1
|
Bhambri A, Thai P, Wei S, Bae HG, Barbosa D, Sharma T, Yu Z, Xing C, Kim JH, Yu G, Sun LO. Genetically Labeled Premyelinating Oligodendrocytes: Bridging Oligodendrogenesis and Neuronal Activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.27.630559. [PMID: 39763780 PMCID: PMC11703227 DOI: 10.1101/2024.12.27.630559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
To myelinate axons, oligodendrocyte precursor cells (OPCs) must stop dividing and differentiate into premyelinating oligodendrocytes (preOLs). PreOLs are thought to survey and begin ensheathing nearby axons, and their maturation is often stalled at human demyelinating lesions. Lack of genetic tools to visualize and manipulate preOLs has left this critical differentiation stage woefully understudied. Here, we generated a knock-in mouse line that specifically labels preOLs across the central nervous system. Genetically labeled preOLs exhibit distinct morphology, unique transcriptomic and electrophysiological features, and do not overlap with OPCs. PreOL lineage tracing revealed that subsets of them undergo prolonged maturation and that different brain regions initiate oligodendrogenesis with the spatiotemporal specificity. Lastly, by fate mapping preOLs under sensory deprivation, we find that neuronal activity functions within a narrow time window of preOL maturation to promote their survival and successful integration. Our work provides a new tool to probe this critical cell stage during axon ensheathment, allowing for fine dissection of axon-oligodendrocyte interactions.
Collapse
Affiliation(s)
- Aksheev Bhambri
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Phu Thai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Songtao Wei
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Han-Gyu Bae
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniela Barbosa
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tripti Sharma
- Children’s Research Institute Mouse Genome Engineering Core, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ze Yu
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Lyda Hilla Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chao Xing
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Lyda Hilla Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jun Hee Kim
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Guoqiang Yu
- Department of Automation, Tsinghua University, Beijing 100084, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Lu O. Sun
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Lead contact
| |
Collapse
|
2
|
de los Angeles Becerra Rodriguez M, Gonzalez Muñoz E, Moore T. Oligodendrocyte-specific expression of PSG8- AS1 suggests a role in myelination with prognostic value in oligodendroglioma. Noncoding RNA Res 2024; 9:1061-1068. [PMID: 39022681 PMCID: PMC11254506 DOI: 10.1016/j.ncrna.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/03/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
The segmentally duplicated Pregnancy-specific glycoprotein (PSG) locus on chromosome 19q13 may be one of the most rapidly evolving in the human genome. It comprises ten coding genes (PSG1-9, 11) and one predominantly non-coding gene (PSG10) that are expressed in the placenta and gut, in addition to several poorly characterized long non-coding RNAs. We report that long non-coding RNA PSG8-AS1 has an oligodendrocyte-specific expression pattern and is co-expressed with genes encoding key myelin constituents. PSG8-AS1 exhibits two peaks of expression during human brain development coinciding with the most active periods of oligodendrogenesis and myelination. PSG8-AS1 orthologs were found in the genomes of several primates but significant expression was found only in the human, suggesting a recent evolutionary origin of its proposed role in myelination. Additionally, because co-deletion of chromosomes 1p/19q is a genomic marker of oligodendroglioma, expression of PSG8-AS1 was examined in these tumors. PSG8-AS1 may be a promising diagnostic biomarker for glioma, with prognostic value in oligodendroglioma.
