1
|
Huré JB, Foucault L, Ghayad LM, Marie C, Vachoud N, Baudouin L, Azmani R, Ivjanin N, Arevalo-Nuevo A, Pigache M, Bouslama-Oueghlani L, Chemelle JA, Dronne MA, Terreux R, Hassan B, Gueyffier F, Raineteau O, Parras C. Pharmacogenomic screening identifies and repurposes leucovorin and dyclonine as pro-oligodendrogenic compounds in brain repair. Nat Commun 2024; 15:9837. [PMID: 39537633 PMCID: PMC11561360 DOI: 10.1038/s41467-024-54003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Oligodendrocytes are critical for CNS myelin formation and are involved in preterm-birth brain injury (PBI) and multiple sclerosis (MS), both of which lack effective treatments. We present a pharmacogenomic approach that identifies compounds with potent pro-oligodendrogenic activity, selected through a scoring strategy (OligoScore) based on their modulation of oligodendrogenic and (re)myelination-related transcriptional programs. Through in vitro neural and oligodendrocyte progenitor cell (OPC) cultures, ex vivo cerebellar explants, and in vivo mouse models of PBI and MS, we identify FDA-approved leucovorin and dyclonine as promising candidates. In a neonatal chronic hypoxia mouse model mimicking PBI, both compounds promote neural progenitor cell proliferation and oligodendroglial fate acquisition, with leucovorin further enhancing differentiation. In an adult MS model of focal de/remyelination, they improve lesion repair by promoting OPC differentiation while preserving the OPC pool. Additionally, they shift microglia from a pro-inflammatory to a pro-regenerative profile and enhance myelin debris clearance. These findings support the repurposing of leucovorin and dyclonine for clinical trials targeting myelin disorders, offering potential therapeutic avenues for PBI and MS.
Collapse
Affiliation(s)
- Jean-Baptiste Huré
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Louis Foucault
- Univ Lyon, Université Claude Bernard Lyon1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Litsa Maria Ghayad
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Corentine Marie
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Nicolas Vachoud
- Univ Lyon, Université Claude Bernard Lyon1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Lucas Baudouin
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Rihab Azmani
- Univ Lyon, Université Claude Bernard Lyon1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Natalija Ivjanin
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Alvaro Arevalo-Nuevo
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Morgane Pigache
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Lamia Bouslama-Oueghlani
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Julie-Anne Chemelle
- Équipe ECMO, Laboratoire de Biologie Tissulaire et d'Ingénierie (LBTI), UMR5305, Lyon, France
| | - Marie-Aimée Dronne
- Claude Bernard University, UMR5558 Laboratoire de Biométrie et Biologie Evolutive, CNRS, Villeurbanne, France
| | - Raphaël Terreux
- Équipe ECMO, Laboratoire de Biologie Tissulaire et d'Ingénierie (LBTI), UMR5305, Lyon, France
| | - Bassem Hassan
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - François Gueyffier
- Claude Bernard University, UMR5558 Laboratoire de Biométrie et Biologie Evolutive, CNRS, Villeurbanne, France
| | - Olivier Raineteau
- Univ Lyon, Université Claude Bernard Lyon1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France.
| | - Carlos Parras
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
2
|
Gao R, Song SJ, Tian MY, Wang LB, Zhang Y, Li X. Myelin debris phagocytosis in demyelinating disease. Glia 2024; 72:1934-1954. [PMID: 39073200 DOI: 10.1002/glia.24602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Demyelinating diseases are often caused by a variety of triggers, including immune responses, viral infections, malnutrition, hypoxia, or genetic factors, all of which result in the loss of myelin in the nervous system. The accumulation of myelin debris at the lesion site leads to neuroinflammation and inhibits remyelination; therefore, it is crucial to promptly remove the myelin debris. Initially, Fc and complement receptors on cellular surfaces were the primary clearance receptors responsible for removing myelin debris. However, subsequent studies have unveiled the involvement of additional receptors, including Mac-2, TAM receptors, and the low-density lipoprotein receptor-related protein 1, in facilitating the removal process. In addition to microglia and macrophages, which serve as the primary effector cells in the disease phase, a variety of other cell types such as astrocytes, Schwann cells, and vascular endothelial cells have been demonstrated to engage in the phagocytosis of myelin debris. Furthermore, we have concluded that oligodendrocyte precursor cells, as myelination precursor cells, also exhibit this phagocytic capability. Moreover, our research group has innovatively identified the low-density lipoprotein receptor as a potential phagocytic receptor for myelin debris. In this article, we discuss the functional processes of various phagocytes in demyelinating diseases. We also highlight the alterations in signaling pathways triggered by phagocytosis, and provide a comprehensive overview of the various phagocytic receptors involved. Such insights are invaluable for pinpointing potential therapeutic strategies for the treatment of demyelinating diseases by targeting phagocytosis.
Collapse
Affiliation(s)
- Rui Gao
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Sheng-Jiao Song
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Meng-Yuan Tian
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Li-Bin Wang
- Neurosurgery Department, Huazhong University of Science and Technology Union Shenzhen Hospital/Shenzhen Nanshan Hospital, Shenzhen, Guangdong, China
| | - Yuan Zhang
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xing Li
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Kaller MS, Lazari A, Feng Y, van der Toorn A, Rühling S, Thomas CW, Shimizu T, Bannerman D, Vyazovskiy V, Richardson WD, Sampaio-Baptista C, Johansen-Berg H. Ablation of oligodendrogenesis in adult mice alters brain microstructure and activity independently of behavioral deficits. Glia 2024; 72:1728-1745. [PMID: 38982743 DOI: 10.1002/glia.24576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 07/11/2024]
Abstract
Oligodendrocytes continue to differentiate from their precursor cells even in adulthood, a process that can be modulated by neuronal activity and experience. Previous work has indicated that conditional ablation of oligodendrogenesis in adult mice leads to learning and memory deficits in a range of behavioral tasks. The current study replicated and re-evaluated evidence for a role of oligodendrogenesis in motor learning, using a complex running wheel task. Further, we found that ablating oligodendrogenesis alters brain microstructure (ex vivo MRI) and brain activity (in vivo EEG) independent of experience with the task. This suggests a role for adult oligodendrocyte formation in the maintenance of brain function and indicates that task-independent changes due to oligodendrogenesis ablation need to be considered when interpreting learning and memory deficits in this model.
Collapse
Affiliation(s)
- Malte S Kaller
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Alberto Lazari
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Yingshi Feng
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Annette van der Toorn
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht & Utrecht University, Utrecht, The Netherlands
| | - Sebastian Rühling
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christopher W Thomas
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Takahiro Shimizu
- The Wolfson Institute for Biomedical Research, University College London, London, UK
| | - David Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Vladyslav Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, UK
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - William D Richardson
- The Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Cassandra Sampaio-Baptista
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
| | - Heidi Johansen-Berg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Butt TH, Tobiume M, Re DB, Kariya S. Physical Exercise Counteracts Aging-Associated White Matter Demyelination Causing Cognitive Decline. Aging Dis 2024; 15:2136-2148. [PMID: 38377028 PMCID: PMC11346408 DOI: 10.14336/ad.2024.0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024] Open
Abstract
In the central nervous system, oligodendrocytes wrap around neuronal axons to form myelin, an insulating layer or sheath that allows for the efficient conductance of action potentials. In addition to structural insulation, myelin provides encased axons with nutrient, metabolic and defensive support. Demyelination, or myelin loss, can therefore cause axonal dysfunction, leading to neurological impairment and disease. In Alzheimer's disease (AD), progressive white matter demyelination is acknowledged as one of the earliest pathologies preceding symptom onset. Unfortunately, current pharmacotherapy for slowing demyelination or promoting remyelination in AD is nonexistent. Exercise is recognized for its wide-ranging benefits to human health, including improved mental health and the prevention of lifestyle-related diseases. Mounting evidence suggests the contribution of physical activity in delaying the progression of dementia in elderly populations. Recent mechanistic studies have shown that exercise facilitates myelination in the brain through the vitalization of intrinsic pro-myelination cues, such as increased neurotrophic factors and electrical activity. In this review, we summarize and discuss the potential of physical exercise on counteracting aging-associated white matter demyelination, which causes cognitive decline in AD. We highlight the need of further basic and clinical research investigations on this topic to establish novel approaches for healthy and improved brain aging.
Collapse
Affiliation(s)
- Tanya H Butt
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Makoto Tobiume
- Unit for Respiratory System & Dementia in the Division of Internal Medicine, Katsuren Hospital, Itoman, Okinawa, Japan
| | - Diane B Re
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
- NIEHS Center for Environmental Health Sciences in Northern Manhattan, Columbia University, New York, NY, USA
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA
| | - Shingo Kariya
- Unit for Nervous System & Dementia in the Division of Internal Medicine, Katsuren Hospital, Itoman, Okinawa, Japan
| |
Collapse
|
5
|
Teng XY, Hu P, Zhang CM, Zhang QX, Yang G, Zang YY, Liu ZX, Chen G, Shi YS. OPALIN is an LGI1 receptor promoting oligodendrocyte differentiation. Proc Natl Acad Sci U S A 2024; 121:e2403652121. [PMID: 39083419 PMCID: PMC11317624 DOI: 10.1073/pnas.2403652121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024] Open
Abstract
Leucine-rich glioma-inactivated protein 1 (LGI1), a secretory protein in the brain, plays a critical role in myelination; dysfunction of this protein leads to hypomyelination and white matter abnormalities (WMAs). Here, we hypothesized that LGI1 may regulate myelination through binding to an unidentified receptor on the membrane of oligodendrocytes (OLs). To search for this hypothetic receptor, we analyzed LGI1 binding proteins through LGI1-3 × FLAG affinity chromatography with mouse brain lysates followed by mass spectrometry. An OL-specific membrane protein, the oligodendrocytic myelin paranodal and inner loop protein (OPALIN), was identified. Conditional knockout (cKO) of OPALIN in the OL lineage caused hypomyelination and WMAs, phenocopying LGI1 deficiency in mice. Biochemical analysis revealed the downregulation of Sox10 and Olig2, transcription factors critical for OL differentiation, further confirming the impaired OL maturation in Opalin cKO mice. Moreover, virus-mediated re-expression of OPALIN successfully restored myelination in Opalin cKO mice. In contrast, re-expression of LGI1-unbound OPALIN_K23A/D26A failed to reverse the hypomyelination phenotype. In conclusion, our study demonstrated that OPALIN on the OL membrane serves as an LGI1 receptor, highlighting the importance of the LGI1/OPALIN complex in orchestrating OL differentiation and myelination.
