recognize, reverse, and restore glymphatic dysfunction and to leverage this pathway to deliver brain-wide therapeutics.
Collapse
|
48
|
Gastaldi M, Todisco M, Carlin G, Scaranzin S, Zardini E, Minafra B, Zangaglia R, Pichiecchio A, Reindl M, Jarius S, Pacchetti C, Franciotta D. AQP4 autoantibodies in patients with idiopathic normal pressure hydrocephalus. J Neuroimmunol 2020; 349:577407. [PMID: 33032017 DOI: 10.1016/j.jneuroim.2020.577407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Accepted: 09/24/2020] [Indexed: 11/25/2022]
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is a common neurological disorder with unknown etiology. A selective depletion of aquaporin 4 (AQP4) has been shown in iNPH patients. We collected serum and cerebrospinal fluid (CSF) from 43 iNPH patients and 35 with other neurodegenerative conditions, and serum from 43 healthy subjects. All samples were tested for AQP4-IgG/IgA/IgM antibodies using a live cell-based assay. No patients or controls had serum/CSF AQP4-IgG/IgA. One/43 iNPH patient and 0/43 controls tested positive for serum AQP4-IgM. The AQP4-IgM-positive iNPH patient had no clinico-radiological distinctive features. AQP4 antibodies are unlikely to play a role in iNPH pathogenesis.
Collapse
Affiliation(s)
- Matteo Gastaldi
- Neuroimmunology Laboratory, IRCCS Mondino Foundation, Pavia, Italy; Neuro-oncology and Neuroinflammation Unit, IRCCS Mondino Foundation, Pavia, Italy.
| | - Massimiliano Todisco
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Giorgia Carlin
- Neuroimmunology Laboratory, IRCCS Mondino Foundation, Pavia, Italy
| | - Silvia Scaranzin
- Neuroimmunology Laboratory, IRCCS Mondino Foundation, Pavia, Italy.
| | | | - Brigida Minafra
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Roberta Zangaglia
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Anna Pichiecchio
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy.
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Otto Meyerhof Center, Heidelberg, Germany
| | - Claudio Pacchetti
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Diego Franciotta
- Neuroimmunology Laboratory, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
49
|
Wang Z, Zhang Y, Hu F, Ding J, Wang X. Pathogenesis and pathophysiology of idiopathic normal pressure hydrocephalus. CNS Neurosci Ther 2020; 26:1230-1240. [PMID: 33242372 PMCID: PMC7702234 DOI: 10.1111/cns.13526] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Idiopathic normal pressure hydrocephalus (iNPH), the most common type of adult-onset hydrocephalus, is a potentially reversible neuropsychiatric entity characterized by dilated ventricles, cognitive deficit, gait apraxia, and urinary incontinence. Despite its relatively typical imaging features and clinical symptoms, the pathogenesis and pathophysiology of iNPH remain unclear. In this review, we summarize current pathogenetic conceptions of iNPH and its pathophysiological features that lead to neurological deficits. The common consensus is that ventriculomegaly resulting from cerebrospinal fluid (CSF) dynamics could initiate a vicious cycle of neurological damages in iNPH. Pathophysiological factors including hypoperfusion, glymphatic impairment, disturbance of metabolism, astrogliosis, neuroinflammation, and blood-brain barrier disruption jointly cause white matter and gray matter lesions, and eventually lead to various iNPH symptoms. Also, we review the current treatment options and discuss the prospective treatment strategies for iNPH. CSF diversion with ventriculoperitoneal or lumboperitonealshunts remains as the standard therapy, while its complications prompt attempts to refine shunt insertion and develop new therapeutic procedures. Recent progress on advanced biomaterials and improved understanding of pathogenesis offers new avenues to treat iNPH.
Collapse
Affiliation(s)
- Zhangyang Wang
- Department of NeurologyZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Yiying Zhang
- Department of NeurologyZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Fan Hu
- Department of NeurosugeryZhongshan Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Jing Ding
- Department of NeurologyZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Xin Wang
- Department of NeurologyZhongshan Hospital, Fudan UniversityShanghaiChina
- Department of The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
50
|
Eide PK, Pripp AH, Ringstad G. Magnetic resonance imaging biomarkers of cerebrospinal fluid tracer dynamics in idiopathic normal pressure hydrocephalus. Brain Commun 2020; 2:fcaa187. [PMID: 33381757 PMCID: PMC7753057 DOI: 10.1093/braincomms/fcaa187] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/09/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022] Open
Abstract
Disturbed clearance of toxic metabolites from the brain via cerebrospinal fluid is emerging as an important mechanism behind dementia and neurodegeneration. To this end, magnetic resonance imaging work-up of dementia diseases is largely focused on anatomical derangements of the brain. This study explores magnetic resonance imaging biomarkers of cerebrospinal fluid tracer dynamics in patients with the dementia subtype idiopathic normal pressure hydrocephalus and a cohort of reference subjects. All study participants underwent multi-phase magnetic resonance imaging up to 48 h after intrathecal administration of the contrast agent gadobutrol (0.5 ml, 1 mmol/ml), serving as cerebrospinal fluid tracer. Imaging biomarkers of cerebrospinal fluid tracer dynamics (i.e. ventricular reflux grades 0–4 and clearance) were compared with anatomical magnetic resonance imaging biomarkers of cerebrospinal fluid space anatomy (Evans’ index, callosal angle and disproportional enlargement of subarachnoid spaces hydrocephalus) and neurodegeneration (Schelten’s medial temporal atrophy scores, Fazeka’s scores and entorhinal cortex thickness). The imaging scores were also related to a pulsatile intracranial pressure score indicative of intracranial compliance. In shunt-responsive idiopathic normal pressure hydrocephalus, the imaging biomarkers demonstrated significantly altered cerebrospinal fluid tracer dynamics (ventricular reflux grades 3–4 and reduced clearance of tracer), deranged cerebrospinal fluid space anatomy and pronounced neurodegeneration. The altered MRI biomarkers were accompanied by pressure indices of impaired intracranial compliance. In conclusion, we present novel magnetic resonance imaging biomarkers characterizing idiopathic normal pressure hydrocephalus pathophysiology, namely measures of cerebrospinal fluid molecular redistribution and clearance, which add information to traditional imaging scores of cerebrospinal fluid space anatomy and neurodegeneration.
Collapse
Affiliation(s)
- Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Are H Pripp
- Oslo Centre of Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | - Geir Ringstad
- Department of Radiology, Oslo University Hospital- Rikshospitalet, Oslo, Norway
| |
Collapse
|