Collapse
Affiliation(s)
- Maria de los Angeles Becerra Rodriguez
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
- SFI Centre for Research Training in Genomics Data Science, University College Cork, Cork, Ireland
| | - Elena Gonzalez Muñoz
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590, Málaga, Spain
- Universidad de Malaga, Dpto. Biología Celular, Genética y Fisiología, 29071, Málaga, Spain
| | - Tom Moore
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
3
|
Kamen Y, Chapman TW, Piedra ET, Ciolkowski ME, Hill RA. Transient upregulation of procaspase-3 during oligodendrocyte fate decisions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623446. [PMID: 39605489 PMCID: PMC11601457 DOI: 10.1101/2024.11.13.623446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Oligodendrocytes are generated throughout life and in neurodegenerative conditions from brain resident oligodendrocyte precursor cells (OPCs). The transition from OPC to oligodendrocyte involves a complex cascade of molecular and morphological states that position the cell to make a fate decision to integrate as a myelinating oligodendrocyte or die through apoptosis. Oligodendrocyte maturation impacts the cell death mechanisms that occur in degenerative conditions, but it is unclear if and how the cell death machinery changes as OPCs transition into oligodendrocytes. Here, we discovered that differentiating oligodendrocytes transiently upregulate the zymogen procaspase-3, equipping these cells to make a survival decision during differentiation. Pharmacological inhibition of caspase-3 decreases oligodendrocyte density, indicating that procaspase-3 upregulation promotes differentiation. Moreover, using procaspase-3 as a marker, we show that oligodendrocyte differentiation continues in the aging cortex and white matter. Taken together, our data establish procaspase-3 as a differentiating oligodendrocyte marker and provide insight into the underlying mechanisms occurring during the decision to integrate or die.
Collapse
Affiliation(s)
- Yasmine Kamen
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Timothy W. Chapman
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Enrique T. Piedra
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | | | - Robert A. Hill
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
4
|
Moghimyfiroozabad S, Paul MA, Bellenger L, Selimi F. A molecularly defined subpopulation of oligodendrocyte precursor cells controls the generation of myelinating oligodendrocytes during postnatal development. PLoS Biol 2024; 22:e3002655. [PMID: 38985832 PMCID: PMC11236193 DOI: 10.1371/journal.pbio.3002655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 05/02/2024] [Indexed: 07/12/2024] Open
Abstract
Oligodendrocyte precursor cells (OPCs) are a class of glial cells that uniformly tiles the entire central nervous system (CNS). They play several key functions across the brain including the generation of oligodendrocytes and the control of myelination. Whether the functional diversity of OPCs is the result of genetically defined subpopulations or of their regulation by external factors has not been definitely established. We discovered that a subpopulation of OPCs found across the brain is defined by the expression of C1ql1, a gene previously described for its synaptic function in neurons. This subpopulation starts to appear during the first postnatal week in the mouse cortex. Ablation of C1ql1-expressing OPCs in the mouse leads to a massive lack of oligodendrocytes and myelination in many brain regions. This deficit cannot be rescued, even though some OPCs escape Sox10-driven ablation and end up partially compensating the OPC loss in the adult. Therefore, C1ql1 is a molecular marker of a functionally non-redundant subpopulation of OPCs, which controls the generation of myelinating oligodendrocytes.
Collapse
Affiliation(s)
- Shayan Moghimyfiroozabad
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Maela A Paul
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Lea Bellenger
- ARTbio Bioinformatics Analysis Facility, Sorbonne Université, Inserm U1156, CNRS FR 3631, Institut Français de Bioinformatique (IFB), Paris, France
| | - Fekrije Selimi
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
5
|
Kukanja P, Langseth CM, Rubio Rodríguez-Kirby LA, Agirre E, Zheng C, Raman A, Yokota C, Avenel C, Tiklová K, Guerreiro-Cacais AO, Olsson T, Hilscher MM, Nilsson M, Castelo-Branco G. Cellular architecture of evolving neuroinflammatory lesions and multiple sclerosis pathology. Cell 2024; 187:1990-2009.e19. [PMID: 38513664 DOI: 10.1016/j.cell.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 12/13/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024]
Abstract
Multiple sclerosis (MS) is a neurological disease characterized by multifocal lesions and smoldering pathology. Although single-cell analyses provided insights into cytopathology, evolving cellular processes underlying MS remain poorly understood. We investigated the cellular dynamics of MS by modeling temporal and regional rates of disease progression in mouse experimental autoimmune encephalomyelitis (EAE). By performing single-cell spatial expression profiling using in situ sequencing (ISS), we annotated disease neighborhoods and found centrifugal evolution of active lesions. We demonstrated that disease-associated (DA)-glia arise independently of lesions and are dynamically induced and resolved over the disease course. Single-cell spatial mapping of human archival MS spinal cords confirmed the differential distribution of homeostatic and DA-glia, enabled deconvolution of active and inactive lesions into sub-compartments, and identified new lesion areas. By establishing a spatial resource of mouse and human MS neuropathology at a single-cell resolution, our study unveils the intricate cellular dynamics underlying MS.