Collapse
Affiliation(s)
- Xiao-Yu Teng
- Guangdong Institute of Intelligence Science and Technology, 519031Hengqin, Zhuhai, China
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 210032Nanjing, China
| | - Ping Hu
- Department of Prenatal Diagnosis, State Key Laboratory of Reproductive Medicine, Women’s Hospital of Nanjing Medical University, Nanjing Women and Children’s Healthcare Hospital, 210004Nanjing, China
| | - Cai-Ming Zhang
- Department of Thoracic Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315Guangzhou, China
| | - Qin-Xin Zhang
- Department of Prenatal Diagnosis, State Key Laboratory of Reproductive Medicine, Women’s Hospital of Nanjing Medical University, Nanjing Women and Children’s Healthcare Hospital, 210004Nanjing, China
| | - Guolin Yang
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 210032Nanjing, China
| | - Yan-Yu Zang
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 210032Nanjing, China
| | - Zhi-Xiong Liu
- Guangdong Institute of Intelligence Science and Technology, 519031Hengqin, Zhuhai, China
| | - Guiquan Chen
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 210032Nanjing, China
| | - Yun Stone Shi
- Guangdong Institute of Intelligence Science and Technology, 519031Hengqin, Zhuhai, China
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 210032Nanjing, China
| |
Collapse
|
6
|
Prathapan V, Eipert P, Wigger N, Kipp M, Appali R, Schmitt O. Modeling and simulation for prediction of multiple sclerosis progression. Comput Biol Med 2024; 175:108416. [PMID: 38657465 DOI: 10.1016/j.compbiomed.2024.108416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
In light of extensive work that has created a wide range of techniques for predicting the course of multiple sclerosis (MS) disease, this paper attempts to provide an overview of these approaches and put forth an alternative way to predict the disease progression. For this purpose, the existing methods for estimating and predicting the course of the disease have been categorized into clinical, radiological, biological, and computational or artificial intelligence-based markers. Weighing the weaknesses and strengths of these prognostic groups is a profound method that is yet in need and works directly at the level of diseased connectivity. Therefore, we propose using the computational models in combination with established connectomes as a predictive tool for MS disease trajectories. The fundamental conduction-based Hodgkin-Huxley model emerged as promising from examining these studies. The advantage of the Hodgkin-Huxley model is that certain properties of connectomes, such as neuronal connection weights, spatial distances, and adjustments of signal transmission rates, can be taken into account. It is precisely these properties that are particularly altered in MS and that have strong implications for processing, transmission, and interactions of neuronal signaling patterns. The Hodgkin-Huxley (HH) equations as a point-neuron model are used for signal propagation inside a small network. The objective is to change the conduction parameter of the neuron model, replicate the changes in myelin properties in MS and observe the dynamics of the signal propagation across the network. The model is initially validated for different lengths, conduction values, and connection weights through three nodal connections. Later, these individual factors are incorporated into a small network and simulated to mimic the condition of MS. The signal propagation pattern is observed after inducing changes in conduction parameters at certain nodes in the network and compared against a control model pattern obtained before the changes are applied to the network. The signal propagation pattern varies as expected by adapting to the input conditions. Similarly, when the model is applied to a connectome, the pattern changes could give an insight into disease progression. This approach has opened up a new path to explore the progression of the disease in MS. The work is in its preliminary state, but with a future vision to apply this method in a connectome, providing a better clinical tool.
Collapse
Affiliation(s)
- Vishnu Prathapan
- Medical School Hamburg University of Applied Sciences and Medical University, Am Kaiserkai 1, 20457, Hamburg, Germany.
| | - Peter Eipert
- Medical School Hamburg University of Applied Sciences and Medical University, Am Kaiserkai 1, 20457, Hamburg, Germany.
| | - Nicole Wigger
- Department of Anatomy, University of Rostock Gertrudenstr 9, 18057, Rostock, Germany.
| | - Markus Kipp
- Department of Anatomy, University of Rostock Gertrudenstr 9, 18057, Rostock, Germany.
| | - Revathi Appali
- Institute of General Electrical Engineering, University of Rostock, Albert-Einstein-Straße 2, 18059, Rostock, Germany; Department of Aging of Individuals and Society, Interdisciplinary Faculty, University of Rostock, Universitätsplatz 1, 18055, Rostock, Germany.
| | - Oliver Schmitt
- Medical School Hamburg University of Applied Sciences and Medical University, Am Kaiserkai 1, 20457, Hamburg, Germany; Department of Anatomy, University of Rostock Gertrudenstr 9, 18057, Rostock, Germany.
| |
Collapse
|
7
|
Rivera AD, Normanton JR, Butt AM, Azim K. The Genomic Intersection of Oligodendrocyte Dynamics in Schizophrenia and Aging Unravels Novel Pathological Mechanisms and Therapeutic Potentials. Int J Mol Sci 2024; 25:4452. [PMID: 38674040 PMCID: PMC11050044 DOI: 10.3390/ijms25084452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Schizophrenia is a significant worldwide health concern, affecting over 20 million individuals and contributing to a potential reduction in life expectancy by up to 14.5 years. Despite its profound impact, the precise pathological mechanisms underlying schizophrenia continue to remain enigmatic, with previous research yielding diverse and occasionally conflicting findings. Nonetheless, one consistently observed phenomenon in brain imaging studies of schizophrenia patients is the disruption of white matter, the bundles of myelinated axons that provide connectivity and rapid signalling between brain regions. Myelin is produced by specialised glial cells known as oligodendrocytes, which have been shown to be disrupted in post-mortem analyses of schizophrenia patients. Oligodendrocytes are generated throughout life by a major population of oligodendrocyte progenitor cells (OPC), which are essential for white matter health and plasticity. Notably, a decline in a specific subpopulation of OPC has been identified as a principal factor in oligodendrocyte disruption and white matter loss in the aging brain, suggesting this may also be a factor in schizophrenia. In this review, we analysed genomic databases to pinpoint intersections between aging and schizophrenia and identify shared mechanisms of white matter disruption and cognitive dysfunction.
Collapse
Affiliation(s)
- Andrea D. Rivera
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Via A. Gabelli 65, 35127 Padua, Italy;
| | - John R. Normanton
- GliaGenesis Limited, Orchard Lea, Horns Lane, Oxfordshire, Witney OX29 8NH, UK; (J.R.N.); (K.A.)
| | - Arthur M. Butt
- GliaGenesis Limited, Orchard Lea, Horns Lane, Oxfordshire, Witney OX29 8NH, UK; (J.R.N.); (K.A.)
- School of Pharmacy and Biomedical Science, University of Portsmouth, Hampshire PO1 2UP, UK
| | - Kasum Azim
- GliaGenesis Limited, Orchard Lea, Horns Lane, Oxfordshire, Witney OX29 8NH, UK; (J.R.N.); (K.A.)
- Independent Data Lab UG, Frauenmantelanger 31, 80937 Munich, Germany
| |
Collapse
|
8
|
Stancu M, Wohlfrom H, Heß M, Grothe B, Leibold C, Kopp-Scheinpflug C. Ambient sound stimulation tunes axonal conduction velocity by regulating radial growth of myelin on an individual, axon-by-axon basis. Proc Natl Acad Sci U S A 2024; 121:e2316439121. [PMID: 38442165 PMCID: PMC10945791 DOI: 10.1073/pnas.2316439121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Adaptive myelination is the emerging concept of tuning axonal conduction velocity to the activity within specific neural circuits over time. Sound processing circuits exhibit structural and functional specifications to process signals with microsecond precision: a time scale that is amenable to adjustment in length and thickness of myelin. Increasing activity of auditory axons by introducing sound-evoked responses during postnatal development enhances myelin thickness, while sensory deprivation prevents such radial growth during development. When deprivation occurs during adulthood, myelin thickness was reduced. However, it is unclear whether sensory stimulation adjusts myelination in a global fashion (whole fiber bundles) or whether such adaptation occurs at the level of individual fibers. Using temporary monaural deprivation in mice provided an internal control for a) differentially tracing structural changes in active and deprived fibers and b) for monitoring neural activity in response to acoustic stimulation of the control and the deprived ear within the same animal. The data show that sound-evoked activity increased the number of myelin layers around individual active axons, even when located in mixed bundles of active and deprived fibers. Thicker myelination correlated with faster axonal conduction velocity and caused shorter auditory brainstem response wave VI-I delays, providing a physiologically relevant readout. The lack of global compensation emphasizes the importance of balanced sensory experience in both ears throughout the lifespan of an individual.
Collapse
Affiliation(s)
- Mihai Stancu
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried82152, Germany
- Munich Cluster for Systems Neurology, Munich81377, Germany
- Graduate School of Systemic Neurosciences, Planegg-Martinsried82152, Germany
| | - Hilde Wohlfrom
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried82152, Germany
| | - Martin Heß
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried82152, Germany
| | - Benedikt Grothe
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried82152, Germany
- Munich Cluster for Systems Neurology, Munich81377, Germany
| | - Christian Leibold
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried82152, Germany
- Faculty of Biology, Bernstein Center Freiburg, BrainLinks-BrainTools, University of Freiburg, Freiburg im Breisgau79110, Germany
| | - Conny Kopp-Scheinpflug
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried82152, Germany
| |
Collapse
|
9
|
Bouchard EL, Meireles AM, Talbot WS. Oligodendrocyte development and myelin sheath formation are regulated by the antagonistic interaction between the Rag-Ragulator complex and TFEB. Glia 2024; 72:289-299. [PMID: 37767930 PMCID: PMC10841052 DOI: 10.1002/glia.24473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/11/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023]
Abstract
Myelination by oligodendrocytes is critical for fast axonal conduction and for the support and survival of neurons in the central nervous system. Recent studies have emphasized that myelination is plastic and that new myelin is formed throughout life. Nonetheless, the mechanisms that regulate the number, length, and location of myelin sheaths formed by individual oligodendrocytes are incompletely understood. Previous work showed that the lysosomal transcription factor TFEB represses myelination by oligodendrocytes and that the RagA GTPase inhibits TFEB, but the step or steps of myelination in which TFEB plays a role have remained unclear. Here, we show that TFEB regulates oligodendrocyte differentiation and also controls the length of myelin sheaths formed by individual oligodendrocytes. In the dorsal spinal cord of tfeb mutants, individual oligodendrocytes produce myelin sheaths that are longer than those produced by wildtype cells. Transmission electron microscopy shows that there are more myelinated axons in the dorsal spinal cord of tfeb mutants than in wildtype animals, but no significant change in axon diameter. In contrast to tfeb mutants, oligodendrocytes in rraga mutants produce shorter myelin sheaths. The sheath length in rraga; tfeb double mutants is not significantly different from wildtype, consistent with the antagonistic interaction between RagA and TFEB. Finally, we find that the GTPase activating protein Flcn and the RagCa and RagCb GTPases are also necessary for myelination by oligodendrocytes. These findings demonstrate that TFEB coordinates myelin sheath length and number during myelin formation in the central nervous system.
Collapse
Affiliation(s)
- Ellen L. Bouchard
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ana M. Meireles
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - William S. Talbot
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
10
|
de Carvalho Borges B, Meng X, Long P, Kanold PO, Corfas G. Loss of oligodendrocyte ErbB receptor signaling leads to hypomyelination, reduced density of parvalbumin-expressing interneurons, and inhibitory function in the auditory cortex. Glia 2023; 71:187-204. [PMID: 36052476 PMCID: PMC9771935 DOI: 10.1002/glia.24266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 12/24/2022]
Abstract
For a long time, myelin was thought to be restricted to excitatory neurons, and studies on dysmyelination focused primarily on excitatory cells. Recent evidence showed that axons of inhibitory neurons in the neocortex are also myelinated, but the role of myelin on inhibitory circuits remains unknown. Here we studied the impact of mild hypomyelination on both excitatory and inhibitory connectivity in the primary auditory cortex (A1) with well-characterized mouse models of hypomyelination due to loss of oligodendrocyte ErbB receptor signaling. Using laser-scanning photostimulation, we found that mice with mild hypomyelination have reduced functional inhibitory connections to A1 L2/3 neurons without changes in excitatory connections, resulting in altered excitatory/inhibitory balance. These effects are not associated with altered expression of GABAergic and glutamatergic synaptic components, but with reduced density of parvalbumin-positive (PV+ ) neurons, axons, and synaptic terminals, which reflect reduced PV expression by interneurons rather than PV+ neuronal loss. While immunostaining shows that hypomyelination occurs in both PV+ and PV- axons, there is a strong correlation between MBP and PV expression, suggesting that myelination influences PV expression. Together, the results indicate that mild hypomyelination impacts A1 neuronal networks, reducing inhibitory activity, and shifting networks towards excitation.
Collapse
Affiliation(s)
- Beatriz de Carvalho Borges
- Kresge Hearing Research Institute - Department of Otolaryngology Head and Neck Surgery, University of Michigan, Ann Arbor, MI
| | - Xiangying Meng
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205,Department of Biology, University of Maryland, College Park, MD 20742
| | - Patrick Long
- Kresge Hearing Research Institute - Department of Otolaryngology Head and Neck Surgery, University of Michigan, Ann Arbor, MI
| | - Patrick Oliver Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205,Department of Biology, University of Maryland, College Park, MD 20742
| | - Gabriel Corfas
- Kresge Hearing Research Institute - Department of Otolaryngology Head and Neck Surgery, University of Michigan, Ann Arbor, MI
| |
Collapse
|
11
|
Thioredoxin deficiency increases oxidative stress and causes bilateral symmetrical degeneration in rat midbrain. Neurobiol Dis 2022; 175:105921. [DOI: 10.1016/j.nbd.2022.105921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/26/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
|
12
|
Liu Y, Yue W, Yu S, Zhou T, Zhang Y, Zhu R, Song B, Guo T, Liu F, Huang Y, Wu T, Wang H. A physical perspective to understand myelin II: The physical origin of myelin development. Front Neurosci 2022; 16:951998. [PMID: 36263368 PMCID: PMC9574017 DOI: 10.3389/fnins.2022.951998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
The physical principle of myelin development is obtained from our previous study by explaining Peter's quadrant mystery: an externally applied negative and positive E-field can promote and inhibit the growth of the inner tongue of the myelin sheath, respectively. In this study, this principle is considered as a fundamental hypothesis, named Hypothesis-E, to explain more phenomena about myelin development systematically. Specifically, the g-ratio and the fate of the Schwann cell's differentiation are explained in terms of the E-field. Moreover, an experiment is proposed to validate this theory.
Collapse
Affiliation(s)
- Yonghong Liu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Wenji Yue
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Shoujun Yu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Tian Zhou
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Yapeng Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Ran Zhu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Bing Song
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Tianruo Guo
- Key Laboratory of Health Bioinformatics, Chinese Academy of Sciences, Shenzhen, China
| | - Fenglin Liu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Yubin Huang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Tianzhun Wu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Hao Wang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
13
|
Petroff RL, Williams C, Li JL, MacDonald JW, Bammler TK, Richards T, English CN, Baldessari A, Shum S, Jing J, Isoherranen N, Crouthamel B, McKain N, Grant KS, Burbacher TM, Harry GJ. Prolonged, Low-Level Exposure to the Marine Toxin, Domoic Acid, and Measures of Neurotoxicity in Nonhuman Primates. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:97003. [PMID: 36102641 PMCID: PMC9472675 DOI: 10.1289/ehp10923] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 07/21/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The excitotoxic molecule, domoic acid (DA), is a marine algal toxin known to induce overt hippocampal neurotoxicity. Recent experimental and epidemiological studies suggest adverse neurological effects at exposure levels near the current regulatory limit (20 ppm, ∼0.075-0.1mg/kg). At these levels, cognitive effects occur in the absence of acute symptoms or evidence of neuronal death. OBJECTIVES This study aimed to identify adverse effects on the nervous system from prolonged, dietary DA exposure in adult, female Macaca fascicularis monkeys. METHODS Monkeys were orally exposed to 0, 0.075, and 0.15mg/kg per day for an average of 14 months. Clinical blood counts, chemistry, and cytokine levels were analyzed in the blood. In-life magnetic resonance (MR) imaging assessed volumetric and tractography differences in and between the hippocampus and thalamus. Histology of neurons and glia in the fornix, fimbria, internal capsule, thalamus, and hippocampus was evaluated. Hippocampal RNA sequencing was used to identify differentially expressed genes. Enrichment of gene networks for neuronal health, excitotoxicity, inflammation/glia, and myelin were assessed with Gene Set Enrichment Analysis. RESULTS Clinical blood counts, chemistry, and cytokine levels were not altered with DA exposure in nonhuman primates. Transcriptome analysis of the hippocampus yielded 748 differentially expressed genes (fold change≥1.5; p≤0.05), reflecting differences in a broad molecular profile of intermediate early genes (e.g., FOS, EGR) and genes related to myelin networks in DA animals. Between exposed and control animals, MR imaging showed comparable connectivity of the hippocampus and thalamus and histology showed no evidence of hypomyelination. Histological examination of the thalamus showed a larger microglia soma size and an extension of cell processes, but suggestions of a GFAP+astrocyte response showed no indication of astrocyte hypertrophy. DISCUSSION In the absence of overt hippocampal excitotoxicity, chronic exposure of Macaca fascicularis monkeys to environmentally relevant levels of DA suggested a subtle shift in the molecular profile of the hippocampus and the microglia phenotype in the thalamus that was possibly reflective of an adaptive response due to prolonged DA exposure. https://doi.org/10.1289/EHP10923.
Collapse
Affiliation(s)
- Rebekah L. Petroff
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Christopher Williams
- Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Jian-Liang Li
- Epigenetics & Stem Cell Biology Laboratory, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - James W. MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Theo K. Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Todd Richards
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | | | - Audrey Baldessari
- Washington National Primate Research Center, Seattle, Washington, USA
| | - Sara Shum
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Jing Jing
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Nina Isoherranen
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
- Center on Human Development and Disability, University of Washington, Seattle, Washington, USA
| | - Brenda Crouthamel
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Noelle McKain
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Kimberly S. Grant
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Washington National Primate Research Center, Seattle, Washington, USA
| | - Thomas M. Burbacher
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Washington National Primate Research Center, Seattle, Washington, USA
- Center on Human Development and Disability, University of Washington, Seattle, Washington, USA
| | - G. Jean Harry
- Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| |
Collapse
|
14
|
Makowiecki K, Stevens N, Cullen CL, Zarghami A, Nguyen PT, Johnson L, Rodger J, Hinder MR, Barnett M, Young KM, Taylor BV. Safety of low-intensity repetitive transcranial magneTic brAin stimUlation foR people living with mUltiple Sclerosis (TAURUS): study protocol for a randomised controlled trial. Trials 2022; 23:626. [PMID: 35922816 PMCID: PMC9347125 DOI: 10.1186/s13063-022-06526-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease, characterised by oligodendrocyte death and demyelination. Oligodendrocyte progenitor cells can differentiate into new replacement oligodendrocytes; however, remyelination is insufficient to protect neurons from degeneration in people with MS. We previously reported that 4 weeks of daily low-intensity repetitive transcranial magnetic stimulation (rTMS) in an intermittent theta-burst stimulation (iTBS) pattern increased the number of new myelinating oligodendrocytes in healthy adult mice. This study translates this rTMS protocol and aims to determine its safety and tolerability for people living with MS. We will also perform magnetic resonance imaging (MRI) and symptom assessments as preliminary indicators of myelin addition following rTMS. METHODS Participants (N = 30, aged 18-65 years) will have a diagnosis of relapsing-remitting or secondary progressive MS. ≤2 weeks before the intervention, eligible, consenting participants will complete a physical exam, baseline brain MRI scan and participant-reported MS symptom assessments [questionnaires: Fatigue Severity Scale, Quality of Life (AQoL-8D), Hospital Anxiety and Depression Scale; and smartphone-based measures of cognition (electronic symbol digit modalities test), manual dexterity (pinching test, draw a shape test) and gait (U-Turn test)]. Participants will be pseudo-randomly allocated to rTMS (n=20) or sham (placebo; n=10), stratified by sex. rTMS or sham will be delivered 5 days per week for 4 consecutive weeks (20 sessions, 6 min per day). rTMS will be applied using a 90-mm circular coil at low-intensity (25% maximum stimulator output) in an iTBS pattern. For sham, the coil will be oriented 90° to the scalp, preventing the magnetic field from stimulating the brain. Adverse events will be recorded daily. We will evaluate participant blinding after the first, 10th and final session. After the final session, participants will repeat symptom assessments and brain MRI, for comparison with baseline. Participant-reported assessments will be repeated at 4-month post-allocation follow-up. DISCUSSION This study will determine whether this rTMS protocol is safe and tolerable for people with MS. MRI and participant-reported symptom assessments will serve as preliminary indications of rTMS efficacy for myelin addition to inform further studies. TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry ACTRN12619001196134 . Registered on 27 August 2019.