Collapse
Affiliation(s)
- Petra Kukanja
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Biomedicum, Karolinska Institutet, 17177 Stockholm, Sweden.
| | - Christoffer M Langseth
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, 17154 Stockholm, Sweden.
| | - Leslie A Rubio Rodríguez-Kirby
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Biomedicum, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Eneritz Agirre
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Biomedicum, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Chao Zheng
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Biomedicum, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Amitha Raman
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, 17154 Stockholm, Sweden
| | - Chika Yokota
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, 17154 Stockholm, Sweden
| | - Christophe Avenel
- Department of Information Technology, Uppsala University, 752 37 Uppsala, Sweden; BioImage Informatics Facility, Science for Life Laboratory, SciLifeLab, 751 05 Uppsala, Sweden
| | - Katarina Tiklová
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, 17154 Stockholm, Sweden
| | - André O Guerreiro-Cacais
- Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, 171 76 Solna, Sweden
| | - Tomas Olsson
- Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, 171 76 Solna, Sweden
| | - Markus M Hilscher
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, 17154 Stockholm, Sweden
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, 17154 Stockholm, Sweden.
| | - Gonçalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Biomedicum, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
6
|
Zhang T, Bhambri A, Zhang Y, Barbosa D, Bae HG, Xue J, Wazir S, Mulinyawe SB, Kim JH, Sun LO. Autophagy collaborates with apoptosis pathways to control oligodendrocyte number. Cell Rep 2023; 42:112943. [PMID: 37543947 PMCID: PMC10529879 DOI: 10.1016/j.celrep.2023.112943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/20/2023] [Accepted: 07/21/2023] [Indexed: 08/08/2023] Open
Abstract
Oligodendrocytes are the sole myelin-producing cells in the central nervous system. Oligodendrocyte number is tightly controlled across diverse brain regions to match local axon type and number, yet the underlying mechanisms remain unclear. Here, we show that autophagy, an evolutionarily conserved cellular process that promotes cell survival under physiological conditions, elicits premyelinating oligodendrocyte apoptosis during development. Autophagy flux is increased in premyelinating oligodendrocytes, and its genetic blockage causes ectopic oligodendrocyte survival throughout the entire brain. Autophagy functions cell autonomously in the premyelinating oligodendrocyte to trigger cell apoptosis, and it genetically interacts with the TFEB pathway to limit oligodendrocyte number across diverse brain regions. Our results provide in vivo evidence showing that autophagy promotes apoptosis in mammalian cells under physiological conditions and reveal key intrinsic mechanisms governing oligodendrogenesis.
Collapse
Affiliation(s)
- Tingxin Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Aksheev Bhambri
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yihe Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniela Barbosa
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Han-Gyu Bae
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Jumin Xue
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sabeen Wazir
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sara B Mulinyawe
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jun Hee Kim
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Lu O Sun
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
7
|
Samtani G, Kim S, Michaud D, Hillhouse AE, Szule JA, Konganti K, Li J. Brain region dependent molecular signatures and myelin repair following chronic demyelination. Front Cell Neurosci 2023; 17:1169786. [PMID: 37180951 PMCID: PMC10171432 DOI: 10.3389/fncel.2023.1169786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Multiple sclerosis (MS) is the most prevalent demyelinating disease of the central nervous system, characterized by myelin destruction, axonal degeneration, and progressive loss of neurological functions. Remyelination is considered an axonal protection strategy and may enable functional recovery, but the mechanisms of myelin repair, especially after chronic demyelination, remain poorly understood. Here, we used the cuprizone demyelination mouse model to investigate spatiotemporal characteristics of acute and chronic de- and remyelination and motor functional recovery following chronic demyelination. Extensive remyelination occurred after both the acute and chronic insults, but with less robust glial responses and slower myelin recovery in the chronic phase. Axonal damage was found at the ultrastructural level in the chronically demyelinated corpus callosum and in remyelinated axons in the somatosensory cortex. Unexpectedly, we observed the development of functional motor deficits after chronic remyelination. RNA sequencing of isolated brain regions revealed significantly altered transcripts across the corpus callosum, cortex and hippocampus. Pathway analysis identified selective upregulation of extracellular matrix/collagen pathways and synaptic signaling in the chronically de/remyelinating white matter. Our study demonstrates regional differences of intrinsic reparative mechanisms after a chronic demyelinating insult and suggests a potential link between long-term motor function alterations and continued axonal damage during chronic remyelination. Moreover, the transcriptome dataset of three brain regions and over an extended de/remyelination period provides a valuable platform for a better understanding of the mechanisms of myelin repair as well as the identification of potential targets for effective remyelination and neuroprotection for progressive MS.