Collapse
Affiliation(s)
- Kalina Makowiecki
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.
| | - Natasha Stevens
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Carlie L Cullen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Amin Zarghami
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Phuong Tram Nguyen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Lewis Johnson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Jennifer Rodger
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Mark R Hinder
- Sensorimotor Neuroscience and Ageing Research Lab, School of Psychological Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Michael Barnett
- Sydney Neuroimaging Analysis Centre (SNAC), Sydney, NSW, Australia
- Brain & Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Bruce V Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
15
|
Hirrlinger J, Nimmerjahn A. A perspective on astrocyte regulation of neural circuit function and animal behavior. Glia 2022; 70:1554-1580. [PMID: 35297525 PMCID: PMC9291267 DOI: 10.1002/glia.24168] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/19/2022] [Accepted: 02/27/2022] [Indexed: 12/16/2022]
Abstract
Studies over the past two decades have demonstrated that astrocytes are tightly associated with neurons and play pivotal roles in neural circuit development, operation, and adaptation in health and disease. Nevertheless, precisely how astrocytes integrate diverse neuronal signals, modulate neural circuit structure and function at multiple temporal and spatial scales, and influence animal behavior or disease through aberrant excitation and molecular output remains unclear. This Perspective discusses how new and state-of-the-art approaches, including fluorescence indicators, opto- and chemogenetic actuators, genetic targeting tools, quantitative behavioral assays, and computational methods, might help resolve these longstanding questions. It also addresses complicating factors in interpreting astrocytes' role in neural circuit regulation and animal behavior, such as their heterogeneity, metabolism, and inter-glial communication. Research on these questions should provide a deeper mechanistic understanding of astrocyte-neuron assemblies' role in neural circuit function, complex behaviors, and disease.
Collapse
Affiliation(s)
- Johannes Hirrlinger
- Carl-Ludwig-Institute for Physiology, Medical Faculty,
University of Leipzig, Leipzig, Germany
- Department of Neurogenetics, Max-Planck-Institute for
Multidisciplinary Sciences, Göttingen, Germany
| | - Axel Nimmerjahn
- Waitt Advanced Biophotonics Center, The Salk Institute for
Biological Studies, La Jolla, California
| |
Collapse
|
16
|
Duffau H. White Matter Tracts and Diffuse Lower-Grade Gliomas: The Pivotal Role of Myelin Plasticity in the Tumor Pathogenesis, Infiltration Patterns, Functional Consequences and Therapeutic Management. Front Oncol 2022; 12:855587. [PMID: 35311104 PMCID: PMC8924360 DOI: 10.3389/fonc.2022.855587] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/14/2022] [Indexed: 12/18/2022] Open
Abstract
For many decades, interactions between diffuse lower-grade glioma (LGG) and brain connectome were neglected. However, the neoplasm progression is intimately linked to its environment, especially the white matter (WM) tracts and their myelin status. First, while the etiopathogenesis of LGG is unclear, this tumor seems to appear during the adolescence, and it is mostly located within anterior and associative cerebral areas. Because these structures correspond to those which were myelinated later in the brain maturation process, WM myelination could play a role in the development of LGG. Second, WM fibers and the myelin characteristics also participate in LGG diffusion, since glioma cells migrate along the subcortical pathways, especially when exhibiting a demyelinated phenotype, which may result in a large invasion of the parenchyma. Third, such a migratory pattern can induce functional (neurological, cognitive and behavioral) disturbances, because myelinated WM tracts represent the main limitation of neuroplastic potential. These parameters are critical for tailoring an individualized therapeutic strategy, both (i) regarding the timing of active treatment(s) which must be proposed earlier, before a too wide glioma infiltration along the WM bundles, (ii) and regarding the anatomic extent of surgical resection and irradiation, which should take account of the subcortical connectivity. Therefore, the new science of connectomics must be integrated in LGG management, based upon an improved understanding of the interplay across glioma dissemination within WM and reactional neural networks reconfiguration, in order to optimize long-term oncological and functional outcomes. To this end, mechanisms of activity-dependent myelin plasticity should be better investigated.
Collapse
Affiliation(s)
- Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors", Institute of Functional Genomics, National Institute for Health and Medical Research (INSERM) U1191, University of Montpellier, Montpellier, France
| |
Collapse
|
17
|
Remyelination trial failures: Repercussions of ignoring neurorehabilitation and exercise in repair. Mult Scler Relat Disord 2022; 58:103539. [DOI: 10.1016/j.msard.2022.103539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 11/18/2022]
|
18
|
Garcia-Martin G, Sanz-Rodriguez M, Alcover-Sanchez B, Pereira MP, Wandosell F, Cubelos B. R-Ras1 and R-Ras2 Expression in Anatomical Regions and Cell Types of the Central Nervous System. Int J Mol Sci 2022; 23:978. [PMID: 35055164 PMCID: PMC8781598 DOI: 10.3390/ijms23020978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 11/20/2022] Open
Abstract
Since the optic nerve is one of the most myelinated tracts in the central nervous system (CNS), many myelin diseases affect the visual system. In this sense, our laboratory has recently reported that the GTPases R-Ras1 and R-Ras2 are essential for oligodendrocyte survival and maturation. Hypomyelination produced by the absence of one or both proteins triggers axonal degeneration and loss of visual and motor function. However, little is known about R-Ras specificity and other possible roles that they could play in the CNS. In this work, we describe how a lack of R-Ras1 and/or R-Ras2 could not be compensated by increased expression of the closely related R-Ras3 or classical Ras. We further studied R-Ras1 and R-Ras2 expression within different CNS anatomical regions, finding that both were more abundant in less-myelinated regions, suggesting their expression in non-oligodendroglial cells. Finally, using confocal immunostaining colocalization, we report for the first time that R-Ras2 is specifically expressed in neurons. Neither microglia nor astrocytes expressed R-Ras1 or R-Ras2. These results open a new avenue for the study of neuronal R-Ras2's contribution to the process of myelination.
Collapse
Affiliation(s)
- Gonzalo Garcia-Martin
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.G.-M.); (M.S.-R.); (B.A.-S.); (M.P.P.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Miriam Sanz-Rodriguez
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.G.-M.); (M.S.-R.); (B.A.-S.); (M.P.P.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Berta Alcover-Sanchez
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.G.-M.); (M.S.-R.); (B.A.-S.); (M.P.P.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Marta P. Pereira
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.G.-M.); (M.S.-R.); (B.A.-S.); (M.P.P.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Francisco Wandosell
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
- Alzheimer’s Disease and Other Degenerative Dementias, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Beatriz Cubelos
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.G.-M.); (M.S.-R.); (B.A.-S.); (M.P.P.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
19
|
Frizzell TO, Phull E, Khan M, Song X, Grajauskas LA, Gawryluk J, D'Arcy RCN. Imaging functional neuroplasticity in human white matter tracts. Brain Struct Funct 2022; 227:381-392. [PMID: 34812936 PMCID: PMC8741691 DOI: 10.1007/s00429-021-02407-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/26/2021] [Indexed: 12/17/2022]
Abstract
Magnetic resonance imaging (MRI) studies are sensitive to biological mechanisms of neuroplasticity in white matter (WM). In particular, diffusion tensor imaging (DTI) has been used to investigate structural changes. Historically, functional MRI (fMRI) neuroplasticity studies have been restricted to gray matter, as fMRI studies have only recently expanded to WM. The current study evaluated WM neuroplasticity pre-post motor training in healthy adults, focusing on motor learning in the non-dominant hand. Neuroplasticity changes were evaluated in two established WM regions-of-interest: the internal capsule and the corpus callosum. Behavioral improvements following training were greater for the non-dominant hand, which corresponded with MRI-based neuroplasticity changes in the internal capsule for DTI fractional anisotropy, fMRI hemodynamic response functions, and low-frequency oscillations (LFOs). In the corpus callosum, MRI-based neuroplasticity changes were detected in LFOs, DTI, and functional correlation tensors (FCT). Taken together, the LFO results converged as significant amplitude reductions, implicating a common underlying mechanism of optimized transmission through altered myelination. The structural and functional neuroplasticity findings open new avenues for direct WM investigations into mapping connectomes and advancing MRI clinical applications.
Collapse
Affiliation(s)
- Tory O Frizzell
- BrainNET, Health and Technology District, Surrey, BC, Canada
- Faculty of Applied Sciences and Science, Simon Fraser University, Vancouver, BC, Canada
| | - Elisha Phull
- BrainNET, Health and Technology District, Surrey, BC, Canada
- Faculty of Applied Sciences and Science, Simon Fraser University, Vancouver, BC, Canada
| | - Mishaa Khan
- BrainNET, Health and Technology District, Surrey, BC, Canada
- Faculty of Applied Sciences and Science, Simon Fraser University, Vancouver, BC, Canada
| | - Xiaowei Song
- BrainNET, Health and Technology District, Surrey, BC, Canada
- Faculty of Applied Sciences and Science, Simon Fraser University, Vancouver, BC, Canada
- Health Sciences and Innovation, Surrey Memorial Hospital, Surrey, BC, Canada
| | - Lukas A Grajauskas
- BrainNET, Health and Technology District, Surrey, BC, Canada
- Faculty of Applied Sciences and Science, Simon Fraser University, Vancouver, BC, Canada
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jodie Gawryluk
- Division of Medical Sciences, Department of Psychology, University of Victoria, Victoria, BC, Canada
- DM Centre for Brain Health (Radiology), University of British Columbia, Vancouver, BC, Canada
| | - Ryan C N D'Arcy
- BrainNET, Health and Technology District, Surrey, BC, Canada.
- Faculty of Applied Sciences and Science, Simon Fraser University, Vancouver, BC, Canada.
- Health Sciences and Innovation, Surrey Memorial Hospital, Surrey, BC, Canada.
- DM Centre for Brain Health (Radiology), University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
20
|
Hines JH. Evolutionary Origins of the Oligodendrocyte Cell Type and Adaptive Myelination. Front Neurosci 2021; 15:757360. [PMID: 34924932 PMCID: PMC8672417 DOI: 10.3389/fnins.2021.757360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/29/2021] [Indexed: 12/23/2022] Open
Abstract
Oligodendrocytes are multifunctional central nervous system (CNS) glia that are essential for neural function in gnathostomes. The evolutionary origins and specializations of the oligodendrocyte cell type are among the many remaining mysteries in glial biology and neuroscience. The role of oligodendrocytes as CNS myelinating glia is well established, but recent studies demonstrate that oligodendrocytes also participate in several myelin-independent aspects of CNS development, function, and maintenance. Furthermore, many recent studies have collectively advanced our understanding of myelin plasticity, and it is now clear that experience-dependent adaptations to myelination are an additional form of neural plasticity. These observations beg the questions of when and for which functions the ancestral oligodendrocyte cell type emerged, when primitive oligodendrocytes evolved new functionalities, and the genetic changes responsible for these evolutionary innovations. Here, I review recent findings and propose working models addressing the origins and evolution of the oligodendrocyte cell type and adaptive myelination. The core gene regulatory network (GRN) specifying the oligodendrocyte cell type is also reviewed as a means to probe the existence of oligodendrocytes in basal vertebrates and chordate invertebrates.
Collapse
Affiliation(s)
- Jacob H. Hines
- Biology Department, Winona State University, Winona, MN, United States
| |
Collapse
|
21
|
The oligodendrocyte-enriched orphan G protein-coupled receptor Gpr62 is dispensable for central nervous system myelination. Neural Dev 2021; 16:6. [PMID: 34844642 PMCID: PMC8630896 DOI: 10.1186/s13064-021-00156-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Myelination is a highly regulated process in the vertebrate central nervous system (CNS) whereby oligodendrocytes wrap axons with multiple layers of insulating myelin in order to allow rapid electrical conduction. Establishing the proper pattern of myelin in neural circuits requires communicative axo-glial interactions, however, the molecular interactions that occur between oligodendrocytes and axons during developmental myelination and myelin maintenance remain to be fully elucidated. Our previous work identified G protein-coupled receptor 62 (Gpr62), an uncharacterized orphan g-protein coupled receptor, as being selectively expressed by mature oligodendrocytes within the CNS, suggesting a potential role in myelination or axoglial interactions. However, no studies to date have assessed the functional requirement for Gpr62 in oligodendrocyte development or CNS myelination. METHODS To address this, we generated a knockout mouse strain lacking the Gpr62 gene. We assessed CNS myelination during both postnatal development and adulthood using immunohistochemistry, electron microscopy and western blot. In addition, we utilized AAV-mediated expression of a tagged Gpr62 in oligodendrocytes to determine the subcellular localization of the protein in vivo. RESULTS We find that virally expressed Gpr62 protein is selectively expressed on the adaxonal myelin layer, suggestive of a potential role for Gpr62 in axo-myelinic signaling. Nevertheless, Gpr62 knockout mice display normal oligodendrocyte numbers and apparently normal myelination within the CNS during both postnatal development and adulthood. CONCLUSIONS We conclude that in spite of being well-placed to mediate neuronal-oligodendrocyte communications, Gpr62 is overall dispensable for CNS myelination.
Collapse
|
22
|
Periods of synchronized myelin changes shape brain function and plasticity. Nat Neurosci 2021; 24:1508-1521. [PMID: 34711959 DOI: 10.1038/s41593-021-00917-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 07/30/2021] [Indexed: 12/11/2022]
Abstract
Myelin, a lipid membrane that wraps axons, enabling fast neurotransmission and metabolic support to axons, is conventionally thought of as a static structure that is set early in development. However, recent evidence indicates that in the central nervous system (CNS), myelination is a protracted and plastic process, ongoing throughout adulthood. Importantly, myelin is emerging as a potential modulator of neuronal networks, and evidence from human studies has highlighted myelin as a major player in shaping human behavior and learning. Here we review how myelin changes throughout life and with learning. We discuss potential mechanisms of myelination at different life stages, explore whether myelin plasticity provides the regenerative potential of the CNS white matter, and question whether changes in myelin may underlie neurological disorders.
Collapse
|
23
|
Muramatsu K, Shimo S, Tamaki T, Ikutomo M, Niwa M. Functional and Structural Changes in the Corticospinal Tract of Streptozotocin-Induced Diabetic Rats. Int J Mol Sci 2021; 22:10123. [PMID: 34576288 PMCID: PMC8472618 DOI: 10.3390/ijms221810123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 11/26/2022] Open
Abstract
This study aimed to reveal functional and morphological changes in the corticospinal tract, a pathway shown to be susceptible to diabetes. Type 1 diabetes was induced in 13-week-old male Wistar rats administered streptozotocin. Twenty-three weeks after streptozotocin injection, diabetic animals and age-matched control animals were used to demonstrate the conduction velocity of the corticospinal tract. Other animals were used for morphometric analyses of the base of the dorsal funiculus of the corticospinal tract in the spinal cord using both optical and electron microscopy. The conduction velocity of the corticospinal tract decreased in the lumbar spinal cord in the diabetic animal, although it did not decrease in the cervical spinal cord. Furthermore, atrophy of the fibers of the base of the dorsal funiculus was observed along their entire length, with an increase in the g-ratio in the lumbar spinal cord in the diabetic animal. This study indicates that the corticospinal tract fibers projecting to the lumbar spinal cord experience a decrease in conduction velocity at the lumbar spinal cord of these axons in diabetic animals, likely caused by a combination of axonal atrophy and an increased g-ratio due to thinning of the myelin sheath.
Collapse
Affiliation(s)
- Ken Muramatsu
- Department of Physical Therapy, Kyorin University, 5-4-1 Simorenzyaku, Mitaka, Tokyo 181-8612, Japan
| | - Satoshi Shimo
- Department of Occupational Therapy, Health Science University, 7187 Kodachi, Fujikawaguchiko, Yamanashi 401-0380, Japan;
| | - Toru Tamaki
- Department of Physical Therapy, Health Science University, 7187 Kodachi, Fujikawaguchiko, Yamanashi 401-0380, Japan;
| | - Masako Ikutomo
- Department of Physical Therapy, University of Tokyo Health Sciences, 4-11 Ochiai, Tama, Tokyo 206-0003, Japan;
| | - Masatoshi Niwa
- Department of Occupational Therapy, Kyorin University, 5-4-1 Simorenzyaku, Mitaka, Tokyo 181-8612, Japan;
| |
Collapse
|
24
|
Kohrman D, Borges BC, Cassinotti L, Ji L, Corfas G. Axon-glia interactions in the ascending auditory system. Dev Neurobiol 2021; 81:546-567. [PMID: 33561889 PMCID: PMC9004231 DOI: 10.1002/dneu.22813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/25/2020] [Accepted: 02/05/2021] [Indexed: 11/09/2022]
Abstract
The auditory system detects and encodes sound information with high precision to provide a high-fidelity representation of the environment and communication. In mammals, detection occurs in the peripheral sensory organ (the cochlea) containing specialized mechanosensory cells (hair cells) that initiate the conversion of sound-generated vibrations into action potentials in the auditory nerve. Neural activity in the auditory nerve encodes information regarding the intensity and frequency of sound stimuli, which is transmitted to the auditory cortex through the ascending neural pathways. Glial cells are critical for precise control of neural conduction and synaptic transmission throughout the pathway, allowing for the precise detection of the timing, frequency, and intensity of sound signals, including the sub-millisecond temporal fidelity is necessary for tasks such as sound localization, and in humans, for processing complex sounds including speech and music. In this review, we focus on glia and glia-like cells that interact with hair cells and neurons in the ascending auditory pathway and contribute to the development, maintenance, and modulation of neural circuits and transmission in the auditory system. We also discuss the molecular mechanisms of these interactions, their impact on hearing and on auditory dysfunction associated with pathologies of each cell type.
Collapse
Affiliation(s)
- David Kohrman
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Beatriz C. Borges
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Luis Cassinotti
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Lingchao Ji
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Gabriel Corfas
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| |
Collapse
|
25
|
Islam R, Kaffman A. White-Matter Repair as a Novel Therapeutic Target for Early Adversity. Front Neurosci 2021; 15:657693. [PMID: 33897364 PMCID: PMC8062784 DOI: 10.3389/fnins.2021.657693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Early adversity (EA) impairs myelin development in a manner that persists later in life across diverse mammalian species including humans, non-human primates, and rodents. These observations, coupled with the highly conserved nature of myelin development suggest that animal models can provide important insights into the molecular mechanisms by which EA impairs myelin development later in life and the impact of these changes on network connectivity, cognition, and behavior. However, this area of translational research has received relatively little attention and no comprehensive review is currently available to address these issues. This is particularly important given some recent mechanistic studies in rodents and the availability of new agents to increase myelination. The goals of this review are to highlight the need for additional pre-clinical work in this area and to provide specific examples that demonstrate the potential of this work to generate novel therapeutic interventions that are highly needed.
Collapse
Affiliation(s)
- Rafiad Islam
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Arie Kaffman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
26
|
Post-learning micro- and macro-structural neuroplasticity changes with time and sleep. Biochem Pharmacol 2020; 191:114369. [PMID: 33338474 DOI: 10.1016/j.bcp.2020.114369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/18/2022]
Abstract
Neuroplasticity refers to the fact that our brain can partially modify both structure and function to adequately respond to novel environmental stimulations. Neuroplasticity mechanisms are not only operating during the acquisition of novel information (i.e., online) but also during the offline periods that take place after the end of the actual learning episode. Structural brain changes as a consequence of learning have been consistently demonstrated on the long term using non-invasive neuroimaging methods, but short-term changes remained more elusive. Fortunately, the swift development of advanced MR methods over the last decade now allows tracking fine-grained cerebral changes on short timescales beyond gross volumetric modifications stretching over several days or weeks. Besides a mere effect of time, post-learning sleep mechanisms have been shown to play an important role in memory consolidation and promote long-lasting changes in neural networks. Sleep was shown to contribute to structural modifications over weeks of prolonged training, but studies evidencing more rapid post-training sleep structural effects linked to memory consolidation are still scarce in human. On the other hand, animal studies convincingly show how sleep might modulate synaptic microstructure. We aim here at reviewing the literature establishing a link between different types of training/learning and the resulting structural changes, with an emphasis on the role of post-training sleep and time in tuning these modifications. Open questions are raised such as the role of post-learning sleep in macrostructural changes, the links between different MR structural measurement-related modifications and the underlying microstructural brain processes, and bidirectional influences between structural and functional brain changes.