Collapse
Affiliation(s)
- Grace Samtani
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - Sunja Kim
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - Danielle Michaud
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - Andrew E. Hillhouse
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, United States
| | - Joseph A. Szule
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Kranti Konganti
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, United States
| | - Jianrong Li
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
- *Correspondence: Jianrong Li,
| |
Collapse
|
8
|
Sokolov PL, Chebanenko NV, Mednaya DM. [Epigenetic influences and brain development]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:12-19. [PMID: 36946391 DOI: 10.17116/jnevro202312303112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
In recent years, the amount of scientific data on the involvement of epigenetic processes in the regulation of brain development in postnatal ontogenesis has been rapidly growing. The article provides an overview of scientific research on the mechanisms of epigenetic influences on brain development. Information was searched in the Scopus, Web of Science, MedLine, The Cochrane Library, PubMed, Pedro, Scholar, eLibrary, CyberLeninka and RSCI databases for the period 1940-2022 by keywords: brain development, epigenetics, neuroontogenesis, methylation, histone modifications, chromatin remodeling, non-coding RNAs. Today, the mechanisms of epigenetic influence on the genome include DNA and RNA methylation, covalent modification of histones, chromatin remodeling, and the influence of non-coding RNAs. Epigenetic modifications are often reversible and provide the necessary plasticity for the response of progenitor cells to environmental signals. The influence of each of these factors on the neurodevelopment is considered. The possibility of transsynaptic transmission of hereditary material by means of circular RNA is indicated. The main ways of microRNA influence on brain development are presented and their universality as an «overgenic» regulator of organism adaptation to external conditions is indicated. Data on the relationship of long non-coding RNAs with the regulation of the functional activity of oligodendroglia are presented. Also, the data presented indicate the paths to the pathogenetically determined prevention of congenital brain pathology.
Collapse
Affiliation(s)
- P L Sokolov
- Voyno-Yasenetsky Scientific and Practical Center for Specialized Assistance for Children, Moscow, Russia
| | - N V Chebanenko
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - D M Mednaya
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
9
|
Tan Z, Li W, Cheng X, Zhu Q, Zhang X. Non-Coding RNAs in the Regulation of Hippocampal Neurogenesis and Potential Treatment Targets for Related Disorders. Biomolecules 2022; 13:biom13010018. [PMID: 36671403 PMCID: PMC9855933 DOI: 10.3390/biom13010018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Non-coding RNAs (ncRNAs), including miRNAs, lncRNAs, circRNAs, and piRNAs, do not encode proteins. Nonetheless, they have critical roles in a variety of cellular activities-such as development, neurogenesis, degeneration, and the response to injury to the nervous system-via protein translation, RNA splicing, gene activation, silencing, modifications, and editing; thus, they may serve as potential targets for disease treatment. The activity of adult neural stem cells (NSCs) in the subgranular zone of the hippocampal dentate gyrus critically influences hippocampal function, including learning, memory, and emotion. ncRNAs have been shown to be involved in the regulation of hippocampal neurogenesis, including proliferation, differentiation, and migration of NSCs and synapse formation. The interaction among ncRNAs is complex and diverse and has become a major topic within the life science. This review outlines advances in research on the roles of ncRNAs in modulating NSC bioactivity in the hippocampus and discusses their potential applications in the treatment of illnesses affecting the hippocampus.