Collapse
|
27
|
Lago-Baldaia I, Fernandes VM, Ackerman SD. More Than Mortar: Glia as Architects of Nervous System Development and Disease. Front Cell Dev Biol 2020; 8:611269. [PMID: 33381506 PMCID: PMC7767919 DOI: 10.3389/fcell.2020.611269] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Glial cells are an essential component of the nervous system of vertebrates and invertebrates. In the human brain, glia are as numerous as neurons, yet the importance of glia to nearly every aspect of nervous system development has only been expounded over the last several decades. Glia are now known to regulate neural specification, synaptogenesis, synapse function, and even broad circuit function. Given their ubiquity, it is not surprising that the contribution of glia to neuronal disease pathogenesis is a growing area of research. In this review, we will summarize the accumulated evidence of glial participation in several distinct phases of nervous system development and organization-neural specification, circuit wiring, and circuit function. Finally, we will highlight how these early developmental roles of glia contribute to nervous system dysfunction in neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Inês Lago-Baldaia
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Vilaiwan M. Fernandes
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Sarah D. Ackerman
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR, United States
| |
Collapse
|
28
|
Chacon-De-La-Rocha I, Fryatt G, Rivera AD, Verkhratsky A, Raineteau O, Gomez-Nicola D, Butt AM. Accelerated Dystrophy and Decay of Oligodendrocyte Precursor Cells in the APP/PS1 Model of Alzheimer's-Like Pathology. Front Cell Neurosci 2020; 14:575082. [PMID: 33343301 PMCID: PMC7744306 DOI: 10.3389/fncel.2020.575082] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/22/2020] [Indexed: 12/22/2022] Open
Abstract
Myelin disruption is a feature of natural aging and Alzheimer's disease (AD). In the CNS, myelin is produced by oligodendrocytes, which are generated throughout life by oligodendrocyte progenitor cells (OPCs). Here, we examined age-related changes in OPCs in APP/PS1 mice, a model for AD-like pathology, compared with non-transgenic (Tg) age-matched controls. The analysis was performed in the CA1 area of the hippocampus following immunolabeling for NG2 with the nuclear dye Hoescht, to identify OPC and OPC sister cells, a measure of OPC replication. The results indicate a significant decrease in the number of OPCs at 9 months in APP/PS1 mice, compared to age-matched controls, without further decline at 14 months. Also, the number of OPC sister cells declined significantly at 14 months in APP/PS1 mice, which was not observed in age-matched controls. Notably, OPCs also displayed marked morphological changes at 14 months in APP/PS1 mice, characterized by an overall shrinkage of OPC process domains and increased process branching. The results indicate that OPC disruption is a pathological sign in the APP/PS1 mouse model of AD.
Collapse
Affiliation(s)
- Irene Chacon-De-La-Rocha
- School of Pharmacy and Biomedical Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Gemma Fryatt
- School of Biological Sciences, Southampton General Hospital, University of Southampton, Portsmouth, United Kingdom
| | - Andrea D. Rivera
- School of Pharmacy and Biomedical Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| | - Olivier Raineteau
- University of Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Diego Gomez-Nicola
- School of Biological Sciences, Southampton General Hospital, University of Southampton, Portsmouth, United Kingdom
| | - Arthur M. Butt
- School of Pharmacy and Biomedical Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
29
|
Zeng H, Zhang X, Wang W, Shen Z, Dai Z, Yu Z, Xu S, Yan G, Huang Q, Wu R, Chen X, Xu H. Maternal separation with early weaning impairs neuron-glia integrity: non-invasive evaluation and substructure demonstration. Sci Rep 2020; 10:19440. [PMID: 33173142 PMCID: PMC7656452 DOI: 10.1038/s41598-020-76640-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 10/29/2020] [Indexed: 02/05/2023] Open
Abstract
Astrocytes and oligodendrocytes play essential roles in regulating neural signal transduction along neural circuits in CNS. The perfect coordination of neuron/astrocyte and neuron/oligodendrocyte entities was termed as neuron-glia integrity recently. Here we monitored the status of neuron-glia integrity via non-invasive neuroimaging methods and demonstrated the substructures of it using other approaches in an animal model of maternal separation with early weaning (MSEW), which mimics early life neglect and abuse in humans. Compared to controls, MSEW rats showed higher glutamate level, but lower GABA in prefrontal cortex (PFC) detected by chemical exchange saturation transfer and 1H-MRS methods, lower levels of glial glutamate transporter-1 and ATP-α, but increased levels of glutamate decarboxylase-65 and glutamine synthetase in PFC; reduced fractional anisotropy in various brain regions revealed by diffusion tensor imaging, along with increased levels of N-acetyl-aspartate measured by 1H-MRS; and hypomyelination in PFC as evidenced by relevant cellular and molecular changes.
Collapse
Affiliation(s)
- Haiyan Zeng
- The Mental Health Center, Shantou University Medical College, Shantou, China
- Xianyue Hospital/Xiamen Mental Health Center, Xiamen, China
| | - Xiaolei Zhang
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Wenqiang Wang
- Xianyue Hospital/Xiamen Mental Health Center, Xiamen, China
| | - Zhiwei Shen
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Zhuozhi Dai
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Zhijia Yu
- The Mental Health Center, Shantou University Medical College, Shantou, China
| | - Shuqin Xu
- Department of Anatomy, Shantou University Medical College, Shantou, China
| | - Gen Yan
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Qingjun Huang
- The Mental Health Center, Shantou University Medical College, Shantou, China
| | - Renhua Wu
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Xi Chen
- McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, USA
| | - Haiyun Xu
- The Mental Health Center, Shantou University Medical College, Shantou, China.
- Department of Anatomy, Shantou University Medical College, Shantou, China.
- The School of Psychiatry, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
30
|
Xin W, Chan JR. Myelin plasticity: sculpting circuits in learning and memory. Nat Rev Neurosci 2020; 21:682-694. [PMID: 33046886 DOI: 10.1038/s41583-020-00379-8] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Throughout our lifespan, new sensory experiences and learning continually shape our neuronal circuits to form new memories. Plasticity at the level of synapses has been recognized and studied for decades, but recent work has revealed an additional form of plasticity - affecting oligodendrocytes and the myelin sheaths they produce - that plays a crucial role in learning and memory. In this Review, we summarize recent work characterizing plasticity in the oligodendrocyte lineage following sensory experience and learning, the physiological and behavioural consequences of manipulating that plasticity, and the evidence for oligodendrocyte and myelin dysfunction in neurodevelopmental disorders with cognitive symptoms. We also discuss the limitations of existing approaches and the conceptual and technical advances that are needed to move forward this rapidly developing field.
Collapse
Affiliation(s)
- Wendy Xin
- Weill Institute for Neuroscience, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| | - Jonah R Chan
- Weill Institute for Neuroscience, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
31
|
Alcover-Sanchez B, Garcia-Martin G, Escudero-Ramirez J, Gonzalez-Riano C, Lorenzo P, Gimenez-Cassina A, Formentini L, de la Villa-Polo P, Pereira MP, Wandosell F, Cubelos B. Absence of R-Ras1 and R-Ras2 causes mitochondrial alterations that trigger axonal degeneration in a hypomyelinating disease model. Glia 2020; 69:619-637. [PMID: 33010069 DOI: 10.1002/glia.23917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/18/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
Abstract
Fast synaptic transmission in vertebrates is critically dependent on myelin for insulation and metabolic support. Myelin is produced by oligodendrocytes (OLs) that maintain multilayered membrane compartments that wrap around axonal fibers. Alterations in myelination can therefore lead to severe pathologies such as multiple sclerosis. Given that hypomyelination disorders have complex etiologies, reproducing clinical symptoms of myelin diseases from a neurological perspective in animal models has been difficult. We recently reported that R-Ras1-/- and/or R-Ras2-/- mice, which lack GTPases essential for OL survival and differentiation processes, present different degrees of hypomyelination in the central nervous system with a compounded hypomyelination in double knockout (DKO) mice. Here, we discovered that the loss of R-Ras1 and/or R-Ras2 function is associated with aberrant myelinated axons with increased numbers of mitochondria, and a disrupted mitochondrial respiration that leads to increased reactive oxygen species levels. Consequently, aberrant myelinated axons are thinner with cytoskeletal phosphorylation patterns typical of axonal degeneration processes, characteristic of myelin diseases. Although we observed different levels of hypomyelination in a single mutant mouse, the combined loss of function in DKO mice lead to a compromised axonal integrity, triggering the loss of visual function. Our findings demonstrate that the loss of R-Ras function reproduces several characteristics of hypomyelinating diseases, and we therefore propose that R-Ras1-/- and R-Ras2-/- neurological models are valuable approaches for the study of these myelin pathologies.
Collapse
Affiliation(s)
- Berta Alcover-Sanchez
- Departamento de Biología Molecular and Centro Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Gonzalo Garcia-Martin
- Departamento de Biología Molecular and Centro Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Juan Escudero-Ramirez
- Departamento de Biología Molecular and Centro Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carolina Gonzalez-Riano
- CEMBIO (Centre for Metabolomics and Bioanalysis), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Paz Lorenzo
- CEMBIO (Centre for Metabolomics and Bioanalysis), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Alfredo Gimenez-Cassina
- Departamento de Biología Molecular and Centro Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Laura Formentini
- Departamento de Biología Molecular and Centro Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Pedro de la Villa-Polo
- Departamento de Biología de Sistemas, Universidad de Alcalá, Madrid, Spain.,Grupo de Neurofisiología Visual, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Marta P Pereira
- Departamento de Biología Molecular and Centro Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Francisco Wandosell
- Departamento de Biología Molecular and Centro Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Beatriz Cubelos
- Departamento de Biología Molecular and Centro Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
32
|
Koller EJ, Chakrabarty P. Tau-Mediated Dysregulation of Neuroplasticity and Glial Plasticity. Front Mol Neurosci 2020; 13:151. [PMID: 32973446 PMCID: PMC7472665 DOI: 10.3389/fnmol.2020.00151] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/20/2020] [Indexed: 01/14/2023] Open
Abstract
The inability of individual neurons to compensate for aging-related damage leads to a gradual loss of functional plasticity in the brain accompanied by progressive impairment in learning and memory. Whereas this loss in neuroplasticity is gradual during normal aging, in neurodegenerative diseases such as Alzheimer’s disease (AD), this loss is accelerated dramatically, leading to the incapacitation of patients within a decade of onset of cognitive symptoms. The mechanisms that underlie this accelerated loss of neuroplasticity in AD are still not completely understood. While the progressively increasing proteinopathy burden, such as amyloid β (Aβ) plaques and tau tangles, definitely contribute directly to a neuron’s functional demise, the role of non-neuronal cells in controlling neuroplasticity is slowly being recognized as another major factor. These non-neuronal cells include astrocytes, microglia, and oligodendrocytes, which through regulating brain homeostasis, structural stability, and trophic support, play a key role in maintaining normal functioning and resilience of the neuronal network. It is believed that chronic signaling from these cells affects the homeostatic network of neuronal and non-neuronal cells to an extent to destabilize this harmonious milieu in neurodegenerative diseases like AD. Here, we will examine the experimental evidence regarding the direct and indirect pathways through which astrocytes and microglia can alter brain plasticity in AD, specifically as they relate to the development and progression of tauopathy. In this review article, we describe the concepts of neuroplasticity and glial plasticity in healthy aging, delineate possible mechanisms underlying tau-induced plasticity dysfunction, and discuss current clinical trials as well as future disease-modifying approaches.