Collapse
Affiliation(s)
- Zhengye Tan
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Wen Li
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiang Cheng
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Qing Zhu
- School of Pharmacy, Nantong University, Nantong 226001, China
- Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong 226001, China
| | - Xinhua Zhang
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Central Lab, Yancheng Third People’s Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng 224001, China
- Correspondence:
| |
Collapse
|
10
|
Zhang J, Guan M, Zhou X, Berry K, He X, Lu QR. Long Noncoding RNAs in CNS Myelination and Disease. Neuroscientist 2022; 29:287-301. [PMID: 35373640 DOI: 10.1177/10738584221083919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Myelination by oligodendrocytes is crucial for neuronal survival and function, and defects in myelination or failure in myelin repair can lead to axonal degeneration and various neurological diseases. At present, the factors that promote myelination and overcome the remyelination block in demyelinating diseases are poorly defined. Although the roles of protein-coding genes in oligodendrocyte differentiation have been extensively studied, the majority of the mammalian genome is transcribed into noncoding RNAs, and the functions of these molecules in myelination are poorly characterized. Long noncoding RNAs (lncRNAs) regulate transcription at multiple levels, providing spatiotemporal control and robustness for cell type-specific gene expression and physiological functions. lncRNAs have been shown to regulate neural cell-type specification, differentiation, and maintenance of cell identity, and dysregulation of lncRNA function has been shown to contribute to neurological diseases. In this review, we discuss recent advances in our understanding of the functions of lncRNAs in oligodendrocyte development and myelination as well their roles in neurological diseases and brain tumorigenesis. A more systematic characterization of lncRNA functional networks will be instrumental for a better understanding of CNS myelination, myelin disorders, and myelin repair.
Collapse
Affiliation(s)
- Jing Zhang
- Laboratory of Nervous System Injuries and Diseases, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children at Sichuan University, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.,Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Menglong Guan
- Laboratory of Nervous System Injuries and Diseases, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children at Sichuan University, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xianyao Zhou
- Laboratory of Nervous System Injuries and Diseases, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children at Sichuan University, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Kalen Berry
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xuelian He
- Laboratory of Nervous System Injuries and Diseases, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children at Sichuan University, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Q Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
11
|
An J, Zhang Y, Fudge AD, Lu H, Richardson WD, Li H. G protein-coupled receptor GPR37-like 1 regulates adult oligodendrocyte generation. Dev Neurobiol 2021; 81:975-984. [PMID: 34601807 DOI: 10.1002/dneu.22854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/12/2021] [Accepted: 09/29/2021] [Indexed: 02/01/2023]
Abstract
Oligodendrocytes (OLs) continue to be generated from OL precursors (OPs) in the adult mammalian brain. Adult-born OLs are believed to contribute to neural plasticity, learning and memory through a process of "adaptive myelination," but how adult OL generation and adaptive myelination are regulated remains unclear. Here, we report that the glia-specific G protein-coupled receptor 37-like 1 (GPR37L1) is expressed in subsets of OPs and newly formed immature OLs in adult mouse brain. We found that OP proliferation and differentiation are inhibited in the corpus callosum of adult Gpr37l1 knockout mice, leading to a reduction in the number of adult-born OLs. Our data raise the possibility that GPR37L1 is mechanistically involved in adult OL generation and adaptive myelination, and suggest that GPR37L1 might be a useful functional marker of OPs that are committed to OL differentiation.
Collapse
Affiliation(s)
- Jing An
- Faculty of Medical Sciences, Division of Medicine, Wolfson Institute for Biomedical Research, University College London, London, UK.,School of Basic Medical Sciences, Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yumeng Zhang
- Faculty of Medical Sciences, Division of Medicine, Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Alexander D Fudge
- Faculty of Medical Sciences, Division of Medicine, Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Haixia Lu
- School of Basic Medical Sciences, Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - William D Richardson
- Faculty of Medical Sciences, Division of Medicine, Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Huiliang Li
- Faculty of Medical Sciences, Division of Medicine, Wolfson Institute for Biomedical Research, University College London, London, UK
| |
Collapse
|
12
|
Wu J, Yu H, Huang H, Shu P, Peng X. Functions of noncoding RNAs in glial development. Dev Neurobiol 2021; 81:877-891. [PMID: 34402590 DOI: 10.1002/dneu.22848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/01/2021] [Accepted: 08/15/2021] [Indexed: 12/27/2022]
Abstract
Glia are widely distributed in the central nervous system and are closely related to cell metabolism, signal transduction, support, cell migration, and other nervous system development processes and functions. Glial development is complex and essential, including the processes of proliferation, differentiation, and migration, and requires precise regulatory networks. Noncoding RNAs (ncRNAs) can be deeply involved in glial development through gene regulation. Here, we review the regulatory roles of ncRNAs in glial development. We briefly describe the classification and functions of noncoding RNAs and focus on microRNAs (miRNAs) and long ncRNAs (lncRNAs), which have been reported to participate extensively during glial formation. The highlight of this summary is that miRNAs and lncRNAs can participate in and regulate the signaling pathways of glial development. The review not only describes how noncoding RNAs participate in nervous system development but also explains the processes of glial development, providing a foundation for subsequent studies on glial development and new insights into the pathogeneses of related neurological diseases.
Collapse
Affiliation(s)
- Jiarui Wu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Haoyang Yu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Hao Huang
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Pengcheng Shu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,Chinese Institute for Brain Research, Beijing, China
| | - Xiaozhong Peng
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| |
Collapse
|
13
|
Abstract
Oligodendrocyte precursor cells (OPCs) retain the capacity to remyelinate axons upon demyelinating injury. However, mode of cell division and differentiation dynamics of individual OPCs in deep brain structures, such as the corpus callosum, remains unknown. Using in vivo two-photon imaging in a focal model of demyelination, we show that OPCs undergo several rounds of symmetric and asymmetric cell divisions before producing a subset of daughter cells that differentiates into myelinating oligodendrocytes. The data presented here characterize the behavior of OPC clones and delineate the cellular principles that lead to remyelination. Oligodendrocyte precursor cells (OPCs) retain the capacity to remyelinate axons in the corpus callosum (CC) upon demyelination. However, the dynamics of OPC activation, mode of cell division, migration, and differentiation on a single-cell level remain poorly understood due to the lack of longitudinal observations of individual cells within the injured brain. After inducing focal demyelination with lysophosphatidylcholin in the CC of adult mice, we used two-photon microscopy to follow for up to 2 mo OPCs and their differentiating progeny, genetically labeled through conditional recombination driven by the regulatory elements of the gene Achaete-scute homolog 1. OPCs underwent several rounds of symmetric and asymmetric cell divisions, producing a subset of daughter cells that differentiates into myelinating oligodendrocytes. While OPCs continue to proliferate, differentiation into myelinating oligodendrocytes declines with time, and death of OPC-derived daughter cells increases. Thus, chronic in vivo imaging delineates the cellular principles leading to remyelination in the adult brain, providing a framework for the development of strategies to enhance endogenous brain repair in acute and chronic demyelinating disease.
Collapse
|
14
|
Pruvost M, Moyon S. Oligodendroglial Epigenetics, from Lineage Specification to Activity-Dependent Myelination. Life (Basel) 2021; 11:62. [PMID: 33467699 PMCID: PMC7830029 DOI: 10.3390/life11010062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 12/25/2022] Open
Abstract
Oligodendroglial cells are the myelinating cells of the central nervous system. While myelination is crucial to axonal activity and conduction, oligodendrocyte progenitor cells and oligodendrocytes have also been shown to be essential for neuronal support and metabolism. Thus, a tight regulation of oligodendroglial cell specification, proliferation, and myelination is required for correct neuronal connectivity and function. Here, we review the role of epigenetic modifications in oligodendroglial lineage cells. First, we briefly describe the epigenetic modalities of gene regulation, which are known to have a role in oligodendroglial cells. We then address how epigenetic enzymes and/or marks have been associated with oligodendrocyte progenitor specification, survival and proliferation, differentiation, and finally, myelination. We finally mention how environmental cues, in particular, neuronal signals, are translated into epigenetic modifications, which can directly influence oligodendroglial biology.