Collapse
Affiliation(s)
- Emily J Koller
- Department of Neuroscience, University of Florida, Gainesville, FL, United States.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States
| | - Paramita Chakrabarty
- Department of Neuroscience, University of Florida, Gainesville, FL, United States.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States.,McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
33
|
Petratos S, Theotokis P, Kim MJ, Azari MF, Lee JY. That's a Wrap! Molecular Drivers Governing Neuronal Nogo Receptor-Dependent Myelin Plasticity and Integrity. Front Cell Neurosci 2020; 14:227. [PMID: 32848619 PMCID: PMC7417613 DOI: 10.3389/fncel.2020.00227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022] Open
Abstract
Myelin is a dynamic membrane that is important for coordinating the fast propagation of action potentials along small or large caliber axons (0.1-10 μm) some of which extend the entire length of the spinal cord. Due to the heterogeneity of electrical and energy demands of the variable neuronal populations, the axo-myelinic and axo-glial interactions that regulate the biophysical properties of myelinated axons also vary in terms of molecular interactions at the membrane interfaces. An important topic of debate in neuroscience is how myelin is maintained and modified under neuronal control and how disruption of this control (due to disease or injury) can initiate and/or propagate neurodegeneration. One of the key molecular signaling cascades that have been investigated in the context of neural injury over the past two decades involves the myelin-associated inhibitory factors (MAIFs) that interact with Nogo receptor 1 (NgR1). Chief among the MAIF superfamily of molecules is a reticulon family protein, Nogo-A, that is established as a potent inhibitor of neurite sprouting and axon regeneration. However, an understated role for NgR1 is its ability to control axo-myelin interactions and Nogo-A specific ligand binding. These interactions may occur at axo-dendritic and axo-glial synapses regulating their functional and dynamic membrane domains. The current review provides a comprehensive analysis of how neuronal NgR1 can regulate myelin thickness and plasticity under normal and disease conditions. Specifically, we discuss how NgR1 plays an important role in regulating paranodal and juxtaparanodal domains through specific signal transduction cascades that are important for microdomain molecular architecture and action potential propagation. Potential therapeutics designed to target NgR1-dependent signaling during disease are being developed in animal models since interference with the involvement of the receptor may facilitate neurological recovery. Hence, the regulatory role played by NgR1 in the axo-myelinic interface is an important research field of clinical significance that requires comprehensive investigation.
Collapse
Affiliation(s)
- Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, Department of Neurology, AHEPA University Hospital, Thessaloniki, Greece
| | - Min Jung Kim
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Michael F Azari
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | | |
Collapse
|
34
|
Thome R, Boehm A, Ishikawa LLW, Casella G, Munhoz J, Ciric B, Zhang GX, Rostami A. Comprehensive Analysis of the Immune and Stromal Compartments of the CNS in EAE Mice Reveal Pathways by Which Chloroquine Suppresses Neuroinflammation. Brain Sci 2020; 10:brainsci10060348. [PMID: 32516999 PMCID: PMC7349328 DOI: 10.3390/brainsci10060348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) are neuroinflammatory diseases of the central nervous system (CNS), where leukocytes and CNS resident cells play important roles in disease development and pathogenesis. The antimalarial drug chloroquine (CQ) has been shown to suppress EAE by modulating dendritic cells (DCs) and Th17 cells. However, the mechanism of action by which CQ modulates EAE is far from being elucidated. Here, we comprehensively analyzed the CNS of CQ and PBS-treated EAE mice to identify and characterize the cells that are affected by CQ. Our results show that leukocytes are largely modulated by CQ and have a reduction in the expression of inflammatory markers. Intriguingly, CQ vastly modulated the CNS resident cells astrocytes, oligodendrocytes (OLs) and microglia (MG), with the latter producing IL-10 and IL-12p70. Overall, our results show a panoramic view of the cellular components that are affect by CQ and provide further evidence that drug repurposing of CQ will be beneficial to MS patients.
Collapse
|
35
|
Wilson ER, Della-Flora Nunes G, Weaver MR, Frick LR, Feltri ML. Schwann cell interactions during the development of the peripheral nervous system. Dev Neurobiol 2020; 81:464-489. [PMID: 32281247 DOI: 10.1002/dneu.22744] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/14/2020] [Accepted: 04/06/2020] [Indexed: 12/21/2022]
Abstract
Schwann cells play a critical role in the development of the peripheral nervous system (PNS), establishing important relationships both with the extracellular milieu and other cell types, particularly neurons. In this review, we discuss various Schwann cell interactions integral to the proper establishment, spatial arrangement, and function of the PNS. We include signals that cascade onto Schwann cells from axons and from the extracellular matrix, bidirectional signals that help to establish the axo-glial relationship and how Schwann cells in turn support the axon. Further, we speculate on how Schwann cell interactions with other components of the developing PNS ultimately promote the complete construction of the peripheral nerve.
Collapse
Affiliation(s)
- Emma R Wilson
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Gustavo Della-Flora Nunes
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Michael R Weaver
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Luciana R Frick
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - M Laura Feltri
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
36
|
Rooney S, Albalawi H, Paul L. Exercise in the management of multiple sclerosis relapses: current evidence and future perspectives. Neurodegener Dis Manag 2020; 10:103-115. [PMID: 32352357 DOI: 10.2217/nmt-2019-0029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Relapses are a common feature of multiple sclerosis; however, recovery from relapses is often incomplete, with up to half of people experiencing residual disabilities postrelapse. Therefore, treatments are required to promote recovery of function and reduce the extent of residual disabilities postrelapse. Accordingly, this Perspective article explores the role of exercise in relapse management. Current evidence from two studies suggests that exercise in combination with steroid therapy improves disability and quality of life postrelapse, and may be more beneficial in promoting relapse recovery than steroid therapy alone. However, given the small number of studies and methodological limitations, further studies are required to understand the effects of exercise in relapse management and the mechanism through which exercise influences relapse recovery.
Collapse
Affiliation(s)
- Scott Rooney
- School of Health & Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom, G4 0BA
| | - Hani Albalawi
- College of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia, 47713
| | - Lorna Paul
- School of Health & Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom, G4 0BA
| |
Collapse
|
37
|
Aswendt M, Pallast N, Wieters F, Baues M, Hoehn M, Fink GR. Lesion Size- and Location-Dependent Recruitment of Contralesional Thalamus and Motor Cortex Facilitates Recovery after Stroke in Mice. Transl Stroke Res 2020; 12:87-97. [PMID: 32166716 PMCID: PMC7803721 DOI: 10.1007/s12975-020-00802-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/06/2020] [Accepted: 03/03/2020] [Indexed: 01/01/2023]
Abstract
Brain lesions caused by cerebral ischemia or hemorrhage lead to a local breakdown of energy homeostasis followed by irreversible cell death and long-term impairment. Importantly, local brain lesions also generate remote functional and structural disturbances, which contribute to the behavioral deficit but also impact the recovery of function. While spontaneous recovery has been associated with endogenous repair mechanisms at the vascular, neural, and immune cell levels, the impact of structural plasticity on sensory-motor dysfunction and recovery thereof remains to be elucidated by longitudinal imaging in a mouse model. Here, we applied behavioral assessments, in vivo fiber tracking, and histological validation in a photothrombotic stroke mouse model. Atlas-based whole-brain structural connectivity analysis and ex vivo histology revealed secondary neurodegeneration in the ipsilesional brain areas, mostly in the dorsal sensorimotor area of the thalamus. Furthermore, we describe for the first time a lesion size-dependent increase in structural connectivity between the contralesional primary motor cortex and thalamus with the ipsilesional cortex. The involvement of the contralesional hemisphere was associated with improved functional recovery relative to lesion size. This study highlights the importance of in vivo fiber tracking and the role of the contralesional hemisphere during spontaneous functional improvement as a potential novel stroke biomarker and therapeutic targets.
Collapse
Affiliation(s)
- Markus Aswendt
- Department of Neurology, Faculty of Medicine, University of Cologne and University Hospital Cologne, Kerpener Strasse, 62 50937, Cologne, Germany. .,Cognitive Neuroscience, Research Center Juelich, Institute of Neuroscience and Medicine (INM-3), Juelich, Germany.
| | - Niklas Pallast
- Department of Neurology, Faculty of Medicine, University of Cologne and University Hospital Cologne, Kerpener Strasse, 62 50937, Cologne, Germany
| | - Frederique Wieters
- Department of Neurology, Faculty of Medicine, University of Cologne and University Hospital Cologne, Kerpener Strasse, 62 50937, Cologne, Germany
| | - Mayan Baues
- Department of Neurology, Faculty of Medicine, University of Cologne and University Hospital Cologne, Kerpener Strasse, 62 50937, Cologne, Germany
| | - Mathias Hoehn
- Cognitive Neuroscience, Research Center Juelich, Institute of Neuroscience and Medicine (INM-3), Juelich, Germany.,Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Gereon R Fink
- Department of Neurology, Faculty of Medicine, University of Cologne and University Hospital Cologne, Kerpener Strasse, 62 50937, Cologne, Germany.,Cognitive Neuroscience, Research Center Juelich, Institute of Neuroscience and Medicine (INM-3), Juelich, Germany
| |
Collapse
|
38
|
Ferreira BK, Rodrigues MT, Streck EL, Ferreira GC, Schuck PF. White matter disturbances in phenylketonuria: Possible underlying mechanisms. J Neurosci Res 2020; 99:349-360. [PMID: 32141105 DOI: 10.1002/jnr.24598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/09/2020] [Accepted: 02/04/2020] [Indexed: 12/24/2022]
Abstract
White matter pathologies, as well as intellectual disability, microcephaly, and other central nervous system injuries, are clinical traits commonly ascribed to classic phenylketonuria (PKU). PKU is an inherited metabolic disease elicited by the deficiency of phenylalanine hydroxylase. Accumulation of l-phenylalanine (Phe) and its metabolites is found in tissues and body fluids in phenylketonuric patients. In order to mitigate the clinical findings, rigorous dietary Phe restriction constitutes the core of therapeutic management in PKU. Myelination is the process whereby the oligodendrocytes wrap myelin sheaths around the axons, supporting the conduction of action potentials. White matter injuries are implicated in the brain damage related to PKU, especially in untreated or poorly treated patients. The present review summarizes evidence toward putative mechanisms driving the white matter pathology in PKU patients.