Collapse
|
15
|
Zhao Y, Liu H, Zhang Q, Zhang Y. The functions of long non-coding RNAs in neural stem cell proliferation and differentiation. Cell Biosci 2020; 10:74. [PMID: 32514332 PMCID: PMC7260844 DOI: 10.1186/s13578-020-00435-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/23/2020] [Indexed: 02/06/2023] Open
Abstract
The capacities for neural stem cells (NSCs) self-renewal with differentiation are need to be precisely regulated for ensuring brain development and homeostasis. Recently, increasing number of studies have highlighted that long non-coding RNAs (lncRNAs) are associated with NSC fate determination during brain development stages. LncRNAs are a class of non-coding RNAs more than 200 nucleotides without protein-coding potential and function as novel critical regulators in multiple biological processes. However, the correlation between lncRNAs and NSC fate decision still need to be explored in-depth. In this review, we will summarize the roles and molecular mechanisms of lncRNAs focusing on NSCs self-renewal, neurogenesis and gliogenesis over the course of neural development, still more, dysregulation of lncRNAs in all stage of neural development have closely relationship with development disorders or glioma. In brief, lncRNAs may be explored as effective modulators in NSCs related neural development and novel biomarkers for diagnosis and prognosis of neurological disorders in the future.
Collapse
Affiliation(s)
- Yanfang Zhao
- Institute of Biomedical Research, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School for Life Science, Shandong University of Technology, Zibo, China
| | - Hongliang Liu
- Institute of Biomedical Research, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School for Life Science, Shandong University of Technology, Zibo, China
| | - Qili Zhang
- Institute of Biomedical Research, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School for Life Science, Shandong University of Technology, Zibo, China
| | - Yuan Zhang
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
16
|
Samudyata, Castelo-Branco G, Liu J. Epigenetic regulation of oligodendrocyte differentiation: From development to demyelinating disorders. Glia 2020; 68:1619-1630. [PMID: 32154951 DOI: 10.1002/glia.23820] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/19/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022]
Abstract
The maintenance of progenitor states or the differentiation of progenitors into specific lineages requires epigenetic remodeling of the gene expression program. In the central nervous system, oligodendrocyte progenitors (OPCs) give rise to oligodendrocytes (OLs), whose main function has been thought to be to produce myelin, a lipid-rich structure insulating the axons. However, recent findings suggest diverse OL transcriptional states, which might imply additional functions. The differentiation of OPCs into postmitotic OLs is a highly regulated and sensitive process and requires temporal waves of gene expression through epigenetic remodeling of the genome. In this review, we will discuss recent advances in understanding the events shaping the chromatin landscape through histone modifications and long noncoding RNAs during OPC differentiation, in physiological and pathological conditions. We suggest that epigenetic regulation plays a fundamental role in governing the accessibility of transcriptional machinery to DNA sequences, which ultimately determines functional outcomes in OLs.
Collapse
Affiliation(s)
- Samudyata
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Gonçalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Jia Liu
- Advanced Science Research Center at the Graduate Center, Neuroscience Initiative, City University of New York, New York, New York, USA
| |
Collapse
|
17
|
Berry K, Wang J, Lu QR. Epigenetic regulation of oligodendrocyte myelination in developmental disorders and neurodegenerative diseases. F1000Res 2020; 9:F1000 Faculty Rev-105. [PMID: 32089836 PMCID: PMC7014579 DOI: 10.12688/f1000research.20904.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/30/2020] [Indexed: 12/16/2022] Open
Abstract
Oligodendrocytes are the critical cell types giving rise to the myelin nerve sheath enabling efficient nerve transmission in the central nervous system (CNS). Oligodendrocyte precursor cells differentiate into mature oligodendrocytes and are maintained throughout life. Deficits in the generation, proliferation, or differentiation of these cells or their maintenance have been linked to neurological disorders ranging from developmental disorders to neurodegenerative diseases and limit repair after CNS injury. Understanding the regulation of these processes is critical for achieving proper myelination during development, preventing disease, or recovering from injury. Many of the key factors underlying these processes are epigenetic regulators that enable the fine tuning or reprogramming of gene expression during development and regeneration in response to changes in the local microenvironment. These include chromatin remodelers, histone-modifying enzymes, covalent modifiers of DNA methylation, and RNA modification-mediated mechanisms. In this review, we will discuss the key components in each of these classes which are responsible for generating and maintaining oligodendrocyte myelination as well as potential targeted approaches to stimulate the regenerative program in developmental disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Kalen Berry
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Jiajia Wang
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Q. Richard Lu
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| |
Collapse
|