Collapse
Affiliation(s)
- Bruna Klippel Ferreira
- Laboratório de Neuroenergética e Erros Inatos do Metabolismo, Programa de Bioquímica e Biofísica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Porto Alegre, Brazil
| | - Melissa Torres Rodrigues
- Laboratório de Erros Inatos do Metabolismo, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Emilio Luiz Streck
- Laboratório de Neurologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Gustavo Costa Ferreira
- Laboratório de Neuroenergética e Erros Inatos do Metabolismo, Programa de Bioquímica e Biofísica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Porto Alegre, Brazil
| | - Patricia Fernanda Schuck
- Laboratório de Erros Inatos do Metabolismo, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
39
|
Warnock A, Toomey LM, Wright AJ, Fisher K, Won Y, Anyaegbu C, Fitzgerald M. Damage Mechanisms to Oligodendrocytes and White Matter in Central Nervous System Injury: The Australian Context. J Neurotrauma 2020; 37:739-769. [DOI: 10.1089/neu.2019.6890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Andrew Warnock
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Lillian M. Toomey
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Alexander J. Wright
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Katherine Fisher
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Yerim Won
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Chidozie Anyaegbu
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| |
Collapse
|
40
|
Spencer SA, Suárez-Pozos E, Escalante M, Myo YP, Fuss B. Sodium-Calcium Exchangers of the SLC8 Family in Oligodendrocytes: Functional Properties in Health and Disease. Neurochem Res 2020; 45:1287-1297. [PMID: 31927687 DOI: 10.1007/s11064-019-02949-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/30/2022]
Abstract
The solute carrier 8 (SLC8) family of sodium-calcium exchangers (NCXs) functions as an essential regulatory system that couples opposite fluxes of sodium and calcium ions across plasmalemmal membranes. NCXs, thereby, play key roles in maintaining an ion homeostasis that preserves cellular integrity. Hence, alterations in NCX expression and regulation have been found to lead to ionic imbalances that are often associated with intracellular calcium overload and cell death. On the other hand, intracellular calcium has been identified as a key driver for a multitude of downstream signaling events that are crucial for proper functioning of biological systems, thus highlighting the need for a tightly controlled balance. In the CNS, NCXs have been primarily characterized in the context of synaptic transmission and ischemic brain damage. However, a much broader picture is emerging. NCXs are expressed by virtually all cells of the CNS including oligodendrocytes (OLGs), the cells that generate the myelin sheath. With a growing appreciation of dynamic calcium signals in OLGs, NCXs are becoming increasingly recognized for their crucial roles in shaping OLG function under both physiological and pathophysiological conditions. In order to provide a current update, this review focuses on the importance of NCXs in cells of the OLG lineage. More specifically, it provides a brief introduction into plasmalemmal NCXs and their modes of activity, and it discusses the roles of OLG expressed NCXs in regulating CNS myelination and in contributing to CNS pathologies associated with detrimental effects on OLG lineage cells.
Collapse
Affiliation(s)
- Samantha A Spencer
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Box 980709, Richmond, VA, 23298, USA
| | - Edna Suárez-Pozos
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Box 980709, Richmond, VA, 23298, USA
| | - Miguel Escalante
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Box 980709, Richmond, VA, 23298, USA.,Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Yu Par Myo
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Box 980709, Richmond, VA, 23298, USA
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Box 980709, Richmond, VA, 23298, USA.
| |
Collapse
|
41
|
Hide T, Komohara Y. Oligodendrocyte Progenitor Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1234:107-122. [PMID: 32040858 DOI: 10.1007/978-3-030-37184-5_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glioblastoma (GBM) develops from adult brain white matter and is the most common and lethal primary brain tumor, characterized by rapid growth and invasion. GBM tumors frequently spread into the contralateral hemisphere, including in the beginning of tumor development. However, after complete resection of the tumor mass and chemo-radiotherapy, GBM commonly recurs around the tumor removal site, suggesting that the microenvironment at the tumor border provides therapeutic resistance to GBM cells. To improve patient prognosis, understanding the microenvironment at the tumor border is critical. Several microRNAs (miRNAs) show higher expression at the tumor border, with the top three involved in oligodendrocyte differentiation. Oligodendrocyte progenitor cells (OPCs) may induce stemness and chemo-radioresistance in GBM cells, providing a supportive function to promote GBM. This review describes important features of OPCs and insights into the "border niche," a unique microenvironment that allows GBM cells to survive and recur at the tumor border.
Collapse
Affiliation(s)
- Takuichiro Hide
- Department of Neurosurgery, Kitasato University School of Medicine, Kanagawa, Japan.
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
42
|
Thomason EJ, Escalante M, Osterhout DJ, Fuss B. The oligodendrocyte growth cone and its actin cytoskeleton: A fundamental element for progenitor cell migration and CNS myelination. Glia 2019; 68:1329-1346. [PMID: 31696982 DOI: 10.1002/glia.23735] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 01/06/2023]
Abstract
Cells of the oligodendrocyte (OLG) lineage engage in highly motile behaviors that are crucial for effective central nervous system (CNS) myelination. These behaviors include the guided migration of OLG progenitor cells (OPCs), the surveying of local environments by cellular processes extending from differentiating and pre-myelinating OLGs, and during the process of active myelin wrapping, the forward movement of the leading edge of the myelin sheath's inner tongue along the axon. Almost all of these motile behaviors are driven by actin cytoskeletal dynamics initiated within a lamellipodial structure that is located at the tip of cellular OLG/OPC processes and is structurally as well as functionally similar to the neuronal growth cone. Accordingly, coordinated stoichiometries of actin filament (F-actin) assembly and disassembly at these OLG/OPC growth cones have been implicated in directing process outgrowth and guidance, and the initiation of myelination. Nonetheless, the functional importance of the OLG/OPC growth cone still remains to be fully understood, and, as a unique aspect of actin cytoskeletal dynamics, F-actin depolymerization and disassembly start to predominate at the transition from myelination initiation to myelin wrapping. This review provides an overview of the current knowledge about OLG/OPC growth cones, and it proposes a model in which actin cytoskeletal dynamics in OLG/OPC growth cones are a main driver for morphological transformations and motile behaviors. Remarkably, these activities, at least at the later stages of OLG maturation, may be regulated independently from the transcriptional gene expression changes typically associated with CNS myelination.
Collapse
Affiliation(s)
- Elizabeth J Thomason
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Miguel Escalante
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Donna J Osterhout
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
43
|
Swire M, Kotelevtsev Y, Webb DJ, Lyons DA, ffrench-Constant C. Endothelin signalling mediates experience-dependent myelination in the CNS. eLife 2019; 8:e49493. [PMID: 31657718 PMCID: PMC6831104 DOI: 10.7554/elife.49493] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/26/2019] [Indexed: 12/22/2022] Open
Abstract
Experience and changes in neuronal activity can alter CNS myelination, but the signalling pathways responsible remain poorly understood. Here we define a pathway in which endothelin, signalling through the G protein-coupled receptor endothelin receptor B and PKC epsilon, regulates the number of myelin sheaths formed by individual oligodendrocytes in mouse and zebrafish. We show that this phenotype is also observed in the prefrontal cortex of mice following social isolation, and is associated with reduced expression of vascular endothelin. Additionally, we show that increasing endothelin signalling rescues this myelination defect caused by social isolation. Together, these results indicate that the vasculature responds to changes in neuronal activity associated with experience by regulating endothelin levels, which in turn affect the myelinating capacity of oligodendrocytes. This pathway may be employed to couple the metabolic support function of myelin to activity-dependent demand and also represents a novel mechanism for adaptive myelination.
Collapse
Affiliation(s)
- Matthew Swire
- MRC Centre for Regenerative Medicine, MS Society Edinburgh CentreUniversity of EdinburghEdinburghUnited Kingdom
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Yuri Kotelevtsev
- Centre for Neurobiology and Brain RestorationSkoltech Institute for Science and TechnologyMoscowRussian Federation
| | - David J Webb
- British Heart Foundation Centre of Research Excellence, Centre of Cardiovascular Science, Queen's Medical Research InstituteUniversity of EdinburghEdinburghUnited Kingdom
| | - David A Lyons
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Charles ffrench-Constant
- MRC Centre for Regenerative Medicine, MS Society Edinburgh CentreUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
44
|
Abstract
Oligodendrocytes are the myelinating cells of the CNS, producing the insulating myelin sheath that facilitates rapid electrical conduction of axonal action potentials. Oligodendrocytes arise from oligodendrocyte progenitor cells (OPCs) under the control of multiple factors, including neurotransmitters and other neuron-derived factors. A significant population of OPCs persists in the adult CNS, where they are often referred to as NG2-glia, because they are identified by their expression of the NG2 chondroitin sulphate proteoglycan (CSPG4). In the adult brain, the primary function of NG2-glia is the life-long generation of oligodendrocytes to replace myelin lost through natural 'wear and tear' and pathology, as well as to provide new oligodendrocytes to myelinate new connections formed in response to new life experiences. NG2-glia contact synapses and respond to neurotransmitters and potassium released during neuronal transmission; to this end, NG2-glia (OPCs) express multiple neurotransmitter receptors and ion channels, with prominent roles being identified for glutamatergic signalling and potassium channels in oligodendrocyte differentiation. Myelinating oligodendrocytes also express a wide range of neurotransmitter receptors and ion channels, together with transporters and gap junctions; together, these have critical functions in cellular ion and water homeostasis, as well as metabolism, which is essential for maintaining myelin and axon integrity. An overriding theme is that oligodendrocyte function and myelination is not only essential for rapid axonal conduction, but is essential for learning and the long-term integrity of axons and neurones. Hence, myelination underpins cognitive function and the massive computing power of the human brain and myelin loss has devastating effects on CNS function. This chapter focuses on normal oligodendrocyte physiology.
Collapse
|